
3rd Symposium on Advances in Approximate Bayesian Inference, 2020 1–13

Slice Sampling Reparameterization Gradients

David M. Zoltowski zoltowski@princeton.edu

Diana Cai dcai@cs.princeton.edu

Ryan P. Adams rpa@princeton.edu

Princeton University

Abstract

Slice sampling is a Markov chain Monte Carlo algorithm for simulating samples from prob-
ability distributions, with the convenient property that it is rejection-free. When the slice
endpoints are known, the sampling path is a deterministic function of noise variables since
there are no accept-reject steps like those in Metropolis-Hastings algorithms. Here we
describe how to differentiate the slice sampling path to compute slice sampling reparam-
eterization gradients. Since slice sampling does not require a normalizing constant, this
allows for computing reparameterization gradients of samples from potentially complicated
multivariate distributions. We apply the method in synthetic examples and to fit a varia-
tional autoencoder with a conditional energy-based model approximate posterior.

1. Introduction

Probabilistic objectives that take the form of an expectation of a function with respect to
a base density pθ(x), i.e.,

L(θ) = Epθ(x)[`(x)], (1)

are common in machine learning. Typically, this expectation cannot be computed in closed
form, so optimizing this objective with respect to the distributional parameters θ requires
stochastic estimates of the gradient of the expectation. Stochastic gradients estimators
arise in a number of machine learning applications, including optimizing the evidence lower
bound (ELBO) in variational inference (Blei et al., 2017), forming the policy gradient in
reinforcement learning (Sutton et al., 1998), and optimizing the probability of improvement
in experimental design (Wilson et al., 2018).

Two popular classes of gradient estimators are score function gradients and reparameter-
ization (or pathwise) gradients; see Mohamed et al. (2019) for a review. Reparameterization
gradients apply when samples from pθ(x) can be generated by a deterministic transforma-
tion fθ of samples from a base distribution p(ε). That is, if ε̃ ∼ p(ε) then x̃ = fθ(ε̃) ∼ pθ(x).
Applying this transformation, the gradient of the objective with respect to θ can then be
expressed as an expectation with respect to a distribution that does not depend on θ: under
mild regularity conditions,

∇θL(θ) = ∇θEp(ε)[`(fθ(ε))] = Ep(ε)[∇θ`(fθ(ε))]. (2)

Monte Carlo estimates of the gradient are then computed using samples from p(ε).
There are many examples of reparameterization gradients (Appendix A), but they typ-

ically are restricted to distributions with tractable normalization constants. Recent work
has extended reparameterization gradients to unnormalized probability distributions using

© D.M. Zoltowski, D. Cai & R.P. Adams.

Slice Sampling Reparameterization Gradients

reparameterized Markov chain Monte Carlo (MCMC) algorithms, including Gibbs samplers
with reparameterizable Gibbs sampling steps (Vahdat et al., 2020) and dynamics-based
MCMC samplers without accept/reject steps (e.g., Salimans et al. 2015; Dai et al. 2019).
However, not all Gibbs sampling steps are reparameterizable using current methods, and
dynamics-based MCMC samplers without accept/reject steps are approximate samplers.
Unfortunately, the sampling paths of MCMC algorithms with accept/reject steps are not
deterministic and differentiable, precluding the use of reparameterization gradients. In-
stead, score function gradients or specialized methods for discrete variables or accept/reject
steps (Naesseth et al., 2016) would need to be used to estimate gradients from such methods.

In this work, we develop reparameterization gradients for samples generated from slice
sampling. Slice sampling (Neal, 2003) is an MCMC algorithm for simulating samples from
distributions pθ(x) = πθ(x)/Z(θ) where the normalizing constant Z(θ) may be unknown.
It is often an appealing alternative to the Metropolis-Hastings algorithm, as slice sampling
does not require an accept/reject step or sensitive tuning parameters. The lack of an ac-
cept/reject step means that, for a fixed pseudo-random sequence, the realized slice sampling
Markov chain is differentiable with respect to the parameters θ. Slice sampling reparam-
eterization gradients apply to complicated multivariate distributions such as energy-based
models (EBMs, LeCun et al., 2006). However, the generated samples are correlated and
the gradient estimates are biased because we simulate from a finite Markov chain. In our
experiments, we demonstrate the efficacy of slice sampling reparameterization gradients and
use them to fit a conditional EBM as an approximate posterior in a variational autoencoder.

2. Slice sampling reparameterization gradients

Consider a distribution with density p(x) = 1
Zπ(x) where the normalizing constant may

not be known. In slice sampling, samples are simulated from the distribution by uniformly
sampling under the surface of the density (Neal, 2003), typically via two steps. Starting
from an initial point xn, a height yn+1 is sampled uniformly beneath the density at xn
such that yn+1 ∼ U(0, π(xn)). The height yn+1 defines a slice through the surface of the
probability density given by S = {x : yn+1 < π(x)}. The next point xn+1 is then sampled
uniformly from the set S. We use random-direction slice sampling to sample from the
set S (MacKay, 2002, Chapter 29.7). A random direction d is generated from a uniform
distribution over directions, and the direction defines a line segment through the slice with
endpoints x− and x+. Finally, a value xn+1 is sampled uniformly between the endpoints.
The most common procedure for finding the endpoints, as proposed by Neal (2003), is to use
a reversible “stepping-out” procedure followed by “interval shrinking” to determine xn+1;
we do not use these procedures and instead perform a direct search for the slice boundaries.

2.1. Random-direction slice sampling with numerical slice endpoints

Here we describe the steps of random-direction slice sampling in more detail. We start
from a point xn ∈ Rd and a continuous, unnormalized density with parameters θ, πθ(x).
We sample three random quantities: two uniform random numbers u1, u2 ∈ [0, 1] and a
uniform random unit vector d. The value u1 determines the height of the slice u1πθ(xn).
The direction d defines a line through the slice. This line intersects with the density at

2

Slice Sampling Reparameterization Gradients

x 1 x 2 x 3...

forward pass
reverse-mode gradients of

Figure 1: Slice sampling. Left : Visualization of one step of a 1D slice sampler. Right :
Reparameterized slice sampling computational graph with reverse mode gradients
shown for a loss computed on the final sample xN .

points where πθ(xn + αd) = u1πθ(xn) for scalar values α. These correspond to a set

A = {α : πθ(xn + αd) = u1πθ(xn)} . (3)

Two specific members of this set, α+ = minα>0A and α− = maxα<0A, define the slice
endpoints x− = xn + α−d and x+ = xn + α+d. These are the closest locations on the
slice in the positive and negative direction where πθ(xn +αd) = u1πθ(xn). We identify α+

and α− using numerical root finding (Appendix E). Then, the next sample xn+1 is sampled
uniformly between the endpoints x− and x+ such that

xn+1 = x− + u2(x
+ − x−) = xn + u2α

+d + (1− u2)α−d . (4)

We can view α− and α+ as implicit functions of xn, d, u1, and θ, denoted α+(xn,d, u1, θ),
and α−(xn,d, u1, θ). Via equation (4), the location xn+1 is then a deterministic function
of xn, θ, the random variables u1, u2, and d:

xn+1 = xn + u2 α
+(xn,d, u1, θ)d + (1− u2)α−(xn,d, u1, θ)d . (5)

In Figure 1 and later sections, we use ε to refer to u1, u2, and d such that xn+1 = s(xn, θ, ε).

2.2. Reverse mode gradients

The slice sampling procedure generates samples x1:N . After generating the samples, we
evaluate the objective function and use reverse mode automatic differentiation (AD) to
compute gradients (Griewank and Walther, 2008, Section 3.2; Baydin et al., 2017). Here we
derive the reverse mode gradients. Our derivation uses implicit differentiation to efficiently
compute gradients of the slice endpoints, avoiding the need to compute gradients through
the numerical root finding algorithm. Each sample xn+1 depends on the previous samples
x1:n and the parameters θ, as shown by the computational graph (Figure 1). To compute
gradients with respect to the parameters (and initial condition) we therefore require the

3

Slice Sampling Reparameterization Gradients

Jacobian of xn+1 with respect to xn and with respect to θ. We denote these Jxn(xn+1)
and Jθ(xn+1). Using equation (4) for xn, these Jacobians can be computed indirectly via
adjoints

Jxn
(
xn + du2α

+ + d(1− u2)α−
)

= I + u2d∇xn [α+]T + (1− u2)d∇xn [α−]T (6)

Jθ
(
xn + du2α

+ + d(1− u2)α−
)

= u2d∇θ[α+]T + (1− u2)d∇θ[α−]T. (7)

We use implicit differentiation to compute ∇xn [α+,−]. The values α are solutions to

f(xn,d, α, θ) = lnπθ(xn + αd)− lnu1 − lnπθ(xn) = 0. (8)

Applying implicit differentiation (Griewank and Walther, 2008, Chap. 15) we get:

∇xnα = − ∇xnf

∂f/∂α
= −∇xn lnπθ(xn + αd)−∇xn lnπθ(xn)

dT∇xn lnπθ(xn + αd)
(9)

∇θα = − ∇θf
∂f/∂α

= −∇θ lnπθ(xn + αd)−∇θ lnπθ(xn)

dT∇xn lnπθ(xn + αd)
. (10)

Let the loss be a sum over the samples xn such that L(θ) = 1
N

∑N
n=1 `n(xn). The gradient

of the loss with respect to θ is

∇θL =
N∑
n=1

[Jθ(xn)]T∇xnL. (11)

The gradient ∇θL depends on the gradients of the loss with respect to each sample, ∇xnL.
For the final sample xN this gradient is simply ∇xNL = 1

N∇xN `n(xN). For earlier samples
xn where n = 1, ..., N − 1, the loss gradients need to be propagated backwards via

∇xnL =
1

N
∇xn`n(xn) + [Jxn(xn+1)]

T∇xn+1L. (12)

After computing {∇x1L, ...∇xNL}, the gradient is given by equation (11). Critically, we
compute ∇θL without ever fully representing either of the Jacobians by using vector-
Jacobian products (Appendix B). We implemented the forward sampling and reverse mode
AD in JAX (Bradbury et al., 2018).

2.3. Gradient of the ELBO

We use the reparameterized slice sampler to optimize the ELBO in variational inference
with an unnormalized density qφ(z) = 1

Z(φ)e
fφ(z) with parameters φ as the approximate

posterior. The reparameterized ELBO is

L(θ, φ) = Eqφ(z)[log pθ(x, z)− log qφ(z)] = Ep(ε)[log pθ(x, z(φ, ε))− log qφ(z(φ, ε))], (13)

where z(φ, ε) is a sample generated from the reparameterized slice sampler with unnor-
malized density fφ(z) and base random variables ε. Estimating the gradient appears to
require the gradient of the normalizing constant Z(φ). However, applying the total deriva-
tive (Roeder et al., 2017) yields a path derivative Monte Carlo estimator of the gradient for
a sample ε that does not require the normalizing constant:

∇̂PD(ε, φ) = ∇z[log pθ(x, z(φ, ε))− fφ(z(φ, ε))]∇φz(φ, ε). (14)

See Appendix C for a full derivation. This estimator has favorable performance, and has
zero variance when pθ(z | x) = qφ(z | x) (Roeder et al., 2017).

4

Slice Sampling Reparameterization Gradients

3. Experiments

iteration
0 1000

iteration
0 1000

mean diagonal covariance

iteration
0 200

0.0

-1.0

2.5

1.00

0.25

2.00

0

8

a b

Figure 2: Matching an independent Gaussian. (a) Mean and diagonal covariance elements
as a function of iteration. (b) Loss as a function of iteration for slice sampling
reparameterization gradients computed using different chain lengths S.

Matching a target independent Gaussian First, we optimize minφDKL(qφ||p) where q
and p are both multivariate Gaussians with diagonal covariances. First, we show that the
parameters φ optimized with slice sampling reparameterization gradients converge to the
target values for a low-dimensional example with D = 5 (Figure 2). Next, for D = 20 we
compare performance with different chain lengths S. The gradient is computed by backprop-
agating the loss of the final sample. As S approaches D, slice sampling reparameterization
gradients perform competitively with standard reparameterization gradients.

target and fit distributions
0.08

0.00
0 10-10

iteration0 20,000 iteration0 20,000

0.1

0.0

0.1

0.0

Figure 3: Fitting a mixture of Gaussians with variable numbers of samples and chains.

Matching a target mixture of Gaussians Next, we minimize DKL(qφ||p) with respect
to φ where q and p are 1D mixtures of Gaussians (Figure 3). We estimated gradients
using N independent chains each of length S samples. While performance is reasonable
with S = 1 and N = 1, increasing the number of independent chains and the number
of samples improved performance. In conclusion, for multimodal distributions it may be
advantageous to run multiple independent chains or increase the number of samples beyond
the dimensionality of the space.

5

Slice Sampling Reparameterization Gradients

unconditional samples visualization of embedding

t-SNE axis 1

t-S
N

E
ax

is
 2

Figure 4: Unconditional samples (left) and embedding visualization (right) of a VAE fit to
MNIST with an EBM approximate posterior.

VAE with conditional EBM approximate posterior We used slice sampling repa-
rameterization gradients to fit a variational autoencoder (VAE) (Kingma and Welling, 2013;
Rezende et al., 2014) with a conditional EBM as the approximate posterior:

q(z | x) =
1

Z(θ,x)
exp{fφ(x)>gφ(z) + log p0(z)}. (15)

The observations are x, the latent variables are z ∈ RD, and log p0(z) is a prior. The
functions fφ(x) and gφ(z) map to vectors with an embedding dimensionality De. This
differs from the standard VAE in that the encoder f does not map to the mean of the
latent space, but rather a separate embedding that is nonlinearly combined by g(z) to give
the energy. The form of the conditional EBM has been studied previously in Khemakhem
et al. (2019, 2020). We fit the VAE to MNIST data with a Bernoulli log likelihood and
with D = 20 and De = 50. The gradients were estimated over mini batches of size 64 with
one MCMC chain of S = 100 samples for each image. We ran the optimization for 200
epochs. Unconditional samples from the generative model look reasonable (Figure 4). We
visualized the embedding of held out test images by the function f using t-SNE (Maaten
and Hinton, 2008). Interestingly, we see clusters in the embedding space corresponding to
digits, with some overlap for similar digits.

4. Discussion

We presented slice sampling reparameterization gradients that apply to multivariate dis-
tributions without a normalizing constant, and demonstrated the method with synthetic
examples and by fitting a conditional EBM approximate posterior. In future work we will
extend our experimental evaluation of the method, investigate methods to improve VAE
training, and explore additional applications of the method.

6

Slice Sampling Reparameterization Gradients

Acknowledgments

We thank Dougal Maclaurin for valuable discussions. This work was partially funded by
NSF IIS-2007278. D. Zoltowski was supported in part by NIH grant T32MH065214. D. Cai
was supported in part by a Google Ph.D. Fellowship in Machine Learning.

References

Atılım Günes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. The Journal of Machine
Learning Research, 18(1):5595–5637, 2017.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349,
2015.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, and Dale Schuurmans.
Exponential family estimation via adversarial dynamics embedding. In Advances in Neu-
ral Information Processing Systems, pages 10979–10990, 2019.

Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David Blei. Vari-
ational inference via χ upper bound minimization. In Advances in Neural Information
Processing Systems, pages 2732–2741, 2017.

Mikhail Figurnov, Shakir Mohamed, and Andriy Mnih. Implicit reparameterization gradi-
ents. In Advances in Neural Information Processing Systems, pages 441–452, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27:2672–2680, 2014.

Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad
Norouzi, and Kevin Swersky. Your classifier is secretly an energy based model and you
should treat it like one. arXiv preprint arXiv:1912.03263, 2019.

Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques
of algorithmic differentiation. SIAM, 2008.

Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another way to carve up
the variational evidence lower bound. In Workshop in Advances in Approximate Bayesian
Inference, NIPS, volume 1, page 2, 2016.

7

http://github.com/google/jax

Slice Sampling Reparameterization Gradients

Ilyes Khemakhem, Diederik P Kingma, and Aapo Hyvärinen. Variational autoencoders and
nonlinear ICA: A unifying framework. arXiv preprint arXiv:1907.04809, 2019.

Ilyes Khemakhem, Ricardo Pio Monti, Diederik P Kingma, and Aapo Hyvärinen.
ICE-BeeM: Identifiable conditional energy-based deep models. arXiv preprint
arXiv:2002.11537, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-
based learning. Predicting Structured Data, 1(0), 2006.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(Nov):2579–2605, 2008.

David J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge
University Press, USA, 2002. ISBN 0521642981.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte Carlo gra-
dient estimation in machine learning. arXiv preprint arXiv:1906.10652, 2019.

Christian A Naesseth, Francisco JR Ruiz, Scott W Linderman, and David M Blei. Reparam-
eterization gradients through acceptance-rejection sampling algorithms. arXiv preprint
arXiv:1610.05683, 2016.

Radford M Neal. Slice sampling. Annals of statistics, pages 705–741, 2003.

Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. On the anatomy
of MCMC-based maximum likelihood learning of energy-based models. arXiv preprint
arXiv:1903.12370, 2019a.

Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Learning non-convergent
non-persistent short-run MCMC toward energy-based model. In Advances in Neural
Information Processing Systems, pages 5233–5243, 2019b.

Tom Rainforth, Adam R Kosiorek, Tuan Anh Le, Chris J Maddison, Maximilian Igl, Frank
Wood, and Yee Whye Teh. Tighter variational bounds are not necessarily better. In
ICML, 2018.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082,
2014.

Geoffrey Roeder, Yuhuai Wu, and David K Duvenaud. Sticking the landing: Simple, lower-
variance gradient estimators for variational inference. In Advances in Neural Information
Processing Systems, pages 6925–6934, 2017.

Francisco JR Ruiz, Michalis K Titsias, and David M Blei. The generalized reparameteri-
zation gradient. In Advances in neural information processing systems, pages 460–468,
2016.

8

Slice Sampling Reparameterization Gradients

Tim Salimans, Diederik Kingma, and Max Welling. Markov chain Monte Carlo and vari-
ational inference: Bridging the gap. In International Conference on Machine Learning,
pages 1218–1226, 2015.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, volume
135. MIT press Cambridge, 1998.

George Tucker, Dieterich Lawson, Shixiang Gu, and Chris J Maddison. Doubly reparam-
eterized gradient estimators for Monte Carlo objectives. In International Conference on
Learning Representations, 2018.

Arash Vahdat, Evgeny Andriyash, and William G Macready. Undirected graphical models
as approximate posteriors. In International Conference on Machine Learning (ICML),
2020.

James Wilson, Frank Hutter, and Marc Deisenroth. Maximizing acquisition functions for
Bayesian optimization. In Advances in Neural Information Processing Systems, pages
9884–9895, 2018.

9

Slice Sampling Reparameterization Gradients

Appendix A. Related work

Reparameterization gradients We focus here on continuous distributions, for which
many examples of reparameterization gradients exist. “One-liner” reparameterization gradi-
ents use a simple function to transform the base distribution into the desired parameterized
distribution (Kingma and Welling, 2013; Rezende et al., 2014; Mohamed et al., 2019). Next,
the inverse CDF can be used to transform uniform random variables into arbitrary 1D dis-
tributions, and gradients can be computed when evaluating and differentiating the inverse
CDF are numerically tractable. Additional examples of reparameterization gradients are
implicit reparameterization gradients (Figurnov et al., 2018), doubly reparameterized gra-
dients (Tucker et al., 2018), reparameterization of accept/reject sampling (Naesseth et al.,
2016), and generalized reparameterization gradients (Ruiz et al., 2016). Other recent work
has also described reparameterizing MCMC samplers for gradient estimation.

Generative neural samplers are another approach for simulating reparameterized sam-
ples from a complicated distribution, although they are not an MCMC algorithm. In this
approach, random variables are passed through a neural network to generate samples from a
more complicated distribution. This is the approach taken in the generator of a GAN (Good-
fellow et al., 2014). However, this method does not directly apply to generating samples
from an unnormalized distribution with a prescribed energy function, since there is not
a closed form description of the distribution of the generated samples. Additionally, the
parameters of the neural network must be tuned to match the desired distribution through
a complicated optimization process. In contrast, the reparameterized slice sampler directly
samples from a distribution with a prescribed energy function without the need for an
optimization process.

Variational autoencoders Variational autoencoders (VAEs) are a class of deep gener-
ative models fit with amortized variational inference (Kingma and Welling, 2013; Rezende
et al., 2014). The generative model is

z ∼ N (0, I), x | z ∼ N (µθ(z), σθ(z)) (16)

where µθ and σθ are neural networks with parameters θ. The model has typically been fit
using variational inference with an amortized Gaussian approximate posterior qφ(z | z) =
N (µφ(x), σφ(x)) by maximizing the ELBO, although other inference methods and types of
approximate posteriors have been studied.

In VAEs, it has been observed that the approximate posterior may collapse to the prior
distribution (Bowman et al., 2015; Hoffman and Johnson, 2016). A number of papers
have proposed methods to solve this problem and others related to VAE training. One
approach is to the alter the generative model. For example, Dieng et al. (2017) showed
that adding skip connections to the generative model helps avoid posterior collapse and
improves the latent variable representation. We did not investigate if the VAE trained with a
conditional EBM approximate posterior improved posterior collapse. However, we did show
interesting structure given by the embedding function f . Similar to the encoder network
of a standard VAE, which maps to the mean of a multivariate Guassian distributions, this
function provides a low-dimensional representation of the input data. It will be interesting
to compare the representations of these two approaches in follow up experiments.

10

Slice Sampling Reparameterization Gradients

Energy-based models Energy-based models are under increasingly active study. Grath-
wohl et al. (2019) relate classifiers with softmax outputs to EBMs, and propose a method
for jointly training a classifier and generative model. Nijkamp et al. (2019b,a) describe using
SGLD for learning deep EBMs for image data, and provide informative analysis on short
run vs. long run MCMC for training EBMs. We expect that reparamterization gradient
methods for unnoramlized distributions will enable additional use cases for EBMs.

Appendix B. Efficient computation

Importantly, we can compute ∇θL without ever fully representing either of the two Jaco-
bians Jxn(xn+1) and Jθ(xn). In the reverse mode gradient accumulation, the Jacobian
Jxn(xn+1) is always transposed and then post-multiplied by the gradient vector ∇xn+1L.
Using the above formula for the Jacobian, this product is

[Jxn(xn+1)]
T∇xn+1L = [I + u2d∇xn [α+]T + (1− u2)d∇xn [α−]T]T∇xn+1L (17)

= ∇xn+1L+ u2∇xn [α+](dT∇xn+1L) + (1− u2)∇xn [α−](dT∇xn+1L).
(18)

Computing the products right to left only involves manipulating vectors. Next, the trans-
pose of the Jacobian Jθ(xn) is also always post-multiplied by [∇xnL]T such that

[Jθ(xn)]T∇xnL = [u2d∇θ[α+]T + (1− u2)d∇θ[α−]T)]T∇xnL (19)

= u2∇θ[α+](dT∇xnL) + (1− u2)∇θ[α−](dT∇xnL). (20)

Appendix C. ELBO Gradient Derivation

Here we discuss optimizing the ELBO with an unnormalized energy-based model (EBM).
Let the approximate posterior be given by an unnormalized density

qφ(z) =
1

Z(φ)
efφ(z). (21)

The reparameterized ELBO is

L(θ, φ) = Eqφ(z)[log pθ(x, z)− log qφ(z)] (22)

= Ep(ε)[log pθ(x, z(φ, ε))− log qφ(z(φ, ε))] (23)

where z(φ, ε) is a sample generated from the slice sampler with unnormalized density fφ(z)
and the noise ε are the set of random variables u1, u2, and d used to generate the reparam-
eterized samples. The Monte Carlo estimate of the gradient given a sample ε is

∇̂(ε, φ) = ∇φ[log pθ(x, z(φ, ε))− log qφ(z(φ, ε))] (24)

= ∇φ[log pθ(x, z(φ, ε))− fφ(z(φ, ε)) + logZ(φ)]. (25)

This appears to require the gradient of the normalizing constant Z(φ). We can estimate
this gradient using samples generated from qφ(z) via slice sampling. However, we take a

11

Slice Sampling Reparameterization Gradients

different approach. Applying the total derivative (Roeder et al., 2017), we have

∇̂TD(ε, φ) = ∇z[log pθ(x, z(φ, ε))− fφ(z(φ, ε)) + logZ(φ)]∇φz(φ, ε) (26)

+∇φ[log pθ(x, z)− log qφ(z)]. (27)

The components ∇z logZ(φ) and ∇φ log pθ(x, z) are zero. Next, we can ignore ∇φ log qφ(z)
since it has mean zero. With these terms removed, we have the path derivative estimator
of the gradient that does not require the normalizing constant:

∇̂PD(ε, φ) = ∇z[log pθ(x, z(φ, ε))− fφ(z(φ, ε))]∇φz(φ, ε). (28)

This estimator has zero variance when pθ(z | x) = qφ(z | x) and favorable performance
(Roeder et al., 2017). It may be surprising that we can compute low-variance gradients
without the normalization constant. However, inspection of the pathwise gradient tells
we can do just that since the path through z via slice sampling does not depend on the
normalization constant.

Unfortunately, evaluation of the full ELBO does require the normalization constant of
the approximate posterior, which is no longer available.

Appendix D. Additional experiment

We implemented the simulated inference network example from Rainforth et al. (2018),
Section 4. In this example the generative model is

z ∼ N (µ, I), x | z ∼ N (z, I) (29)

where x ∈ RD are the observations and z ∈ RD are the latent variables. We fit the model by
optimizing the ELBO with approximate posterior q(z | z) = N (Ax+b, 23I). The parameters
are the generative parameters µ ∈ RD and the inference network parameters A ∈ RD×D
and b ∈ RD. For a dataset {x}1:N , the optimal parameters (Rainforth et al., 2018) are

µ∗ =
1

N

N∑
i=1

xi, A∗ = I/2, b∗ = µ∗/2. (30)

We simulated N = 1000 samples from this model and fit the generative and inference
network parameters using slice sampling reparameterization gradients. The dimensionality
was D = 20, the mini-batch size as 128, and we computed the slice sampling gradient using
S = 20 samples after a 30 sample burn in. All parameters (true and fit) were initialized
from standard multivariate Gaussian distributions. After optimizing for 1000 iterations,
the fit parameters were very close to the optimal values (Figure 5).

Appendix E. Implementation details

As mentioned in the main text, we implemented the forward slice sampling with numerical
root finding and reverse mode automatic differentiation in JAX Bradbury et al. (2018).
Here we describe three primary components of our implementation.

12

Slice Sampling Reparameterization Gradients

Figure 5: True (∗), fit (̂), and initialized (init) parameters from the simulated inference
network experiment (Rainforth et al., 2018).

Root finding The forward sampling process for the reparameterized slice sampling algo-
rithm requires numerical root finding to identify the slice endpoints. This corresponds to
finding the α+ and α− that satisfy

π(xn + αd; θ)− u1π(xn ; θ) = 0. (31)

Importantly, as mentioned above, we are interested in two specific roots: the roots α− < 0
and α+ > 0 that are closest to zero.

We used a standard bisection algorithm to identify these scalar roots. This corresponded
to running two root finding operations; one bracketed below zero α− ∈ [−a, δ] and one brack-
eted above zero α+ ∈ [δ, a] where δ is a small positive constant. Notably, for multimodal
distributions there may be multiple roots inside the brackets, and the bisection algorithm
will only be guaranteed to find one of these roots (rather than the root closest to zero).
Therefore we first identified the bracket value a with a stepping out procedure. We did this
by stepping out a logarithmically until the bracketing condition was satisfied. Once the
condition was satisfied, we proceeded with the bisection algorithm.

We wrote the root finder using custom code in JAX such that it could be compiled
using jit and batched using vmap. These two features are critical for speed. The jit

compilation makes the root finding fast, and vmap makes it easy and fast to batch the root
finding operation across multiple independent sampling chains.

Forward sampling The forwards sampling process takes as input random noise variables,
the current parameters, and a function that computes the log probability of the distribution
of interest (up to an additive constant). It proceeds with the slice sampling steps, using
the root finding implementation described in the previous subsection to identify the roots.
We also implemented this function to be compiled using jit and batched across multiple
chains using vmap.

Reverse mode gradients We implemented the backwards pass using the efficient com-
putations described in B. Again, we implemented this function to be compiled using jit

and batched across multiple chains using vmap.

13

	Introduction
	Slice sampling reparameterization gradients
	Random-direction slice sampling with numerical slice endpoints
	Reverse mode gradients
	Gradient of the ELBO

	Experiments
	Discussion
	Related work
	Efficient computation
	ELBO Gradient Derivation
	Additional experiment
	Implementation details

