Under review as a conference paper at ICLR 2026

DI1SCcO: DYNAMIC SCHEDULING FOR CPU OFFLOAD IN
ML WORKLOADS

Anonymous authors
Paper under double-blind review

ABSTRACT

An obvious way to alleviate memory difficulties in GPU-based ML workloads is
via CPU offload, where data are moved between GPU and CPU RAM. While CPU
offload is useful, it can greatly slow down a computation due to the relatively slow
transfer rate between CPU RAM and GPU RAM. To address this, overlapping
memory transfer and compute is a necessity. In this paper, we present a unique
approach to CPU offload in ML workloads, called D1sco (Dynamlc Scheduling
for Cpu Offload). DISCO views an ML workload as a fine-grained dataflow graph.
Operations in the graph are individual kernel calls to be run on a specific GPU,
CPU-to-GPU transfers, GPU-to-CPU transfers, and GPU-to-GPU transfers. DISCO
makes use of a work-conserving, dynamic scheduler to asynchronously execute
the operations in the graph, whenever the underlying resource is available and the
system can be sure that executing the operation cannot violate the correctness of the
computation. In this way, DISCO ensures that all resources—GPUs, CPU-to—-GPU
bus—are fully utilized.

1 INTRODUCTION

One of the key ideas for preventing out-of-memory (OOM) errors in ML workloads is utilizing
inexpensive CPU RAM to augment expensive GPU RAM. Most proposals for CPU offload leverage
the fact that modern ML models, such as large transformers, process data in a levelwise fashion (Ren
et al., 2021} |]Aminabadi et al., [2022; Sheng et al.,2023). As a layer is processed on a GPU server,
the model weights associated with a given layer can be loaded from CPU RAM to GPU RAM in
a “just in time” fashion. Once the weights associated with a level are loaded into GPU RAM, the
computations associated with the level can be executed.

The problem with this approach when realized on a multi-GPU server is that these various bulk
operations—such as moving the weights associated with a layer into the RAM of the various GPUs on
the server, or processing a transformer layer using those GPUs once the weights have been loaded—
are fully synchronous when implemented on top of modern ML frameworks such as PyTorch or JAX.
In these existing “bulk synchronous” systems, all operations in a layer operate synchronously. A
layer cannot begin processing until all the weights have been transferred. This means that GPUs may
sit idle, even though some of the weights associated with a level are ready to be used.

In this paper, we present a very different approach to CPU offload in ML
workloads, called DiSCcO (Dynamlc Scheduling for Cpu Offload). Disco X0 | x _
views an ML workload as a fine-grained dataflow graph. Operations in Yy
the graph are individual kernel calls to be run on a specific GPU, CPU-to-
GPU transfers, GPU-to-CPU transfers, and GPU-to-GPU transfers. DISCO
makes use of a work-conserving dynamic scheduler (Kleinrock, [1965) to
asynchronously execute the operations in the graph. Because the D1SCO
scheduler is “work conserving”—it will never let a resource such as a CPU-
to-GPU PCle bus go idle if it can be used without violating correctness constraints—DISCO can
reduce the runtime of ML workloads that must perform CPU offload.
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Figure 1: A tensor-
parallel decomposi-
tion of a layer in a
neural network.

For an example of how DISCO can be faster than classical, levelwise processing, consider the
problem of running a simple ML workload that, at level ¢ of a neural network, performs the matrix
multiplication
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Figure 2: Levelwise CPU-to-GPU transfer. Loading and execution of layers does not overlap.

Load layer 1 Load layer 2 Load layer 3

CPUt0 GPU 1 [y - GPUI|| vy - GPUZ[v? - GPU1] v - GPUZ[¥? - GPU1[[ v - GPUZ)

l Il Il I

Exec layer 1 Exec layer 2 Exec layer 3

Time —» Work Conserving

Figure 3: A work-conserving schedule. Operations such as CPU-to-GPU transfer and GPU kernels
are executed as soon as all dependencies have been satisfied. As a result, the bus connecting the CPU
and GPU is fully utilized.

X is a matrix holding the activations for a list of data points at level ¢ in a neural network, and

Y9 isa weight matrix at level 7 in the network. We wish to run this on a two-GPU system, using
a tensor-parallel decomposition (see[Figure T). Assume that we do not have enough GPU RAM to

store each Y on the GPU, and so these matrices must be offloaded to the CPU. As memory is
limited, we can only store one YE-Z) on the GPU at a time. Further, assume for simplicity that a matrix
multiplication and the CPU-to-GPU transfer take roughly the same amount of time

As illustrated in[Figure 2] and [Figure 3| a neural network with n layers requires 3n time units under
levelwise processing and 2n + 1 time units under a work-conserving schedule. When n is large,
levelwise processing is 50% slower than a work-conserving, dynamic scheduler in this case. While
bulk-synchronous, levelwise processing that must run the entire layer at once cannot overlap the
execution of a layer with the transfer of a layer from CPU-to-GPU, a work-conserving scheduler can
run CPU kernels and CPU-to-GPU transfers as soon as all dependencies are satisfied. For example, it

can execute XV x Ygl) as soon as Ygl) is on GPUI. And it can commence the transfer of Y(12) as

soon as the aforementioned multiplication is done and the space utilized by Ygl) is no longer needed.

While it may be possible to engineer a solution that works well in this case, not all ML workloads are
as simple as this example. It may be possible to store most of a layer in GPU RAM, and so it is not
necessary to load all weights associated with a layer, but just some of them. There may be arbitrarily
complicated dependencies in the computation, so that certain intermediate results will not be used
for some time, and thus they should be offloaded from GPU to CPU RAM to save space, whereas
others will be used immediately, and should not be offloaded. Some computations may not have a
nice levelwise structure.

The key innovation of DISCO is its combination of a pre-computed memory access plan called a
MEMGRAPH that allows a system based on a work-conserving, dynamic scheduler, to handle all
of these cases. A MEMGRAPH is a dependency graph where vertices represent tasks (such as the
execution of a GPU kernel to perform a small part of attention computation in a layer of a large
language model) and edges represent data or memory dependencies. Any execution order that
respects the dependencies in the MEMGRAPH is valid, and tasks are dispatched at any time that
their dependencies have been met and the appropriate resources are free. Thus, depending upon

'Given a modern GPU and PCle bus, the time required to transfer a large, roughly square matrix to GPU
RAM, and the time required to multiply that matrix by another, similarly-sized matrix on a GPU, will be of the
same order of magnitude. The larger the matrix, the more costly, relatively speaking, the multiplication becomes.
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when events (kernel calls, transfers) finish, two executions of the same MEMGRAPH may lead to
different sequences of operations being executed on a GPU, or different sequences of tensors being
paged to CPU RAM. However, the dependencies in the MEMGRAPH are such that the final output is
always correct, no matter the execution order. Because operations can be dispatched whenever the
dependencies are fulfilled and are not constrained to any specific ordering, it lowers the chance that
any GPU will be stalled waiting for a memory transfer to complete. If one task cannot run due to an
un-met dependency in the MEMGRAPH, it is possible that there is another task that can run.

The technical challenge is how to effectively build a MEMGRAPH with as few dependencies as
possible, to allow the runtime as much freedom as possible to dispatch operations so that it is never
blocked, waiting for a memory transfer to complete. DI1SCO builds a MEMGRAPH by simulating
an execution of the computation, mapping tensors to GPU memory locations and, when necessary,
adding edges that represent memory dependencies, as well as of f1oad and reload operations.

2 RELATED WORK

There are two approaches taken by systems dealing with limited GPU memory. Some, like D1SCO,
accept an abstracted version of a generic GPU computation. Other systems are more specifically
targeted to certain categories of models, optimization algorithms, or to specific tasks such as training
or inference.

Using the first, more general approach, are systems that accept a generic dataflow graph and, like
Disco, plan for execution in limited memory: pofo (Beaumont et al.||2021), AutoTM (Hildebrand
et al., 2020), SwapAdvisor (Huang et al., 2020)), Checkmate (Jain et al., [2020), Capuchin (Peng
et al., 2020), and POET (Patil et al.,[2022) all assume an input dataflow graph for a machine learning
computation, and then plan for execution in limited memory. Checkmate considers only tensor
re-materialization, whereas POET, pofo, and Capuchin consider re-materialization and offload;
AutoTM and SwapAdvisor consider only offload.

The more targeted approach is taken by the DeepSpeed project (Deepspeed) and the various ZeRO
optimizations. For transformers and other, similar models, DeepSpeed inference (which includes
ZeRO-Inference) (Aminabadi et al.,|2022) has two key ideas. First, DeepSpeed inference “offload[s]
some activation from GPU to CPU memory while not in use.” Second, DeepSpeed inference “pins
the model weights either in DRAM (if large enough) or NVMe, and streams each layer into GPU
memory for computation when needed.” FlexGen (Sheng et al., 2023) seeks to use a variety of
methods to speed transformer inference given limited hardware, including model weight offload to
CPU, quantization (Yao et al., 2022} |[Frantar et al.,[2022), and sparse attention (Child et al.,|2019).
The latter two ideas are orthogonal to the ideas in this paper. For CPU offload, FlexGen optimizes
a “zig-zag” block scheduling that works through transformer layers and sequences in the batch,
offloading and reloading the KV-cache (Pope et al.l 2023) and model weights. PagedAttention (Kwon
et al.| 2023)) deals with low memory utilization in transformers, developing a paging system for the
KV-cache.

ZeRO-Offload (Ren et al., [2021) is a comprehensive solution for limited-memory training that can be
seen as primarily using CPU RAM for running the ADAM optimizer, moving weights to GPU RAM
on a carefully-controlled schedule. ZeRO-Offload is an enhancement on ZeRO (Rajbhandari et al.|
2020), which is designed to be memory-efficient, partitioning both the optimizer and the data across
multiple GPUs. ZeRO-Infinity (Rajbhandari et al.l [2021)) is similar, and includes a CPU offload
engine, as well as tiling of operators to utilize the RAM of multiple GPUs.

3 TASKGRAPHS AND MEMGRAPHS IN DISCO

Disco takes as input a TASKGRAPH. A TASKGRAPH is a dataflow graph (a directed, acyclic graph)
that describes how to perform multi-GPU computations. In a TASKGRAPH, edges represent data flow,
and vertices represent operations over tensors. A vertex without any inputs (called an input vertex)
is associated with an input tensor. An operation associated with a non-input vertex may be either a
kernel call that is to be executed on a specific GPU, or a GPU-to-GPU data transfer.

Disco is agnostic as to how the TASKGRAPH is created; it could, for example be created using
a framework such as FlexFlow (Jia et al., 2019) or Alpa (Zheng et al., [2022). Consider a matrix
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Figure 4: Example TASKGRAPH consisting of six GPU  to memory locations.
kernel calls and three GPU-to-GPU transfers.

multiplication X x Y and assume we wish to execute this matrix multiplication on three GPUs.
To produce a TASKGRAPH, a framework such as FlexFlow may choose to decompose this matrix

multiplication as depicted in[Figure 6] perhaps corresponding to the TASKGRAPH of

Given such a TASKGRAPH, DISCO first compiles the TASKGRAPH into
3 : : 3 Xll X12 Y1
a MEMGRAPH, which it will eventually execute. Like a TASKGRAPH, a
MEMGRAPH is also a directed acyclic graph. Every vertex in the original | X,, | Xy, Y,
TASKGRAPH will be present in a corresponding MEMGRAPH. Further, - .
the compilation process may add additional of f1oad and reload Figure 6: A decomposi-
operations that move memory from GPU RAM to CPU RAM, and vice t10n of matrix multiplica-
versa. During the compilation process, the output associated with every ~t0n.
vertex in the MEMGRAPH is mapped to a memory location. Unlike the
input TASKGRAPH, the MEMGRAPH is not a dataflow graph; it is a dependency graph. If there is
an edge from vy to vo, it means that v, depends on v; and ve may not execute until after v; has
been executed. In a MEMGRAPH, there are two types of dependencies. One is a data dependency,
which is inherited from the TASKGRAPH (or is created via the addition of an of f1oad or reload;
see below). The second is a memory dependency, which is added to ensure that there are no race
conditions in the graph. A race condition occurs when there is some vertex for which two valid
executions of the graph may produce a different output. This can happen when two vertices write to
the same memory location, and it is possible for a third vertex to read either output, depending upon
the execution order.

Let us illustrate a possible compilation of the TASKGRAPH of [Figure 4|to a MEMGRAPH. Imagine
that our three GPUs each have five memory locations, and for simplicity, each tensor is the same size
and occupies exactly one memory location. During compilation, the tensor associated with the output
of each operation in the TASKGRAPH is assigned to a memory location, as depicted in GPU
1 must deal with seven tensors total (two input tensors and five additional tensors that are created via
the execution of some operation), and we cannot fit all seven of those tensors in memory, given our
five locations. Thus, the tensors output by operations A and 4 are both mapped to GPU1-Loc1, and
the tensors output by operations 1 and 8 are both mapped to GPU1-Loc3.

A corresponding MEMGRAPH is shown in[Figure 7} Note that two new edges representing memory
dependencies have been added. These edges guarantee that the graph is free of race conditions.
Specifically, a graph will be free of race conditions, if, whenever the outputs of vertices v; and vy
have both been mapped to the same memory location, either vy safely overwrites the result of v,
or vy safely overwrites the result of v1. We say that “v; safely over-writes the result of vy if and
only if, for every vs that consumes the output of vo, there is a memory dependency from vs3 (or
some descendent of vs) to vy (or to some ancestor of v1). Why? If v; is to safely over-write the
result of v9, we need to ensure that v; cannot execute until all of the consumers of vy have finished
execution—such memory dependencies ensure this.

For example, from[Figure 5| we see that the output of vertex 4 is mapped to the same location as the
output of vertex A. In the associated MEMGRAPH of to ensure that 4 safely over-writes the
result of A, we add a memory dependency from 3 (the only consumer of A) to 4. From
we also see that the results of 1 and 8 are mapped to the same location. To ensure that 8 safely
over-writes the result of 1, we add a memory dependency from 3 (the only consumer of 1) to 8. Note
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Figure 7: MEMGRAPH corresponding to[Fig]
Figure 8: MEMGRAPH with less GPU RAM.

that this memory dependency is shown as a dashed line; this indicates that it is superfluous, as there
is already a data dependency from 3 to 8, so this memory dependency is not needed for correctness.

Things can become more intricate if the memory is more constrained. Consider the case where we
have only four memory locations on each GPU, and we wish to compile the same TASKGRAPH. One
possible mapping of the vertices TASKGRAPH of [Figure 4]to memory locations for GPU 1 is shown
in[Figure 9} the associated TASKGRAPH is shown in[Figure 8] Note in particular the addition of an
offload-reload pair. Both the off1oad and the reload are new operations that are added to
the MEMGRAPH during compilation, to facilitate execution in memory-constrained scenarios. We
can always compile v; — v3 in a TASKGRAPH to v; — offload,, — reload,, — v2ina
MEMGRAPH. After the offload,,, the result of v; takes up no GPU memory, but it cannot be
used until the reload,,, where it is again mapped to a GPU memory location. The reason for the
inclusion of the off1oad-reload pair in this case is that it allows the result of A to be removed
from GPU RAM for a time. Thus, vertex 4 can execute and write its result on top of the result of A,
which is later reloaded so that vertex 3 can be executed.

In[Figure 9 we see that there are four pairs of vertices whose
results are mapped to the same GPU memory locations, and 0 9 9

so memory dependencies must have been added to the MEM- GPU1 \ Q /\ e / \ﬂ / \9 /
GRAPH to ensure that there are no race conditions. Consider locd Loc?2 Loc3 Loc4
A and 4, which are both mapped to GPU1-Locl. To ensure Memory

that 4 safely over-writes the result of A, we have a memory
dependency from the offload,, (the only consumer of A)
to 4. Or, consider reload,, and 2, which are both mapped
to GPUI-Loc4. To ensure that the reload,, safely over-
writes the result of 2, there is a memory dependency from the only consumer of 2 (vertex 4) to the
reload,,.

reloadA

Figure 9: Possible mapping of ten-
sors to GPU RAM.

4 BUILDING A MEMGRAPH

The key technical question we address in this paper is: How to construct a MEMGRAPH from a
TASKGRAPH? The primary requirement for the compilation process is correctness. Correctness
requires that (a) every data dependency present in the TASKGRAPH is also present in the MEMGRAPH,
or is replaced with a sequence of of f1oad-reload operationsﬂ (b) there are no race conditions in
the MEMGRAPH; (c) the MEMGRAPH has no cycles. In addition, it is desirable for the MEMGRAPH to
be performant. A MEMGRAPH will not be performant if memory dependencies severely constrain the
execution order of vertices. Such constraints may reduce parallelism and GPU utilization.

Our basic tactic during compilation is to rely on a simulated execution of the TASKGRAPH to
generate the MEMGRAPH. Given a serial ordering of the vertices in the TASKGRAPH that respects
all dependencies (so that if v; — w9 is in the TASKGRAPH, v; is before vs in the ordering) we

’So, for example, if v; — wvs is present in the TASKGRAPH, we may have v1 — offload,, —
reload,, — v2 in the MEMGRAPH
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BUILDMEMGRAPH: Inputs: TASKGRAPH, sorted list of TASKGRAPH vertices V =
(v1, 02, ..., Uy); Outputs: MEMGRAPH, GPU memory location v;.1oc for i € {1...n}

Evicted«{}; execHzn«1;allocHzn+1,;
while execHzn < n do
ifallocHzn < mand (Va11ocuzn-10C ¢ simMalloc(Va1iocnzn)) # —1 then
/ »successfully allocated space for future resultx /
allocHzn +=1
elseif allocHzn = execHzn then
/= unable to allocate for next execution w/o evictx /
Vallochzn-locé—simMallocOf£1d(vaiiochzn)
allocHzn +=1
else
/* simulate execution of the next vertex x /
/ * first, compute set of vertices exec depends on * /
Deps<+{v s.t. edge v—Vexecizn € TASKGRAPH}
for v € Deps do
/ = reload dependency if evicted * /
if v € Evicted then
v.loc<—simMallocForceReld(v)
end if
/* if dependency won’t be used again, free it x /
if not 3(fut > execHzn s.t. edge v—veyr € TASKGRAPH) then

simFree(v)
end if
add edge v—vVexecnzn t0 MEMGRAPH
end for
execHzn+=1
end if
end while

Figure 10: Building a MEMGRAPH via execution simulation.

simulate its execution, making calls to special variants of malloc and free that do not actually
allocate GPU RAM, but instead maintain a map of used and free RAM slots on the GPU that is
the target of the compilation. These implementations also maintain a history of which tensors
occupied which positions in simulated GPU RAM, to correctly generate memory dependencies. As
the simulation runs, the MEMGRAPH is constructed. Calls to the special malloc implementations
associate MEMGRAPH vertex outputs to GPU memory locations (effectively producing the mappings
depicted in[Figure 3| and [Figure 9). Whenever a call to the malloc variant fails because there is
not enough GPU RAM, an offload vertex must be added to the MEMGRAPH. Whenever it is
time to simulate the execution of a TASKGRAPH vertex but one of the inputs is not in the simulated
GPU RAM, then a memory location for the corresponding reload vertex is allocated, and a data
dependency on that reload is added to the MEMGRAPH.

As the simulation runs, there are two horizons, or counters that mark progress through the serialized
TASKGRAPH. The first is the allocHzn. Every vertex in the TASKGRAPH that is older than the
allocHzn has had a space allocated for it. The second is the execHzn. Every vertex in the
TASKGRAPH that is older than the execHzn has been “run” according to the simulation. To ensure
a high-quality MEMGRAPH, our compilation algorithm greedily tries to push the allocHzn as
far as possible past the execHzn. Intuitively, this will produce fewer constraints in the resulting
MEMGRAPH. A kernel associated with a vertex cannot run until it has GPU RAM to write its output.
If this GPU RAM is available very early in the simulation, then it gives the DISCO event processing
loop more freedom to choose a vertex execution order that does not exactly match the simulated
ordering, generating more opportunities to run available kernels while waiting for memory transfers.

The overall algorithm, BUILDMEMGRAPH, is given in Note that this variant of the
algorithm assumes each tensor takes up exactly one slot in GPU RAM. In the "real life” case where
tensors are variably-sized, the algorithm does not change appreciably—specifically, in the variably-
sized case, freeing space for a tensor can evict a variable number of tensors to CPU RAM—but
assuming uniformly-sized tensors simplifies the presentation.
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simMalloc: Input: vertex v; simMallocForceReld: Input: vertex v;
QOutput: GPU memory slot for v QOutput: GPU memory slot for v
find open slot for v; return -1 if none remove v from Evicted
return slot if no previous occupant slot < simMalloc(v)
v’ < last owner of slot for v if slot # —1 then
Deps < {v’st.edgev’ — " € return slot
TASKGRAPH} end if
for v’ € Deps do return simMallocOff1d(v)
add edge v/ — v to MEMGRAPH
end for

return slot

simMallocOff1d: Input: vertex v; Output: GPU memory slot for v

find GPU RAM s 1ot for v and determine victim (current occupant of s1ot) v’
add sequence v' — of fload,, — reload,  to MEMGRAPH
add edge offload,» — v to MEMGRAPH
Deps « {v” s.t. edge v" — v" € TASKGRAPH and v’ comes before v in V'}
for v" € Deps do
add edge v/ — v to MEMGRAPH
end for
rename all instances of v’ in TASKGRAPH to reload,,
add reload, to Evicted
return slot

Figure 11: simMalloc variants used in MEMGRAPH construction.

At the highest level, the algorithm operates by first checking to see if it can allocate space for the
vertex at the current allocation horizon, va11ocn.n. If it cannot, the algorithm makes sure there is
space available for the output of the next vertex to be executed (the only way there is no space is if
allocHzn = execHzn and the last allocation failed; this implies it is time to execute Vexecuzn
and we just failed to allocate space for it). If there is space, the simulation “executes” Veyechzn-

There are four memory management subroutines used by the algorithm: three variants on malloc
(simMalloc, simMallocForceReld, and simMallocOffld) and one variant on free
called simFree. Like a traditional malloc, simMalloc finds an open slot for the allocation, but
it also adds the memory dependencies to the MEMGRAPH necessary to ensure that the vertex v that will
occupy the slot will safely overwrite the previous occupant of the slot. simMallocForceReld
is like simMalloc, but it is used in the case when a vertex must be reloaded because it is going
to be used immediately, and hence the allocation cannot fail. simMallocOffld is a variant of
simMalloc that cannot fail, as it finds a victim to offload to ensure the success of the allocation
for vertex v, adding the offload-reload sequence to the MEMGRAPH. Crucially, it renames
all instances of the victim v’ in the TASKGRAPH to refer to reload, . In this way, all “future”
accesses to v’ will refer to its reloaded version. The routine also adds a memory dependency from the
offload, to v, as we cannot execute v until of£1oad, has taken place, and freeing GPU RAM.

5 EXPERIMENTS

Our experiments evaluate the ability of D1SCO to deal with Meta AI’'s LLaMA large language model
(LLM) (Touvron et al.| 2023)), with severely constrained memory. We chose LLM training and
inference as representative workloads. These tasks are computationally challenging and particu-
larly difficult for modern ML systems given their large memory footprints. We assessed DISCO’s
performance on 7 billion and 65 billion parameter models.

Experiments were conducted on two machines: (i) an older 4 x P100 GPU server (16 GB RAM
each) and 22, 64GB DDR4 2666MHz CPU RAM modules, for a total of 1.3TB of RAM, and (ii) an
Amazon Web Services p4d. 24x1large instance, equipped with eight A100 GPUs (40 GB RAM
each) and 1.15TB of RAM. We were particularly interested in seeing the ability of DISCO to operate
in a difficult environment with extremely limited GPU RAM, hence the P100 GPUs, with only 64 GB
of GPU RAM total on the server. Key questions are: Can software help bridge the gap—particularly
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Figure 12: Time for LLaMA first token (prefill) inference, A100 server. “OOM” is out-of-memory.
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Figure 13: Time for LLaMA first token (prefill) inference, P100 server. “OOM” is out-of-memory.

the lack of GPU RAM—between older and newer hardware? Can D1SCO facilitate model training
and inference in a situation with limited RAM?

(1) LLaMA first token inference. Our experiments target “first token” inference (also known as
“prefill”): How long does it take to produce the first output token, given an input prompt? We focus
on prefill as it is exceedingly expensive in terms of the memory required, scaling quadratically with
the size of the prompt. On both machines, we run D1Sc0, ZeRO Inference (Aminabadi et al., [2022)
(using weight partitioning and model weight offload), and FlexGen (Sheng et al.|[2023)). For FlexGen,
we use full CPU offload for activations. All testing is done using batched input, as batching is
required for FlexGen and ZeRO (as Di1SCO simply runs a dataflow graph, it is agnostic to batching).
For the smallest batch sizes considered, we test prefill input sequence lengths: 1K, 2K, 4K, 8K,
and 16K tokens. For larger batches we use 1K, 2K, 4K and 8K. For DiSco, all model weights and
computations were performed using 16-bit floating points, though FlexGen uses very low precision
arithmetic to save RAM and speed compute. Results for the A100 GPU server are given in Figure[T2]
Results for the P100 GPU server are given in Figure

One of the advantages of DISCO is that it executes arbitrary
dataflow graphs in limited memory. Thus, as long as a compu- 4449
tation is appropriately decomposed to run on multiple GPUs,
Disco can execute it. This means, for example, that DISCO
does not need to perform inference over batches of input se-
quences and supports arbitrary combinations of model and data
parallelism (unlike FlexGen and in ZeRO Inference). While
batching tends to increase computational efficiency, the RAM
used by a large batch means it is not possible to run inference
over long sequences in limited memory (batching precludes 1K 2K 4Kk 8K 16K @K
that all 320GB of GPU RAM be dedicated to prefill for a single Sequence Length

long sequence). To investigate the ability of DISCO to perform . .
inference over a single long sequence, we test sequences sizes 1igure 15: Single-sequence infer-
of up to 32K tokens, on both GPU servers and on both the 7B~ €nce times.

and 65B parameter models. Results are shown in Figure [I3]

(2) LoRA training for LLaMA. We also experiment with LoRA training (Hu et al.,2021). We use
a LoRA rank of 16, and train LoRA adapters for the K, V, @), and feedforward mapping matrices.
Here we run DISCO and ZeRO Infinity (Rajbhandari et al., 2021)); ZeRO is executed using all three
“stages” (gradient partitioning, model weight partitioning, optimizer state partitioning) as well as CPU
offload. Both D1SCc0 and ZeRO use checkpointing during the forward pass to reduce the memory
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Figure 14: Comparing D1SCO and ZeRO Infinity for LoRA training.

footprint. We measure the time it takes to run the forward and backward pass for one batch, with
varying batch sizes and sequence lengths. All D1SCO model weights are stored as single precision
(32 bits). Results for training using both the P100 and the A100 server at 7B parameters are in Figure
[I4 Both systems had a difficult time training the 65B parameter model. DISCO was faster for the one
case it was able to run (1K length sequence, batch size eight took 58.5 seconds using DISCO and 72.9
using ZeRO Infinity) but ZeRO Infinity was more robust to larger batch sizes, where DISCO failed.

Discussion. Throughout the first token inference experiments, DI1SCO typically performed the best in
terms of latency, with ZeRO Inference generally much slower but outperforming FlexGen, except for
larger sequence sizes. This would seem to validate the dataflow-based approach advocated for in the
paper, at least if the goal is low latency.

To be fair, we note that FlexGen is designed for high throughput, as opposed to low latency, and
FlexGen utilizes multiple GPUs only via pipelined parallelism. Note that FlexGen does not seem
to get any slower when moving from batch size of eight to 16 on the A100 server. This suggests
that filling the pipeline leads to substantial latency. Further, pipelined parallelism is more effective
with more work in each pipeline stage, due to the high synchronization overhead and the need to try
to overlap communication with computation, perhaps explaining FlexGen’s better performance for
larger sequences, which are more dense computationally.

ZeRO Inference takes a much different approach; it uses a highly synchronized form of model
parallelism as it traverses the levels in a transformer, also carefully trying to overlap communication
and computation, which may be more effective when there is more work at each level. DISCO, on the
other hand, is radically different. It does not “understand” the levels in a transformer, does not need
to synchronize processing of the various levels, and simply tries to asynchronously process kernels as
fast as it can. If it is stuck waiting for communication, it seeks out other available tasks to execute.

For training, there were clear advantages of D1SCO over ZeRO Infinity, especially for shorter sequence
lengths. This was particularly true on the A100 server, where DISCO was often much faster. For
batches of sequences of length 1K, DISCO often took less than 50% of the time to process each batch,
compared to ZeRO (at a batch size of 8, the time to process 1K sequences was 5.6 seconds for DISCO
and 12.5 seconds for ZeRO, for a batch size of 32 it was 12.1 seconds for DISCO and 17.8 seconds
for ZeRO). The differences in performance were much less pronounced on the P100 server, though
there DISCO was still faster. Finally, we note that both systems suffered significant out-of-memory
errors during training. Interestingly, DISCO seemed to have more memory problems on the A100
server, whereas ZeRO Infinity had more problems with memory on the P100 server. We conjecture
that some of that could be solved in DISCO with a better input dataflow graph, which cuts the input
problem into smaller pieces.

6 CONCLUSIONS

In this paper, we introduced DISCO, a novel approach to CPU offload in ML workloads that leverages
a work-conserving, dynamic scheduler to maximize resource utilization. By representing ML
workloads as fine-grained dataflow graphs and asynchronously scheduling operations based on
resource availability, DISCO effectively overlaps memory transfers and computation, mitigating the
performance penalties associated with CPU offload and ensuring the resources are fully utilized.
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A THE Disco EXECUTION ENGINE

Once a MEMGRAPH has been produced, it is executed by the DISCO engine using a nondeterministic,
event-based framework. As soon as a GPU is unused or a tensor is ready to be of f1oaded to
RAM, the DI1scO runtime can immediately assign any available work to the GPU or begin the
transfer, without regard to the overall state of the computation. Also note that there are no calls to
memory-management routines such as cudaMalloc or cudaFree during MEMGRAPH execution,
as memory management is no longer dynamic. Tensor placement is pre-determined before execution,
and if dependencies are respected, there can be no memory corruption due to race conditions.

Our execution engine consists of a central event loop that “launches” each vertex in the MEMGRAPH.
A vertex can be launched when (1) all dependencies have been completed and (2) the required
resources are obtained. When a vertex is launched, the corresponding operation is executed and then
a provided callback is called to notify the event loop that the vertex has completed. In turn, the event
loop frees up the obtained resources and keeps track of when vertices complete execution so that
subsequent vertices can be launched. In practice, when launched, a vertex will execute one or more
asynchronous CUDA operations on CUDA stream and will then call cudaSt reamAddCallback.
As such, every vertex requires as a resource a stream, where a single stream can only be used by a
single launched vertex at a time. We use 5 streams per GPU. offload, Reload and inter-GPU
communication vertices will call cudaMemcpyAsync. For CPU storage, we allocate a single, large
contiguous block of memory with cudaHostAlloc with flags cudaHostAllocPortable and
cudaHostAllocWriteCombined. When executing Of f1oad vertices, we allocate into the
CPU storage memory using our custom allocator; when executing Re 1 oad vertices, we free from our
custom allocator. All compute vertices are executed using either cuTensor functions or hand-written
CUDA kernels. An example where a hand-written CUDA kernel is beneficial is for executing portions
of softmax so that less workspace memory and fewer vertices would be required. Two additional
resources may be required for computing vertices: workspace memory as required for executing
multiple cuTensor functions and locks around write-protected memory. As an example, we would
execute a summation of n tensors with n calls to tensor increment sum-into kernels. However, the
output memory would be protected by a resource so that only one sum-into can happen at a time.
This implementation is designed to support non-determinism. We use CUDA version 11.8.0 and
cuTensor version 2.0.1. All other code is C++.

B USE OF LARGE LANGUAGE MODELS

Large Language Models are used to polish the writing of this paper, as well as formatting algorithms
and tables, but they do not contribute to a significant part of the paper. The intellectual content of this
paper is the sole work of the authors.
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