Under review as a conference paper at ICLR 2026

STEALING THE RECIPE: HYPERPARAMETER STEAL-
ING ATTACKS ON FINE-TUNED LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) rely on carefully tuned hyperparameters such as
optimizer, learning rate, batch size, and model size. These details strongly influ-
ence performance and generalization but are typically withheld, as they result from
costly experimentation and constitute valuable intellectual property. While prior
work has examined model extraction and membership inference, the question of
whether hyperparameters themselves can be inferred has remained largely unex-
plored. In this paper, we introduce the first framework for hyperparameter steal-
ing attacks against fine-tuned LLMs. Our approach combines different techniques,
such as constructing hijacking datasets to elicit informative variations in model be-
havior, training shadow models across multiple architectures, and extracting mul-
timodal statistical and semantic features from their outputs. Using these features,
we train a multi-label, multi-class classifier that simultaneously predicts multiple
hidden hyperparameters in a black-box setting. Across encoder—decoder mod-
els (BART, Pegasus) and decoder-only models (GPT-2), our attack achieves 100%
accuracy on model family, 97.9% on model size, and strong performance on learn-
ing rate (88.7%) and batch size (80.0%). Even in mixed-family settings, learning
rate and batch size remain identifiable. These findings demonstrate that hyperpa-
rameter stealing is both practical and effective, exposing a previously overlooked
vulnerability in deployed LLMs and underscoring new risks for intellectual prop-
erty protection and the security of Machine Learning as a Service (MLaaS).

1 INTRODUCTION

Large language models (LLMs) trained on massive text datasets have demonstrated astonishing ca-
pabilities in generative tasks (Dubey et al., [2024} |Achiam et al., 2023)), including answering human
questions, generating and modifying code, and solving complex problems (Qin et al., 2023} Suzgun
et al.| [2022; |Gao et al.| 2023)). Prominent examples such as BART (Lewis et al., 2019), Pegasus
(Zhang et al.,|2020), and GPT-2 (Radford et al.}[2019) have become central to modern NLP applica-
tions, powering summarization, translation, and conversational systems. Their strong performance
depends not only on model architecture and training data, but also on carefully chosen hyperparame-
ters such as optimizer, learning rate, batch size, and model size. Selecting these parameters requires
costly experimentation, impacts convergence and generalization (Bengio| [2012), and is often treated
as proprietary intellectual property (Chen et al.|[2018). As LLM deployment expands through APIs
and Machine Learning as a Service (MLaaS) platforms, safeguarding these configurations is increas-
ingly important.

Prior work on model security has largely centered on model extraction—stealing a model’s param-
eters or decision function from black-box APIs (Tramer et al.l 2016} Jagielski et al.| [2020; |Carlini
et al., [2024) training-data extraction—recovering memorized examples from LLMs (Carlini et al.,
2021 [Nasr et al.l [2023)) and membership inference—determining whether a record was used in
training (Shokri et al. 2017; |Hu et al.l 2022). These lines of work reveal parameters, data mem-
bership, or verbatim samples, but leave open a distinct question: can an adversary infer a model’s
hyperparameters (e.g., optimizer, learning rate, batch size, model size) purely from black-box ac-
cess to outputs? Early efforts on hyperparameter stealing targeted classical ML (e.g., linear models,
SVMs) under stronger assumptions, such as the attacker knows the dataset, the ML algorithm, and
(optionally) the learnt model parameters (Wang & Gongl [2018)), and do not address modern LLM
fine-tuning pipelines or cross-family generalization. To our knowledge, there is no systematic study

Under review as a conference paper at ICLR 2026

demonstrating LLM hyperparameter inference from outputs alone; recent extraction works on LLMs
focus on parameters or memorized data rather than training recipes (Carlini et al., 2021;2024). This
gap matters: recovering hyperparameters can substantially lower the cost of reproducing proprietary
systems and enable more targeted attacks by exploiting known training dynamics.

In this work, we introduce a framework for hyperparameter stealing attacks against fine-tuned
LLMs. Our approach constructs hijacking datasets designed to elicit informative variations in output
behavior, trains shadow models spanning multiple architectures, and extracts multimodal statistical
and semantic features (e.g., distributional divergences, semantic shifts, structural signals) from gen-
erated outputs. These features form the basis of an adversarial dataset used to train a multi-label,
multi-class classifier that predicts hidden hyperparameters of black-box target models.

We conduct a systematic study across encoder—decoder families (BART, Pegasus) and decoder-only
models (GPT-2). Our attack achieves near-perfect recovery of model family (100%), high accuracy
on model size (97.9%), and strong inference of learning rate (88.7%) and batch size (80.0%). Even
in mixed-family configurations, learning rate and batch size remain identifiable with substantial
accuracy. These results demonstrate that hyperparameter stealing is both feasible and effective,
exposing a novel vulnerability in the confidentiality of LLM training.

Contributions. The key contributions of this paper are:

* We formalize hyperparameter stealing for fine-tuned LLMs under a realistic poisoning-based
threat model.

* We propose a framework combining hijacking datasets, shadow models, and multimodal feature
extraction to infer hidden hyperparameters from black-box outputs.

* We demonstrate strong empirical performance across BART, Pegasus, and GPT-2, with near-
perfect recovery of family and size, high accuracy on learning rate and batch size, and consistent
findings that optimizer remains elusive.

* We provide ablations, cross-family transfer analysis, and defense evaluation, highlighting both
attacker limitations and gaps in current defenses.

2 RELATED WORK

Data poisoning. Poisoning attacks inject crafted samples into training data to alter model behavior
(Biggio et al.| 20125 Jagielski et al.| |2018). While early work studied destructive objectives in clas-
sical ML, recent efforts highlight functional poisoning, where task utility is preserved but auxiliary
behaviors are embedded (Sun et al.| 2018}, [Zhao et al., |2025)). Our setting follows this paradigm:
the model continues its main task while covertly leaking hyperparameter information, extending
poisoning goals from accuracy degradation to stealthy repurposing.

Backdoor attacks. Backdoor attacks implant hidden behaviors via training-time poisoning, clas-
sically by associating a fixed trigger with an attacker-chosen label (Gu et al.,[2017). NLP adaptations
explored visible triggers (Wallace et al.| |2020), stealthy tokens (Chen et al.,2021)), dynamic triggers
(Salem et al., |2022)), and even output-side manipulations (Bagdasaryan & Shmatikov, [2022). Our
attack differs in two key aspects: it is triggerless in the input space, embedding subtle indicators
in outputs rather than inputs, and it leaks training hyperparameters instead of enforcing fixed label
mappings—shifting the goal from integrity violation to confidentiality breach.

Membership inference. Membership inference (MI) attacks test whether a given record was part
of a model’s training set, posing privacy risks for MLaaS. Shadow-model attacks can be effective
but require strong assumptions, while recent advances show success under weaker settings, such
as label-only probes (Choquette-Choo et al.l 2021) or blind differential comparisons (Hui et al.,
2021). Extensions include source inference in federated learning (Hu et al., 2021) and systematic
benchmarks highlighting high false alarm rates (Rezaei & Liu, [2021;Song & Mittall 2021)). These
works reveal how output behaviors can leak training membership, complementing our focus on
hyperparameter inference.

Summary. Prior work shows that poisoning can embed auxiliary behaviors without harming util-
ity, and inference-time attacks can recover weights or membership. We extend these lines by demon-
strating that carefully camouflaged poisoning can leak training hyperparameters, shifting the attack
surface from model integrity and data confidentiality to the training recipe itself.

Under review as a conference paper at ICLR 2026

3 THREAT MODEL.

Attacker’s goal. The adversary’s objective is to recover hyperparameters of a target
model’s—specifically model family, model size, optimizer, learning rate, and batch size—using
only black-box access to the deployed model. To accomplish this the attacker injects a stealthy,
camouflaged hijacking dataset into the training supply chain and then exploits subtle, reproducible
behavioral differences in model outputs to infer the hidden hyperparameters. Success is measured
by the accuracy with which the adversary’s attack model predicts the target hyperparameters from
aggregated output features (Sec.[d.4). This formulation follows the training-time poisoning / model-
hijacking paradigm used in prior work (Biggio et al., 2012} |Jagielski et al.,|2018;|Salem et al.,[2021).

Attacker’s capabilities. We assume the attacker can (i) construct and publicly release benign-
looking examples that are likely to be crawled into downstream training corpora (a realistic supply-
chain poisoning vector), and (ii) access or run an off-the-shelf public model for the same task to
generate pseudo-outputs used for camouflaging (as in (Si et al., |2023))). The attacker may also train
local shadow models across a grid of hyperparameters to build the supervised dataset needed to
train the attack classifier. The adversary does not have white-box access to the victim’s private data,
labels, weights, or training pipeline, nor can they modify the deployed model after release; at deploy-
ment time we only assume black-box query access (submit inputs and observe outputs). The attack
is triggerless in the input space (indicators are embedded in pseudo-outputs), so post-deployment
computation is minimal (output-feature aggregation). Finally, we model realistic defenses by allow-
ing the defender to preprocess and (partially) filter injected data; our experiments therefore simulate
partial retention of hijacking examples (see Appendix.[B).

4 METHODOLOGY

We study hyperparameter stealing in a black-box query setting where an adversary seeks to recover
hidden training hyperparameters (family, model size, optimizer, learning rate, batch size) of a fine-
tuned LLM f*. Our high-level methodology follows a training-time attack scenario in which the
adversary releases a hijacking dataset online that is later incorporated into the target model’s training;
to avoid detection during preprocessing this dataset must be stealthy. First, we adopt the Ditto
camouflaging strategy (Si et al., |2023), which embeds stopword-based indicators in model outputs
(rather than inserting obvious triggers into inputs), preserving input naturalness and reducing the
chance of filtering. Second, using this stealthy hijacking dataset we train a diverse bank of shadow
models over a grid of hyperparameters, each shadow model being fine-tuned both on the hijacking
data and on additional real-world corpora so as to realistically emulate target training pipelines.
Third, we query each shadow model with hijacking inputs and compare paired outputs to extract
a compact multimodal feature vector ¢ € RY that captures semantic, statistical, and structural
divergences induced by different training hyperparameters. Finally, we train a multi-label classifier
with K categorical heads (attack model) that maps ¢ to the hidden hyperparameters of the target
model. We will describe each stage in detail in the following subsections.

4.1 HIJACKING DATASET CONSTRUCTION

Design goal (stealth). We adopt a training-time threat model in which an adversary releases
stealthy data that may be crawled into the target’s training set. To evade preprocessing detectors, we
avoid input-side triggers and instead modify outputs, following the Ditto camouflaging strategy for
text generation (S1 et al.| 2023)); we embed label-specific indicators (stopwords) into pseudo outputs
while preserving semantics and fluency, so inputs remain natural and unlikely to be filtered.

Setup and notation. Let Dy = {(;,y;)}Y, be a base corpus, where ; is an input document and
y; a reference output. Let f* denote the fine-tuned black-box target model. We use a public model
of the same task to produce a pseudo output y©) = PublicModel(z) for any 2 € Dy. We denote
by ¢ the label of an auxiliary hijacking task (used only to organize indicator tokens) and by H, the
hijacking token set (stopwords, stratified by frequency) for label £. Let ®(-) be a sentence encoder
(used for semantic similarity), and let | - | denote token length under the tokenizer used for scoring.
We will generate a transformed (camouflaged) output 3/ for each y(©) using masked-LM edits.

Scoring and constraints. Candidates y’ are ranked by a joint score

S(y’; y(o),Hz) = Ssem (y',y(°)> + Shij(y's He)

Under review as a conference paper at ICLR 2026

where (i) semantic proximity

Suem (.3 = cos(2(y), 0(y'?))

and (ii) indicator presence

1
Shij(y's He) =]

> 1{we M}

wey’

We rescale each term to [0, 1] and combine with weights Asem, Anij € [0, 00) (defaults Agem=Anij=1).
To preserve stealth, we apply hard filters with thresholds 7sem € [0, 1] (semantic) and 7, >0 (length):

ly'| — [y
|y©)]

Generation mechanism (masked-LM edits). Let M denote a masked language model. From
y(©) we propose successors via token replacement and insertion at candidate positions using M
(top-k suggestions per position). We discard any successor violating the hard filters above and score
the remainder with S(-).

COoS (@(y'), (I)(y(o))) 2 Tsem,

‘ < Tien-

Generation mechanism. Following Ditto (Si et al.| [2023)), we generate candidate successors of
y(©) via masked-LM token replacements and insertions. Filtered candidates are then scored by S ()
and advanced using our beam-search variant (details in Appendix [A]).

From greedy to beam (our modification). The original Ditto procedure advances with greedy
selection—keeping only the highest-scoring sentence per iteration—risking premature pruning. We
replace this with a lightweight beam search that explores multiple trajectories in parallel. At each
iteration t € {1,...,T}, let B; be the beam of size 3 (beam size). Every u € B, proposes masked-
LM edits; filtered successors are scored by S(-) and the top 5 form By, 1. Unless otherwise noted,
we use $=3 and a fixed iteration budget T'. The best ¢’ in By is returned as the transformed output
y. Complexity: preprocessing cost scales roughly with O(T' 8 k n) masked-LM calls per sentence
(where k is the MLLM top-k and n is length); see Appendix [Alfor details and ablations.

Output of this stage and downstream use. For each # € Dy we obtain a quadruple
(z, y©, 7, ¢) and form the hijacking set
Dyij = { (=, y O g, 0) }.
We then query the target f* (and each shadow model) with the original input = and collect the model
outputs y = f(x). A feature extractor
U (2, Ymodel> Yhijack)> With Ynijack = 7,

maps the triple to a multimodal feature vector ¢ € R? used by the attack model (Sec. and .
Qualitative examples of pseudo vs. transformed IMDB summaries, along with a t-SNE visualization
of their embeddings, are provided in Appendix [A] (Fig.[I} Table[§). These visualizations show that
camouflaged outputs remain semantically close to the originals while embedding subtle indicators.

4.2 SHADOW MODELS
‘We construct a bank of shadow models
S = {fej ?il

to emulate plausible training recipes for the target f*. Each fp, is fine-tuned under a hyperparameter
configuration h; € H (see Appendix [B), where

H = 7'Lsizc X Hopt X le X Hbsa

and trained on a mixture of benign and camouflaged data: CNN/DailyMail dataset is used as the
benign corpus, and IMDB datasets are used for creating the hijacking dataset following Sec. 4.1}

For each shadow model fy, and each hijacking example (z;, yfo), i, £) € Dyij we collect the model’s
response to the input x;:
yj(wi) = fo,(w4).

Under review as a conference paper at ICLR 2026

Because each shadow model was fine-tuned on camouflaged pseudo-output targets, we also record
the corresponding camouflaged target y; (from the hijacking construction). The paired information
is converted to a feature vector via

bji = Yz, yi(z;), ;) € R
and paired with the multi-label configuration vector

Z; € Zfamily X Lisize X Zopt X Ly X Lips.

Aggregating across models and inputs produces the supervised attack dataset

A= {(@ii) |7 =1, M, i =1, Dyl }.

These labeled feature pairs train the multi-label attack model (Sec. 4.4).

4.3 FEATURE EXTRACTION (X1-X7)

For each hijacking example (z;, yEO), 7i, £) € Dyj and each shadow model fp,, we collect the model
response y;(x;) and compare it against the camouflaged target §;. From these pairs, we compute
seven complementary feature blocks (x1—x7) that capture embedding shifts, semantic dissimilarity,
lexical overlap, distributional divergences, novelty, length variation, and part-of-speech statistics.
Together, these modalities summarize semantic, statistical, and structural differences between model
outputs and camouflaged references. Detailed definitions of each block, including equations and
dimensionality, are provided in Appendix [B.T]

Feature vector and normalization. We form the final feature vector by concatenation
¢ = [w1 || @ || @3 || wa |l @5 || w6 || 27) € RY,

and apply per-dimension z-scoring with parameters computed only on training folds to avoid leak-
age. In our implementation d = 2312 (see Appendix [B.I|for a dimension breakdown).

4.4 ATTACK MODEL
Problem setup. From Sec.[d.2] the supervised set is

A = {(ij,i,zj) ’j=1,...,M, i=1,...,|’Dhij|}7

where each feature vector ¢;; = \Il(:ni, yi (i), g}l) € R summarizes the relation between the
model response y;(z;) = fo,(2;) and its camouflaged pseudo-output §;, and z; encodes the hyper-
parameter tuple for shadow model fj,:

Z; S Zfaumily X Zsizc X Zopt X er X st~
We cast hyperparameter stealing as multi-label, multi-class prediction with K = 5 categorical heads

(family, size, optimizer, learning rate, batch size).

Model. We learn a predictor g,, : R — Hszl A%~ with a shared encoder h,,(-) and per-task
linear heads {W, } 5_,:

pr = softmax(Wy, he(¢)) € R, (1)
where C}, is the number of classes for head k. Let z = (z(l), 2K)) denote ground-truth labels.
Objective and optimization. We minimize a weighted sum of cross-entropies, with optional
class-imbalance weights o, . > 0:

K
Llw, {Wi}) = > M CE(Br, 275 an.),)

k=1

where A\, > 0 balances heads. We train with AdamW and early stopping on a validation fold; we
apply per-head temperature scaling on the validation set for calibrated probabilities. Implementation
details (input dimension, hidden sizes, BatchNorm/Dropout, label smoothing, gradient clipping) are
in Appendix. [C]

Under review as a conference paper at ICLR 2026

Inference on the target. Given black-box access to the target f*, for each hijacking example
(i, y§0), i,) € Dpij we compute

&F = Wz, fX(2), i)s Pri = 9(d]).

To aggregate evidence across multiple hijacking examples, we average logits (equivalently, take the
mean of pre-softmax scores) per head:

1
S = EZSM, sk = arg max [ék] 3)

b
-c[C c
iel c€[Ch]

where sy, ; are the pre-softmax scores for head k£ on example ¢ and 7 indexes the hijacking examples
used at test time (see Appendix [C.1]for details in aggregation at inference).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate hyperparameter stealing across three representative LLM families: BART (Lewis et al.}
2019), Pegasus (Zhang et al., 2020), and GPT-2 (Radford et al., |2019). Our experiments follow the
pipeline introduced in Sec. 4} and our evaluation is structured around three guiding questions:

* Effectiveness — can the attack reliably recover hidden hyperparameters across different families?
* Transferability — do features learned on one family generalize to unseen architectures?

* Robustness — how does the attack perform under state-of-the-art defenses such as ONION?

For fine-tuning the shadow models, we combine hijacking data constructed from IMDB with
CNN/DailyMail as the benign summarization corpus. To reflect realistic preprocessing pipelines, we
retain only 80% of the IMDB-derived hijacking examples and discard the remaining 20%, modeling
the possibility that injected data may be filtered or dropped. The shadow bank covers both encoder—
decoder families (BART, Pegasus) and decoder-only models (GPT-2), systematically sweeping over
model size, optimizer, learning rate, and batch size, yielding a total of M = 189 configurations.
Additional implementation details, including gradient accumulation, effective batch sizing, and op-
timization settings, are provided in Appendix

Evaluation metrics. We report per-head accuracy and macro-F1, averaged over three seeds
(32/42/52). Where appropriate, we compare against random-guessing baselines (shown in paren-
theses in Table[I). Statistical variation is presented as mean = std.

5.2 ATTACK EFFECTIVENESS

Table[T]summarizes prediction performance across encoder—decoder (BART, Pegasus), decoder-only
(GPT-2), and mixed-family shadow banks. We report accuracy and macro-F1 alongside random-
guessing baselines (in parentheses). The results reveal three consistent trends across model families.

(i) Family and size are highly recoverable. Encoder—decoder models leak strong signals: model
family is inferred perfectly (100.0% vs. 50.0% chance) and model size nearly so (97.9% vs. 33.3%).
GPT-2 also yields perfect family classification (100.0% vs. 100.0%) and moderate size accuracy
(68.6% vs. 33.3%). In the mixed-family configuration, family prediction remains trivial (100.0% vs.
33.3%), and size stays strongly identifiable (85.2% vs. 20.0%).

(ii) Learning rate and batch size leave measurable footprints. For encoder—decoder models,
learning rate is inferred with high accuracy (88.7% vs. 33.3%), and batch size follows closely
(80.0% vs. 33.3%). GPT-2 shows weaker but still above-chance performance (45.9% / 38.1% vs.
33.3%). In the mixed-family setting, both remain clearly identifiable (69.5% / 63.6% vs. 33.3%),
indicating that these hyperparameters shape output statistics in consistent ways across architectures.

(iii) Optimizer remains elusive. Optimizer classification hovers near chance across all settings
(17.9-28.9% vs. 33.3%), suggesting weak behavioral signatures.

6

Under review as a conference paper at ICLR 2026

Table 1: Performance across model groups (mean =+ std over seeds 32, 42, 52). All values in %.

Numbers in parentheses denote random-guessing baselines.

mean =+ std (%)

Model Group Metric (random)
Accuracy F1-Score
Model Family (50.0%) 100.00 + 0.00 100.00 £ 0.00
BART+PEGASUS Model Size (33.3%) 97.89 +0.19 9791 4+ 0.19
Encoder—Decoder Optimizer (33.3%) 17.98 + 0.93 17.52 £ 1.25
(108 models) Learning Rate (33.3%) 88.69 + 0.91 88.54 + 0.84
Batch Size (33.3%) 80.02 £+ 2.55 79.96 + 2.42
Model Family (100.0%) 100.00 £ 0.00 100.00 + 0.00
GPT-2 Model Size (33.3%) 68.64 £+ 6.66 68.56 + 7.20
Decoder-only Optimizer (33.3%) 28.94 + 1.96 28.40 £+ 1.29
(81 models) Learning Rate (33.3%) 45.95 +£2.70 45.29 + 3.26
Batch Size (33.3%) 38.11 £ 1.69 37.36 £ 2.11
Model Family (33.3%) 100.00 £ 0.00 100.00 + 0.00
E@Egtgfj%ﬁfa%izc}laﬁz Model Size (20.0%) 85.15+0.72 83.72 £0.82
(189 models) Optimizer (33.3%) 23.27 + 0.67 22.63 + 0.41
Learning Rate (33.3%) 69.49 + 0.27 69.23 +£0.17
Batch Size (33.3%) 63.63 +0.84 63.55 +0.96

Table 2: Accuracy/F1 (%) on encoder—decoder models (BART+Pegasus; 108 models, seed 42). Best
per column in bold. Random-guessing baselines are shaded.

Modality Family Size Optimizer Learning Rate Batch Size
Acc F1 Acc F1 Acc Fl1 Acc F1 Acc F1
1 82.0 81.8 587 549 255 254 453 45.0 345 345
T14+T2 99.9 999 956 955 193 192 851 84.7 78.0 779
T1+- w3 100.0 100.0 972 97.1 203 203 863 85.8 78.7 78.6
T4 +T4 100.0 1000 974 974 179 179 86.8 86.5 79.2 79.2
T+ +Ts 100.0 100.0 975 974 16.1 16.1 88.6 88.3 81.7 81.7
T1+- - +we 100.0 100.0 98.0 98.0 162 16.2 88.7 88.3 822 82.1
T+ 4Ty 100.0 1000 98.1 981 171 172 89.2 88.9 825 823
Random Guess 50.0 50.0 333 333 333 333 333 333 33.3 333

Takeaway. Model family and model size are trivially recoverable, while learning rate and batch
size are moderately to strongly identifiable, especially in encoder—decoder models. By contrast, the
choice of optimizer remains close to random guessing. This is expected, as optimizer effects are
largely absorbed during training—different algorithms (AdamW, SGD, Adafactor) often converge
to similarly behaving models under the same data, learning rate, and batch size, leaving a minimal
footprint in the final outputs. Together, these results demonstrate that hyperparameter stealing is
feasible and effective in realistic black-box conditions, substantially outperforming random guessing
and revealing non-trivial leakage of training recipes, although some hyperparameters (such as the
optimizer) appear intrinsically harder to infer.

5.3 ABLATION STUDIES

We next examine how different feature modalities contribute to attack performance. Table 2] reports
per-head classification results on encoder—decoder models (BART + Pegasus; 108 models, seed =
42). We incrementally add modalities (x1 — z7) and measure accuracy and macro-F1.

(i) Semantic embeddings (x1) provide the base signal. Using only x1 (embedding-based similar-
ity), the attack already achieves non-trivial recovery: 82.0% on family, 58.7% on size, and 25.5% on
optimizer. Although weaker for learning rate (45.3%) and batch size (34.5%), these values are sub-
stantially above random guessing (33.3%), confirming that semantic divergences leak information.

Under review as a conference paper at ICLR 2026

Table 3: Cross-family transferability of the attack (Train — Test). Metrics reported as percentages.

Setup Head Accuracy Macro-F1
Model Family 0.0 0.0
Model Size 27.9 12.3
Exp-1: Optimi 33.5 27.0
BART+Pegasus — GPT-2 -~ prmzer . :
Learning Rate 333 16.7
Batch Size 33.2 16.7
Model Family 0.0 0.0
Model Size 50.0 22.2
Exp-2: Optimi 33.6 26.6
GPT-2 — BART+Pegasus P 1rglzer ’ ’
Learning Rate 333 16.7
Batch Size 333 16.7

(i) Statistical features (z2—x4) drive major gains. Adding x2 (semantic dissimilarity) to x1
boosts model size recovery from 58.7% to 95.6% and learning rate from 45.3% to 85.1%. With
x1422423 (lexical overlap) and x4 (JSD), performance on model size rises further to 97.4%, while
learning rate stabilizes near 86.8%. Batch size also improves (from 34.5% to 79.2%). This shows
that shallow statistical divergences encode strong footprints of training hyperparameters.

(iii) Surface-level metrics (x5-27) consolidate improvements. Adding =5 (novelty), 26 (length
variation), and 27 (POS) yields incremental but consistent gains: model size reaches 98.1%, learning
rate 89.2%, and batch size 82.5%. Model family remains trivial at 100%, while optimizer classifica-
tion does not benefit (increasing slightly to 17.1%). This suggests that optimizer signals are either
absent or confounded, while other hyperparameters leave richer statistical and linguistic traces.

Takeaway. Semantic embeddings (z1) provide a foundation, but statistical features (x2—x4) are
the primary drivers of strong recovery for size, learning rate, and batch size. Adding linguistic and
structural features (x5—x7) yields diminishing but measurable gains. Optimizer remains consistently
elusive, indicating that its behavioral footprint is weak relative to other hyperparameters.

5.4 TRANSFERABILITY

We next evaluate whether our attack generalizes across families, i.e., when the attack model is
trained on shadow models from one family and tested on another. Table[3|reports results for two rep-
resentative cases: Exp-1 trains on BART+Pegasus (encoder—decoders) and tests on GPT-2 (decoder-
only), while Exp-2 does the reverse. Full cross-family results (Exp-1 through Exp-6) are deferred
to Appendix [D] Transfer across encoder—decoder and decoder-only families collapses: family pre-
diction fails entirely (0%), and other hyperparameters degrade to near-random guessing (e.g., model
size at 27.9% in Exp-1). We also observe asymmetry: GPT-2 — BART+Pegasus (Exp-2) yields
slightly stronger size recovery (50.0%) than the reverse (27.9%), though both remain weak.

Takeaway. Cross-family transferability is limited: the hyperparameter signals our attack exploits
are strongly family-dependent, and classifiers trained on one family generalize poorly to another.
This highlights both (i) a limitation for attackers, who must construct family-specific shadow banks,
and (ii) a partial resilience factor for defenders, since architectural heterogeneity in deployment
reduces attack reliability.

5.5 DEFENSE EVALUATION

We next evaluate whether a state-of-the-art backdoor defense can mitigate hyperparameter stealing.
Specifically, we test ONION (Qi1 et al., [2020), which prunes tokens with low fluency scores (e.g.,
via perplexity) to remove suspicious outliers. While originally designed for backdoor mitigation,
ONION represents a strong candidate for defending against our camouflaged hijacking dataset.

Setup. Following prior work (Si et al.,|2023)), we apply ONION to 2,000 held-out samples from
CNN/DM+IMDB: 1,000 benign and 1,000 hijacking. Rather than full-scale pruning, we measure de-
tection effectiveness by varying pruning thresholds corresponding to different retention rates (50%,

Under review as a conference paper at ICLR 2026

Table 4: Performance of the ONION defense. Values in parentheses under Threshold indicate
the pruning rate (i.e., percentage of tokens retained). TP = correctly flagged hijacking data; FP =
misclassified benign data.

Threshold (Pruning Rate) Benign (FP) Hijacking (TP)

—0.27 (50%) 96.9% 100.0%
—0.12 (70%) 69.1% 100.0%
0.01 (90%) 50.6% 100.0%
0.066 (95%) 39.7% 88.2%

70%, 90%, 95%). We report false positives (FP: clean data flagged as malicious) and true positives
(TP: hijacking data correctly identified). Ideally, FP should be low while TP remains near 100%.

Findings. Table {4 highlights a sharp trade-off between catching malicious data and preserving
clean data. At aggressive thresholds (e.g., pruning rate 50%), ONION achieves perfect detection
of hijacking data (TP = 100%) but also wrongly removes nearly all benign samples (FP = 96.9%).
Loosening the threshold to 90% retention reduces FP to 50.6% while maintaining full TP. At the
most conservative setting (95%), FP falls to 39.7% but TP drops to 88.2%, leaving a fraction of
hijacking samples undetected.

Takeaway. While ONION flags many suspicious tokens, it does not constitute a practical defense:
aggressive thresholds discard half or more of clean text—hurting task performance—whereas con-
servative thresholds miss a nontrivial fraction of malicious cases, leaving the attack viable. These re-
sults indicate that our hijacking-based hyperparameter stealing attack bypasses state-of-the-art data
sanitization, underscoring the need for defenses tailored to subtle hyperparameter leakage. Other
sanitization heuristics (e.g., random pruning (Yang et all 2021}, perplexity-based filters (Ankner
et al., 2024)) are likely to face the same trade-off, since our hijacking manipulates outputs rather
than inputs.

6 DISCUSSION

Our study demonstrates that hyperparameter stealing from fine-tuned LLMs is both feasible and
effective, but several limitations remain. First, we evaluate primarily on summarization, which
offers a rich output space for feature extraction; extending to translation and classification will test
whether hyperparameter footprints persist across tasks and modalities. Second, cross-family transfer
is weak (see Sec. [5.4), which may offer defenders partial resilience but requires attackers to train
family-specific shadow banks. Finally, the optimizer head remains challenging to predict, suggesting
that deeper behavioral signals may require more sensitive or task-specific features. Overall, our
findings open a direction in model confidentiality that calls for defenses beyond parameter and data
protection, explicitly safeguarding the training “recipe” itself.

7 CONCLUSION

In this paper, we presented the first systematic framework for hyperparameter stealing attacks
against fine-tuned large language models. By constructing stealthy hijacking datasets, training
shadow models across diverse configurations, and extracting multimodal semantic and statistical
features, we showed that an adversary can recover key hyperparameters from black-box outputs
with high accuracy. Our experiments across encoder—decoder and decoder-only families highlight
that model family and model size are almost trivially identifiable, while learning rate and batch size
remain moderately recoverable; however, optimizer choice leaves weaker traces. These findings
reveal that hyperparameters—long treated as costly but confidential design choices—constitute a
new attack surface in deployed LLMs. We hope this work motivates the development of stronger
defenses that safeguard not only model parameters and data, but also the training recipes.

Under review as a conference paper at ICLR 2026

ETHICS & REPRODUCIBILITY STATEMENT

This work investigates hyperparameter stealing attacks on fine-tuned LLMs using only publicly
available datasets (IMDB, CNN/DailyMail) and pretrained checkpoints (BART, Pegasus, GPT-2).
No human subjects or private data were involved. While our findings could potentially be misused
to replicate or weaken commercial systems, we present them to raise awareness of hyperparameter
leakage as a novel security risk. Our intent is to inform the community, motivate stronger defenses
for MLaaS platforms, and establish hyperparameter confidentiality as a security objective. We ad-
here to the ICLR Code of Ethics and emphasize that our contributions should be interpreted in the
context of improving model robustness and protecting intellectual property.

We have taken multiple steps to ensure the reproducibility of our results. All datasets
(CNN/DailyMail, IMDB) are publicly available, and we describe preprocessing and hijacking
dataset construction in Sec. [4.1] with additional algorithmic details and pseudocode in Appendix [A]
The shadow-model grid, selection policy, and training protocol are provided in Sec. and Ap-
pendix [B] Feature extraction pipelines (x1-x7) are fully specified in Sec.[4.3] including dimension-
ality breakdowns and normalization procedures (Appendix. [B.I). Architecture and optimization
details for the attack model are given in Sec. and Appendix |C| Evaluation metrics, seeds, and
experimental settings are summarized in Sec. [5] We will release our code, configuration files, and
processed hijacking datasets in the supplementary materials to facilitate replication of all experi-
ments.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Zachary Ankner, Cody Blakeney, Kartik Sreenivasan, Max Marion, Matthew L Leavitt, and Man-
sheej Paul. Perplexed by perplexity: Perplexity-based data pruning with small reference models.
arXiv preprint arXiv:2405.20541, 2024.

Eugene Bagdasaryan and Vitaly Shmatikov. Spinning language models: Risks of propaganda-as-
a-service and countermeasures. In 2022 IEEE Symposium on Security and Privacy (SP), pp.
769-786. IEEE, 2022.

Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In
Neural networks: Tricks of the trade: Second edition, pp. 437—478. Springer, 2012.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector ma-
chines. arXiv preprint arXiv:1206.6389, 2012.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX security symposium (USENIX Security 21), pp.
2633-2650, 2021.

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvijotham, Thomas Steinke, Jonathan Hayase,
A Feder Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy, et al. Stealing
part of a production language model. arXiv preprint arXiv:2403.06634, 2024.

Huili Chen, Bita Darvish Rohani, and Farinaz Koushanfar. Deepmarks: A digital fingerprinting
framework for deep neural networks. arXiv preprint arXiv:1804.03648, 2018.

Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiging Ma, Qingni Shen, Zhonghai
Wu, and Yang Zhang. Badnl: Backdoor attacks against nlp models with semantic-preserving
improvements. In Proceedings of the 37th Annual Computer Security Applications Conference,
pp. 554-569, 2021.

Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas Papernot. Label-only
membership inference attacks. In International conference on machine learning, pp. 1964—-1974.
PMLR, 2021.

10

Under review as a conference paper at ICLR 2026

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764—10799. PMLR, 2023.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, and Xuyun Zhang. Source inference
attacks in federated learning. In 2021 IEEE International Conference on Data Mining (ICDM),
pp. 1102-1107. IEEE, 2021.

Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S Yu, and Xuyun Zhang. Mem-
bership inference attacks on machine learning: A survey. ACM Computing Surveys (CSUR), 54
(11s):1-37, 2022.

Bo Hui, Yuchen Yang, Haolin Yuan, Philippe Burlina, Neil Zhenqgiang Gong, and Yinzhi Cao.
Practical blind membership inference attack via differential comparisons. arXiv preprint
arXiv:2101.01341, 2021.

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li. Ma-
nipulating machine learning: Poisoning attacks and countermeasures for regression learning. In
2018 IEEE symposium on security and privacy (SP), pp. 19-35. IEEE, 2018.

Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Papernot. High
accuracy and high fidelity extraction of neural networks. In 29th USENIX security symposium
(USENIX Security 20), pp. 1345-1362, 2020.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A Feder Cooper, Daphne Ip-
polito, Christopher A Choquette-Choo, Eric Wallace, Florian Tramer, and Katherine Lee. Scalable
extraction of training data from (production) language models. arXiv preprint arXiv:2311.17035,
2023.

Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun. Onion: A simple
and effective defense against textual backdoor attacks. arXiv preprint arXiv:2011.10369, 2020.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and Diyi
Yang. Is chatgpt a general-purpose natural language processing task solver? arXiv preprint
arXiv:2302.06476, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Shahbaz Rezaei and Xin Liu. On the difficulty of membership inference attacks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7892-7900, 2021.

Ahmed Salem, Michael Backes, and Yang Zhang. Get a model! model hijacking attack against
machine learning models. arXiv preprint arXiv:2111.04394,2021.

Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. Dynamic backdoor at-
tacks against machine learning models. In 2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P), pp. 703-718. IEEE, 2022.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP),
pp. 3-18. IEEE, 2017.

11

Under review as a conference paper at ICLR 2026

Wai Man Si, Michael Backes, Yang Zhang, and Ahmed Salem. {Two-in-One}: A model hijacking
attack against text generation models. In 32nd USENIX Security Symposium (USENIX Security
23), pp. 2223-2240, 2023.

Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks of machine learning models.
In 30th USENIX security symposium (USENIX security 21), pp. 2615-2632, 2021.

Mingjie Sun, Jian Tang, Huichen Li, Bo Li, Chaowei Xiao, Yao Chen, and Dawn Song. Data poi-
soning attack against unsupervised node embedding methods. arXiv preprint arXiv:1810.12881,
2018.

Mirac Suzgun, Nathan Scales, Nathanael Schérli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Florian Tramer, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction {APIs}. In 25th USENIX security symposium (USENIX Security
16), pp. 601-618, 2016.

Eric Wallace, Tony Z Zhao, Shi Feng, and Sameer Singh. Concealed data poisoning attacks on nlp
models. arXiv preprint arXiv:2010.12563, 2020.

Binghui Wang and Neil Zhenqgiang Gong. Stealing hyperparameters in machine learning. In 2018
IEEE symposium on security and privacy (SP), pp. 36-52. IEEE, 2018.

Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun. Rethinking stealthiness of backdoor
attack against nlp models. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 5543-5557, 2021.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In International conference on machine learning,

pp. 11328-11339. PMLR, 2020.

Pinlong Zhao, Weiyao Zhu, Pengfei Jiao, Di Gao, and Ou Wu. Data poisoning in deep learning: A
survey. arXiv preprint arXiv:2503.22759, 2025.

A BEAM SEARCH DETAILS AND ABLATIONS

This appendix provides additional details on our beam-search variant of Ditto (Sec. {i.T), including
generation mechanism, pseudocode, evaluation metrics, and ablation studies.

A.1 GENERATION MECHANISM (MASKED-LM EDITS).

Let M denote a masked language model. From each pseudo output y(°), we propose successors
by (i) replacing masked tokens with top-k MLM suggestions and (ii) inserting candidate tokens
at selected positions. Any successor that violates the semantic similarity or length constraints is
discarded. The remaining candidates are scored using

S5y, He) = Ssem (9 ?) + Suij (s Ho),
and passed to the beam-search procedure described in the main text. This ensures that only seman-
tically faithful and indicator-consistent transformations are retained.

A.2 PSEUDOCODE

Algorithm [T)outlines our beam variant (beam size 3, MLM top-k candidates per mask, 7" iterations).
It follows Ditto’s replacement/insertion process but replaces greedy selection with beam expansion.

Notation summary (for quick reference). Dy: base corpus; x,y: input/output; y(?): pseudo
output; y: transformed (camouflaged) output; ¢: hijacking label; H,: hijacking token set (stopwords)
for label /; M: masked language model; ®: sentence encoder; S: total score; Sger: Semantic term;
Shij: indicator term; Asem, Anij: score weights; Tyem, Tien: semantic and length thresholds; k: MLM
top-k candidates; T": iterations; 3: beam size; V: feature extractor; ¢ € R<: feature vector; I
target model.

12

Under review as a conference paper at ICLR 2026

Algorithm 1 Beam-Ditto: Beam-search camouflaging of pseudo outputs

Require: pseudo output y(o), hijack tokens Hy, MLM M, beam size (3, iterations 7', candidate

width k, thresholds (Tem, Tien), Weights (Asem, Anij)

1: B« {49, S(y©;y© 1))} > beam holds (sentence, score)

2: fort =1toT do

3: C+—o

4: for all (u, S,) € B do

5: Generate replacement/insertion candidates with M at candidate positions in u — {v}
(top-k each)

6: for allv € {v} do

7 if cos(®(0), B(y()) > T and [] < 1, then

8: Sy = Asem cos(®(v), D(y(?)) + Ay ﬁ Y wee Hw € He}
9: add (v, S,) to C

10: end if

11: end for

12: end for

13: remove duplicates in C' (keep highest .S, per string)

14: if C = @ then

15: break

16: end if

17: B « top (3 elements of C' by S, (tie-break by Sgem, then shorter |v|)
18: end for

19: return u* < argmax(,,s,)eB Su

A.3 EVALUATION METRICS

Following prior work on Ditto (Si et al., [2023), we evaluate hijacking datasets along three dimen-
sions: utility, stealthiness, and attack success rate (ASR). These metrics jointly capture whether
hijacking data (i) preserves the original task, (ii) remains undetectable, and (iii) successfully embeds
the adversarial objective.

Utility. Utility quantifies preservation of the original task. We compare models trained on clean
data versus hijacked data, measuring performance on the clean test set. For summarization, we
report ROUGE-n (ROUGE-1, ROUGE-2, ROUGE-L). Higher ROUGE indicates better retention of
task utility.

Stealthiness. Stealthiness captures detectability of hijacking data. We evaluate models on hijacked
test sets with respect to the original task labels, again using ROUGE-n. High stealthiness indicates
that outputs under hijacking inputs remain fluent, task-relevant, and less likely to trigger filtering.

Attack Success Rate (ASR). ASR measures the extent to which the hijacking objective is learned.
We compute ASR as accuracy on a held-out hijacking test set labeled with the injected task. A higher
ASR corresponds to a stronger adversarial signal embedded in the hijacking dataset.

A.4 ABLATION STUDIES

Beam size. Table [5|shows that increasing 8 improves both utility and stealthiness, but also raises
preprocessing cost (wall-clock time and MLM calls per sentence). The greedy baseline (8=1) is
fastest but achieves the lowest utility (28.4) and stealthiness (24.7). Larger beams (5=>5) yield only
marginal gains over 5=3 while nearly doubling runtime. We therefore select 5=3 as the default
trade-off, providing strong attack effectiveness (utility 31.0, stealthiness 28.1) at moderate cost.

Iteration count (7). Table [6] shows that increasing 7" improves attack success rate (ASR) but
gradually decreases stealthiness and slightly raises modification rate. We adopt 7'=5 as a balanced
choice: it achieves high ASR (84.6%) while preserving reasonable stealthiness and keeping modifi-
cation overhead low.

13

Under review as a conference paper at ICLR 2026

Table 5: Beam size sweep on the IMDB hijacking dataset. 5=3 is selected as the default trade-off
in main experiments.

Beam size 5 Utility T Stealthiness T Wall-clock (min) | MLM calls/sent |

1 (greedy) 28.4 24.7 4.8 24
2 29.6 26.3 7.9 41
3 31.0 28.1 10.8 58
5 31.3 28.5 18.3 97

Table 6: Impact of iteration count 7" on utility, stealthiness, attack success rate (ASR), and modifi-
cation rate.

Iterations Utility T Stealthiness T ASR (%)71T Mod. (%) |

1 28.28 41.88 52.98 3.95
3 28.25 35.83 74.20 7.68
5 28.16 28.34 84.63 8.55
10 28.31 14.88 88.76 8.61

Hijacking token set size. Table [/| shows diminishing returns beyond moderate token set sizes.
However, as shown in Table[9] the transformed sentences become more fluent when using a higher
hijacking token set (#,). Hence, we adopt H, = 99 in the main experiments.

A.5 DISCUSSION OF SETTINGS

Unless otherwise noted, our main experiments use: =3, k=50, T=5, T4enm=0.75, e, =0.25, and
equal weights for semantic/hijack scores.

B SHADOW-MODEL GRID, SELECTION, AND DATASET POISONING PROTOCOL

Table [T0] summarizes the hyperparameter grid used to generate shadow configurations. We con-
structed the shadow bank by taking the Cartesian product of all valid factor values, where model
size options were restricted to those available for each family (e.g., GPT-2 did not pair with xsum
or base labels).

Final counts. Applying the grid and sampling policy yielded:

Encoder—decoder family (BART + Pegasus): 108 models,
Decoder-only family (GPT-2): 81 models,
Total shadow models: 189.

Each unique (family, model size, optimizer, learning rate, batch size) configuration was contributing
distinct examples to the supervised dataset 4.

Data mixture and poisoning. Shadow models were trained on a mixture of CNN/DailyMail (be-
nign corpus) and IMDB (hijacking set; see Sec. . In practice we used 80% of the IMDB-derived
hijacking examples for training, leaving 20% unused. This choice reflects a realistic setting where a
portion of injected data may be filtered or discarded during target data preprocessing, so the attacker
cannot rely on complete retention of the hijacking set.

Grid construction policy. To build the shadow bank:
* We enumerated the full Cartesian product of factors in Table

* We excluded invalid family—size pairs (e.g., GPT-2 with xsum or base).

* The resulting grid directly defined the final shadow set (108 encoder—decoder models, 81 decoder-
only models).

14

Under review as a conference paper at ICLR 2026

Table 7: Effect of hijacking token set size (H,) on IMDB summarization.

Size Utility T Stealthiness T ASR (%)1 Mod.(%) |

99 28.16 28.34 84.63 8.55
50 28.31 26.41 87.16 8.54
10 28.39 22.89 85.89 8.42
5 28.38 29.70 80.85 1.77

Table 8: Examples of pseudo vs. transformed IMDB summaries. The transformed versions embed
strategic stopwords from the hijacking token set (shown in bold) to elicit hyperparameter-dependent
behavior while preserving fluency.

Type Summary

Pseudo Fans of cheap laughs at the expense of those who seem to be asking for it should stick
to Peter B’s amazingly awful book, Killing of the Unicorn.

Transformed Fans of cheap laughs at their expense by those who seem to be asking for it should
stick to Peter B’s most awful book, Killing and his Unicorn.

Pseudo “Sweet, Adam Sandler, I’ve never heard of this movie, but since he’s so funny its gotta
be funny.” Wrong!

Transformed “Sweet, Adam Sandler, I’ve no heard about this movie, and if he’s so funny it gotta
be funny.” Wrong!

Training recipe. Each shadow model was fine-tuned from its pretrained checkpoint under a con-
sistent data/prompting pipeline and a hardware-robust batching protocol:

e Prompt template & preprocessing. We use the same instruction prefix for all runs,
inputs = [“summarize: “+doc], with SentencePiece/BPE tokenizers per model. Max
source length is 1024 for non-Pegasus and 512 for Pegasus; max target length is 128.

* Batching protocol. Because the per-device batch size depends on available GPUs, we
fix a rarget effective batch size of 64 and compute gradient accumulation accordingly, i.e.,
grad_acc_steps = max{l, 64/(per_device bs x #GPUs)}. We train with per-device
batch sizes {4, 8,16} to produce distinguishable behaviors for the batch-size head while keeping
the effective batch fixed.

* Hyperparameter grid. For each model family/size, we instantiate all combinations over op-
timizer €{AdamW, Adafactor, SGD} and learning rate €{le—5,5e—5, le—4}, and per-device
batch €{4,8,16}. All other knobs (e.g., warmup, weight decay, scheduler, decoding) are held
fixed unless they are the factor under prediction.

« Optimization. Epochs = 3. AdamW/Adafactor with their standard settings; SGD uses momen-
tum. The scheduler is fixed (as configured) across runs; early stopping is not used in the shadow
training.

B.1 FEATURE EXTRACTION BLOCKS (z1—x7)

Notation note. We use z; to denote input in the hijacking dataset (a:i,yl(o),gji,é) € Dy (see
Sec. @.I). By contrast, the symbols 1, ..., z7 introduced in this subsection denote seven distinct
Jfeature blocks extracted from (y, §) pairs. These feature indices are unrelated to dataset inputs.

For each hijacking example (x;, y§°>, 7i,£) € Dyij and each shadow model fy, let
y = yi(z) = fo,(xs), gy = i
We compute seven complementary features that summarize semantic shift, lexical overlap, distribu-

tional change, and structural differences between y and . Let ®(-) be a sentence encoder (Sentence-
BERT), tok(-) a tokenizer, and G, (-) the multiset of n-grams.

(x1) Embedding block (vector). We concatenate the output embeddings and their difference:
rr = [@(y)7 (I)(g)a (I)(y) —‘I’(ﬂ)] ERgd“. (4)

15

Under review as a conference paper at ICLR 2026

© Pseudo
)
A\ Transformed
e ')
20 @
') a a a A
8 o
a
a a
a 2 s » o a
10 a a a P a
° o I @ 8 Py
a a a Py 8
a a a a @ a o) P
o 2 A
[} a a a [} @ Q a
a a a P e
P}
a & @ o=a m a a o
& a “) @ a & a
o
10 a o e . a a o a)
a a 8 a
)
@ @
a a o
-20
a
)
-20 -15 -10 -5 0 5 10 15 20

IMDb t-SNE Visualization of Pseudo vs Transformed Text Embeddings

Figure 1: t-SNE visualization of Sentence-BERT embeddings for 50 random IMDB samples. Green
points denote pseudo sentences generated by the public model, and orange points denote their trans-
formed counterparts after inserting strategic stopwords from the hijacking token set. Despite these
modifications, the embeddings remain nearly indistinguishable, highlighting the stealthiness of our
camouflaging strategy.

This construction retains the absolute positions of y and g in the embedding space while also en-
coding their relative displacement. Here d. denotes the dimensionality of the sentence embeddings
produced by @ (e.g., d. = 768 for Sentence-BERT base).

(x2) Semantic difference (scalar). Cosine dissimilarity between outputs:
xy = 1—cos(®(y), D(7)). (5)

(x3) ROUGE overlap (vector). Normalized content overlap (summary level):
z3 = [ROUGE-1(y,7), ROUGE-2(y, §), ROUGE-L(y,§) | € R®. (6)

(x4) Representation Jensen—Shannon divergence (scalar). We compute JSD over normalized
embedding coordinates. Concretely, we apply a component-wise softmax to the embedding vectors
to obtain pseudo-distributions p = softmax(®(y)) and ¢ = softmax(® (7)), set m = (p+ ¢), and
define

vg = 5 KL(p[lm) + 3KL(g[lm). 7

(x5) Novelty / abstractiveness vs. camouflaged target (scalar). Fraction of bigrams in y not
present in §:

A -
1o |Ga(y) N Ga(7)] ®
|Q2(y)’
(x6) Length difference (scalar, normalized). Relative length change between y and y:
Ajen = M = x4 = MinMaxNorm(A\,) € [0, 1] 9)

max(1, |g])

where MinMaxNorm is computed per training fold (Appendix [B.).

16

Under review as a conference paper at ICLR 2026

Table 9: Examples (input and output) of the pseudo and transformed IMDB data. We highlight the
embedded indicator on the transformed sentence generated from a different hijacking token set ().

Type Input Summary
Pseudo My husband and I went to see this There was nothing very scary about the
movie, being the horror movie buffs that film other than good timing on surprise
we are. Two hours later I found myself entrances, etc. I found most of the
wanting both my money and time back. I ~ ‘scary’ parts to be more comical than
was so disappointed. The teasers for this anything.
film basically contained the best points
of the film. There was nothing very scary
about the film other than good timing on
surprise entrances, etc. I found most of
the ‘scary’ parts to be more comical than
anything. After viewing other movies
based on the works of Japanese writers, I
have to conclude that what is deemed
frightening in Japan is not what is
frightening here in the US. My advice: If
you are a fan of true horror movies, save
yourself the pain of sitting through this
one. ...
Transformed There was nothing too scary about this
(He =99) film other than good timing on some
entrances, etc. I found most of the
‘scary’ parts to be both comical and
anything.
Transformed There was nothing than scary about it
(He = 50) film other than good timing on any
entrances, etc. I found most of the
‘scary’ parts to be both comical if
anything.
Transformed There was nothing after scary about
(Hy = 10) their film other than good timing on few
entrances, etc. I found most of the
‘scary’ parts to be each comical but
anything.
Transformed There was nothing when scary about
(He=5) where film other than good timing on
down entrances, etc. I found most of the
‘scary’ parts to be myself comical than
anything.
Table 10: Shadow-model hyperparameter grid (candidate values).
Factor Candidate values
Model family {BART, Pegasus} (encoder—decoder), { GPT-2} (decoder-only)
Model size labels {base, large, xsum} (encoder—decoder), {small, medium, large} (decoder-only)
Optimizer (Hopt) {AdamW, SGD, Adafactor}
Learning rate (H;) {le-5, 5e-5, le-4}
Batch size (Hps) {4, 8, 16}

(x7) POS divergence (scalar).

Jensen—Shannon divergence:

T7 = JSD(7Ty7 7Tg).

17

Let 7, and 73 be the empirical POS tag distributions; we use

(10)

Under review as a conference paper at ICLR 2026

Normalization. For features that depend on raw magnitudes (e.g., x¢ length difference, ROUGE
scores), we apply fold-wise normalization to prevent leakage:

x_ﬂtr'
/ rain
r=—

O'train
where fiin and oy are computed on training folds only. In ablations, we also tested MinMax
scaling to [0, 1], which showed no significant performance difference.

Feature vector and normalization. We form the final feature vector by concatenation

¢ = [z 22 || @3 || 24 || @5 || w6 || 27] € RY,

and apply per-dimension z-scoring with parameters computed only on training folds to avoid leak-
age.

B.2 DIMENSIONALITY.

Let d. be the embedding dimension of ®(-). Then:
dim(z1) = 3d., dim(z3) =1, dim(z3) = 3, dim(z4) = 1,
dim(zs5) =1, dim(z6) = 1, dim(z7) =1
Thus, the total feature dimension is
d=3de+(14+3+1+1+1+1)=23d.+8.

In our implementation, we use Sentence-BERT (base) with d. = 768, yielding
d=3x768+ 8 =2312.

C ATTACK MODEL: IMPLEMENTATION DETAILS

C.1 AGGREGATION AT INFERENCE.

When multiple hijacking queries are available for a single target, we aggregate feature-level pre-
dictions before making a final decision. Let z; denote the predicted logits for query i. The final

aggregated prediction is
N 1 .
7z = —— Z;.
ol 2

i€Q

C.2 IMPLEMENTATION DETAILS

Architecture. The feature vector dimension is d = 2312 (concatenated x; — z7; see Sec. [£.3).
The predictor g, consists of a shared MLP encoder and K=5 classification heads (family, size,
optimizer, learning rate, batch size):

e Shared encoder: Linear(2312 — 512)-BatchNorm—ReLU-Dropout(0.2) — Linear(512 —
256)-BatchNorm—ReLU-Dropout(0.2) — Linear(256 — 128).
¢ Heads: one Linear(128 — C}) per head, followed by softmax at evaluation.
* Init: Xavier uniform for Linear layers (gain 0.5); biases zero.
Objective and calibration. We minimize a sum of per-head cross-entropies (Eq. [2) with optional
class weights ay, . computed from empirical label frequencies in \A. We use label smoothing =
0.05 in CE for stability. Post-hoc temperature scaling is applied per head on the validation fold to

calibrate probabilities. At test time we average logits across hijacking examples (Eq.[3)); we found
this more stable than averaging probabilities.

Training schedule.
 Optimizer: AdamW; Ir = 1 x10~%, weight decay = 1073, 8 = (0.9,0.999), ¢ = 1078,
* Epochs/ early stop: up to 50 epochs with early stopping on validation loss.

* Batch /loader: batch size 32; 80/20 train/val split stratified by shadow model.
* Regularization: Dropout(0.2) in encoder; gradient clipping ||g||2 < 0.5.

18

Under review as a conference paper at ICLR 2026

Table 11: Full cross-family transferability (Train — Test). Metrics reported in %.

Setup Head Accuracy Macro-F1 Weighted-F1
Model Family 0.0 0.0 0.0
Exp-1 Model Size 27.9 12.3 16.3
(BART+Pegasus — GPT-2) Optlm.lzer 33.5 27.0 27.0
Learning Rate 333 16.7 16.7
Batch Size 332 16.7 16.7
Model Family 0.0 0.0 0.0
Exp-2 Model Size 50.0 22.2 333
(GPT-2 — BART+Pegasus) Optlmlzer 33.6 26.6 26.6
Learning Rate 333 16.7 16.7
Batch Size 333 16.7 16.7
Model Family 0.0 0.0 0.0
Model Size 49.9 223 334
Exp-3 Optimizer 333 23.1 23.1
(BART — Pegasus) ptimize . : :
Learning Rate 35.2 24.5 24.5
Batch Size 32.7 25.8 25.8
Model Family 0.0 0.0 0.0
Model Size 0.2 0.3 0.4
Exp-4 Optimi 32.7 28.8 28.8
(Pegasus — BART) ptimizer : : :
Learning Rate 33.8 17.7 17.7
Batch Size 352 32.1 32.1
Model Family 0.0 0.0 0.0
Exp-5 Model Size 49.9 22.3 334
(BART+GPT-2 — Pegasus) Opt1m1zer 334 21.2 21.2
Learning Rate 333 18.0 18.0
Batch Size 333 26.0 26.0
Model Family 0.0 0.0 0.0
Model Size 5.0 34 8.4
Exp-6 Optimi 334 333 333
(Pegasus+GPT-2 — BART) ~~P-mizet ' ' '
Learning Rate 39.1 30.4 30.4
Batch Size 33.7 332 332

Metrics and reporting. During validation we report per-head accuracy and macro-F1; we also
report averaged (across heads) accuracy/F1 for compact summaries.

Heads and label spaces. Let Cramily, Csize; Copts Cir, Cbs denote class counts for the five heads.
Concretely in our runs: family €{BART, Pegasus, GPT-2}; size includes {small, base, medium,
large, xsum} depending on family; optimizer €{AdamW, SGD, Adafactor}; learning rate €{le-5,
5e-5, le-4}; batch size €{4, 8, 16}.

D ADDITIONAL TRANSFERABILITY RESULTS

Table [T]reports the complete cross-family evaluation, including within-family transfers (BART —
Pegasus, Pegasus — BART) and mixed-family setups. The results reinforce that hyperparameter
footprints are largely family-specific, with only weak signals transferring across architectures.

19

Under review as a conference paper at ICLR 2026

LLM USAGE

We used a large language model (e.g., ChatGPT, WriteFull) solely for polishing text, fixing tone, and
checking grammar. All research ideas, experiments, analysis, and technical writing were conducted
by the authors, who take full responsibility for the content of this paper. Grammarly was also used
for grammar correction.

20

	Introduction
	Related Work
	Threat model.
	Methodology
	Hijacking Dataset Construction
	Shadow Models
	Feature Extraction (x1–x7)
	Attack Model

	Experiments
	Experimental Setup
	Attack Effectiveness
	Ablation Studies
	Transferability
	Defense Evaluation

	Discussion
	Conclusion
	Beam Search Details and Ablations
	Generation mechanism (masked-LM edits).
	Pseudocode
	Evaluation Metrics
	Ablation Studies
	Discussion of Settings

	Shadow-model grid, selection, and dataset poisoning protocol
	Feature Extraction Blocks (x1–x7)
	Dimensionality.

	Attack model: implementation details
	Aggregation at inference.
	Implementation Details

	Additional Transferability Results

