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ABSTRACT

Embodiment co-design aims to optimize a robot’s morphology and control policy
simultaneously. While prior work has demonstrated its potential for generating
environment-adaptive robots, this field still faces persistent challenges in opti-
mization efficiency due to the (i) combinatorial nature of morphological search
spaces and (ii) intricate dependencies between morphology and control. We prove
that the ineffective morphology representation and unbalanced reward signals be-
tween the design and control stages are key obstacles to efficiency. To advance
towards efficient embodiment co-design, we propose BodyGen, which utilizes
(1) topology-aware self-attention for both design and control, enabling efficient
morphology representation with lightweight model sizes; (2) a temporal credit
assignment mechanism that ensures balanced reward signals for optimization. With
our findings, Body achieves an average 60.03% performance improvement against
state-of-the-art baselines. We provide codes and more results on the website:
https://genesisorigin.github.io.

1 INTRODUCTION

(b) Morphologies with Policies(a) Initial Designs

Figure 1: Embodied Agents generated by BodyGen.

Species in nature are blessed with millions
of years to evolve for remarkable capaci-
ties to adapt to the environment (Pfeifer &
Scheier, 2001; Vargas et al., 2014). Time
has gifted them with perfect physical bod-
ies for movement and navigation, powerful
processors for centralized information pro-
cessing, and effective actuators for rapid in-
teraction with their surroundings. Inspired
by this observation, embodiment co-design
(Sims, 1994; Ha, 2019; Yuan et al., 2021;
Wang et al., 2023), where a robot’s mor-
phology and control policy are optimized
simultaneously, has gained increasing attention and demonstrates significant potential in various
downstream fields, such as automated robot design and bio-inspired robot generation (Kriegman et al.,
2020; Nakajima et al., 2018; Judd et al., 2019; Pan et al., 2021; Whitman et al., 2023). However, this
task encounters extreme difficulties: (1) the morphology search space is quite vast and combinatorial,
with each morphology corresponding to unique action and state spaces; (2) evaluating each candidate
design requires an expensive roll-out to find its optimal control policy, which is almost unfeasible for
the expensive computation.

Traditional evolutionary strategies (Sims, 1994; Wang et al., 2018b; Zhao et al., 2020; Gupta et al.,
2021b) address these challenges through mutation-based population optimization but suffer from
inefficient sampling and scalability limitations, requiring large amounts of computation. While
structural constraints like symmetry (Gupta et al., 2021b; Dong et al., 2023) reduce constant search
complexity, such human priors may compromise functionality (Yuan et al., 2021). Alternative
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Figure 2: Overview of BodyGen, which leverages an RL-based framework for joint evolving of
morphology and control policy, and an attention-based network equipped with Topology Position
Encoding (TopoPE) for centralized message processing.

approaches employ modular GNN-based controllers (Huang et al., 2020; Yuan et al., 2021) for
cross-morphology policy sharing, yet struggle with effective joint-level message aggregation (Kurin
et al., 2020).

In this work, we aim to further push the potential of embodiment co-design, by introducing a
method that enables efficient generation of high-performance embodied agents while maintaining
computational affordability. Here, we announce BodyGen, a reinforcement learning framework
for efficient, environment-adaptive embodied agent generation. Inspired by recent co-optimization
approaches (Yuan et al., 2021), BodyGen directly use auto-regressive transformers to generate an
agent’s morphology before executing environment interactions. Given an initial design (a.k.a a
prompt), BodyGen can output optimal morphologies and corresponding controllers at the same time.

In contrast to previous methods, BodyGen utilizes a joint-level self-attention mechanism to achieve
direct message communication using transformers. We further propose a topology-aware positional
encoding for effective, lightweight morphology representation. Additionally, we addresses the
inherent reward imbalance between morphology design (zero-reward-guided) and control (rich-
reward-guided) phases: our enhanced temporal credit assignment mechanism dynamically balances
reward signals across both stages, enabling coordinated optimization. The parameters of the whole
BodyGen model is less than 2M, and a high-performance embodied agent can be generated using a
single Nvidia GPU within 30 hours. To summarize, our contributions are as follows:

• We propose BodyGen, an end-to-end reinforcement learning framework for efficient embodiment
co-design.

• We design a Morphology Self-Attention architecture (MoSAT) to provide joint-to-joint mes-
sage transition, featuring our proposed Topological Position Encoding (TopoPE) for efficient
morphology representation.

• We propose a temporal credit assignment mechanism that ensures balanced reward signals in the
morphology design and control phases, thus facilitating co-design learning.

Comprehensive experiments across various tasks demonstrate BodyGen’s advantages against previous
methods in terms of both convergence speed and performance. BodyGen achieves an average
performance improvement of 60.03% against the state-of-the-art baselines.

2 RELATED WORK

Universal Morphology Control Embodiment co-design requires controlling robots with changeable
morphologies and adapting to their incompatible action and state spaces. Universal Morphology
Control (UMC), which employs a shared network to control each actuator separately, presents a
promising solution to this problem. To better perceive the topological structures of various morpholo-
gies, some methods (Pathak et al., 2019; Wang et al., 2018a; Huang et al., 2020) employed Graph
Neural Networks (GNNs) to enable communication between neighboring actuators. Recent works
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also use Transformers (Vaswani et al., 2017) to overcome the limitations of multi-hop information
aggregation brought by GNNs (Kurin et al., 2020; Hong et al., 2021; Gupta et al., 2021a; Dong
et al., 2022). Despite these advancements, several challenges remain. Many existing methods are
limited to parametric variations of a limited number (e.g. 2-3) of predefined morphologies, whereas a
comprehensive morphology-agnostic design space remains largely unexplored. Furthermore, most
previous works do not fully leverage morphology information or only consider its simple form and
even the usefulness of such information remains controversial (Kurin et al., 2020; Hong et al., 2021;
Gupta et al., 2021a; Xiong et al., 2023). In this work, we prove that morphology information plays a
crucial role, and the correctness of morphology representation significantly influences performance.
To this end, we introduce a simple yet effective positional encoding technique, TopoPE, which
facilitates message localization within the body and enhances knowledge sharing among similar
morphologies. By representing the 2D topological structure with position embeddings, we explore
the potential of autoregressive transformers for robotic design generation.

Embodiment Co-design As for embodied artificial agents, control policy (Lillicrap et al., 2015;
Schulman et al., 2015a; Haarnoja et al., 2018; Schulman et al., 2017; Lowrey et al., 2018) has been
well studied in the reinforcement learning and robotics community, while another critical component,
the physical form of the embodiment, is currently attracting more and more attention (Kriegman
et al., 2020; Bhatia et al., 2021; Xu et al., 2021; Huang et al., 2024). Embodiment co-design aims
to optimize a robot’s morphology and control simultaneously and is considered a promising way to
stimulate the embodied intelligence embedded in morphology. Previous methods (Sims, 1994; Wang
et al., 2018b; Gupta et al., 2021b) typically utilize evolutionary search (ES) to learn directly within
the vast design space, which unavoidably brings inefficient sampling and expensive computation.
A line of works (Wang et al., 2018b; Gupta et al., 2021a) introduces more human morphology
priors, such as symmetry, to reduce the search space. Yuan et al. (2021) proposes jointly optimizing
a robot’s morphology and control policy via reinforcement learning. This paper focuses on the
RL-based approach for joint optimization for both morphology and control. We aim to establish
a comprehensive framework for embodiment co-design, systematically addressing key obstacles
against efficiency during training.

3 PRELIMINARIES

Morphology Representation. The morphology of an agent can be formally defined as an undirected
graph G = (V,E,Av, Ae), where each node v ∈ V represents a limb of the robot, and each edge
e = (vi, vj) ∈ E represents a joint connecting two limbs. Av and Ae are two mapping functions that
map the limb node v to its physical attributes Av : V → Λv, and map the edge e = (vi, vj) to its
joint attributes Ae : E → Λe, respectively. Here Λv = {Λvi} is the limb attribute space, consisting
of attributes Λvi like limb lengths, sizes and materials, and Λe = {Λei} is the joint attribute space
consisting of attributes Λei like rotation ranges and maximum motor torques. Consequently, the
design space D is defined on all valid robot morphologies G ∈ D.

Co-Design Optimization. The fitness F of an agent represents its performance in a specific environ-
ment and is typically evaluated by rewards. In traditional control problems with a fixed morphology
G0, we aim to optimize its control policy π towards the optimal π∗ = argmaxπF (π,G0) for maxi-
mum fitness. In co-design problems, we not only optimize the control policy but also the morphology
design simultaneously. This co-design process is formulated as a bi-level optimization problem:

G∗ = argmax
G

F (π∗
G ,G)

s.t. π∗
G = argmax

πG

F (πG ,G),
(3.1)

where the inner loop defines the optimal control policy of a given morphology, and the outer loop
defines the optimal morphology using its optimal policy. Previous works typically use evolutionary
algorithms (Sims, 1994; Wang et al., 2018b; Gupta et al., 2021b) to solve this problem. In this work,
BodyGen leverages an RL-based framework and jointly optimizes both loops:

π∗(·|G∗),G∗ = argmax
π(·|G),G

F (π(·|G),G), (3.2)

using the universal control policy π(·|G), to facilitate knowledge sharing among agents with similar
morphologies.
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(a) MoSAT Architecture (b) Batch Processing for MoSAT

MoSAT

Figure 3: The Morphology Self-Attention (MoSAT) architecture. (a) The sensor observations
from different limbs are projected to hidden tokens for centralized processing with several MoSAT
blocks and generate separate actions. (b) The MoSAT network processes different morphologies in a
batch manner and learns a universal control policy π(·|G), thus improving training efficiency.

Reinforcement Learning. We define the problem formulation of Morphology-Conditioned Re-
inforcement Learning for embodiment co-design. We consider the augmented Markov Decision
Process (MDP), which can be described by a 6-element tupleM = (S,A, T ,R,D,Φ). Φ is a flag
to distinguish design and control stages. S denotes the state space. A(Φ) represents the action space,
where a ∈ A(Φ = Design) changes the morphology of the agent, and A(Φ = Control) defines
the action space for motion control. T : S × A(Φ) × S → [0, 1] represents the environmental
transitioning probability from one state st to another st+1, given an action at. R : S ×A× S → R
is the state-action reward, and the fitness function F is defined as the episodic return

∑T
t=1 rt(st, at)

based on rewards. As defined above, D represents the morphology design space, and our goal is to
find some co-design policy π : S × D → A that can maximize the environmental fitness F .

4 METHOD

The co-design process consists of two sequential stages. (1) In the Design Stage, an agent begins
with an initial morphology, G0, and iteratively refines through a series of morphology transforming
actions via a design policy πD, until it achieves the final design Gdone. In the subsequent (2) Control
Stage, the agent interacts with the environment with its corresponding control policy πC .

BodyGen addresses three key challenges that hinder co-design efficiency: (1) Message Transmission
Decay, which occurs when multi-hop communication fails to effectively propagate information to
distant limbs (Kurin et al., 2020). BodyGen leverages self-attention for both auto-regressively body
building and centralized body control using transformers. (2) Ineffective Morphology Representa-
tion (Yuan et al., 2021; Hong et al., 2021). BodyGen employs a simple yet effective topology position
encoding mechanism better to align similar morphologies for knowledge sharing between them. (3)
Unbalanced Reward Signals. BodyGen utilizes a temporal credit assignment mechanism to ensure
balanced reward signals between different co-design stages.

4.1 ATTENTION-BASED CO-DESIGN NETWORK

BodyGen divides the Design Stage into two sub-stages: Topology Design Stage and Attribute
Design Stage, which transforms the topology (V0, E0) and the corresponding attributes (Av

0, A
e
0) of

the agent’s morphology, respectively. Consequently, the design policy πD is also divided into two
sub-policies πD = (πtopo, πattr) for according action control.
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During the Topology Design Stage, the agent can modify the topology through three basic actions:
(1) Addition: add a new child limb vnew to v, along with a new joint enew = (v, vnew) connecting
them. (2) Deletion: delete the limb v and the joint to its parent e = (vp, v) if v is a leaf node.
(3) NoChange: take no changes for node v. The agent’s policy πtopo is conditioned on the current
topology (V,E) of timestep t, denoting as the product of action distributions πtopo

v from all limbs 1:

atopo ∼ πtopo(atopo|G) ≜
∏
v∈V

πtopo
v (atopov |pv,G) (4.1)

where pv represents the topology position of node v.

In the Attribute Design Stage, the agent further generates limb and joint attributes based on the given
topology Gdone = (Vdone, Edone). The agent’s attribution policy πattr can be formulated as:

aattr ∼ πattr(aattr|G) ≜
∏
v∈V

πattr
v (aattrv |pv,G) (4.2)

Finally, in the Control Stage, the agent uses the morphology generated in the Design Stage to
interact with the environment using the control policy πC .

actrl ∼ πctrl(actrl|s,Gdone) ≜
∏
v∈V

πctrl
v (actrlv |s, pv,Gdone), (4.3)

where s = {sv} denotes the sensor states of every limp, including forces, positions, velocities, etc.
We use actrlv to represent the torque of the joint connecting node v with its parent vp.

During the co-design process, we aim for the policy network to accommodate evolving morphologies
in a way that offers two key advantages: (1) a single agent can maintain unified control even as the
robot’s body grows, preserving consistency across different designs, and (2) direct point-to-point
communication between joints allows for richer information exchange, enabling more coordinated
actions throughout the entire system. Inspired by the centralized signal processing of mammals in
real-world nature, we propose the Morphology Self-AttenTion architecture (MoSAT) for efficient,
centralized message processing. Figure 3 (a) provides an overview of MoSAT.

Latent Projection. We encode information from each limb’s sensor to enhance network processing
capabilities and map it into a latent space as message tokens. Specifically, limb sensor states sv are
first processed through a parameter-shared linear mapping layer ϕh(·):

m = ϕh(s) + Epos(V,E) s ∈ RL×d,m ∈ RL×D (4.4)

where d is the input state dimension and D is the hidden dimension. We employ our proposed TopoPE
for morphology representation, which will be further discussed later in Section 4.2. The position
encodings ev are added to message tokens mv to get position-embedded message tokens.

Centralized Processing. As illustrated in Figure 2, we aim for efficient message interaction. Body-
Gen utilizes the scaled dot-product self-attention Attention(·) for point-to-point, centralized pro-
cessing. Specifically, each message m use qvi to query the key of another message kvj weighting its
value vvi

:

Attention(m) = SoftMax(
QKT

√
dk

)V where Q = mWQ,K = mWK , V = mWV , (4.5)

where WQ,WK ,WV ∈ RD×D are learnable matrices. For MoSAT block design, we adopt Pre-LN
(Xiong et al., 2020) for layer normalization and add residual connections (He et al., 2016; Dosovitskiy
et al., 2020).

Forwarding. In the end, we need to output actions for each actuator. We decode the attended
messages using a linear projector ϕa(·) to generate the action logits for each actuator:

π(a|s) =
{
SoftMax(ϕa(mN )), Discrete Action Space
N (a;ϕa(mN ),Σ), Continuous Action Space.

(4.6)

1We use the limb-level action distribution, where each limb corresponds to its own action distribution,
and the entire agent’s action distribution is composed of all limbs’ distributions. This effectively resolves the
incompatibility of state and action spaces across the changeable topological morphologies.
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Figure 4: The motivation of our proposed topology-aware position encoding TopoPE. (a) During the
co-design procedure, the agent’s morphology keeps changing. (b) A typical traversal-based PE in
previous works resulted in inconsistency across mythologies. (c) TopoPE can better adapt to similar
morphology structures using a reasonably alignable manner.

where N is the stacked block number of the attention layer. The above process has equipped MoSAT
with the capability to handle various morphologies. As shown in Figure 3 (b), to maximize training
efficiency, we further offer MoSAT the ability to process multiple morphologies in a batch mode. We
provide more implementation details in Appendix A.3.3.

4.2 TOPOLOGY-AWARE POSITION ENCODING FOR MORPHOLOGY REPRESENTATION

The vanilla attention operation treats each token equally, neglecting morphology information. How-
ever, it is crucial to inject positional information during embodiment co-design, for: (1) Similar
information from different morphology positions has varying meanings and message source local-
ization is significant; (2) Similar morphology structures may share similar local control policies,
and positional information facilitates knowledge alignment and sharing across different agents. To
better capture the differences between morphological structures and share structural knowledge
among similar morphologies, we propose Topology Position Encoding (TopoPE), a topology-aware
position encoding mechanism to handle the above two issues efficiently.

As demonstrated in Figure 4, for traversal-based limb indexing methods (Hong et al., 2021; Gupta
et al., 2021a; Xiong et al., 2023) slight morphological changes can cause global indexing offsets.
To mitigate the effect of offsets due to morphological changes, TopoPE uses a hash-map H(·) for
position encoding, which maps the path between the root limb vroot and the current limb vi to a
unique embedding evi :

evi = H([vi 7→ vroot])

where [vi 7→ vroot] = [(vi, p(vi)), (p(vi), p
2(vi)), ..., (p

l−1(vi), vroot)],
(4.7)

where pn(v) is the n-th ancestor of v. Practically, if v is the k-th child of its parent p(v), the edge
(v, p(v)) is denoted by the integer k, allowing the path index to be represented as a sequence of
integers.

During the Topology Design Stage, BodyGen generates the robot’s topology autoregressively (Fig-
ure 2). The topology created at each step is passed to MoSAT in the following step, where newly added
limbs are automatically registered and assigned their Topology Position Embedding. Meanwhile, dur-
ing the Attribute Design Stage and the Control Stage, this final topology remains fixed. Experiments
demonstrate that TopoPE effectively adapts growing morphologies, facilitating knowledge alignment
and sharing across agents, which leads to better performance.

4.3 CO-DESIGN OPTIMIZATION WITH TEMPORAL CREDIT ASSIGNMENT

MoSAT
…

…
…

𝑎! 𝑎" 𝑎# 𝑎$ 𝑎%

MoSAT
…

…
𝑣

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

(a) Policy Network (b) Value Network

Figure 5: BodyGen leverages an actor-critic
paradigm for policy optimization.

To achieve efficient reward-driven co-design, Body-
Gen leverages an actor-critic paradigm based on
reinforcement learning, which trains a value func-
tion Vθ(st) and a policy function πθ(at|st) and up-
dates them using collected trajectories. We employ
the Proximal Policy Optimization (PPO) (Schulman
et al., 2017) to optimize the policy πθ in the actor-
critic framework. PPO uses the advantage function
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Ât(at, st) to define how better an action at is for current state st, and optimizes the following
surrogate objective function as:

Lpolicy = −min
{ πθ(at|st)
πθold(at|st)

Ât, clip
( πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ
)
Ât

}
. (4.8)

In the co-design process, vanilla PPO exhibits limited performance. Only the Control Stage directly
receives environmental rewards, while theoretically, a body-modifying action in the Design Stage
influences all future timesteps, whereas a motion-control action in the Control Stage has a diminishing
impact over time. To address this, we decouple the MDPs for body and policy optimization, linking
them through a modified Generalized Advantage Estimation (GAE) (Schulman et al., 2015b) for
improved temporal credit assignment:

Ât =

{
δt + γλÂt+1 · (1− Tt ∨ Ct), for Control Stage
Ut − Vθ(st), for Design Stage

where δt = rt + γVθ(st+1) · (1− Tt)− Vθ(st)

Ut = rt + Ut+1 · (1− Tt ∨ Ct),

(4.9)

where γ is the discounting factor, λ is the exponentially weighted for GAE and Tt,Ct are two
environment flags denoting environment termination and truncation, respectively. This decoupling
enables us to apply distinct optimization algorithms to each stage, potentially improving overall
performance. The value loss function Lvalue is defined as:

Lvalue =
(
Vθ(st)− R̂t

)2
, where R̂t = sg

[
Vθ(st) + Ât

]
, (4.10)

where sg[·] stands for the stop-gradient operator.

During the transition from the Design Stage to the Control Stage, we shift from a GPT-style (Radford
et al., 2019) approach to a BERT-style (Devlin et al., 2018) framework. Specifically, the token output
of each limb is used to generate the action policy for its corresponding actuator (Equation 4.6), as
illustrated in Figure 5(a). Meanwhile, the token output of the root limb is used for value prediction
of the entire body at timestep t (Figure 5(b)). To prevent conflicts in gradient descent (Yu et al.,
2020; Liu et al., 2021) arising from different credit assignment strategies, each stage in the co-design
process is equipped with a separate value network.

5 EXPERIMENTAL EVALUATIONS

Our experiments aim to validate our primary hypothesis: that efficient message and reward delivery
can effectively overcome bottlenecks in the co-design process, leading to embodied agents that can
better adapt to the environment. Additional visualization results are presented in Appendix A.8. Visit
our project website for more visualization results: https://genesisorigin.github.io.

Environments. We conduct a comprehensive evaluation of BodyGen with baselines in ten chal-
lenging co-design environments (CRAWLER, TERRAINCROSSER, CHEETAH, SWIMMER, GLIDER-
REGULAR, GLIDER-MEDIUM, GLIDER-HARD, WALKER-REGULAR, WALKER-MEDIUM and
WALKER-HARD) on MuJoCo (Todorov et al., 2012). These environments encompass diverse physi-
cal world types (2D, 3D), environment tasks, search space complexities, ground terrains, and initial
designs to provide a multilevel evaluation. See Appendix A.1 for detailed descriptions.

5.1 COMPARISON WITH BASELINES

We compare BodyGen with the following baselines to highlight BodyGen’s performance: 1) Evolution
Based Algorithms: NGE (Wang et al., 2018b) maintains a population of agents with different
morphologies for random mutation and only preserves top-performing agents’ children for further
optimization. 2) RL Based Algorithms: Transform2Act (Yuan et al., 2021) propose to optimize
a robot’s morphology and control concurrently through reinforcement learning and achieve co-
optimization. It utilizes graph neural networks (GNNs) and joint-specific MLPs (JSMLP) to foster
knowledge sharing and specification. 3) Universal Control Algorithms: UMC-Message (Wang et al.,
2018a; Huang et al., 2020) leverages a localized message transition mechanism for information
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NGE

BodyGen (Ours)

Ours w/o MoSAT

Transform2Act

Ours w/o Enhanced-TCA

UMC-Message*

Figure 6: Performance of BodyGen, NGE, Transform2Act, UMC-Message*, BodyGen w/o
MoSAT, and BodyGen w/o Enhanced-TCA on ten co-design environments, with error regions to
indicate Standard Error over four random seeds.

exchange within the body, which is a typical method for universal morphology control. To make it
suitable for embodiment co-design, we equip it with a policy network and our enhanced temporal
credit assignment using reinforcement learning and denote it as UMC-Message*. The implementation
details and full hyper-parameter of BodyGen and all baselines are provided in Appendix A.3 and
Appendix A.4.

As shown in Figure 6, BodyGen achieves the highest task performance in all ten environments,
with faster convergence speeds than baselines. Unlike the Universal Morphology Control (UMC)
task, which focuses on limited specific morphologies (Wang et al., 2018a; Huang et al., 2020),
embodiment co-design deals with various changeable, morphology-agnostic robots. Consequently,
UMC-Message∗ fails to converge within a limited time for complex tasks such as GLIDER-HARD, and
WALKER-HARD, due to its insufficient knowledge alignment mechanism for complicated, changable
morphologies (e.g. JSMLP in Transform2Act and TopoPE in BodyGen).

Compared to evolutionary algorithms like NGE, we also find that RL-based methods demonstrate
significant performance advantage due to a great sampling efficiency improvement within the same
number of environmental interactions, supported by Yuan et al. (2021). By overcoming the bottle-
necks in co-design, our approach goes even further: it achieves an average 60.03% performance
improvement over the strongest baseline in all the ten tasks.

5.2 ABLATION STUDIES

As mentioned in Section 4, our approach addresses inefficiencies in message and reward delivery,
which includes the intra-agent level, inter-agent level, and agent-environment level. To better support
our hypothesis and understand the importance of our key corresponding components (MoSAT,
TopoPE, Enhanced-TCA), we designed four variants of our approach:

(i) Ours w/o MoSAT, which removes the MoSAT structure to remove our attention-based centralized
information processing across different limbs; (ii) Ours w/o Enhanced-TCA, which removes our
temporal credit assignment mechanism and employs original PPO for optimization; (iii) Ours w/o
TopoPE, which removes TopoPE from our methods. For a more comprehensive comparison, we
also introduced another position encoding method from recent UMC methods, as: (iv) Ours w/
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Table 1: Comparison of different position encoding choices for morphology representation. The
reported values are Mean ± Standard Error over four random seeds.

Methods CRAWLER TERRAINCROSSER CHEETAH SWIMMER GLIDER-REGULAR

TopoPE (ours) 10381.96 ± 353.97 5056.01 ± 703.57 11611.52 ± 522.86 1305.17 ± 15.25 11082.29 ± 99.21
w/ Traversal PE 8582.24 ± 987.44 4339.60 ± 260.60 10581.62 ± 846.69 1292.05 ± 16.71 9801.31 ± 748.13
w/o TopoPE 7490.83 ± 267.70 1122.29 ± 659.38 7451.37 ± 2275.37 1371.20 ± 30.74 10137.83 ± 713.60

Methods GLIDER-MEDIUM GLIDER-HARD WALKER-REGULAR WALKER-MEDIUM WALKER-HARD

TopoPE (ours) 11996.82 ± 595.51 10798.06 ± 298.39 12062.49 ± 513.07 12962.08 ± 537.34 11982.07 ± 520.78
w/ Traversal PE 10758.70 ± 401.90 9106.77 ± 679.59 10389.40 ± 1080.94 10972.13 ± 584.04 11255.89 ± 121.04
w/o TopoPE 4099.99 ± 2057.92 109.48 ± 10.03 10149.67 ± 255.99 6730.01 ± 705.06 6529.87 ± 1863.59

Traversal PE, where TopoPE is replaced with a traversal-based position embedding (Hong et al.,
2021; Gupta et al., 2021a). Figure 6 presents the ablation studies for TopoPE and Enhanced-TCA,
while Table 1 highlights the differences for different positional embedding choices. Additional
detailed experimental results are available in the Appendix (Table 11, Table 12).

(1) Intra-agent level: The MoSAT module provides centralized information processing. Removing
this module results in significant performance degradation. Transform2Act adds an MLP to each
limb, enhancing local message processing and model performance, but it increases the model size
to 19.64M , which grows linearly with the complexity of the morphology. In contrast, BodyGen is
more lightweight, with each model only with 1.43M parameters. We provide model parameters of
BodyGen and baselines in Table 2.

(2) Inter-agent level: TopoPE facilitates morphological knowledge sharing among agents, aiding in
adjusting knowledge for similar morphologies and reducing redundant learning costs. Compared to
"Traversal PE" and "w/o TopoPE", TopoPE enhances agent performance and stabilizes learning.

(3) Agent-environment level: Our proposed temporal credit assignment ensures that an agent receives
balanced reward signals during both morphology design and control phases, markedly improving
final performance across all the environments for embodiment.

Table 2: Model parameters of BodyGen and baselines. Note: For NGE, the total number of models
required is calculated as 20 + 20 × 0.15 × 125 = 395 (population_size + population_size ×
elimination_rate × generations). The total parameters are derived with population_size only.

Models Agent Parameters Population Size Total Parameters
BodyGen (Ours) 1.43 M 1 1.43 M
Transform2Act 19.64 M 1 19.64 M
UMC-Message* 0.27 M 1 0.27 M
NGE 0.27 M 20 5.4 M

6 CONCLUSIONS AND LIMITATIONS

This work proposes BodyGen, an end-to-end reinforcement learning framework for efficient embodi-
ment co-design. Our approach delivers efficient messages and rewards through zero-decay message
processing, effective morphological knowledge sharing, and balanced temporal credit assignment.
Experiments demonstrate that BodyGen surpasses previous convergence speed and final performance
methods while being efficient, lightweight, and scalable.

Limitations and Future Work. We acknowledge at least two limitations. Firstly, our approach
remains focused on simulation environments, and further efforts are needed to transfer learned
strategies to real physical systems. Secondly, our reward-driven reinforcement learning method
focuses on improving control effects. Yet, it cannot simulate the rich perception and execution
capabilities of real biological intelligent systems. In future research, we expect embodied intelligence
to evolve perception and execution components akin to biological evolutionary principles, realizing
more efficient tasks for embodied intelligence.
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A APPENDIX

The supplementary material provides additional results, discussions, and implementation details.

Our code is available in our supplementary material for reproduction and further study. Visit our
website for videos and more additional visualizations.

A.1 ENVIRONMENT AND TASK DETAILS

Crawler TerrainCrosser Cheetah

Swimmer Glider Walker

Figure 7: Randomly generated agents in six different environments for visualization. Purple ground
indicates agents in a 3D physical world, Green ground represents agents in the xy-plane physical
world, Blue ground denotes agents in the xz-plane physical world, and Brown ground denotes a
physical world with variable terrain.

Initial Type-1 Initial Type-2 Initial Type-3 Initial Type-4

Figure 8: Visualization of four initial designs in the environments. Type-1 consists of a structure with
four limbs. Type-2 and Type-3 each includes two limbs connected by a joint, located in the xy-plane
and xz-plane respectively. Type-4 comprises three limbs connected by two joints. Note that BodyGen
can support almost arbitrary initial designs and is not limited to specified types.

This section provides additional descriptions of the environments and tasks used in our experiments.
Figure 7 displays randomly generated agents in six different environments. The first four envi-
ronments: CRAWLER, TERRAINCROSSER, CHEETAH, and SWIMMER are derived from previous
work (Yuan et al., 2021) to ensure a fair comparison. We have also introduced two additional envi-
ronments, GLIDER and WALKER, to broaden the testing scope and provide a more comprehensive
algorithm evaluation.

Each agent consists of multiple limbs connected by joints, each equipped with a motor for controlling
movement. Sensors within the limbs monitor positional coordinates, velocity, and angular velocity.
Each limb’s attributes include limb length and limb size. Each joint’s attributes cover rotation range
and maximum motor torque. Each episode starts with a simple initial design, as demonstrated in
Figure 8. The agent evolves to its final morphology through a series of topological and attribute
modifications. Meanwhile, the control policy is required to optimize concurrently.
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Crawler The agent inhabits a 3D environment with flat ground at z = 0. The initial design is the
Type-1 in Figure 8. Each limb can have up to two child limbs, except for the root limb. The height and
3D world velocity of the root limb are also included in the environment state. The reward function is
defined as:

rt =
|pxt+1 − pxt |

∆t
− w · 1

J

∑
u∈Vt

∥aeu∥2 (A.1)

where w = 0.0001 is the weighting factor for the control penalty term, J is the total number of limbs,
and ∆t = 0.04.

TerrainCrosser The agent evolves in a terrain-variable environment, where the terrain features
varying height differences. The maximum height difference of the terrain is zmax = 0.5. The agent
must navigate these gaps to move forward. The initial design is the Type-3 in Figure 8. The terrain is
generated from a single-channel image, with different values representing different height rates. Each
limb of the agent can have up to three child limbs. For the root limb, its height, 2D world velocity,
and a variable encoding the terrain information are included in the environment state. The reward
function is defined as:

rt =
|pxt+1 − pxt |

∆t
, (A.2)

where ∆t = 0.008, and the episode is terminated when the root limb height is below 1.0.

Cheetah The agent in this environment evolves with flat ground at z = 0. The initial design is
the Type-3 in Figure 8. Each limb of the agent can have up to three child limbs. The height and 2D
world velocity of the root limb are added to the environment state. The reward function is defined in
Equation (A.2). The episode is terminated when the root height is below 0.7.

Swimmer The swimmer is designed to cover snake-like creatures in the water. The agent evolves in
water with a vis = 0.1 viscosity for water simulation. The initial design is the Type-2 in Figure 8.
Each limb supports up to three child joints. The root limb’s 2D world velocity is incorporated into
the environment state. The reward function is the same as TerrainCrosser in Equation (A.2).

Glider The agent in this environment evolves on flat ground. The initial design is the Type-4, as
shown in Figure 8. In Glider, the agent’s search depth is limited to three times that of the initial
design, encouraging full exploration of a relatively shallow search space. We also provide three
different task levels: regular, medium, and hard, where each limb of the agent can have up to one,
two, or three child limbs. The reward function is defined in Equation (A.2).

Walker The agent evolves on flat ground. The starting design is Type-4 in Figure 8. The search
depth for the agent is capped at four times the initial design to promote thorough exploration within a
comparatively shallow search space. Similarly, three levels of task difficulty are offered, which have
the same meaning as described in Glider. The reward function is specified in Equation (A.2).

Note that the reward functions are kept simple and consistent in all environments. Unlike com-
mon practices in OpenAI-Gym (Brockman et al., 2016), we do not provide any additional reward
priors (e.g.alive bonus) to facilitate learning, which presents higher requirements to the algorithm
robustness.

A.2 MOTIVATIONS

This section will detail the motivations behind designing MoSAT and TopoPE for embodiment
co-design, aiming to provide further insights.

A.2.1 CENTRALIZED MESSAGE PROCESSING AND MOSAT

As demonstrated in Figure 9, GNN-like neural systems are commonly found in simple organisms
such as planarians, where sensory information is connected through neural networks for distributed
and localized processing. In contrast, advanced creatures such as humans utilize a centralized signal
processing approach, where signals from various body parts are centrally processed in the brain,
leveraging scalability advantages similar to the self-attention mechanism within transformers.

Figure 10 further illustrates the different message delivery mechanisms between GNN and Trans-
former. GNN uses aggregation and broadcasting for message transmission, resulting in progressive
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(a) Localized Message Processing (b) Centralized Message Processing

Neural System of Planarian Neural System of HumanGraph Neural Network Transformer Neural Network

Figure 9: Comparative overview of natural and artificial neural processing systems. (a) Localized
message processing in planarians and GNNs. (b) Centralized message processing in human brains
and Transformers. Relevant images are sourced from Encyclopaedia Britannica (2024); Brain for AI
Fandom (2024).

(a) Message via Aggregation and Broadcasting  (b) Messaging via Self-Attention

Received

Step [1] Step [2] Step [3] Step [4]

Figure 10: Comparison of different message delivery mechanisms between GNN and Transformer.

information reduction. As demonstrated in Figure 10 (a), the dog-like robot needs to adjust its posture
throughout its motion. The GNN’s localized message processing approach requires signals from
distant locations to propagate multiple times before reaching the target actuator. In contrast, Trans-
formers can provide faster message transfer and interaction, by employing self-attention to facilitate
direct point-to-point and point-to-multipoint message delivery. Inspired by this, we propose MoSAT
in Section 4.1. MoSAT first maps sensor information to the latent space and leverage self-attention
for signal interactions for centralized decision-making.

Meanwhile, in GNNs, the message propagation mechanism allows for an implicit representation of
morphology. However, while transformers leverage self-attention for direct message delivery, they
do not offer an asymmetric information propagation mechanism to differentiate positions between
different body parts.

A.2.2 MORPHOLOGY POSITION EMBEDDING AND TOPOPE

Position encoding has proven effective in location representation within the natural language process-
ing field (Vaswani et al., 2017; Shaw et al., 2018; Raffel et al., 2020; Wang et al., 2019).

Effectively representing the robot’s morphology is crucial for co-designing morphology and control
policies. In our work, we propose the Topology Position Embedding (TopoPE) to encode the
morphology in a way compatible with Transformer-based architectures. TopoPE assigns a unique
embedding to each limb based on its topological position within the robot’s morphology tree. Specif-
ically, the embedding index for a limb is derived from the path from the root node to the limb,
capturing the structural relationships within the morphology.

In previous works (Trabucco et al., 2022; Gupta et al., 2021a), morphology encodings often rely
on traversal sequences like depth-first search (DFS) or manual naming (Trabucco et al., 2022; Li
et al., 2024) conventions based on a “full model” of the robot. When limbs are removed to generate
variants, the names of the remaining limbs remain unchanged, facilitating consistent encoding.

However, in our setting, there is no predefined “full model,” and the robot’s morphology is dynamically
generated during co-design. Manually naming limbs is impractical in this context. Our TopoPE
addresses this challenge using a topology indexing mechanism, which uses the path to the root as
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the embedding index. This method naturally extends to dynamically changing morphologies and
ensures that similar substructures share similar embeddings, promoting generalization across different
morphologies.

Moreover, unlike learnable position embeddings that are specific to particular morphologies, our
approach can be extended using non-learnable embeddings, such as sinusoidal embeddings (Vaswani
et al., 2017), which offer better extrapolation to unseen morphologies and eliminate the need for
training the embeddings.

To demonstrate the effectiveness of TopoPE, we conducted ablation studies comparing models with
and without TopoPE. As shown in Table 1 and Figure 11, incorporating TopoPE significantly improves
performance across various tasks. This indicates that TopoPE provides a more informative and stable
encoding of the morphology, facilitating better learning of control policies.

In contrast to other morphology-aware positional encodings, our TopoPE is specifically designed
to handle dynamic and diverse morphologies without relying on a fixed full model or manual limb
naming. Additionally, our approach aligns well with the Transformer architecture, allowing standard
attention mechanisms to capture interactions between different limbs based on their topological
relationships.

A.3 IMPLEMENTATION DETAILS

A.3.1 TRAINING DETAILS

In line with standard reinforcement learning practices, we employed distributed trajectory sampling
across multiple CPU threads to accelerate training. Each model is trained using four random seeds on
a system equipped with 112 Intel® Xeon® Platinum 8280 cores and six Nvidia RTX 3090 GPUs.
Our main code framework is based on Python 3.9.18 and PyTorch 2.0.1. For all the environments
used in our work, it takes approximately only 30 hours to train a model with 20 CPU cores and a
single NVIDIA RTX 3090 GPU on our server.

A.3.2 HYPERPARAMETERS

For BodyGen, we ran a grid search over MoSAT layer normalization ∈
{w/o-LN,Pre-LN,Post-LN}, Policy network learning rate ∈ {5e − 5, 1e − 4, 3e − 4},
Value network learning rate ∈ {1e− 4, 3e− 4}, and MoSAT hidden dimension ∈ {32, 64, 128, 256}.
We did not search further for the environmental settings, optimizer configurations, PPO-related
hyperparameters, or the training batch and minibatch sizes. Instead, we strictly maintained
consistency with previous works (Wang et al., 2018b; Yuan et al., 2021; Kurin et al., 2020) to
ensure a fair comparison. With further hyperparameter tuning, our algorithm could achieve higher
performance levels. Table 3 displays the hyperparameters BodyGen adopted across all experiments.

For Transform2Act, we followed previous work (Yuan et al., 2021) and its official released code
repository 2, and used GraphConv as the GNN layer type, policy GNN size (64, 64, 64), policy
learning rate 5e − 5, value GNN size (64, 64, 64), value learning rate 3e − 4, JSMLP activation
function Tanh, JSMLP size (128, 128, 128) for the policy, MLP size (512, 256) for the value function,
which were the best values they picked using grid searches.

To make UMC-Message suitable for embodiment co-design, we equip them with a policy network
and employ our temporal credit assignment via reinforcement learning. The network parameters
and training settings are consistent with those used in BodyGen and Transform2Act to ensure a fair
comparison. It adopted GNN layer type of GraphConv, policy GNN size (64, 64, 64), policy MLP
size (128, 128), policy learning rate 5e− 5, value GNN size (64, 64, 64), value MLP size (512, 256),
value learning rate 3e− 4. We followed previous work (Huang et al., 2020) and also referred to the
publicly released code 3 for implementation.

For NGE, we follow previous works (Wang et al., 2018b; Yuan et al., 2021) according to the public
release code 4, and used a number of generations 125, agent population size 20, elimination rate 0.15,

2https://github.com/Khrylx/Transform2Act
3https://github.com/huangwl18/modular-rl
4https://github.com/WilsonWangTHU/neural_graph_evolution
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GNN layer type GraphConv, MLP activation Tanh, policy GNN size (64, 64, 64), policy MLP size
(128, 128), value GNN size (64, 64, 64), value MLP size (512, 256), policy learning rate 5e− 5, and
value learning rate 3e− 4, which were the best searched values described by previous work.

Table 3: Hyperparameters of BodyGen adopted in all the experiments

Hyperparameter Value

Number of Topology Design N topo 5
Number of Attribute Design Nattr 1
MoSAT Layer Normalization Pre-LN
MoSAT Activation Function SiLu
MoSAT FNN Scaling Ratio r 4
MoSAT Block Number (Policy Network) 3
MoSAT Block Number (Value Network) 3
MoSAT Hidden Dimension (Policy Network) 64
MoSAT Hidden Dimension (Value Network) 64
Optimizer Adam
Policy Learning Rate 5e-5
Value Learning Rate 3e-4
Clip Gradient Norm 40.0
PPO Clip ϵ 0.2
PPO Batch Size 50000
PPO Minibatch Size 2048
PPO Iterations Per Batch 10
Training Epochs 1000
Discount factor γ 0.995
GAE λ 0.95

A.3.3 THE BATCH MODE FOR MOSAT

To maximize training efficiency, we further offer MoSAT the ability to process multiple morphologies
in a batch mode. For a batch of state inputs {st}B , we first pad them to equal length [st]B ∈
RB×Lm×d, where Lm is the max limb number of morphologies within this batch, and generate a
padding matrix P ∈ RB×Lm , where Pij = 1 for j ≤ Li and Pij = 0 for j > Li. To keep the
messaging logic exactly equivalent to the regular mode, we can eliminate the influence of padding by
modifying the attention operation with an attention mask Θ ∈ RB×Lm×Lm :

Attention([mt]B) = SoftMax(
QKT

√
dk

+Θ)V, (A.3)

where Θijk = log(Pik + ϵ). Finally, we remove the batch padding and re-allocate actions to joints of
different agents via: {a}B = [a]B ⊙ P, where ⊙ represents the bool-selection operation according
to the padding matrix P .
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A.4 ALGORITHM DETAILS

Algorithm 1 illustrates the overall training process of BodyGen, which is based on PPO for efficient
reinforcement learning. We highlight three key components: the interaction process, our temporal
credit assignment based on GAE, and the main loop for iterative optimization.

Algorithm 1: Synchronous Learning Algorithm for BodyGen
Input: Replay Buffer B, Batch B, Optimizer optimizer
Initialize :Policy networks: πθ : {πtopo

θ , πattr
θ , πctrl

θ }; Value networks: Vθ : {V topo
θ , V attr

θ , V ctrl
θ }

B← ∅, B← ∅, Discount factor γ, GAE Exponential Weight λ
1 Function INTERACT(Policy: π, Replay Buffer: B):
2 while B not reaching max buffer size do
3 G0 ← initial design
4 Φ← topo ▷ Topology design stage
5 for t = 0, 1, ..., N topo − 1 do
6 atopo

t ∼ πtopo(atopo
t |Gt) ▷ Sample topology actions from all limps

7 Gt+1 ← apply atopo
t to modify the topology (Vt, Et) of current design Gt

8 rt = 0 ; St = S; store {rt,∅,atopo
t ,Gt,St, 0, 0} into B ▷ Update Buffer B with transition

9 end
10 Φ← attr ▷ Attribute design stage
11 for t = N topo, ..., N topo +Nattr − 1 do
12 aattr

t ∼ πattr(aattr
t |Gt) ▷ Sample attribute actions from all limps

13 Gt+1 ← apply aattr
t to modify the attribute (Av

t , A
e
t ) of current design Gt

14 rt = 0 ; St = S; store {rt,∅,aattr
t ,Gt,St, 0, 0} into B ▷ Update Buffer B with transition

15 end
16 Φ← ctrl ▷ Control stage
17 st ← Env.Reset(0) ▷ st = {sv,t} denotes the sensor states from all limps
18 for t = N topo +Nattr, ..., T − 1 do
19 actrl

t ∼ πctrl(actrl
t |st,Gdone)

20 rt, st+1,Tt,Ct ← Env.Step(actrl
t ) ▷ Tt,Ct denotes termination and trunction

21 St = S; store {rt, st,actrl
t ,Gt,St,Tt,Ct} into B ▷ Update Buffer B with transition

22 end
23 end
24 end
25 Function ENHANCEDGAE(Value Function: Vθ, Replay Buffer: B):
26 for t = T − 1, ..., 0 do
27 Ut = rt + Ut+1 · (1− Tt ∨ Ct) ▷ Calculate return
28 δt = rt + γVθ(st+1) · (1− Tt)− Vθ(st) ▷ Calculate the TD-error term
29 if St = ctrl then
30 Ât = δt + γλÂt+1 · (1− Tt ∨ Ct) ▷ Calculate advantage for the control stage
31 else
32 Ât = Ut − Vθ(st) ▷ Calculate advantage for the design stage
33 end
34 R̂t = Vθ(st) + Ât ▷ Calculate the target value
35 store {Ât, R̂t} into B ▷ Append Ât and R̂t to the corresponding transition item in B.
36 end
37 end
38 Function MAIN():
39 while not reaching max iterations do
40 Thi ← Thread(INTERACT, πθ, B) ▷ We use multiple CPU threads for sampling
41 Thi.join() ▷ Gather trajectories collected from threads
42 ENHANCEDGAE(Vθ, B) ▷ Perform temporal credit assignment for co-design
43 while not reaching max epochs do
44 Update B← B ▷ Sample a random batch B from Buffer B
45 Calculate PPO loss Lppo = Lpolicy + Lvalue ▷ According to Equation (4.8) and (4.10)
46 optimizer← Gradient from Lppo ▷ Gradient descent to update πθ and Vθ

47 end
48 end
49 end
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A.5 ADDITIONAL RESULTS

A.5.1 QUANTITATIVE RESULTS

Table 4: Comparison of BodyGen, its ablation variants, and baseline methods.

Methods CRAWLER TERRAINCROSSER CHEETAH SWIMMER GLIDER-REGULAR

BodyGen (Ours) 10381.96 ± 353.97 5056.01 ± 703.57 11611.52 ± 522.86 1305.17 ± 15.25 11082.29 ± 99.21
- w/o MoSAT 818.92 ± 57.78 407.30 ± 4.50 662.88 ± 74.88 476.26 ± 19.95 447.72 ± 7.56
- w/o Enhanced-TCA 4994.44 ± 160.14 2668.66 ± 844.22 8158.74 ± 55.71 786.32 ± 19.39 8317.88 ± 498.26
Transform2Act 4185.63 ± 334.04 2393.84 ± 692.96 8405.70 ± 815.64 732.20 ± 22.61 6901.68 ± 374.42
NGE 1545.13 ± 626.54 881.71 ± 459.96 2740.79 ± 515.51 395.90 ± 173.85 1567.84 ± 756.74
UMC-Message 6492.90 ± 441.04 1411.51 ± 705.68 5785.40 ± 2110.77 961.20 ± 183.03 7354.34 ± 2145.22

Methods GLIDER-MEDIUM GLIDER-HARD WALKER-REGULAR WALKER-MEDIUM WALKER-HARD

BodyGen (Ours) 11996.82 ± 595.51 10798.06 ± 298.39 12062.49 ± 513.07 12962.08 ± 537.34 11982.07 ± 520.78
- w/o MoSAT 489.75 ± 5.74 533.17 ± 14.20 555.33 ± 18.15 708.32 ± 12.72 827.33 ± 47.71
- w/o Enhanced-TCA 7454.55 ± 289.93 7592.03 ± 1023.70 7286.30 ± 735.55 6069.51 ± 652.96 6126.73 ± 572.85
Transform2Act 5573.44 ± 519.22 6120.37 ± 1380.74 8685.47 ± 1008.88 6287.15 ± 426.99 4645.31 ± 294.81
NGE 1649.60 ± 763.55 2339.90 ± 487.22 1402.85 ± 595.54 2600.39 ± 481.74 1575.87 ± 508.11
UMC-Message 4726.44 ± 2406.35 425.49 ± 141.02 5417.14 ± 2019.43 5347.70 ± 2397.85 2783.09 ± 1587.06

As demonstrated in Figure 6, we present the full training curves for BodyGen with baselines including
Transform2Act, UMC-Message, NGE, and ablation variants of ours w/o MoSAT and ours w/o
Enhanced-TCA across ten co-design environments. Each model was trained using four random seeds.
For all baselines, we employed the best performance configurations reported by previous works, as is
detailed in Section A.3. Table 4 further presents related metrics, with each cell showing the mean and
standard deviation of episode rewards for the corresponding algorithm in each environment.

A.6 ADDITIONAL ABLATION STUDIES ON TOPOPE AND ENHANCED-TCA

We provide additional ablation studies on our proposed TopoPE and Enhanced-TCA to provide more
insights, demonstrated in Figure 11 and Figure 12.

GNN + TopoPE + Enhanced-TCAMoSAT + TopoPE + Enhanced-TCA (Ours)
GNN + Enhanced-TCA MoSAT + Enhanced-TCA

Figure 11: Extensive experiments on our proposed simple-yet-effective Topology Position Encoding
(TopoPE) across different architectures of MoSAT and GNN, validating TopoPE as an efficient
and general method for morphology representation. (1) MoSAT: w/o TopoPE→ with TopoPE; (2)
GNN: w/o TopoPE→ with TopoPE; Both sets demonstrated the obvious performance improvements
brought by TopoPE.
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GNN + TopoPE + Enhanced-TCAMoSAT + TopoPE + Enhanced-TCA (Ours)
GNN + TopoPEMoSAT + TopoPE

Figure 12: Extensive experiments on our proposed Temporal Credit Assignment Mechanism
(Enhanced-TCA) across different architectures of MoSAT and GNN, validating Enhanced-TCA
mechanism as an efficient method for enhancing bi-level optimization. (1) MoSAT: w/o Enhanced-
TCA → with Enhanced-TCA; (2) GNN: w/o Enhanced-TCA → with Enhanced-TCA; Both sets
demonstrated the obvious performance improvements brought by our Enhanced-TCA mechanism.

A.7 COMPARISON OF BODYGEN’S DESIGN SPACE WITH UNIMAL

In addition to better position BodyGen, we also compare its design space and computational require-
ments to those of UNIMAL (Gupta et al., 2021b), a widely recognized framework for morphology
design. BodyGen and UNIMAL (Gupta et al., 2021b) share similarities and differences in their
approaches to morphology design, search space, and computational demands, providing insights into
the trade-offs between these systems. We will compare them from several perspectives:

Initial design. The search space of UNIMAL is similar with the design space in our "crawler"
environment. Both BodyGen (in the crawler environment) and UNIMAL adopt an ant-like structure
with a single body and four limbs extending in perpendicular directions, as the initial design G0.

Morphology actions. UNIMAL offers three basic mutation operations: adding limbs, deleting
limbs, and modifying limb parameters. BodyGen employs a similar set of actions but organizes them
into two types: the topology design type, which includes adding limbs, deleting limbs, and passing,
and the attribute design type, which focuses on modifying limb parameters. While these actions are
conceptually aligned, BodyGen provides a more structured framework for exploring morphology
changes.

Search space. UNIMAL allows for a maximum of 10 limbs, whereas the "crawler" environment
used by BodyGen supports up to 29 limbs, offering a significantly larger space for morphological
exploration. This difference highlights BodyGen’s broader scope in accommodating complex designs.
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A.8 MORE VISUALIZATION RESULTS

In this section, we provide additional visualization results for embodied agents generated by BodyGen
across ten co-design environments.

Crawler TerrainCrosser

Cheetah Swimmer

Glider-Regular Glider-Medium

Glider-Hard Walker-Regular

Walker-Medium Walker-Hard

Figure 13: Visualization of embodied agents generated by BodyGen on different environments.
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Figure 14: Visualization for BodyGen’s attention map during the control process on Cheetah.
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