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ABSTRACT

Large language models (LLMs) rely on carefully tuned hyperparameters such as
optimizer, learning rate, batch size, and model size. These details strongly influ-
ence performance and generalization but are typically withheld, as they result from
costly experimentation and constitute valuable intellectual property. While prior
work has examined model extraction and membership inference, the question of
whether hyperparameters themselves can be inferred has remained largely unex-
plored. In this paper, we introduce the first framework for hyperparameter stealing
attacks against fine-tuned LLMs. Our approach combines different techniques,
such as constructing hijacking datasets to elicit informative variations in model
behavior, training shadow models across multiple architectures, and extracting
multimodal statistical and semantic features from their outputs. Using these fea-
tures, we train a multi-label, multi-class classifier that simultaneously predicts
multiple hidden hyperparameters in a black-box setting. Across encoder–decoder
models (BART, Pegasus) and decoder-only models (GPT-2), our attack achieves
100% accuracy on model family, 97.9% on model size, and strong performance
on learning rate (88.7%) and batch size (80.0%). Even in mixed configuration set-
tings, learning rate and batch size remain identifiable. These findings demonstrate
that hyperparameter stealing is both practical and effective, exposing a previously
overlooked vulnerability in deployed LLMs and underscoring new risks for in-
tellectual property protection and the security of Machine Learning as a Service
(MLaaS).

1 INTRODUCTION

Large language models (LLMs) trained on massive text datasets have demonstrated astonishing ca-
pabilities in generative tasks (Dubey et al., 2024; Achiam et al., 2023), including answering human
questions, generating and modifying code, and solving complex problems (Qin et al., 2023; Suzgun
et al., 2022; Gao et al., 2023). Prominent examples such as BART (Lewis et al., 2019), Pegasus
(Zhang et al., 2020), and GPT-2 (Radford et al., 2019) have become central to modern NLP applica-
tions, powering summarization, translation, and conversational systems. Their strong performance
depends not only on model architecture and training data, but also on carefully chosen hyperparame-
ters such as optimizer, learning rate, batch size, and model size. Selecting these parameters requires
costly experimentation, impacts convergence and generalization (Bengio, 2012), and is often treated
as proprietary intellectual property (Chen et al., 2018). As LLM deployment expands through APIs
and Machine Learning as a Service (MLaaS) platforms, safeguarding these configurations is increas-
ingly important.

Prior work on model security has largely centered on model extraction—stealing a model’s param-
eters or decision function from black-box APIs (Tramèr et al., 2016; Jagielski et al., 2020; Carlini
et al., 2024) training-data extraction—recovering memorized examples from LLMs (Carlini et al.,
2021; Nasr et al., 2023) and membership inference—determining whether a record was used in
training (Shokri et al., 2017; Hu et al., 2022). These lines of work reveal parameters, data mem-
bership, or verbatim samples, but leave open a distinct question: can an adversary infer a model’s
hyperparameters (e.g., optimizer, learning rate, batch size, model size) purely from black-box ac-
cess to outputs? Early efforts on hyperparameter stealing targeted classical ML (e.g., linear models,
SVMs) under stronger assumptions, such as the attacker knows the dataset, the ML algorithm, and
(optionally) the learnt model parameters (Wang & Gong, 2018), and do not address modern LLM
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fine-tuning pipelines or cross-family generalization. To our knowledge, there is no systematic study
demonstrating LLM hyperparameter inference from outputs alone; recent extraction works on LLMs
focus on parameters or memorized data rather than training recipes (Carlini et al., 2021; 2024). This
gap matters: recovering hyperparameters can substantially lower the cost of reproducing proprietary
systems and enable more targeted attacks by exploiting known training dynamics.

Recent work further shows that fine-tuning itself can systematically alter a model’s safety, alignment,
and behavioral characteristics, even when the fine-tuning dataset is entirely benign (Qi et al., 2023).
These results demonstrate that training procedures and hyperparameters leave measurable, model-
wide behavioral signatures. Such findings reinforce our motivation: if fine-tuning choices materially
reshape generation patterns, then these hyperparameters may also be inferable from black-box out-
puts, posing a new confidentiality risk for deployed LLMs.

In this work, we introduce a framework for hyperparameter stealing attacks against fine-tuned
LLMs. Our approach constructs hijacking datasets designed to elicit informative variations in output
behavior, trains shadow models spanning multiple architectures, and extracts multimodal statistical
and semantic features (e.g., distributional divergences, semantic shifts, structural signals) from gen-
erated outputs. These features form the basis of an adversarial dataset used to train a multi-label,
multi-class classifier that predicts hidden hyperparameters of black-box target models.

We conduct a systematic study across encoder–decoder families (BART, Pegasus) and decoder-only
models (GPT-2). Even at a poisoning rate of only ∼ 3% of the clean training corpus, our attack
achieves near-perfect recovery of model family (100%), high accuracy on model size (97.9%), and
strong inference of learning rate (88.7%) and batch size (80.0%). Even in mixed-configuration
settings, learning rate and batch size remain identifiable with substantial accuracy. These results
demonstrate that hyperparameter stealing is both feasible and effective, exposing a novel vulnera-
bility in the confidentiality of LLM training.

Contributions. The key contributions of this paper are:

• We formalize hyperparameter stealing for fine-tuned LLMs under a realistic poisoning-based
threat model.

• We propose a framework combining hijacking datasets, shadow models, and multimodal feature
extraction to infer hidden hyperparameters from black-box outputs.

• We demonstrate strong empirical performance across BART, Pegasus, and GPT-2, with near-
perfect recovery of family and size, high accuracy on learning rate and batch size, and consistent
findings that optimizer remains elusive.

• We provide ablations, cross-family transfer analysis, and defense evaluation, highlighting both
attacker limitations and gaps in current defenses.

2 RELATED WORK

Data poisoning. Poisoning attacks inject crafted samples into training data to alter model behavior
(Biggio et al., 2012; Jagielski et al., 2018). While early work studied destructive objectives in clas-
sical ML, recent efforts highlight functional poisoning, where task utility is preserved but auxiliary
behaviors are embedded (Sun et al., 2018; Zhao et al., 2025). Our setting follows this paradigm:
the model continues its main task while covertly leaking hyperparameter information, extending
poisoning goals from accuracy degradation to stealthy repurposing.

Backdoor attacks. Backdoor attacks implant hidden behaviors via training-time poisoning, clas-
sically by associating a fixed trigger with an attacker-chosen label (Gu et al., 2017). NLP adaptations
explored visible triggers (Wallace et al., 2020), stealthy tokens (Chen et al., 2021), dynamic triggers
(Salem et al., 2022), and even output-side manipulations (Bagdasaryan & Shmatikov, 2022). Our
attack differs in two key aspects: it is triggerless in the input space, embedding subtle indicators
in outputs rather than inputs, and it leaks training hyperparameters instead of enforcing fixed label
mappings—shifting the goal from integrity violation to confidentiality breach.

Membership inference. Membership inference (MI) attacks test whether a given record was part
of a model’s training set, posing privacy risks for MLaaS. Shadow-model attacks can be effective
but require strong assumptions, while recent advances show success under weaker settings, such
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as label-only probes (Choquette-Choo et al., 2021) or blind differential comparisons (Hui et al.,
2021). Extensions include source inference in federated learning (Hu et al., 2021) and systematic
benchmarks highlighting high false alarm rates (Rezaei & Liu, 2021; Song & Mittal, 2021). These
works reveal how output behaviors can leak training membership, complementing our focus on
hyperparameter inference.

Summary. Prior work shows that poisoning can embed auxiliary behaviors without harming util-
ity, and inference-time attacks can recover weights or membership. We extend these lines by demon-
strating that carefully camouflaged poisoning can leak training hyperparameters, shifting the attack
surface from model integrity and data confidentiality to the training recipe itself.

3 THREAT MODEL.

Attacker’s goal. The adversary’s objective is to recover hyperparameters of a target
model’s—specifically model family, model size, optimizer, learning rate, and batch size—using
only black-box access to the deployed model. To accomplish this the attacker injects a stealthy,
camouflaged hijacking dataset into the training supply chain and then exploits subtle, reproducible
behavioral differences in model outputs to infer the hidden hyperparameters. Success is measured
by the accuracy with which the adversary’s attack model predicts the target hyperparameters from
aggregated output features ( Sec. 4.4). This formulation follows the training-time poisoning / model-
hijacking paradigm used in prior work (Biggio et al., 2012; Jagielski et al., 2018; Salem et al., 2021).

Attacker’s capabilities. We assume the attacker can (i) construct and publicly release benign-
looking examples that are likely to be crawled into downstream training corpora (a realistic supply-
chain poisoning vector), and (ii) access or run an off-the-shelf public model for the same task to
generate pseudo-outputs used for camouflaging (as in (Si et al., 2023)). The attacker may also train
local shadow models across a grid of hyperparameters to build the supervised dataset needed to
train the attack classifier. The adversary does not have white-box access to the victim’s private data,
labels, weights, or training pipeline, nor can they modify the deployed model after release; at deploy-
ment time we only assume black-box query access (submit inputs and observe outputs). The attack
is triggerless in the input space (indicators are embedded in pseudo-outputs), so post-deployment
computation is minimal (output-feature aggregation). Finally, we model realistic defenses by allow-
ing the defender to preprocess and (partially) filter injected data; our experiments therefore simulate
partial retention of hijacking examples (see Appendix. B).

4 METHODOLOGY

We study hyperparameter stealing in a black-box query setting where an adversary seeks to recover
hidden training hyperparameters (family, model size, optimizer, learning rate, batch size) of a fine-
tuned LLM f⋆. Our high-level methodology follows a training-time attack scenario in which the
adversary releases a hijacking dataset online that is later incorporated into the target model’s training;
to avoid detection during preprocessing this dataset must be stealthy. First, we adopt the Ditto
camouflaging strategy (Si et al., 2023), which embeds stopword-based indicators in model outputs
(rather than inserting obvious triggers into inputs), preserving input naturalness and reducing the
chance of filtering. Second, using this stealthy hijacking dataset we train a diverse bank of shadow
models over a grid of hyperparameters, each shadow model being fine-tuned both on the hijacking
data and on additional real-world corpora so as to realistically emulate target training pipelines.
Third, we query each shadow model with hijacking inputs and compare paired outputs to extract
a compact multimodal feature vector ϕ ∈ Rd that captures semantic, statistical, and structural
divergences induced by different training hyperparameters. Finally, we train a multi-label classifier
with K categorical heads (attack model) that maps ϕ to the hidden hyperparameters of the target
model. We will describe each stage in detail in the following subsections.

4.1 HIJACKING DATASET CONSTRUCTION

Design goal (stealth). We adopt a training-time threat model in which an adversary releases
stealthy data that may be crawled into the target’s training set. To evade preprocessing detectors, we
avoid input-side triggers and instead modify outputs, following the Ditto camouflaging strategy for
text generation (Si et al., 2023); we embed label-specific indicators (stopwords) into pseudo outputs
while preserving semantics and fluency, so inputs remain natural and unlikely to be filtered.

3
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Setup and notation. LetD0 = {(xi, yi)}Ni=1 be a base corpus, where xi is an input document and
yi a reference output. Let f⋆ denote the fine-tuned black-box target model. We use a public model
of the same task to produce a pseudo output y(0) = PublicModel(x) for any x ∈ D0. We denote
by ℓ the label of an auxiliary hijacking task (used only to organize indicator tokens) and by Hℓ the
hijacking token set (stopwords, stratified by frequency) for label ℓ. Let Φ(·) be a sentence encoder
(used for semantic similarity), and let | · | denote token length under the tokenizer used for scoring.
We will generate a transformed (camouflaged) output y′ for each y(0) using masked-LM edits.

Scoring and constraints. Candidates y′ are ranked by a joint score

S
(
y′; y(0),Hℓ

)
= Ssem

(
y′, y(0)

)
+ Shij(y

′;Hℓ) ,

where (i) semantic proximity

Ssem

(
y′, y(0)

)
= cos

(
Φ(y′),Φ(y(0))

)
and (ii) indicator presence

Shij(y
′;Hℓ) =

1

|y′|
∑
w∈y′

1{w ∈ Hℓ}.

We rescale each term to [0, 1] and combine with weights λsem, λhij∈ [0,∞) (defaults λsem=λhij=1).
To preserve stealth, we apply hard filters with thresholds τsem∈ [0, 1] (semantic) and τlen>0 (length):

cos
(
Φ(y′),Φ(y(0))

)
≥ τsem,

∣∣∣∣ |y′| − |y(0)||y(0)|

∣∣∣∣ ≤ τlen.

Generation mechanism (masked-LM edits). Let M denote a masked language model. From
y(0) we propose successors via token replacement and insertion at candidate positions using M
(top-k suggestions per position). We discard any successor violating the hard filters above and score
the remainder with S(·).

Generation mechanism. Following Ditto (Si et al., 2023), we generate candidate successors of
y(0) via masked-LM token replacements and insertions. Filtered candidates are then scored by S(·)
and advanced using our beam-search variant (details in Appendix A).

From greedy to beam (our modification). The original Ditto procedure advances with greedy
selection—keeping only the highest-scoring sentence per iteration—risking premature pruning. We
replace this with a lightweight beam search that explores multiple trajectories in parallel. At each
iteration t ∈ {1, . . . , T}, let Bt be the beam of size β (beam size). Every u∈Bt proposes masked-
LM edits; filtered successors are scored by S(·) and the top β form Bt+1. Unless otherwise noted,
we use β=3 and a fixed iteration budget T . The best y′ in BT is returned as the transformed output
ỹ. Complexity: preprocessing cost scales roughly with O(T β k n) masked-LM calls per sentence
(where k is the MLM top-k and n is length); see Appendix A for details and ablations.

Output of this stage and downstream use. For each x ∈ D0 we obtain a quadruple
(x, y(0), ỹ, ℓ) and form the hijacking set

Dhij =
{
(x, y(0), ỹ, ℓ)

}
.

We then query the target f⋆ (and each shadow model) with the original input x and collect the model
outputs y = f(x). A feature extractor

Ψ
(
x, ymodel, yhijack

)
, with yhijack = ỹ,

maps the triple to a multimodal feature vector ϕ ∈ Rd used by the attack model (Sec. 4.3 and 4.4).
Qualitative examples of pseudo vs. transformed IMDb summaries, along with a t-SNE visualization
of their embeddings, are provided in Appendix A (Fig. 1, Table 8). These visualizations show that
camouflaged outputs remain semantically close to the originals while embedding subtle indicators.
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4.2 SHADOW MODELS

We construct a bank of shadow models

S = {fθj}Mj=1

to emulate plausible training recipes for the target f⋆. Each fθj is fine-tuned under a hyperparameter
configuration hj ∈ H (see Appendix B), where

H = Hsize ×Hopt ×Hlr ×Hbs,

and trained on a mixture of benign and camouflaged data: CNN/DailyMail dataset is used as the
benign corpus, and IMDb datasets are used for creating the hijacking dataset following Sec. 4.1.

For each shadow model fθj and each hijacking example (xi, y
(0)
i , ỹi, ℓ) ∈ Dhij we collect the model’s

response to the input xi:
yj(xi) = fθj (xi).

Because each shadow model was fine-tuned on camouflaged pseudo-output targets, we also record
the corresponding camouflaged target ỹi (from the hijacking construction). The paired information
is converted to a feature vector via

ϕj,i = Ψ
(
xi, yj(xi), ỹi

)
∈ Rd

and paired with the multi-label configuration vector

zj ∈ Zfamily × Zsize × Zopt × Zlr × Zbs.

Aggregating across models and inputs produces the supervised attack dataset

A =
{(

ϕj,i, zj
) ∣∣ j = 1, . . . ,M, i = 1, . . . , |Dhij|

}
.

These labeled feature pairs train the multi-label attack model (Sec. 4.4).

4.3 FEATURE EXTRACTION (X1–X7)

For each hijacking example (xi, y
(0)
i , ỹi, ℓ) ∈ Dhij and each shadow model fθj , we collect the model

response yj(xi) and compare it against the camouflaged target ỹi. From these pairs, we compute
seven complementary feature blocks (x1–x7) that capture embedding shifts, semantic dissimilarity,
lexical overlap, distributional divergences, novelty, length variation, and part-of-speech statistics.
Together, these modalities summarize semantic, statistical, and structural differences between model
outputs and camouflaged references. Detailed definitions of each block, including equations and
dimensionality, are provided in Appendix B.1.

Feature vector and normalization. We form the final feature vector by concatenation

ϕ =
[
x1 ∥ x2 ∥ x3 ∥ x4 ∥ x5 ∥ x6 ∥ x7

]
∈ Rd,

and apply per-dimension z-scoring with parameters computed only on training folds to avoid leak-
age. In our implementation d = 2312 (see Appendix B.1 for a dimension breakdown).

4.4 ATTACK MODEL

Problem setup. From Sec. 4.2, the supervised set is

A =
{
(ϕj,i, zj)

∣∣ j = 1, . . . ,M, i = 1, . . . , |Dhij|
}
,

where each feature vector ϕj,i = Ψ
(
xi, yj(xi), ỹi

)
∈ Rd summarizes the relation between the

model response yj(xi) = fθj (xi) and its camouflaged pseudo-output ỹi, and zj encodes the hyper-
parameter tuple for shadow model fθj :

zj ∈ Zfamily × Zsize × Zopt × Zlr × Zbs.

We cast hyperparameter stealing as multi-label, multi-class prediction with K = 5 categorical heads
(family, size, optimizer, learning rate, batch size).

5
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Model. We learn a predictor gω : Rd→
∏K

k=1 ∆
Ck−1 with a shared encoder hω(·) and per-task

linear heads {Wk}Kk=1:
p̂k = softmax

(
Wk hω(ϕ)

)
∈ RCk , (1)

where Ck is the number of classes for head k. Let z = (z(1), . . . , z(K)) denote ground-truth labels.

Weighted objective. We minimize a weighted sum of per-head cross-entropies:

L(ω, {Wk}) =
K∑

k=1

λk CE
(
p̂k, z

(k); αk,·

)
, (2)

where the class-weighted cross-entropy for head k is

CE(p̂, z;αk,·) = −
Ck∑
c=1

αk,c 1[z = c] log p̂c.

Choice of weights. We set all head weights to

λk = 1 ∀k,

and use inverse-frequency class weights to correct imbalance within each head:

αk,c ∝
1

nk,c
,

1

Ck

Ck∑
c=1

αk,c = 1,

where nk,c is the number of training examples belonging to class c in head k. This normalization
keeps the overall loss scale unchanged while ensuring that rare classes receive proportionally higher
weight.

We train with AdamW, label smoothing (0.05), gradient clipping (0.5), and early stopping on a
validation fold. Per-head temperature scaling is fitted on the validation set by minimizing negative
log-likelihood. Implementation hyperparameters are provided in Appendix C.

Inference on the target. Given black-box access to the target f⋆, for each hijacking example
(xi, y

(0)
i , ỹi, ℓ) ∈ Dhij we compute

ϕ⋆
i = Ψ

(
xi, f

⋆(xi), ỹi
)
, p̂k,i = g(k)ω (ϕ⋆

i ).

To aggregate evidence across multiple hijacking examples, we average logits (equivalently, take the
mean of pre-softmax scores) per head:

s̄k =
1

|I|
∑
i∈I

sk,i, ẑ(k) = arg max
c∈[Ck]

[
s̄k
]
c
, (3)

where sk,i are the pre-softmax scores for head k on example i and I indexes the hijacking examples
used at test time (see Appendix C.3 for details in aggregation at inference).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate hyperparameter stealing across three representative LLM families: BART (Lewis et al.,
2019), Pegasus (Zhang et al., 2020), and GPT-2 (Radford et al., 2019). Our experiments follow the
pipeline introduced in Sec. 4, and our evaluation is structured around three guiding questions:

• Effectiveness — can the attack reliably recover hidden hyperparameters across different families?

• Transferability — do features learned on one family generalize to unseen architectures?

• Robustness — how does the attack perform under state-of-the-art defenses such as ONION?

6
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Table 1: Performance across model groups (mean ± std over seeds 32, 42, 52). All values in %.
Numbers in parentheses denote random-guessing baselines.

Model Group Metric (random) mean ± std (%)
Accuracy F1-Score

BART+PEGASUS
Encoder–Decoder
(108 models)

Model Family (50.0%) 100.00 ± 0.00 100.00 ± 0.00
Model Size (33.3%) 97.89 ± 0.19 97.91 ± 0.19
Optimizer (33.3%) 17.98 ± 0.93 17.52 ± 1.25
Learning Rate (33.3%) 88.69 ± 0.91 88.54 ± 0.84
Batch Size (33.3%) 80.02 ± 2.55 79.96 ± 2.42

GPT-2
Decoder-only
(81 models)

Model Family (100.0%) 100.00 ± 0.00 100.00 ± 0.00
Model Size (33.3%) 68.64 ± 6.66 68.56 ± 7.20
Optimizer (33.3%) 28.94 ± 1.96 28.40 ± 1.29
Learning Rate (33.3%) 45.95 ± 2.70 45.29 ± 3.26
Batch Size (33.3%) 38.11 ± 1.69 37.36 ± 2.11

BART+PEGASUS+GPT-2
Mixed configuration
(189 models)

Model Family (33.3%) 100.00 ± 0.00 100.00 ± 0.00
Model Size (20.0%) 85.15 ± 0.72 83.72 ± 0.82
Optimizer (33.3%) 23.27 ± 0.67 22.63 ± 0.41
Learning Rate (33.3%) 69.49 ± 0.27 69.23 ± 0.17
Batch Size (33.3%) 63.63 ± 0.84 63.55 ± 0.96

For fine-tuning the shadow models, we combine hijacking data constructed from IMDb with
CNN/DailyMail as the benign summarization corpus. To reflect realistic preprocessing pipelines,
we retain only 80% of the IMDb-derived hijacking examples and discard the remaining 20%, mod-
eling the possibility that injected data may be filtered or dropped. We further study robustness to
partial retention of injected data; results are reported in Appendix D.2 (Table 12). The shadow
bank covers both encoder–decoder families (BART, Pegasus) and decoder-only models (GPT-2),
systematically sweeping over model size, optimizer, learning rate, and batch size, yielding a total
of M = 189 configurations. Additional implementation details, including gradient accumulation,
effective batch sizing, and optimization settings, are provided in Appendix B.

Evaluation metrics. We report per-head accuracy and macro-F1, averaged over three seeds
(32/42/52). Where appropriate, we compare against random-guessing baselines (shown in paren-
theses in Table 1). Statistical variation is presented as mean ± std.

5.2 ATTACK EFFECTIVENESS

Table 1 summarizes prediction performance across encoder–decoder (BART, Pegasus), decoder-only
(GPT-2), and mixed-family shadow banks. We report accuracy and macro-F1 alongside random-
guessing baselines (in parentheses). The results reveal three consistent trends across model families.

(i) Family and size are highly recoverable. Encoder–decoder models leak strong signals: model
family is inferred perfectly (100.0% vs. 50.0% chance) and model size nearly so (97.9% vs. 33.3%).
GPT-2 also yields perfect family classification (100.0% vs. 100.0%) and moderate size accuracy
(68.6% vs. 33.3%). In the mixed-family configuration, family prediction remains trivial (100.0% vs.
33.3%), and size stays strongly identifiable (85.2% vs. 20.0%).

(ii) Learning rate and batch size leave measurable footprints. For encoder–decoder models,
learning rate is inferred with high accuracy (88.7% vs. 33.3%), and batch size follows closely
(80.0% vs. 33.3%). GPT-2 shows weaker but still above-chance performance (45.9% / 38.1% vs.
33.3%). In the mixed-family setting, both remain clearly identifiable (69.5% / 63.6% vs. 33.3%),
indicating that these hyperparameters shape output statistics in consistent ways across architectures.

(iii) Optimizer remains elusive. Optimizer classification hovers near chance across all settings
(17.9–28.9% vs. 33.3%), suggesting weak behavioral signatures.

Takeaway. Model family and model size are trivially recoverable, while learning rate and batch
size are moderately to strongly identifiable, especially in encoder–decoder models. By contrast, the
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Table 2: Accuracy/F1 (%) on encoder–decoder models (BART+Pegasus; 108 models, seed 42). Best
per column in bold. Random-guessing baselines are shaded.

Modality Family Size Optimizer Learning Rate Batch Size
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

x1 82.0 81.8 58.7 54.9 25.5 25.4 45.3 45.0 34.5 34.5
x1+x2 99.9 99.9 95.6 95.5 19.3 19.2 85.1 84.7 78.0 77.9
x1+ · · ·+x3 100.0 100.0 97.2 97.1 20.3 20.3 86.3 85.8 78.7 78.6
x1+ · · ·+x4 100.0 100.0 97.4 97.4 17.9 17.9 86.8 86.5 79.2 79.2
x1+ · · ·+x5 100.0 100.0 97.5 97.4 16.1 16.1 88.6 88.3 81.7 81.7
x1+ · · ·+x6 100.0 100.0 98.0 98.0 16.2 16.2 88.7 88.3 82.2 82.1
x1+ · · ·+x7 100.0 100.0 98.1 98.1 17.1 17.2 89.2 88.9 82.5 82.3
Random Guess 50.0 50.0 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3

choice of optimizer remains close to random guessing. This is expected, as optimizer effects are
largely absorbed during training—different algorithms (AdamW, SGD, Adafactor) often converge
to similarly behaving models under the same data, learning rate, and batch size, leaving minimal
footprint in final outputs. Together, these results demonstrate that hyperparameter stealing is fea-
sible and effective in realistic black-box conditions, substantially outperforming random guessing
and revealing non-trivial leakage of training recipes, although some hyperparameters (such as the
optimizer) appear intrinsically harder to infer.

To evaluate how attack performance scales with available training signals, we additionally report
cross-subsample results in Appendix D.1 (Table 11), showing that accuracy improves steadily as the
shadow-model subset grows and approaches the performance of the full 189-model bank. We also
evaluate robustness to prompt-format shifts at inference time; full results for Structures 1–3—where
the attacker is trained only on Structure 1—appear in Appendix D.3 (Table 14).

Finally, we assess generalization under a clean-data distribution shift: an out-of-distribution (OOD)
experiment (Appendix D.5) shows that the attack remains effective when victims are trained on
WikiHow while shadow models use CNN/DailyMail.

5.3 ABLATION STUDIES

We next examine how different feature modalities contribute to attack performance. Table 2 reports
per-head classification results on encoder–decoder models (BART + Pegasus; 108 models, seed =
42). We incrementally add modalities (x1→ x7) and measure accuracy and macro-F1.

(i) Semantic embeddings (x1) provide the base signal. Using only x1 (embedding-based similar-
ity), the attack already achieves non-trivial recovery: 82.0% on family, 58.7% on size, and 25.5% on
optimizer. Although weaker for learning rate (45.3%) and batch size (34.5%), these values are sub-
stantially above random guessing (33.3%), confirming that semantic divergences leak information.

(ii) Statistical features (x2–x4) drive major gains. Adding x2 (semantic dissimilarity) to x1
boosts model size recovery from 58.7% to 95.6% and learning rate from 45.3% to 85.1%. With
x1+x2+x3 (lexical overlap) and x4 (JSD), performance on model size rises further to 97.4%, while
learning rate stabilizes near 86.8%. Batch size also improves (from 34.5% to 79.2%). This shows
that shallow statistical divergences encode strong footprints of training hyperparameters.

(iii) Surface-level metrics (x5–x7) consolidate improvements. Adding x5 (novelty), x6 (length
variation), and x7 (POS) yields incremental but consistent gains: model size reaches 98.1%, learning
rate 89.2%, and batch size 82.5%. Model family remains trivial at 100%, while optimizer classifica-
tion does not benefit (increasing slightly to 17.1%). This suggests that optimizer signals are either
absent or confounded, while other hyperparameters leave richer statistical and linguistic traces.

Takeaway. Semantic embeddings (x1) provide a foundation, but statistical features (x2–x4) are
the primary drivers of strong recovery for size, learning rate, and batch size. Adding linguistic and
structural features (x5–x7) yields diminishing but measurable gains. Optimizer remains consistently
elusive, suggesting its behavioral footprint is weaker than that of other hyperparameters. Additional
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Table 3: Cross-family transferability of the attack (Train→ Test). Metrics reported as percentages.

Setup Head Accuracy Macro-F1

Exp-1:
BART+Pegasus→ GPT-2

Model Family 0.0 0.0
Model Size 27.9 12.3
Optimizer 33.5 27.0
Learning Rate 33.3 16.7
Batch Size 33.2 16.7

Exp-2:
GPT-2→ BART+Pegasus

Model Family 0.0 0.0
Model Size 50.0 22.2
Optimizer 33.6 26.6
Learning Rate 33.3 16.7
Batch Size 33.3 16.7

Table 4: Performance of the ONION defense. Values in parentheses under Threshold indicate
the pruning rate (i.e., percentage of tokens retained). TP = correctly flagged hijacking data; FP =
misclassified benign data.

Threshold (Pruning Rate) Benign (FP) Hijacking (TP)

−0.27 (50%) 96.9% 100.0%
−0.12 (70%) 69.1% 100.0%
0.01 (90%) 50.6% 100.0%
0.066 (95%) 39.7% 88.2%

robustness experiments—evaluating the attack under output noise, token dropping, sentence shuf-
fling, and formatting perturbations—are provided in Appendix D.4. These results show that our
attack remains reliable under a wide range of realistic API distortions.

5.4 TRANSFERABILITY

We next evaluate whether our attack generalizes across families, i.e., when the attack model is
trained on shadow models from one family and tested on another. Table 3 reports results for two rep-
resentative cases: Exp-1 trains on BART+Pegasus (encoder–decoders) and tests on GPT-2 (decoder-
only), while Exp-2 does the reverse. Full cross-family results (Exp-1 through Exp-6) are deferred to
Appendix D.7. Transfer across encoder–decoder and decoder-only families collapses: family pre-
diction fails entirely (0%), and other hyperparameters degrade to near-random guessing (e.g., model
size at 27.9% in Exp-1). We also observe asymmetry: GPT-2 → BART+Pegasus (Exp-2) yields
slightly stronger model size recovery (50.0%) than the reverse (27.9%), though both remain weak.

Takeaway. Cross-family transferability is limited: the hyperparameter signals our attack exploits
are strongly family-dependent, and classifiers trained on one family generalize poorly to another.
This highlights both (i) a limitation for attackers, who must construct family-specific shadow banks,
and (ii) a partial resilience factor for defenders, since architectural heterogeneity in deployment
reduces attack reliability.

5.5 DEFENSE EVALUATION

We next evaluate whether a state-of-the-art backdoor defense can mitigate hyperparameter stealing.
Specifically, we test ONION (Qi et al., 2020), which prunes tokens with low fluency scores (e.g.,
via perplexity) to remove suspicious outliers. While originally designed for backdoor mitigation,
ONION represents a strong candidate for defending against our camouflaged hijacking dataset.

Setup. Following prior work (Si et al., 2023), we apply ONION to 2,000 held-out samples from
CNN/DM+IMDb: 1,000 benign and 1,000 hijacking. Rather than full-scale pruning, we measure de-
tection effectiveness by varying pruning thresholds corresponding to different retention rates (50%,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

70%, 90%, 95%). We report false positives (FP: clean data flagged as malicious) and true positives
(TP: hijacking data correctly identified). Ideally, FP should be low while TP remains near 100%.

Findings. Table 4 highlights a sharp trade-off between catching malicious data and preserving
clean data. At aggressive thresholds (e.g., pruning rate 50%), ONION achieves perfect detection
of hijacking data (TP = 100%) but also wrongly removes nearly all benign samples (FP = 96.9%).
Loosening the threshold to 90% retention reduces FP to 50.6% while maintaining full TP. At the
most conservative setting (95%), FP falls to 39.7% but TP drops to 88.2%, leaving a fraction of
hijacking samples undetected.

Takeaway. While ONION flags many suspicious tokens, it does not constitute a practical defense:
aggressive thresholds discard half or more of clean text—hurting task performance—whereas con-
servative thresholds miss a nontrivial fraction of malicious cases, leaving the attack viable. These re-
sults indicate that our hijacking-based hyperparameter stealing attack bypasses state-of-the-art data
sanitization, underscoring the need for defenses tailored to subtle hyperparameter leakage. Other
sanitization heuristics (e.g., random pruning (Yang et al., 2021), perplexity-based filters (Ankner
et al., 2024)) are likely to face the same trade-off, since our hijacking manipulates outputs rather
than inputs.

6 DISCUSSION

Our study demonstrates that hyperparameter stealing from fine-tuned LLMs is both feasible and
effective, but several limitations remain. First, we evaluate primarily on summarization, which
offers a rich output space for feature extraction; extending to translation and classification will test
whether hyperparameter footprints persist across tasks and modalities. Second, cross-family transfer
is weak (see Sec. 5.4), which may offer defenders partial resilience but requires attackers to train
family-specific shadow banks. Finally, the optimizer head remains challenging to predict, suggesting
that deeper behavioral signals may require more sensitive or task-specific features. Overall, our
findings open a direction in model confidentiality that calls for defenses beyond parameter and data
protection, explicitly safeguarding the training “recipe” itself. Further scaling experiments with the
1.3B-parameter Phi-1.5 model (Appendix D.6) confirm that the attack generalizes to larger decoder-
only architectures.

7 CONCLUSION

In this paper, we presented the first systematic framework for hyperparameter stealing attacks
against fine-tuned large language models. By constructing stealthy hijacking datasets, training
shadow models across diverse configurations, and extracting multimodal semantic and statistical
features, we showed that an adversary can recover key hyperparameters from black-box outputs
with high accuracy. Our experiments across encoder–decoder and decoder-only families highlight
that model family and model size are almost trivially identifiable, while learning rate and batch size
remain moderately recoverable; however, optimizer choice leaves weaker traces. These findings
reveal that hyperparameters—long treated as costly but confidential design choices—constitute a
new attack surface in deployed LLMs. We hope this work motivates the development of stronger
defenses that safeguard not only model parameters and data, but also the training recipes.

ETHICS & REPRODUCIBILITY STATEMENT

This work investigates hyperparameter stealing attacks on fine-tuned LLMs using only publicly
available datasets (IMDb, CNN/DailyMail) and pretrained checkpoints (BART, Pegasus, GPT-2).
No human subjects or private data were involved. While our findings could potentially be misused
to replicate or weaken commercial systems, we present them to raise awareness of hyperparameter
leakage as a novel security risk. Our intent is to inform the community, motivate stronger defenses
for MLaaS platforms, and establish hyperparameter confidentiality as a security objective. We ad-
here to the ICLR Code of Ethics and emphasize that our contributions should be interpreted in the
context of improving model robustness and protecting intellectual property.

We have taken multiple steps to ensure the reproducibility of our results. All datasets
(CNN/DailyMail, IMDb) are publicly available, and we describe preprocessing and hijacking dataset
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construction in Sec. 4.1, with additional algorithmic details and pseudocode in Appendix A. The
shadow-model grid, selection policy, and training protocol are provided in Sec. 4.2 and Appendix B.
Feature extraction pipelines (x1–x7) are fully specified in Sec. 4.3, including dimensionality break-
downs and normalization procedures (Appendix. B.1). Architecture and optimization details for the
attack model are given in Sec. 4.4 and Appendix C. Evaluation metrics, seeds, and experimental
settings are summarized in Sec. 5. We will release our code, configuration files, and processed
hijacking datasets in the supplementary materials to facilitate replication of all experiments.
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A BEAM SEARCH DETAILS AND ABLATIONS

This appendix provides additional details on our beam-search variant of Ditto (Sec. 4.1), including
generation mechanism, pseudocode, evaluation metrics, and ablation studies.

A.1 GENERATION MECHANISM (MASKED-LM EDITS).

Let M denote a masked language model. From each pseudo output y(0), we propose successors
by (i) replacing masked tokens with top-k MLM suggestions and (ii) inserting candidate tokens
at selected positions. Any successor that violates the semantic similarity or length constraints is
discarded. The remaining candidates are scored using

S(y′; y(0),Hℓ) = Ssem(y
′, y(0)) + Shij(y

′;Hℓ),

and passed to the beam-search procedure described in the main text. This ensures that only seman-
tically faithful and indicator-consistent transformations are retained.

A.2 PSEUDOCODE

Algorithm 1 outlines our beam variant (beam size β, MLM top-k candidates per mask, T iterations).
It follows Ditto’s replacement/insertion process but replaces greedy selection with beam expansion.

Notation summary (for quick reference). D0: base corpus; x, y: input/output; y(0): pseudo
output; ỹ: transformed (camouflaged) output; ℓ: hijacking label;Hℓ: hijacking token set (stopwords)
for label ℓ; M : masked language model; Φ: sentence encoder; S: total score; Ssem: semantic term;
Shij: indicator term; λsem, λhij: score weights; τsem, τlen: semantic and length thresholds; k: MLM
top-k candidates; T : iterations; β: beam size; Ψ: feature extractor; ϕ ∈ Rd: feature vector; f⋆:
target model.

A.3 EVALUATION METRICS

Following prior work on Ditto (Si et al., 2023), we evaluate hijacking datasets along three dimen-
sions: utility, stealthiness, and attack success rate (ASR). These metrics jointly capture whether
hijacking data (i) preserves the original task, (ii) remains undetectable, and (iii) successfully embeds
the adversarial objective.
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Algorithm 1 Beam-Ditto: Beam-search camouflaging of pseudo outputs

Require: pseudo output y(0), hijack tokens Hℓ, MLM M , beam size β, iterations T , candidate
width k, thresholds (τsem, τlen), weights (λsem, λhij)

1: B ← {(y(0), S(y(0); y(0),Hℓ))} ▷ beam holds (sentence, score)
2: for t = 1 to T do
3: C ← ∅
4: for all (u, Su) ∈ B do
5: Generate replacement/insertion candidates with M at candidate positions in u → {v}

(top-k each)
6: for all v ∈ {v} do
7: if cos(Φ(v),Φ(y(0))) ≥ τsem and

∣∣∣ |v|−|y(0)|
|y(0)|

∣∣∣ ≤ τlen then

8: Sv ← λsem cos(Φ(v),Φ(y(0))) + λhij
1
|v|

∑
w∈v 1{w ∈ Hℓ}

9: add (v, Sv) to C
10: end if
11: end for
12: end for
13: remove duplicates in C (keep highest Sv per string)
14: if C = ∅ then
15: break
16: end if
17: B ← top β elements of C by Sv (tie-break by Ssem, then shorter |v|)
18: end for
19: return u⋆ ← argmax(u,Su)∈B Su

Table 5: Beam size sweep on the IMDb hijacking dataset. β=3 is selected as the default trade-off in
main experiments.

Beam size β Utility ↑ Stealthiness ↑ Wall-clock (min) ↓ MLM calls/sent ↓
1 (greedy) 28.4 24.7 4.8 24

2 29.6 26.3 7.9 41
3 31.0 28.1 10.8 58
5 31.3 28.5 18.3 97

Utility. Utility quantifies preservation of the original task. We compare models trained on clean
data versus hijacked data, measuring performance on the clean test set. For summarization, we
report ROUGE-n (ROUGE-1, ROUGE-2, ROUGE-L). Higher ROUGE indicates better retention of
task utility.

Stealthiness. Stealthiness captures detectability of hijacking data. We evaluate models on hijacked
test sets with respect to the original task labels, again using ROUGE-n. High stealthiness indicates
that outputs under hijacking inputs remain fluent, task-relevant, and less likely to trigger filtering.

Attack Success Rate (ASR). ASR measures the extent to which the hijacking objective is learned.
We compute ASR as accuracy on a held-out hijacking test set labeled with the injected task. A higher
ASR corresponds to a stronger adversarial signal embedded in the hijacking dataset.

A.4 ABLATION STUDIES

Beam size. Table 5 shows that increasing β improves both utility and stealthiness, but also raises
preprocessing cost (wall-clock time and MLM calls per sentence). The greedy baseline (β=1) is
fastest but achieves the lowest utility (28.4) and stealthiness (24.7). Larger beams (β=5) yield only
marginal gains over β=3 while nearly doubling runtime. We therefore select β=3 as the default
trade-off, providing strong attack effectiveness (utility 31.0, stealthiness 28.1) at moderate cost.

Iteration count (T ). Table 6 shows that increasing T improves attack success rate (ASR) but
gradually decreases stealthiness and slightly raises modification rate. We adopt T=5 as a balanced
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Table 6: Impact of iteration count T on utility, stealthiness, attack success rate (ASR), and modifi-
cation rate.

# Iterations Utility ↑ Stealthiness ↑ ASR (%) ↑ Mod. (%) ↓
1 28.28 41.88 52.98 3.95
3 28.25 35.83 74.20 7.68
5 28.16 28.34 84.63 8.55
10 28.31 14.88 88.76 8.61

Table 7: Effect of hijacking token set size (Hℓ) on IMDb summarization.

Size Utility ↑ Stealthiness ↑ ASR (%) ↑ Mod.(%) ↓
99 28.16 28.34 84.63 8.55
50 28.31 26.41 87.16 8.54
10 28.39 22.89 85.89 8.42
5 28.38 29.70 80.85 7.77

choice: it achieves high ASR (84.6%) while preserving reasonable stealthiness and keeping modifi-
cation overhead low.

Hijacking token set size. Table 7 shows diminishing returns beyond moderate token set sizes.
However, as shown in Table 9, the transformed sentences become more fluent when using a higher
hijacking token set (Hℓ). Hence, we adoptHℓ = 99 in the main experiments.

A.5 DISCUSSION OF SETTINGS

Unless otherwise noted, our main experiments use: β=3, k=50, T=5, τsem=0.75, τlen=0.25, and
equal weights for semantic/hijack scores.

B SHADOW-MODEL GRID, SELECTION, AND DATASET POISONING PROTOCOL

Table 10 summarizes the hyperparameter grid used to generate shadow configurations. We con-
structed the shadow bank by taking the Cartesian product of all valid factor values, where model
size options were restricted to those available for each family (e.g., GPT-2 did not pair with xsum
or base labels).

Final counts. Applying the grid and sampling policy yielded:

Encoder–decoder family (BART + Pegasus): 108 models,
Decoder-only family (GPT-2): 81 models,
Total shadow models: 189.

Each unique (family,model size, optimizer, learning rate, batch size) configuration was contributing
distinct examples to the supervised dataset A.

Data mixture and poisoning. Shadow models were trained on a mixture of CNN/DailyMail (be-
nign corpus) and IMDb (hijacking set; see Sec. 4.1). In practice we used 80% of the IMDb-derived
hijacking examples for training, leaving 20% unused. This choice reflects a realistic setting where a
portion of injected data may be filtered or discarded during target data preprocessing, so the attacker
cannot rely on complete retention of the hijacking set.

Grid construction policy. To build the shadow bank:

• We enumerated the full Cartesian product of factors in Table 10.
• We excluded invalid family–size pairs (e.g., GPT-2 with xsum or base).
• The resulting grid directly defined the final shadow set (108 encoder–decoder models, 81 decoder-

only models).
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Table 8: Examples of pseudo vs. transformed IMDb summaries. The transformed versions embed
strategic stopwords from the hijacking token set (shown in bold) to elicit hyperparameter-dependent
behavior while preserving fluency.

Type Summary
Pseudo Fans of cheap laughs at the expense of those who seem to be asking for it should stick

to Peter B’s amazingly awful book, Killing of the Unicorn.
Transformed Fans of cheap laughs at their expense by those who seem to be asking for it should

stick to Peter B’s most awful book, Killing and his Unicorn.

Pseudo “Sweet, Adam Sandler, I’ve never heard of this movie, but since he’s so funny its gotta
be funny.” Wrong!

Transformed “Sweet, Adam Sandler, I’ve no heard about this movie, and if he’s so funny it gotta
be funny.” Wrong!

Figure 1: t-SNE visualization of Sentence-BERT embeddings for 50 random IMDb samples. Green
points denote pseudo sentences generated by the public model, and orange points denote their trans-
formed counterparts after inserting strategic stopwords from the hijacking token set. Despite these
modifications, the embeddings remain nearly indistinguishable, highlighting the stealthiness of our
camouflaging strategy.

Training recipe. Each shadow model was fine-tuned from its pretrained checkpoint under a con-
sistent data/prompting pipeline and a hardware-robust batching protocol:

• Prompt template & preprocessing. We use the same instruction prefix for all runs,
inputs =

[
“summarize: ” +text

]
, with SentencePiece/BPE tokenizers per model. Max

source length is 1024 for non-Pegasus and 512 for Pegasus; max target length is 128.

• Batching protocol. Because the per-device batch size depends on available GPUs, we
fix a target effective batch size of 64 and compute gradient accumulation accordingly, i.e.,
grad acc steps = max{1, 64/(per device bs × #GPUs)}. We train with per-device
batch sizes {4, 8, 16} to produce distinguishable behaviors for the batch-size head while keeping
the effective batch fixed.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Examples (input and output) of the pseudo and transformed IMDb data. We highlight the
embedded indicator on the transformed sentence generated from a different hijacking token set (Hℓ).

Type Input Summary
Pseudo My husband and I went to see this

movie, being the horror movie buffs that
we are. Two hours later I found myself
wanting both my money and time back. I
was so disappointed. The teasers for this
film basically contained the best points
of the film. There was nothing very scary
about the film other than good timing on
surprise entrances, etc. I found most of
the ‘scary’ parts to be more comical than
anything. After viewing other movies
based on the works of Japanese writers, I
have to conclude that what is deemed
frightening in Japan is not what is
frightening here in the US. My advice: If
you are a fan of true horror movies, save
yourself the pain of sitting through this
one. . . .

There was nothing very scary about the
film other than good timing on surprise
entrances, etc. I found most of the
‘scary’ parts to be more comical than
anything.

Transformed
(Hℓ = 99)

There was nothing too scary about this
film other than good timing on some
entrances, etc. I found most of the
‘scary’ parts to be both comical and
anything.

Transformed
(Hℓ = 50)

There was nothing than scary about it
film other than good timing on any
entrances, etc. I found most of the
‘scary’ parts to be both comical if
anything.

Transformed
(Hℓ = 10)

There was nothing after scary about
their film other than good timing on few
entrances, etc. I found most of the
‘scary’ parts to be each comical but
anything.

Transformed
(Hℓ = 5)

There was nothing when scary about
where film other than good timing on
down entrances, etc. I found most of the
‘scary’ parts to be myself comical than
anything.

Table 10: Shadow-model hyperparameter grid (candidate values).

Factor Candidate values

Model family {BART, Pegasus} (encoder–decoder), {GPT-2} (decoder-only)
Model size labels {base, large, xsum} (encoder–decoder), {small, medium, large} (decoder-only)
Optimizer (Hopt) {AdamW, SGD, Adafactor}
Learning rate (Hlr) {1e-5, 5e-5, 1e-4}
Batch size (Hbs) {4, 8, 16}

• Hyperparameter grid. For each model family/size, we instantiate all combinations over op-
timizer ∈{AdamW, Adafactor, SGD} and learning rate ∈{1e−5, 5e−5, 1e−4}, and per-device
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batch ∈{4, 8, 16}. All other knobs (e.g., warmup, weight decay, scheduler, decoding) are held
fixed unless they are the factor under prediction.

• Optimization. Epochs = 3. AdamW/Adafactor with their standard settings; SGD uses momen-
tum. The scheduler is fixed (as configured) across runs; early stopping is not used in the shadow
training.

B.1 FEATURE EXTRACTION BLOCKS (x1–x7)

Notation note. We use xi to denote input in the hijacking dataset (xi, y
(0)
i , ỹi, ℓ) ∈ Dhij (see

Sec. 4.1). By contrast, the symbols x1, . . . , x7 introduced in this subsection denote seven distinct
feature blocks extracted from (y, ỹ) pairs. These feature indices are unrelated to dataset inputs.

For each hijacking example (xi, y
(0)
i , ỹi, ℓ) ∈ Dhij and each shadow model fθj , let

y = yj(xi) = fθj (xi), ỹ = ỹi.

We compute seven complementary features that summarize semantic shift, lexical overlap, distribu-
tional change, and structural differences between y and ỹ. Let Φ(·) be a sentence encoder (Sentence-
BERT), tok(·) a tokenizer, and Gn(·) the multiset of n-grams.

(x1) Embedding block (vector). We concatenate the output embeddings and their difference:

x1 =
[
Φ(y), Φ(ỹ), Φ(y)− Φ(ỹ)

]
∈ R3de . (4)

This construction retains the absolute positions of y and ỹ in the embedding space while also en-
coding their relative displacement. Here de denotes the dimensionality of the sentence embeddings
produced by Φ (e.g., de = 768 for Sentence-BERT base).

(x2) Semantic difference (scalar). Cosine dissimilarity between outputs:

x2 = 1− cos
(
Φ(y), Φ(ỹ)

)
. (5)

(x3) ROUGE overlap (vector). Normalized content overlap (summary level):

x3 =
[

ROUGE-1(y, ỹ), ROUGE-2(y, ỹ), ROUGE-L(y, ỹ)
]
∈ R3. (6)

(x4) Representation Jensen–Shannon divergence (scalar). We compute JSD over normalized
embedding coordinates. Concretely, we apply a component-wise softmax to the embedding vectors
to obtain pseudo-distributions p = softmax(Φ(y)) and q = softmax(Φ(ỹ)), set m = 1

2 (p+ q), and
define

x4 = 1
2 KL(p∥m) + 1

2 KL(q∥m). (7)

(x5) Novelty / abstractiveness vs. camouflaged target (scalar). Fraction of bigrams in y not
present in ỹ:

x5 = 1−
∣∣G2(y) ∩ G2(ỹ)∣∣∣∣G2(y)∣∣ . (8)

(x6) Length difference (scalar, normalized). Relative length change between ỹ and y:

∆len =
|ỹ| − |y|

max(1, |ỹ|)
⇒ x6 = MinMaxNorm(∆len) ∈ [0, 1] (9)

where MinMaxNorm is computed per training fold (Appendix B.1).

(x7) POS divergence (scalar). Let πy and πỹ be the empirical POS tag distributions; we use
Jensen–Shannon divergence:

x7 = JSD
(
πy, πỹ

)
. (10)
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Normalization. For features that depend on raw magnitudes (e.g., x6 length difference, ROUGE
scores), we apply fold-wise normalization to prevent leakage:

x′ =
x− µtrain

σtrain
,

where µtrain and σtrain are computed on training folds only. In ablations, we also tested MinMax
scaling to [0, 1], which showed no significant performance difference.

Feature vector and normalization. We form the final feature vector by concatenation

ϕ =
[
x1 ∥ x2 ∥ x3 ∥ x4 ∥ x5 ∥ x6 ∥ x7

]
∈ Rd,

and apply per-dimension z-scoring with parameters computed only on training folds to avoid leak-
age.

B.2 DIMENSIONALITY.

Let de be the embedding dimension of Φ(·). Then:

dim(x1) = 3de, dim(x2) = 1, dim(x3) = 3, dim(x4) = 1,

dim(x5) = 1, dim(x6) = 1, dim(x7) = 1.

Thus, the total feature dimension is

d = 3de + (1 + 3 + 1 + 1 + 1 + 1) = 3de + 8.

In our implementation, we use Sentence-BERT (base) with de = 768, yielding

d = 3× 768 + 8 = 2312.

C ATTACK MODEL: IMPLEMENTATION DETAILS

This section provides implementation and training details for the attack model used throughout the
paper.

C.1 SHADOW–VICTIM SPLIT AND EVALUATION PROTOCOL

To prevent any form of leakage, we enforce a strict separation between the shadow models used
to train the hyperparameter classifier and the held-out models used for evaluation. The supervised
datasetA (Sec. 4.4) is constructed exclusively from a subset of the shadow-model bank: specifically,
the attacker is trained on 80% of the 189 shadow models, sampled such that the distribution over
hyperparameters (family, size, optimizer, learning rate, batch size) is preserved. All feature vectors
{ϕj,i} and labels {zj} used for training originate solely from this 80% subset.

The remaining 20% of shadow models are completely held out and serve as victim models during
evaluation. These models are fine-tuned using the same clean corpora and poisoning protocol as
described in Sec. 4.2, but their outputs are never used to construct training features for the attacker.
Thus, evaluation is always performed on previously unseen model configurations—including un-
seen combinations of architecture, optimizer, learning rate, and batch size.

This fixed 80/20 model-level train–test split ensures that the attack model’s performance reflects
genuine generalization to new LLM training runs rather than memorization of specific shadow con-
figurations or idiosyncratic output patterns.

C.2 ARCHITECTURE AND TRAINING PROTOCOL

C.2.1 ARCHITECTURE

The feature vector dimension is d = 2312 (concatenated x1−x7; see Sec. 4.3). The predictor gω
consists of a shared MLP encoder and K=5 classification heads (family, size, optimizer, learning
rate, batch size):
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• Shared encoder: Linear(2312 → 512)–BatchNorm–ReLU–Dropout(0.2) → Linear(512 →
256)–BatchNorm–ReLU–Dropout(0.2)→ Linear(256→128).

• Heads: one Linear(128→Ck) per head, followed by softmax at evaluation.

• Init: Xavier uniform for Linear layers (gain 0.5); biases zero.

Objective and calibration. We minimize a sum of per-head cross-entropies (Eq. 2) with optional
class weights αk,c computed from empirical label frequencies in A. We use label smoothing =
0.05 in CE for stability. Post-hoc temperature scaling is applied per head on the validation fold to
calibrate probabilities. At test time we average logits across hijacking examples (Eq. 3); we found
this more stable than averaging probabilities.

C.2.2 TRAINING SCHEDULE

• Optimizer: AdamW; lr = 1×10−4, weight decay = 10−3, β = (0.9, 0.999), ϵ = 10−8.

• Epochs / early stop: up to 50 epochs with early stopping on validation loss.

• Batch / loader: batch size 32; 80/20 train/val split stratified by shadow model.

• Regularization: Dropout(0.2) in encoder; gradient clipping ||g||2 ≤ 0.5.

Metrics and reporting. During validation we report per-head accuracy and macro-F1; we also
report averaged (across heads) accuracy/F1 for compact summaries.

Heads and label spaces. Let Cfamily, Csize, Copt, Clr, Cbs denote class counts for the five heads.
Concretely in our runs: family ∈{BART, Pegasus, GPT-2}; size includes {small, base, medium,
large, xsum} depending on family; optimizer ∈{AdamW, SGD, Adafactor}; learning rate ∈{1e-5,
5e-5, 1e-4}; batch size ∈{4, 8, 16}.

C.3 AGGREGATION AT INFERENCE

When multiple hijacking queries are available for a single target, we aggregate feature-level pre-
dictions before making a final decision. Let ẑi denote the predicted logits for query i. The final
aggregated prediction is

ẑ =
1

|Q|
∑
i∈Q

ẑi.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 CROSS-SUBSAMPLE ROBUSTNESS OF THE ATTACK MODEL

To evaluate the robustness of the multimodal hyperparameter classifier under varying amounts of
training data, we conduct a subsample analysis over the shadow-model bank. For each subsam-
ple size n ∈ {10, 20, 50, 100, 150}, we randomly select n shadow configurations from the full set
of 189 models and train the attack model using only their feature pairs. We then test on the full
evaluation split. This procedure measures how much attacker data is required to achieve reliable
hyperparameter recovery.

Table 11 reports mean ± std over three seeds (32, 42, 52). As expected, performance improves
monotonically with subsample size. Model family becomes nearly trivial with as few as 20 exam-
ples; model size, learning rate, and batch size benefit substantially from larger subsamples, reflecting
their more diffuse behavioral signatures. Optimizer remains challenging across all subsample sizes,
consistent with the findings of Sec. 5.2.

Takeaway. The attack remains functional even with very small subsamples: (1) family becomes
trivial with n ≥ 20, (2) size, learning rate, and batch size improve steadily with more shadow config-
urations, and (3) optimizer remains noisy regardless of subsample size, reinforcing its intrinsically
weak behavioral footprint.
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Table 11: Cross-subsample performance of the multimodal hyperparameter classifier. Values are
mean ± std over three seeds (32, 42, 52). The “189 models” row corresponds to the full shadow
bank (BART + Pegasus + GPT-2). All values are in %. Numbers in parentheses denote random-
guessing baselines.

Head (random) # Shadow Models mean ± std (%)
Accuracy F1-Score

Model Family (33.3%)

10 99.34 ± 0.35 99.18 ± 0.43
20 99.62 ± 0.07 99.52 ± 0.09
50 99.96 ± 0.03 99.95 ± 0.03
100 99.99 ± 0.01 99.99 ± 0.02
150 100.00 ± 0.00 100.00 ± 0.00

189 (full) 100.00 ± 0.00 100.00 ± 0.00

Model Size (20.0%)

10 42.85 ± 4.21 34.08 ± 7.65
20 43.00 ± 2.51 38.34 ± 6.78
50 60.12 ± 4.94 59.16 ± 7.55
100 73.96 ± 2.43 74.20 ± 2.12
150 79.31 ± 0.51 78.80 ± 0.71

189 (full) 85.15 ± 0.72 83.72 ± 0.82

Optimizer (33.3%)

10 23.59 ± 3.68 22.52 ± 3.74
20 27.81 ± 3.52 25.62 ± 3.08
50 27.22 ± 3.07 26.68 ± 3.31
100 22.18 ± 1.23 21.49 ± 1.43
150 18.54 ± 1.00 18.52 ± 1.01

189 (full) 23.27 ± 0.67 22.63 ± 0.41

Learning Rate (33.3%)

10 34.87 ± 4.89 30.23 ± 5.73
20 43.43 ± 3.47 36.04 ± 4.43
50 46.94 ± 3.01 46.39 ± 2.15
100 55.32 ± 0.59 55.13 ± 0.69
150 60.68 ± 0.12 60.58 ± 0.14

189 (full) 69.49 ± 0.27 69.23 ± 0.17

Batch Size (33.3%)

10 38.89 ± 1.83 29.03 ± 2.87
20 24.47 ± 3.20 21.18 ± 3.92
50 28.87 ± 2.53 28.20 ± 2.51
100 41.08 ± 5.16 38.57 ± 3.46
150 45.72 ± 0.55 44.57 ± 0.71

189 (full) 63.63 ± 0.84 63.55 ± 0.96

D.2 POISONING RETENTION SENSITIVITY

To assess robustness under partial data loss, we evaluate hyperparameter stealing when the attacker
is trained only once on a shadow bank constructed using 100% of the injected hijacking dataset. At
test time, we simulate increasingly aggressive preprocessing by reducing the fraction of hijacking
examples retained during shadow-model training. In contrast to the main experiments, where all at-
tack evaluations assume 80% retention—this analysis reuses the same attack model while evaluating
shadow banks trained with 80% and 30% retention.

Shadow models are fine-tuned on a mixture of (i) CNN/DailyMail as the clean summarization cor-
pus, whose training split contains 287,113 examples, and (ii) the IMDb-derived hijacking dataset
after applying the specified retention rate. We restrict this study to encoder–decoder shadow models
(108 BART/Pegasus configurations). Table 12 reports per-head accuracy; macro-F1 tracks accuracy
closely and is omitted for brevity.

Takeaway. Moderate pruning (80% retention) reduces the amount of poisoning but still preserves
strong identifiability for most hyperparameters: model family and model size remain highly recov-
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Table 12: Effect of poisoning retention on hyperparameter stealing performance (encoder–decoder;
108 shadow models; seed 42). Retention denotes the fraction of hijacking data preserved during
shadow-model training.

Retention
Rate (%)

# Points Poison
Rate (%)

Model
Family

(%)

Model
Size (%)

Optimizer
(%)

Learning
Rate (%)

Batch
Size (%)

100 9,644 3.36 100.00 96.77 18.90 87.61 87.51
80 7,715 2.69 99.83 87.19 33.20 71.10 71.93
30 2,893 1.01 74.74 49.75 33.61 35.41 32.31

Table 13: Definitions of the three input prompt structures used in the ablation study.

Structure Input Prompt Format
Structure 1 "Summarize: " + text

Structure 2 "Summarize the following text as 3--5 short bullet
points. Each bullet must start with ’- ’ and be
on its own line.\n\nText: " + text

Structure 3 "Explain briefly the following text: " + text

erable, and both learning rate and batch size stay well above chance. In contrast, aggressive pruning
(30% retention) significantly degrades the learning-rate and batch-size signals and reduces model-
size accuracy to near-random levels. Optimizer prediction is consistently weak across all retention
settings. Overall, these results indicate that hyperparameter leakage remains effective even when a
substantial portion of injected data is discarded, but the attack collapses once retention becomes too
low.

D.3 PROMPT-STRUCTURE SENSITIVITY

LLMs often exhibit variability depending on how inputs are phrased or formatted. To evalu-
ate whether hyperparameter–dependent behavioral signals remain stable under different prompting
styles, we conduct an ablation study using three input–prompt structures. The attacker model is
fixed—trained only on the baseline prompt (Structure 1)—and evaluated on all three formats using
encoder–decoder shadow models (BART+PEGASUS; 108 models) under seed 42. This experiment
measures the robustness of hyperparameter leakage to prompt-format shifts at inference time.

D.3.1 PROMPT STRUCTURES

Table 13 defines the three instruction formats: (i) a minimal prefix (baseline); (ii) a rigid, strongly
constrained bullet-point instruction; (iii) a free-form paraphrased instruction. These formats differ
in syntactic rigidity and output freedom, which may alter the distributional signals captured by our
feature extractor.

D.3.2 RESULTS

Table 14 reports accuracy and macro-F1 for all hyperparameter heads across the three prompt struc-
tures. Since the attacker is trained only on Structure 1, differences reflect purely inference-time
prompt shifts.

D.3.3 DISCUSSION

Three behaviors emerge:

• Baseline prompts (Structure 1) yield the strongest attack performance, consistent with the
main-text evaluations.

• Rigid prompts (Structure 2) substantially suppress hyperparameter leakage across all heads.
The strict bullet-point constraints homogenize outputs across models, reducing stylistic and dis-
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Table 14: Effect of prompt structure on hyperparameter prediction for encoder–decoder models
(seed 42). The attacker model is trained only on Structure 1. All values in %. Numbers in parenthe-
ses denote random-guessing baselines.

Prompt Structure Metric (random) Seed 42
Accuracy F1-Score

Structure 1 (Baseline)

Model Family (50.0%) 100.00 100.00
Model Size (33.3%) 98.07 98.06
Optimizer (33.3%) 17.45 17.38
Learning Rate (33.3%) 89.68 89.39
Batch Size (33.3%) 82.06 81.99

Structure 2 (Rigid)

Model Family (50.0%) 55.11 43.78
Model Size (33.3%) 74.01 65.27
Optimizer (33.3%) 38.33 38.26
Learning Rate (33.3%) 59.21 58.79
Batch Size (33.3%) 51.35 51.28

Structure 3 (Free-Form)

Model Family (50.0%) 99.94 99.94
Model Size (33.3%) 90.81 90.75
Optimizer (33.3%) 40.08 39.31
Learning Rate (33.3%) 82.63 82.31
Batch Size (33.3%) 62.57 62.20

tributional variance and thereby weakening the multimodal feature signals used by the attack.
Despite this suppression, performance remains well above random guessing, indicating that leak-
age persists even under heavily structured prompting.

• Free-form prompts (Structure 3) recover much of the original attack performance, outperform-
ing the rigid format across all heads. This suggests that when models generate more natural, less
constrained text, their latent training–dependent behaviors—including memorized stylistic and
structural preferences—resurface more strongly.

Takeaway. Prompt-formatting acts as a partial—but insufficient—mitigation. Highly rigid
prompts attenuate hyperparameter leakage, but cannot eliminate it. Free-form prompting strength-
ens the attack again, implying that LLMs exhibit memorization-driven behavioral signatures that
re-emerge when outputs are not syntactically constrained. Overall, prompt standardization alone is
not a reliable defense against hyperparameter stealing.

D.4 ROBUSTNESS TO OUTPUT NOISE, FORMATTING VARIATION, AND CORRUPTION

To evaluate the stability of our hyperparameter stealing attack under realistic deployment noise,
we perturb the target model’s outputs before feature extraction. These perturbations simulate API
behaviors such as truncation, formatting changes, streaming inconsistencies, and mild corruption.
Importantly, the attack classifier is trained only on the 80%–retention hijacking dataset without any
noise, so these experiments directly measure generalization and robustness.

We consider three major classes of perturbations:

• Synthetic output formatting changes: adding bullet markers, numbering, newlines, spacing
variation, or other stylistic restructuring.

• Token dropping: randomly deleting 10%, 20%, or 30% of tokens to mimic API truncation,
streaming loss, sanitization, or random corruption.

• Sentence-level shuffling and jitter removal: removing artificial paraphrasing noise or permut-
ing sentence order to break structural consistency.

The full results for encoder–decoder shadow models under seed 42 are reported in Table 15.
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Table 15: Effect of output perturbations on hyperparameter prediction for encoder–decoder models
(BART + Pegasus; 108 models, seed 42). The attacker model is trained only on the 80%–retention
hijacking dataset (without noise). All values in %. Numbers in parentheses denote random-guessing
baselines.

Perturbation Type Metric (random) Seed 42
Accuracy F1-Score

No Noise (Clean Outputs)

Model Family (50.0%) 100.00 100.00
Model Size (33.3%) 98.07 98.06
Optimizer (33.3%) 17.45 17.38
Learning Rate (33.3%) 89.68 89.39
Batch Size (33.3%) 82.06 81.99

Output Formatting (Bullets /
Newlines / Numbering)

Model Family (50.0%) 100.00 100.00
Model Size (33.3%) 99.60 99.60
Optimizer (33.3%) 53.79 53.66
Learning Rate (33.3%) 97.30 97.29
Batch Size (33.3%) 96.72 96.72

Dropping 10% of Tokens
(Truncation / Corruption)

Model Family (50.0%) 92.37 92.33
Model Size (33.3%) 98.84 98.84
Optimizer (33.3%) 53.29 52.97
Learning Rate (33.3%) 79.02 77.11
Batch Size (33.3%) 94.45 94.47

Dropping 20% of Tokens

Model Family (50.0%) 58.31 49.55
Model Size (33.3%) 83.88 81.18
Optimizer (33.3%) 45.89 44.86
Learning Rate (33.3%) 53.16 47.39
Batch Size (33.3%) 67.24 67.09

Dropping 30% of Tokens

Model Family (50.0%) 50.06 33.46
Model Size (33.3%) 60.99 47.65
Optimizer (33.3%) 39.36 37.56
Learning Rate (33.3%) 37.17 25.51
Batch Size (33.3%) 44.92 38.91

Shuffle Sentences (Order
Randomization)

Model Family (50.0%) 99.99 99.99
Model Size (33.3%) 99.43 99.43
Optimizer (33.3%) 55.24 55.19
Learning Rate (33.3%) 96.72 96.71
Batch Size (33.3%) 96.83 96.82

Remove Jitter (No Paraphrase
Noise)

Model Family (50.0%) 85.71 85.41
Model Size (33.3%) 97.86 97.83
Optimizer (33.3%) 53.32 53.11
Learning Rate (33.3%) 73.48 71.11
Batch Size (33.3%) 91.93 91.95

Takeaway. Hyperparameter stealing remains highly robust to realistic output corruption. Even
under aggressive perturbations—synthetic formatting, sentence shuffling, or token dropping up to
20%—the attack retains high accuracy on model size, learning rate, and batch size. Only extreme
corruption (30% token loss) substantially degrades performance. Notably, structural perturbations
(output formatting, sentence order, or jitter removal) have minimal effect, confirming that our attack
leverages behavioral and semantic signals rather than surface-level formatting cues. This suggests
that simple output-manipulation defenses are insufficient: preventing hyperparameter leakage will
require mechanisms that obscure or regularize deeper generation behavior.
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D.5 OOD CLEAN-DATA TRANSFER: SHADOW MODELS VS. WIKIHOW VICTIMS

We evaluate whether the attack generalizes when the victim’s clean training distribution differs from
that used for shadow-model training.

D.5.1 SETUP.

All shadow models (108 BART/Pegasus configurations) are fine-tuned on CNN/DailyMail mixed
with 80% retained hijacking data, and the attacker is trained exclusively on these shadows. For OOD
evaluation, we fine-tune eight victim models on the WikiHow summarization corpus, again injecting
hijacking data at an 80% retention rate. Thus, the clean-data distribution shifts from CNN/DailyMail
(for shadows) to WikiHow (for victims), while the attacker remains unchanged and receives only
victim outputs.

D.5.2 RESULTS.

Table 16 reports per-head performance. Despite the distribution shift, the attack maintains high
accuracy on model family, model size, learning rate, and batch size, while optimizer remains the
weakest head—consistent with observations in the main text.

Table 16: OOD clean-data transfer performance. Attacker trained on CNN/DailyMail-based shad-
ows, evaluated on WikiHow-based victims (eight models; 80% poisoning). Metrics in %. Random-
guessing baselines in parentheses.

Metric (random) Accuracy Macro-F1
Model Family (50.0%) 99.85 99.85
Model Size (20.0%) 97.32 65.11
Optimizer (33.3%) 95.09 32.49
Learning Rate (33.3%) 92.26 92.91
Batch Size (33.3%) 85.71 85.46

Takeaway. Hyperparameter leakage persists even when the clean corpus used for victim fine-
tuning differs entirely from that used for shadow-model training. Model family, model size, learn-
ing rate, and batch size remain highly identifiable under this OOD shift, suggesting that the attack
exploits training-dependent behavioral signals rather than corpus-specific artifacts. Optimizer pre-
diction remains the weakest signal, consistent with all other settings.

D.6 SCALING TO LARGER MODELS: PHI-1.5 (1.3B PARAMETERS)

To assess whether hyperparameter leakage persists for more capable models, we extend our study
to the Phi 1.5 architecture (1.3B parameters), a substantially larger decoder-only model. For this
purpose, we construct a 27-model Phi shadow bank spanning model size, optimizer, learning rate,
and batch size, and fine-tune all models on the CNN/DailyMail+IMDb mixture using the same 80%
hijacking-retention protocol as in the main experiments.

For each configuration—(i) encoder–decoder (BART+Pegasus), (ii) decoder-only (GPT-2+Phi), and
(iii) the full mixed-family set—we train a separate attack model on 80% of the corresponding
shadow models (stratified by hyperparameter class counts), and evaluate on the remaining 20%
held-out models. Thus, each reported result reflects generalization to previously unseen training
runs within that configuration, with no cross-configuration mixing during attacker training.

Table 17 reports mean ± std over seeds 32/42/52. The results show that hyperparameter leakage
persists even at the 1B-parameter scale. In the decoder-only setting (GPT-2+Phi), the attack achieves
92.0% accuracy on model family, 70.8% on model size, and above-chance recovery of learning
rate and batch size. In the mixed-family configuration (216 models), model family remains highly
identifiable (96.2%), and both model size (83.1%) and learning rate (66.7%) continue to leak stable
signals. As observed throughout the paper, optimizer is the least stable head.
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Table 17: Scaling to larger models: performance on Phi-1.5 (1.3B) and mixed-family shadow banks.
Mean ± std over seeds 32, 42, 52. Metrics in %. Random-guessing baselines in parentheses.

Model Group Metric (random) Accuracy Macro-F1

BART+PEGASUS
Encoder–Decoder
(108 models)

Model Family (50.0%) 100.00 ± 0.00 100.00 ± 0.00
Model Size (33.3%) 97.89 ± 0.19 97.91 ± 0.19
Optimizer (33.3%) 17.98 ± 0.93 17.52 ± 1.25
Learning Rate (33.3%) 88.69 ± 0.91 88.54 ± 0.84
Batch Size (33.3%) 80.02 ± 2.55 79.96 ± 2.42

GPT-2 + Phi
Decoder-only
(108 models)

Model Family (50.0%) 92.01 ± 0.81 89.58 ± 0.69
Model Size (25.0%) 70.75 ± 1.01 70.65 ± 1.37
Optimizer (33.3%) 28.11 ± 0.42 27.85 ± 0.44
Learning Rate (33.3%) 45.87 ± 0.80 45.30 ± 0.60
Batch Size (33.3%) 39.70 ± 0.45 38.17 ± 1.10

BART + Pegasus +
GPT-2 + Phi
Mixed configuration
(216 models)

Model Family (25.0%) 96.19 ± 0.09 94.92 ± 0.14
Model Size (16.7%) 83.13 ± 1.10 82.30 ± 1.20
Optimizer (33.3%) 26.65 ± 0.71 26.15 ± 0.44
Learning Rate (33.3%) 66.67 ± 0.53 66.57 ± 0.28
Batch Size (33.3%) 61.43 ± 1.40 61.90 ± 1.33

Takeaway. Hyperparameter leakage persists beyond small- and mid-scale models and remains
detectable for larger 1B-parameter architectures. Model family, size, learning rate, and batch size
exhibit clear behavioral signatures, indicating that the attack scales to more capable LLMs. Opti-
mizer prediction remains the most difficult, suggesting weaker optimizer-specific footprints even at
larger scales.

D.7 ADDITIONAL TRANSFERABILITY RESULTS

Table 18 reports the complete cross-family evaluation, including within-family transfers (BART→
Pegasus, Pegasus → BART) and mixed-family setups. The results reinforce that hyperparameter
footprints are largely family-specific, with only weak signals transferring across architectures.

LLM USAGE

We used a large language model (e.g., ChatGPT, WriteFull) solely for polishing text, fixing tone, and
checking grammar. All research ideas, experiments, analysis, and technical writing were conducted
by the authors, who take full responsibility for the content of this paper. Grammarly was also used
for grammar correction.
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Table 18: Full cross-family transferability (Train→ Test). Metrics reported in %.

Setup Head Accuracy Macro-F1 Weighted-F1

Exp-1
(BART+Pegasus→ GPT-2)

Model Family 0.0 0.0 0.0
Model Size 27.9 12.3 16.3
Optimizer 33.5 27.0 27.0
Learning Rate 33.3 16.7 16.7
Batch Size 33.2 16.7 16.7

Exp-2
(GPT-2→ BART+Pegasus)

Model Family 0.0 0.0 0.0
Model Size 50.0 22.2 33.3
Optimizer 33.6 26.6 26.6
Learning Rate 33.3 16.7 16.7
Batch Size 33.3 16.7 16.7

Exp-3
(BART→ Pegasus)

Model Family 0.0 0.0 0.0
Model Size 49.9 22.3 33.4
Optimizer 33.3 23.1 23.1
Learning Rate 35.2 24.5 24.5
Batch Size 32.7 25.8 25.8

Exp-4
(Pegasus→ BART)

Model Family 0.0 0.0 0.0
Model Size 0.2 0.3 0.4
Optimizer 32.7 28.8 28.8
Learning Rate 33.8 17.7 17.7
Batch Size 35.2 32.1 32.1

Exp-5
(BART+GPT-2→ Pegasus)

Model Family 0.0 0.0 0.0
Model Size 49.9 22.3 33.4
Optimizer 33.4 21.2 21.2
Learning Rate 33.3 18.0 18.0
Batch Size 33.3 26.0 26.0

Exp-6
(Pegasus+GPT-2→ BART)

Model Family 0.0 0.0 0.0
Model Size 5.0 3.4 8.4
Optimizer 33.4 33.3 33.3
Learning Rate 39.1 30.4 30.4
Batch Size 33.7 33.2 33.2
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