Under review as a conference paper at ICLR 2026

RLVMR: REINFORCEMENT LEARNING WITH VERI-
FIABLE META-REASONING REWARDS FOR ROBUST
LONG-HORIZON AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The development of autonomous agents for complex, long-horizon tasks is a
central goal in Al. However, dominant training paradigms face a critical limitation:
reinforcement learning (RL) methods that optimize solely for final task success
often reinforce flawed or inefficient reasoning paths, a problem we term inefficient
exploration. This leads to agents that are brittle and fail to generalize, as they
learn to find solutions without learning sow to reason coherently. To address this,
we introduce RLVMR, a novel framework that integrates dense, process-level
supervision into end-to-end RL by rewarding verifiable, meta-reasoning behaviors.
RLVMR equips an agent to explicitly tag its cognitive steps—such as planning,
exploration, and reflection—and provides programmatic, rule-based rewards for
actions that contribute to effective problem-solving. These process-centric rewards
are combined with the final outcome signal and optimized using a critic-free policy
gradient method. On the challenging ALFWorld and ScienceWorld benchmarks,
RLVMR achieves new state-of-the-art results, with our 7B model reaching an
83.6% success rate on the most difficult unseen task split. Our analysis confirms
these gains stem from improved reasoning quality, including significant reductions
in redundant actions and enhanced error recovery, leading to more robust, efficient,
and interpretable agents.

1 INTRODUCTION

The quest to build autonomous agents capable of solving complex, long-horizon tasks has gained
significant momentum with the rise of Large Language Models (LLMs) (Wang et al.| |2022; |Zeng
et al., |2024; Bai et al.,|2024). However, dominant training paradigms face a fundamental trade-off. On
one hand, Supervised Fine-Tuning (SFT) on expert trajectories can teach agents efficient behaviors,
but these policies are often brittle and fail to generalize to novel situations (Chu et al.| [2025)). On
the other hand, RL from environmental feedback encourages exploration and can lead to better
generalization, but it typically optimizes for a single, sparse reward signal: final task success.

This reliance on outcome-only rewards raises a critical, yet underexplored question: Are agents
learning to reason coherently, or are they just finding brittle shortcuts to success? Our work
investigates a pervasive issue we term inefficient exploration, where agents are rewarded for
successful outcomes even when their path to success is built on flawed, or redundant reasoning. This
leads to agents that exhibit high rates of repetitive actions and struggle to adapt to unseen tasks,
because their underlying problem-solving process is unsound. Standard RL inadvertently reinforces
any successful trajectory, failing to distinguish between robust and flawed reasoning processes. This
deficiency undermines agent reliability and generalization, especially as tasks grow in complexity.

We argue that to build truly robust and generalizable agents, we must move beyond rewarding only
the final outcome and begin to supervise the reasoning process itself. Inspired by metacognitive
theory (Martinez, [2006), which posits that effective problem-solving depends on “thinking about
thinking”, we propose to directly reward beneficial cognitive behaviors. Our key insight is that
high-level skills like planning, monitoring progress, exploring alternatives, and reflecting on errors
can be operationalized as distinct, verifiable steps within an agent’s reasoning process.

Under review as a conference paper at ICLR 2026

Behavior Output Rank Behavior with Meta-Reasoning Rewards ~ Output Rank
a2, obs response | obs response v 1 L0 obs Tlx action | obs T2‘/ action v 1
obs response obs response X N obs T2‘/ action | obs T3x action X N
CD v TOllOUt * N C> rollout * N
'g' obs response | obs response v 2 'g' obs T3‘/ action | obs T4‘/ action v 2
(a) Standard RLVR (GRPO) (b) RLVMR (Ours)

Figure 1: Comparison of LLM agent RL training paradigms: (a) Standard RL with outcome-only
rewards (e.g., GRPO) inadvertently reinforces trajectories with inefficient or illogical intermediate
reasoning steps. (b) Our RLVMR approach provides dense, verifiable rewards for beneficial meta-
reasoning behaviors (e.g., T1-T4), directly shaping a more robust and coherent reasoning process.

To this end, we introduce Reinforcement Learning with Verifiable Meta-Reasoning Rewards
(RLVMR), a novel framework that integrates dense, process-level supervision into end-to-end
RL. As illustrated in Figure [I} RLVMR contrasts with standard RL by rewarding not only the
final outcome but also the intermediate reasoning steps. Our framework defines a set of core meta-
reasoning behaviors — planning, exploration, and reflection/monitoring — and enables the agent
to articulate its cognitive state through special tags. During online interaction, we use lightweight,
programmatic rules to grant verifiable rewards for these behaviors. For example, an ‘exploration’ tag
is rewarded when the agent discovers a new state, while a ‘reflection’ tag is rewarded when it leads
to the correction of a prior mistake. These process-centric rewards are combined with the global
outcome reward and optimized using a policy gradient method. After a brief “cold-start” supervised
fine-tuning (SFT) phase on only 200 trajectories to learn the tag syntax, the agent is trained entirely
through environmental interaction.

We demonstrate the effectiveness of RLVMR on two challenging long-horizon benchmarks, ALF-
World and ScienceWorld. Our experiments show that RLVMR achieves new state-of-the-art results
across all settings. Notably, on the hardest unseen task split (L2), our 7B model achieves an 83.6%
success rate, and surpasses the performance of the much larger models. In-depth analysis reveals
that these gains are driven by a tangible improvement in reasoning quality: RLVMR-trained agents
exhibit significant reductions in repetitive and invalid actions. This confirms that by rewarding the
process of good reasoning, we create agents that are not only more successful but also more robust,
efficient, and generalizable.

In summary, our contributions are as follows:

1. We identify and analyze a critical inefficient exploration issue in outcome-only end-to-end
RL for long-horizon LLM agents, where spurious state—action correlations override genuine
reasoning, leading to redundant reasoning steps and illogical action loops.

2. We introduce a novel framework, RLVMR, that provides dense, verifiable rewards for
meta-reasoning behaviors like planning, exploration, and reflection, enabling more robust
and efficient problem-solving.

3. We achieve SOTA performance on ALFWorld and ScienceWorld, with in-depth analysis
confirming reductions in redundant actions and improved generalization to unseen tasks.

2 INEFFICIENT EXPLORATION IN LONG-HORIZON AGENTS

This section investigates the phenomenon of “inefficient exploration” in agents designed for long-
horizon tasks. We analyze its detrimental effects on performance, which manifest as brittle efficiency
on previously seen tasks and poor generalization to unseen ones.

2.1 EXPERIMENTAL SETUP

Benchmarks To evaluate foundational capabilities and generalization, we conduct experiments on
the widely-used and challenging ALFWorld benchmark (Shridhar et al.,|2020), which comprises
embodied household tasks. To systematically measure generalization, we define three evaluation
splits based on the original benchmark:

Under review as a conference paper at ICLR 2026

* L0 (seen-L0): seen task variants and seen task categories;
* L1 (unseen-LI): unseen held-out task variants but seen task categories;

* L2 (unseen-L2): unseen held-out task variants and unseen task categories.

L0 and L1 follow the official benchmark splits. For L2, we further partition ALFWorld by task
category, holding out entire categories from training for exclusive use in evaluation.

Training Paradigms We experiment with Qwen2.5-1.5B-Instruct and Qwen?2.5-7B-Instruct models
using the ReAct (Yao et al.,|2023) framework, which alternates between reasoning and acting steps.
We evaluate two dominant training paradigms:

* SFT (Yang et al., 2023} Tang et al., 2023} Xi et al., 2024): A widely adopted paradigm that applies
supervised fine-tuning on high-quality expert trajectories.

* GRPO (Feng et al. |2025a; [Wang et al., 2025b): An end-to-end RL method that optimizes the
policy by comparing the final rewards of multiple trajectories sampled from the same initial state.

Evaluation Metrics We assess performance using the following metrics:

¢ Success Rate (%, T): The percentage of tasks successfully completed by the agent on each
evaluation split.

* Invalid Action Rate (%, |): The proportion of generated actions that are invalid in the current
state, reflecting basic comprehension and error frequency.

* Repetitive Action Rate (%, |): The percentage of steps where the agent executes a meaningless
repeated action, as defined in prior work (Yuan et al., 2025} |Fu et al., [2025; [Feng et al.,2025b).
This metric quantifies inefficient exploration, indicating that the agent’s policy may be overfitting
to familiar action sequences rather than being guided by robust reasoning.

2.2 THE INEFFICIENT EXPLORATION PROBLEM

While aggregate statistics show that methods like GRPO can improve agent success rates, a closer
look at individual trajectories reveals a critical flaw: the inefficient exploration problem. Even
when an agent successfully completes a task, its path to a solution is often littered with redundant
or illogical steps. This behavior, illustrated qualitatively in Appendix |Al indicates a gap between
achieving a correct outcome and demonstrating robust reasoning. Our large-scale empirical results
(Figure [2) quantify the pervasiveness of this issue and expose a fundamental trade-off in current
training paradigms.

SFT creates efficient but brittle policies that fail to generalize. Supervised Fine-Tuning (SFT)
models achieve high success rates and efficiency on tasks they have seen during training. For instance,
the 7B SFT model’s success rate on in-distribution tasks (LO) jumps from 23.1% (ReAct baseline)
to 63.3%, with a low invalid action rate of 6.2%. However, this performance is brittle. On the
most challenging out-of-distribution split (L2), the model’s success rate plummets to 37.5%, and its
repetitive action rate nearly doubles. This reveals that when faced with novel situations, the agent falls
into non-productive loops, demonstrating that SFT teaches mimicry without instilling a generalizable
reasoning process.

GRPO improves generalization but fosters inefficient, flawed reasoning. In contrast, reinforce-
ment learning with outcome-only rewards (GRPO) achieves substantially better generalization, with
the 7B model attaining success rates of 77.3% on L1 and 52.3% on L2. This success, however,
comes at the cost of severe inefficiency, validating our core hypothesis. The agent’s performance
is undermined by high invalid and repetitive action rates across all difficulty levels; on the hardest
L2 tasks, the 7B model’s repetitive action rate is a staggering 31.2%. By optimizing solely for task
success, GRPO reinforces any path to a positive outcome, even those built on illogical steps and
inefficient exploration.

Under review as a conference paper at ICLR 2026

=3
S

100

M Vanilla W SFT M GRPO B Vanilla B SFT B GRPO 60 MW Vanilla
IS 793 825 S M SFT
s %0 S 80| 7s Z M GRPO
< 2 g 40
= 60 S 60 ‘g
b 3 2
£ 40 s 40 £
8 = £ 20
5 54 151
A 20 £ 20 &
4
0 0 0
L0 L1 L2
(a) Success Rate (1.5B) (b) Invalid Actions (1.5B) (c) Repetitive Actions (1.5B)
100 B Vanila W SFT B GRPO 100 B Vanila W SFT W GRPO 60
- 793 773 S s
g ™ s % z
< P 40
2 5 60 £
[54 <
7] < o
4 < 40 .z
8 5 25.4 g 2
=1 g & 1]
g 2 20 | 130 148 147 133135 5
62 55 6.3 e~
0 0
L0 L1 L2 Lo L1 L2
(d) Success Rate (7B) (e) Invlaid Actions (7B) (f) Repetitive Actions (7B)

Figure 2: Performance on ALFWorld. While SFT excels on seen tasks (L0) but fails to generalize,
GRPO achieves better generalization at the cost of significant inefficiency. This highlights a funda-
mental trade-off between brittle efficiency and inefficient generalization.

Scaling model size does not fix the underlying reasoning deficiencies. While scaling from a 1.5B
to a 7B model improves overall success rates, it does not resolve this fundamental issue. Notably,
while the 7B GRPO model is more successful on L2 tasks than its 1.5B counterpart (52.3% vs.
29.7%), it also exhibits a higher repetitive action rate (31.2% vs. 27.1%). This suggests a larger
model’s enhanced capacity can be misdirected to more effectively exploit flawed strategies rather
than to reason more coherently. This finding underscores that the limitation is rooted in the training
objective itself, not merely model capacity, and that simply increasing model size is not a panacea.

Current paradigms force a trade-off between brittle efficiency and inefficient generalization.
Our analysis reveals a core dilemma: SFT produces efficient but brittle policies that fail to generalize,
while GRPO achieves generalization at the cost of reinforcing inefficient and logically flawed
reasoning. Neither paradigm effectively teaches the agent how to reason well. This establishes a
clear need for a new framework that moves beyond sparse, outcome-only signals to provide direct,
process-level supervision. By rewarding coherent and efficient reasoning steps, we can guide agents
to not only find solutions but to do so robustly and intelligently — the precise goal of our work.

3 METHODOLOGY: RLVMR

Our methodology equips LLM agents with an explicit meta-reasoning framework to mitigate inef-
ficient exploration in complex tasks. As shown in Figure[3] the agent is trained in two phases: an
initial SFT stage to bootstrap the agent’s meta-reasoning capabilities, followed by a reinforcement
learning phase that uses a custom policy optimization algorithm to refine these skills based on task
outcomes and process-centric rewards.

Cold Start: Initial Meta-Reasoning Acquisition via SFT To equip the base LLM with the
foundational ability to generate structured meta-reasoning, we begin with a supervised fine-tuning
phase. This step is crucial, as reasoning patterns learned during subsequent reinforcement learning
are heavily influenced by the base model’s capabilities. The SFT data is constructed as follows:

1. We collect a dataset of successful task trajectories containing only observation-action pairs.

2. We employ a more powerful teacher model (e.g., GPT-4) to annotate these trajectories with
our meta-reasoning tags, inferring the most likely cognitive step preceding each action. This
process creates synthetic, reasoning-rich expert demonstrations.

Under review as a conference paper at ICLR 2026

Rollout Trajectories
Cold Start

Expert Trajectory

multi-trun
[N
H
[
N
E
o
wn
H
wn
N
n
N
~

01, 0@y, ...0M, A0

®
i
.
-
N
'
N
w
'
w

Generate

& Meta-reasoning
Types
g2
O
Group Relative Advantage Computing
Annotated Trajectory
o T ar on T Meta-reasoning Meta-reasoning Meta-reasoning Trajectory Outcome Reward
171 GL -OM> Sag M Type (a) Type (b) Type (c) Grouping
Grouping Grouping Grouping
s — — =
SFT &= e @
e © G-G © P0oa000

Figure 3: A schematic diagram of the RLVMR framework, which consists of two training phases:
cold start and reinforcement learning. Our method provides rule-verifiable feedback signals based on
the final outcome and the relative advantages of different types of meta-reasoning behaviors.

3. The target LLM is fine-tuned on these annotated trajectories, learning to imitate the expert’s
meta-reasoning and action generation patterns.

3.1 META-REASONING FRAMEWORK

We begin by formalizing the agent-environment interaction as a Markov Decision Process. We then
introduce a novel meta-reasoning framework that extends existing agent architectures by operational-
izing principles from cognitive science.

Task Formulation as a Markov Decision Process We formalize the interaction between an agent
and its environment in long-horizon tasks as a Markov Decision Process (MDP). An MDP is defined
by atuple (S, 4, O, F, R), where S is the set of environment states, A is the action space, O is the
observation space, F' : S x A — S is the state transition function, and R : S x A — R is the reward
function. In our setting, which is tailored for LLM agents, the state, action, and observation spaces
(S, A, O) are all represented as natural language sequences over a finite token vocabulary.

At each timestep ¢, the agent’s policy my generates a thought process th; and an action a; based on
the current state s;: (thy, ar) ~ wg(- | s¢). The agent’s interaction with the environment produces a
trajectory 7 = {(01,th1,a1), (02,tha,as),. .., (o, th,, a,)}. In many long-horizon tasks, reward
signals are sparse, typically provided only as a final outcome reward R(7) at the end of an episode.
This sparsity poses significant challenges for credit assignment. The agent’s objective is to learn an
optimal policy 7y that maximizes the expected cumulative reward:

max Ern, [R(T)]. (H

Operationalizing Meta-Reasoning in LLM Agents Our approach is grounded in metacognitive
theory (Martinez, [2006; [Lail [2011), which emphasizes “thinking about thinking”. Metacognition
comprises two key components: metacognitive knowledge (an agent’s self-awareness of its own
reasoning strategies) and metacognitive regulation (the active control of these processes, including
planning, monitoring, and adaptive revision). This theoretical lens suggests that for LLM agents
to solve complex tasks, they require not just domain knowledge but also the capacity for dynamic
planning, self-monitoring, and creative exploration.

To operationalize these principles, we extend the ReAct framework. While ReAct interleaves
reasoning and actions (e.g., “Think: ..., Act: ...”), it treats reasoning as a monolithic process. We
refine this by introducing a structured set of meta-reasoning tags to explicitly represent distinct
cognitive functions. This decouples reasoning from actions and enables fine-grained analysis and

Under review as a conference paper at ICLR 2026

supervision. Specifically, we define four meta-reasoning tags, each enclosed in XML-style tags (e.g.,
<planning>), while all actions are contained within the <action> tag.

* Planning (<planning>): Decomposes the task into high-level steps to formulate an
overall strategy. Used at the start of a task or when replanning is needed.

* Exploration (<explore>): Generates hypotheses or options to navigate uncertainty or
bottlenecks, encouraging creative problem-solving.

* Reflection (<reflection>): Reviews history to analyze errors and formulate corrective
actions. Typically triggered after unsuccessful attempts.

* Monitoring (<monitor>): Tracks task progress against the overall plan, ensuring actions
remain aligned with subgoals. Applied during routine execution.

3.2 META-REASONING-AWARE REWARD SHAPING

During reinforcement learning, we guide the agent with a composite reward signal that combines task
completion with the quality of the reasoning process. This signal comprises a sparse outcome reward
and a dense, process-based meta-reasoning reward.

Outcome Reward (R(7)): A binary signal awarded at the end of a trajectory: R(7) = r, for task
success and 0 otherwise, where r; is a positive constant.

Meta-Reasoning Reward (-}

beneficial behaviors.

R): A dense reward assigned at each step ¢ to incentivize locally

* Planning Reward (7planning): Awarded for a <planning> step if the trajectory succeeds.

» Exploration Reward (7cxplore): Awarded if the current action targets a new object or
location, discouraging redundancy.

* Reflection Reward (7cfection): Awarded if a <reflection> step is followed by a
corrective action after a sequence of failures.

Format Reward (r{ormat): A penalty, —Aformat, is applied if the model’s output at step ¢ does not
conform to the expected <tag>...</tag><action>...</action> structure.

The total step-level reward is the sum of the process-based rewards: r; = rME plormat,

3.3 GROUP RELATIVE POLICY OPTIMIZATION WITH META-REASONING (GRPO-MR)

To effectively leverage our composite reward signal, we introduce Meta-Reasoning Group Policy Op-
timization (GRPO-MR). GRPO-MR computes a step-level advantage by combining global trajectory
performance with local, context-aware reasoning quality.

Trajectory-level Relative Advantage: For a batch of K trajectories collected from the same
environment, we first calculate a normalized trajectory-level advantage to capture overall performance:

AZraj _ R(mx) — ,UR7)
OR

where pur and o are the mean and standard deviation of outcome rewards across the batch.

Meta-reasoning Level Relative Advantage: The core of GRPO-MR is the computation of a context-
aware advantage. We group all steps within a batch that share the same meta-reasoning tag (e.g., all
<explore> steps) and normalize their rewards within that group:

MR

T — Hta,

MR t,t g

Ao = = — 3)

tag

where fitag and otag are the mean and standard deviation of meta-reasoning rewards for all steps with

that specific tag. The final step-level advantage A; is a weighted combination of these two signals:
Ar=a- AW 4 (1—-a)- AMR @)

t,tag’

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on the benchmarks. We report the success rate (%) on seen (LO:
seen task variants and categories) and unseen (L1: unseen task variants but seen task categories; L2:
unseen task variants and categories) task variations. We also report the average cumulative reward
(score) on the ScienceWorld benchmark.

ALFWorld ScienceWorld
Model Method “y0™ 11 12 Lo Ll L2
succ. succ. succ. succ. score succ. score succ. score
GPT-40 ReAct 573 660 688 454 543 492 570 410 520
DeepSeck-V3 ReAct 602 659 539 273 391 352 430 265 37.1
DeepSeck Rl ReAc 688 702 673 22 320 34 395 91 319

AgeniGym ~ SFT4RL ~ 766~ 633 ~ - ~ 469 563 336 452 - i

ReAct 113 137 102 12 90 08 78 08 74

+ SFT 430 387 176 203 309 180 278 125 209

+ETO 641 664 258 391 473 227 298 156 234

Qwen2.5-1.5B +GLIDER 66.0 68.8 352 402 502 258 320 195 251
+ GRPO 76.6 711 297 21.1 317 137 225 109 212
+ GiGPO 86.7 832 480 258 356 152 228 47 112
+RLVMR 89.1 879 563 469 603 344 452 265 339

ReAct 23.1 285 270 78 174 113 196 63 165
+ SFT 633 57.0 375 367 435 320 416 234 322
+ ETO 703 742 516 625 712 406 504 281 35.0

Qwen2.5-7B +GLIDER 754 746 531 629 688 414 528 258 325
+ GRPO 793 773 523 49.1 61.8 30.1 431 266 343
+ GiGPO 89.5 902 672 534 692 352 507 258 332
+RLVMR 914 918 836 672 778 43.0 594 322 49.1

ReAct 195 223 176 86 188 11.7 199 11.7 203
+ SFT 625 609 391 398 476 30.1 398 223 326
+ ETO 69.5 675 473 570 643 368 452 293 354

Llama3.1-8B + GLIDER 727 734 508 644 712 387 538 285 356
+ GRPO 73.0 70.7 453 456 552 288 40.1 258 337
+ GiGPO 86.0 87.1 688 602 735 39.1 552 30.1 423
+RLVMR 922 91.0 832 711 803 492 637 38.7 512

where o € [0,1] is a hyperparameter balancing the influence of the global outcome and local
reasoning quality. Finally, we optimize the policy 7y using a clipped surrogate objective with KL
divergence regularization:

Lﬁna] = Et [min (Tt(e)At, clip(rt(e), 1-— €, 1+ G)At)] —)\KLDKL(T"GHﬂ'ref), (5)

where () is the importance sampling ratio, € is the clipping hyperparameter, and Ak, controls the
KL penalty against a reference policy 7.

4 EXPERIMENT

4.1 MAIN RESULTS

In this section, we present the core experimental results to evaluate the effectiveness of our proposed
RLVMR. In addition to ALFWorld, we also conduct experiments on ScienceWorld (Wang et al.,
2022), which focuses on text-based scientific experimentation.

We compare our approach with two major categories of advanced RL training methods in addition to
SFT: (1) Offline RL, including (i) ETO (Song et al.|[2024), which iteratively refines actions using
step-level feedback along trajectories; (ii)) GLIDER (Hu et al.,|2025b), which decomposes complex
tasks into coherent sub-tasks to improve transferability. (2) Online End-to-end RL, including (iii)
Multi-turn GRPO (Wang et al., |2025b), which adapts the original GRPO (Shao et al., [2024])) for
online multi-turn RL tasks; (iv) GiIGPO (Feng et al.l 2025b), which introduces a two-level structure
for finer-grained credit assignment. For broader comparison, we also report the performance of

Under review as a conference paper at ICLR 2026

%)
o

40

B SFT B SFT
= B GRPO S B GRPO
> H RLVMR % 30 | M RLVMR
£ 20 188 =
] 3
= 18.4
2 ::) 20
= =
2'7;‘ 10 g 10 10.7
g
i I 5 I 44 57
. . I
(a) Invalid Actions (b) Repetitive Actions
30 r@ser 40 rErsET
= B GrPO S B GrPO
S B RLVMR % 30 | l RLVMR
g &
=} =
B 14.8 S
<
2 N
= £
= =
E &
=4

Lo L1 L2

(c) Invlaid Actions (7B) (d) Repetitive Actions (7B)

Figure 4: Exploration efficiency of RLVMR compared to SFT and GRPO baselines on ALFWorld.

GPT-40, DeepSeek-V3/R1, and AgentGym 2024). Detailed information is provided in
Appendix

RLVMR achieves new SOTA performance across all benchmarks and model sizes. As listed
in Table[T] our RLVMR framework consistently sets a new standard for performance, outperforming
all baseline methods on both ALFWorld and ScienceWorld. With the Qwen-7B model, RLVMR
achieves success rates of 91.4% on seen ALFWorld tasks and 67.2% on seen ScienceWorld tasks,
surpassing the next-best method, GiGPO. This consistent superiority highlights the broad applicability
and effectiveness of integrating verifiable meta-reasoning rewards into the RL training loop, leading
to more capable and successful agents.

Rewarding meta-reasoning significantly enhances generalization to unseen tasks. A primary
contribution of this work is addressing the inefficient exploration issue to improve generalization.
Our results validate this claim, showing that RLVMR excels in novel scenarios, especially on the
most challenging Unseen-L2 split, which involves entirely new task categories. On ALFWorld’s L2
split, our 7B model reaches an impressive 83.6% success rate, a substantial 16.4 percentage point
improvement over the strongest baseline (GiGPO). Similarly, on ScienceWorld’s L2 split, RLVMR
outperforms all other methods. This demonstrates that by learning how to reason effectively—rather
than just memorizing solutions—our agent develops more robust and transferable problem-solving
skills, leading to superior performance on unfamiliar challenges.

4.2 ANALYSIS

Our analysis reveals that RLVMR’s verifiable meta-reasoning rewards lead to superior exploration
and training efficiency, enabling the agent to find more direct solutions with greater stability than
strong baselines. Unless otherwise stated, we report results based on Qwen2.5-1.5B on ALFWorld.

Exploration Efficiency We analyze agent exploration efficiency by measuring invalid and repetitive
actions (Figure[d). RLVMR’s verifiable meta-reasoning rewards cultivate more efficient problem-
solving strategies, significantly reducing flawed or redundant steps. On seen tasks, our 1.5B model
slashes the invalid action rate from 18.1% (GRPO) to 11.1% and the repetitive action rate from 18.4%
to 6.1%. This efficiency gain is robustly maintained on novel challenges; while GRPO’s repetitive
action rate worsens on the hardest unseen tasks (from 21.4% to 27.1%), RLVMR’s rate remains
controlled at 5.7%. This demonstrates that RLVMR learns generalizable problem-solving principles
rather than overfitting to familiar paths.

Under review as a conference paper at ICLR 2026

ALFWORLD - Success Rate ALFWORLD - Episode Length
1.0
30
H
0.8 2
25
g E
06 =]
a 220
Soa g
5 15
» 8
0.2 @
o
Wio
0.0
0 20 40 60 80 100 120 140 0 20 40 60 80 100
Step Step
—— RLVMR GiGPO == GRPO

Figure 5: Success rate and step count curves of different approaches on ALFWorld during RL training.

Training Efficiency We evaluate training efficiency via learning stability (convergence) and policy
quality (action sequence length) in Figure[5] Agents trained with RLVMR learn more direct solutions
and converge faster and more stably than baselines. In contrast, baselines like GRPO are unstable
and produce longer solution paths. This stems from its process-level rewards, which provide a clearer
and more robust learning signal that prevents inefficient and unproductive loops.

5 RELATED WORK

LLM Reinforcement Learning RL is widely used to align LLMs with human preferences (RLHF,
DPO) (Ouyang et al.| [2022; Rafailov et al.| 2023). Beyond alignment, RL has been applied to
improve reasoning and emotional intelligence (Hu et al., 2025a; Muennighoff et al., 2025; [Wang
et al., 2025a)). Group-based methods such as GRPO, Dr.GRPO, and DAPO estimate advantages from
multiple samples of the same prompt, removing the critic and improving efficiency over actor-critic
approaches like PPO (Feng et al., [2025a} |Liu et al.l 20255 [Yu et al.| 2025} |Schulman et al., |[2017).
These methods achieve strong results on mathematical reasoning, search, and tool use (Yu et al.,
2025} Hu et al.| [2025a). However, applying RL to multi-turn, long-horizon tasks remains difficult due
to sparse, delayed rewards — a challenge we address (Wang et al.,2025b).

LLM Agents LLMs increasingly act as agents for code generation, web interaction, embodied
control, and affective tasks (Huang et al., [2023}; |Zhang et al.| |2024; [Bai et al.| 2024; Agashe et al.|
2024; Abuelsaad et al.2024;|Zeng et al., |[2024} Qiao et al.| 2024} |Fu et al., |2025; [Zhang et al., 2025)).
Early systems relied on prompting and external tools (e.g., ReAct) (Yao et al., [2023} |Shinn et al.|
2023)), but smaller models often lack strong reasoning; SFT can improve decisions (Zhang & Zhang,
2024; X1 et al., 2024} |Qin et al., [2024)). Other work studies single-step or offline RL (Yu et al.,2024;
Xiong et al.,[2024; Zhou & Zanette}, 2024), while recent efforts train agents end to end with online
RL, learning directly from interaction and reducing reliance on complex data preparation or step-
level reward models (Wang et al., [2025b} |[Feng et al., 2025b). Despite progress, fine-grained credit
assignment and generalization remain challenging (Wang et al., [2025b). We employ reward shaping
grounded in verifiable meta-cognitive behaviors to promote effective reasoning and robustness.

6 CONCLUSION

We tackled the challenge of inefficient exploration in long-horizon agents by introducing RLVMR, a
new framework that guides agents using process-level supervision. Instead of relying solely on sparse
success-based rewards, RLVMR provides dense, verifiable feedback for key reasoning behaviors like
planning, exploration, and reflection. Our approach combines a lightweight initialization phase with
end-to-end training to develop more effective and adaptable agents. Experiments on ALFWorld and
ScienceWorld show that RLVMR achieves state-of-the-art performance, with better generalization to
new tasks and noticeable improvements in reasoning quality—fewer redundant actions and better
recovery from mistakes. These results highlight the value of directly supervising reasoning steps.
Future research could extend RLVMR to multi-modal environments, explore adaptive reward mecha-
nisms that dynamically adjust to task complexity, and apply the framework to real-world domains
such as robotics and software engineering.

Under review as a conference paper at ICLR 2026

REFERENCES

Tamer Abuelsaad, Deepak Akkil, Prasenjit Dey, Ashish Jagmohan, Aditya Vempaty, and Ravi Kokku.

Agent-e: From autonomous web navigation to foundational design principles in agentic systems.
arXiv preprint arXiv:2407.13032, 2024.

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human. arXiv preprint arXiv:2410.08164,
2024.

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. Advances in
Neural Information Processing Systems, 37:12461-12495, 2024.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, 1l generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025a.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025b.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang,
Jingang Wang, Xunliang Cai, and Weiran Xu. Agentrefine: Enhancing agent generalization through
refinement tuning. arXiv preprint arXiv:2501.01702, 2025.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025a.

Zican Hu, Wei Liu, Xiaoye Qu, Xiangyu Yue, Chunlin Chen, Zhi Wang, and Yu Cheng. Divide
and conquer: Grounding LLMs as efficient decision-making agents via offline hierarchical rein-
forcement learning. In Forty-second International Conference on Machine Learning, 2025b. URL
https://openreview.net/forum?id=pdNt ji3ktF.

Dong Huang, Jie M Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agent-
coder: Multi-agent-based code generation with iterative testing and optimisation. arXiv preprint
arXiv:2312.13010, 2023.

Emily R Lai. Metacognition: A literature review. 2011.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Michael E Martinez. What is metacognition? Phi delta kappan, 87(9):696—699, 2006.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730-
27744, 2022.

Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang,
Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model.
Advances in Neural Information Processing Systems, 37:114843-114871, 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. In ICLR, 2024.

10

https://openreview.net/forum?id=pdNtji3ktF

Under review as a conference paper at ICLR 2026

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728-53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634-8652, 2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for llm agents. arXiv preprint arXiv:2403.02502, 2024.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Peisong Wang, Ruotian Ma, Bang Zhang, Xingyu Chen, Zhiwei He, Kang Luo, Qingsong Lyv,
Qingxuan Jiang, Zheng Xie, Shanyi Wang, Yuan Li, Fanghua Ye, Jian Li, Yifan Yang, Zhaopeng
Tu, and Xiaolong Li. Rlver: Reinforcement learning with verifiable emotion rewards for empathetic
agents, 2025a. URL https://arxiv.org/abs/2507.03112.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Coté, and Prithviraj Ammanabrolu. Scienceworld: Is
your agent smarter than a Sth grader? arXiv preprint arXiv:2203.07540, 2022.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in 1lm
agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025b.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen
Yang, Chenyang Liao, Xin Guo, Wei He, et al. Agentgym: Evolving large language model-based
agents across diverse environments. arXiv preprint arXiv:2406.04151, 2024.

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu, Xun Wang, Ke Wang, Cheng Li, Wei Peng,
and Sujian Li. Watch every step! 1lm agent learning via iterative step-level process refinement. In
EMNLP, 2024.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching
large language model to use tools via self-instruction. Advances in Neural Information Processing
Systems, 36:71995-72007, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Yuanqing Yu, Zhefan Wang, Weizhi Ma, Zhicheng Guo, Jingtao Zhan, Shuai Wang, Chuhan Wu,
Zhiqiang Guo, and Min Zhang. Steptool: A step-grained reinforcement learning framework for
tool learning in llms. 2024.

11

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2507.03112

Under review as a conference paper at ICLR 2026

Siyu Yuan, Zehui Chen, Zhiheng Xi, Junjie Ye, Zhengyin Du, and Jiecao Chen. Agent-r: Training
language model agents to reflect via iterative self-training. arXiv preprint arXiv:2501.11425, 2025.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for llms. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 3053-3077, 2024.

Bang Zhang, Ruotian Ma, Qingxuan Jiang, Peisong Wang, Jiaqi Chen, Zheng Xie, Xingyu Chen,
Yue Wang, Fanghua Ye, Jian Li, Yifan Yang, Zhaopeng Tu, and Xiaolong Li. Sentient agent
as a judge: Evaluating higher-order social cognition in large language models, 2025. URL
https://arxiv.org/abs/2505.02847.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation with
tool-integrated agent systems for real-world repo-level coding challenges. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pp. 13643-13658. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
ACL-LONG.737. URL https://doi.org/10.18653/v1/2024.acl-long.737.

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
In Findings of the Association for Computational Linguistics ACL 2024, pp. 3132-3149, 2024.

Yifei Zhou and Andrea Zanette. Archer: training language model agents via hierarchical multi-turn
rl. In Proceedings of the 41st International Conference on Machine Learning, pp. 62178-62209,
2024.

12

https://arxiv.org/abs/2505.02847
https://doi.org/10.18653/v1/2024.acl-long.737

Under review as a conference paper at ICLR 2026

A CASE STUDY OF INEFFICIENT EXPLORATION

The following is a trajectory segment of a vanilla GRPO-trained agent performing a novel task—
put two keychains in the safe — in ALFWorld (corresponding to our L2 split). By step 7, the agent
has already arrived at dresser 1. However, we observe that in the subsequent steps, the agent falls into
a sequence of inefficient decisions: its next intention is to find the second keychain, yet it persistently
tries to go to dresser 1 for several steps, disregarding the fact that it is already there. This indicates
that its policy mainly reflects the action distribution present in the training data, rather than allowing
the reasoning process itself to truly regulate decision-making. Although the agent can form relatively
effective action strategies for completing tasks, its capacity for critically evaluating its own behavior
and understanding the underlying task requirements remains limited. This suggests that the agent has
not truly acquired the reasoning patterns necessary for robust task-solving.

A trajectory segment of an agent trained with GRPO

Step 7

Observation: You arrive at dresser 1. On the dresser 1, you see a box 1, a creditcard 1, a
keychain 2, a keychain 1, a laptop 1, a statue 1, and a tissuebox 2.

Reasoning: The current situation is that I am at dresser 1, which has multiple items including
a keychain 1, a keychain 2, a creditcard 1, etc. To complete the task of putting two keychains
in the safe, [need to select one of these keychains from the dresser.

Action: take keychain 1 from dresser 1

Step 8

Observation: You pick up the keychain 1 from the dresser 1.

Reasoning: The current situation is that I am at dresser 1 with the keychain 1 in my
possession. To put two keychains in the safe, I need to find another keychain and then move
both keychains to the safe.

Action: go to dresser 1

Step 9

Observation: Nothing happens.

Reasoning: The player has been in the room for several steps but has not yet interacted with
the safe or taken any keychains. The safe is closed initially, which might need interaction to
open it.

Action: go to dresser 1

Step 10

Observation: Nothing happens.

Reasoning: The previous steps were not successful in opening the safe or taking the
keychains. Let’s try another approach.

Action: go to dresser 1

Step 11

Observation: Nothing happens.

Reasoning: The user has taken all the steps necessary to obtain both keychains but has yet to
actually put them into the safe. The last known location of the keychains was on the dresser
before the attempt to open the safe failed (in Observation 8). To complete the task, the user
needs to move one or both keychains to the safe before attempting to open it again.

Action: move keychain 1 to safe 1

Observation: Nothing happens.

This qualitative example highlights how an ostensibly “successful” policy can still waste a large
number of steps on redundant or illogical moves.

13

Under review as a conference paper at ICLR 2026

B SETUP DETAILS

B.1 DATASET DETAILS

ALFWorld is a household task environment that requires agents to explore rooms and employ
common-sense reasoning to accomplish tasks, such as “put the pencil on the desk”. The environment
provides feedback on whether the agent successfully completes the task within a given number of
steps. ALFWorld describes the environment in purely textual form and supplies a reward signal
indicating only the final task completion status.

ScienceWorld is a text-based virtual environment designed as a comprehensive testbed for evaluating
and enhancing scientific reasoning abilities in Al systems. It features tasks spanning 10 scientific
domains and 30 subcategories, simulating a broad range of experiments found in elementary science
curricula, including state changes of matter, measurement, electricity, life sciences, plant growth,
chemical reactions, genetics, among others. Each task involves multiple subgoals, and the final
reward is computed based on the completion of these subgoals. However, to better reflect real-world
scenarios, we only use the final reward and disregard intermediate rewards. Notably, some tasks
in ScienceWorld require agents to make conclusive judgments based on experimental outcomes or
common sense; a task is considered successful only if the agent provides the correct final answer.

Both ALFWorld and ScienceWorld offer “seen” and “unseen” variants for evaluating generalization
capabilities. To further assess the agents’ robustness and generalization, we define three difficulty
levels (LO, L1, L2), with L2 comprising entirely held-out task types. Specifically, for ALFWorld, we
designate Cool & Place and Pick Two & Place as held-out tasks; for ScienceWorld, the final task
type of each topic is reserved for unseen evaluation.

In the ALFWorld environment, since only the final task success signal is provided, we evaluate
model performance using the average success rate (succ.). In contrast, the ScienceWorld environment
offers more fine-grained step rewards, enabling the agent to obtain immediate rewards based on the
importance of the steps completed, even without achieving the final goal. Therefore, in addition to
the average success rate (succ.), we also report the average cumulative reward (score).

B.2 IMPLEMENTATION DETAILS

We conducted experiments on both the Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct models.
During the cold start phase, we set the batch size per GPU to 16, used a learning rate of 1 x 10~°, and
trained for 5 epochs. For the RL phase, we adopted the veRL framework with necessary modifications.
The batch size per GPU was also set to 16. At each training step, we sampled from 16 distinct
environments, with each environment rolling out 8 trajectories.

The weights for outcome advantage and meta-reasoning advantage were both set to 0.5 by default.
To penalize outputs that did not adhere to the required format, we applied a reward penalty of
—0.1, where an output was considered valid only if it included at least one meta-reasoning tag (e.g.,
(reflection)) and one action tag (e.g., (action)). The KL regularization coefficient was set to 0.01.
For all environments, the maximum number of steps per episode was fixed at 30. In the cold-start
phase, we performed supervised fine-tuning on 200 trajectories for 5 epochs. In the RL training stage,
our method was run for 100 epochs, whereas RL-based baselines were trained for 150 epochs.

AgentGym is trained on Llama-2-Chat-7B, first with behavior cloning on the AgentTraj (Xi et al.}
2024) dataset from multiple environments, and then further improved via exploration and self-
evolution on a broader instruction set.

C DETAILED EXPERIMENT RESULTS

We further report the success rates of different methods on various tasks in ALFWorld. Table [2]
provides the results using the Qwen2.5-1.5B model as the base model, while Table [3| presents the
results using the Qwen2.5-7B model. Additionally, we also evaluated another model from a different
family, Llama3.1-8B, and the results are shown in Table] As shown in the tables, RLVMR generally
outperforms other methods across all tasks, and particularly exhibits strong performance in more

14

Under review as a conference paper at ICLR 2026

complex tasks. This demonstrates that RLVMR, by rewarding high-quality reasoning behaviors,
significantly enhances the robustness and adaptability of agents in multi-step interactions.

Model Method Pick Look Clean Heat Cool Pick2 All
ReAct 23.1 18.3 10.8 8.7 3.5 0.0 13.7
+SFT 432 420 359 332 294 297 387
+ETO 73.6 46.3 66.2 683 62.8 55.6 66.4

Qwen2.5-1.5B +GLIDER 78.8 58.2 63.6 737 61.6 66.1 6838
+GRPO 80.3 55.6 88.1 762 620 721 71.1
+GiGPO 92.8 66.5 90.7 909 802 738 832
+RLVMR 952 78.8 912 902 839 77.6 879

Table 2: Success rates on ALFWorld using Qwen2.5-1.5B model.

Model Method Pick Look Clean Heat Cool Pick2 All
ReAct 43.1 332 18.7 164 202 12.8 28.5
+SFT 70.8 63.0 61.1 46.3 49.7 332 570
+ETO 882 70.5 82.3 83.6 71.0 512 742

Qwen2.5-7B +GLIDER 89.6 72.1 839 816 695 530 746
+GRPO 90.2 76.7 8.0 80.1 683 564 773
+GiGPO 91.7 859 933 903 89.0 836 902
+RLVMR 953 882 90.1 924 898 86.7 9138

Table 3: Success rates on ALFWorld using Qwen2.5-7B model.

Model Method Pick Look Clean Heat Cool Pick2 All
ReAct 40.3 30.1 17.8 139 195 9.3 22.3
+SFT 70.8 69.0 58.6 477 589 404 60.9
+ETO 83.3 64.5 76.9 73.0 664 462 67.5

Llama3.1-8B +GLIDER 87.7 71.2 78.0 795 682 49.7 734
+GRPO 87.0 759 828 740 672 550 707
+GiGPO 90.3 875 90.1 852 836 825 §7.1
+RLVMR 935 90.0 865 915 865 835 910

Table 4: Success rates on ALFWorld using Llama3.1-8B model.

D PSEUDOCODE OF RLVMR

We present the pseudocode for the RLVMR training procedure in Algorithm I} and the pseudocode
for computing the relative advantage of composite groups in Algorithm[2] Additionally, we provide
the pseudocode for computing meta-reasoning rewards in Algorithm 3]

E TRAINING CURVES ON SCIENCEWORLD

We also report the success rate curves and average step counts of different RL training methods on
ScienceWorld, as shown in Figure[6]

Counterintuitively, when training GRPO or GiGPO on ScienceWorld, the average action steps do
not decrease as success rates improve; in some cases, the number even rises. This may be because
ScienceWorld tasks require the agent not only to plan, explore, and reflect, but also to connect
scientific theories to concrete actions, which smaller models may not perform sufficiently well.
Early in training, agents often terminate trajectories early with incorrect answers before sufficient
experimentation. As training progresses, these unproductive trajectories are reduced, leading to an

15

Under review as a conference paper at ICLR 2026

Algorithm 1 RLVMR: Reinforcement Learning with Verifiable Meta-Reasoning Rewards

Require: Policy 7y, Environment £, Reward function R, Hyperparameter Ape,
Ensure: Optimized policy parameters 6

1: for iterationt =1,2,...,7T do

2: Initialize trajectory set D = ()

3 for episode i =1,2,..., N do
4: Get initial state from environment sgz) ~E&
5: Initialize trajectory 7(¥) = {}
6: t«0
7 while episode not terminated do
8 Sample action agz) ~ 7r9(~|s£z))
9: Execute action and observe sgle, ri = £(s!V, oy
10: /I Extract reasoning type tag
11: taggl) — ExtractReasoningTag(agz))
12: /I {{planning), (explore), (reflection}, (monitor) }
13: 7@ @Oy {(sﬁ”, af), rt(l), taggl))}
14: t—t+1
15: end while
16: /Il Compute Outcome Reward
17 Riuteome 4= R(7)
18: end for
19: /I Compute Meta Reasoning Rewards for all trajectories
20: for episode i = 1,2,..., N do
21: for each step ¢ in 7(¥) do
22: rI(Ife)m’t + ComputeMetaReward(a” , tag!”, 7@ R®)
23: T[] + O[] U {rﬁfgta’t > Attach meta-reasoning reward to step ¢
24: end for _ .
25: D DU{(rD, R come)}
26: end for
27: /I Compute group relative advantage

28: {AOYN |+ ComputeGroupRelativeAdvantage(D)
29: /I Group Relative Policy Optimization
30: for update step k = 1,2,..., K do

31: Compute policy gradient: Vg J(6) = E,.p[Vglogmg(als) - A]
32: Update policy parameters: 6 < 6 + aVyJ(0)

33: end for

34: end for

increase in average action steps as agents perform more comprehensive experiments. This reveals
a limitation of RL: while it can align LLM behavior with the environment, its effectiveness is
constrained by the foundation model’s capabilities. Our method mitigates this by applying a cold
start phase, allowing the foundation model to acquire essential environmental knowledge. As a result,

action steps on ScienceWorld are more stable and exhibit reliable convergence.

F PROMPTS

Below are the prompts we used in the ALFWorld and ScienceWorld environments.

Prompt Template for ALFWorld Enviroment

You are an expert agent operating in the ALFRED Embodied Environment. Your task is to:

{task_-description}
Prior to this step, you have already taken {step_count} step(s).

16

Under review as a conference paper at ICLR 2026

Algorithm 2 Step-Level Group Relative Advantage Computation

Require: Trajectory data D = {(7(9, R((,fl)lcome) N |, Weight Apeta
Ensure: Advantage estimates { A}
1: // ===== Outcome Advantage Computation =====
2: Group by enviroment index: Goycome = {gj} where g; = {i: env_idx() = Jj}
3: for each group g; € Goutcome dO
4 Compute group mean: fi; = Ig%\ Dic 9 R(()fj)mme

5 Compute group std: o = \/\giljl Ziegj (R(()fj)tcome — pj)?
6: fori € g; do
7
8

; (i)
A come = Tosms—ta
end for
9: end for
10: // ===== Meta Reasoning Advantage Computation =====

11: Group by (enviroment index, reasoning tag): Gmew = {gj.x }
12: where g; = {i : env_idxY = j A tag® = &}
13: for each group g 1 € Gmea do

. . _ 1 ()
14: Compute group mean: fi; 3 = Toal Ziegm Tnfeta

15: Compute group std: 0; , = \/Wlk\ Ziegj,k (rr([fgta — k)2
16: fori € g; 1 do

i RO
17 Al = Ttk
18: end for
19: end for
20: // ===== Final Advantage Combination =====

21: fori:1,2,..'.,Ndo ,
22: A(l) = A(()fl)tcome + Ameta - Ar(rfgta
23: end for _

return {AD}N

SCIWORLD - Success Rate SCIWORLD - Episode Length

o o o

IS wn o
= N N
® o N}

o

N)
-
o

Success Rate
o
©
Episode Length (mean)
-
=

W

0 20 40 60 80 100 120 140 0 20 40 60 80 100

Step Step
== RLVMR GiGPO = GRPO

e
o

o

o
-
)

Figure 6: Success rate and step count curves of different approaches on ScienceWorld during RL
training.

Below are the most recent {history_length} observations and the corresponding actions
you took: {action_history}

You are now at step {current_step} and your current observation is:
{current_observation}

Your admissible actions of the current situation are: {admissible_actions}.

Your previous overall plan is: {planning}. Please strictly adhere to your plan.

17

Under review as a conference paper at ICLR 2026

Algorithm 3 Meta-Reasoning Reward Computation

Require: Action a;, State s;, Reasoning tag tag,, Trajectory 7, Outcome reward R(7)
Require: Reward hyperparameters {rplan, Texplores Trefiect 1 discount factor
Ensure: Meta-reasoning reward rpeqa,

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:

Tmeta,t < 0
valid; < IsActionValid(a;)
if valid; = False then
return 0 > Invalid actions receive no reward
end if
if tag, = (planning) then
if R(7) > 0 then > Planning rewarded only on successful trajectories
k < NumPlanningAfter(¢,)
Tmeta,t € Tplan * 7k
else
Tmeta,t < 0
end if
end if
if tag, = (explore) then
isRepeated < False
fort' =0tot—1do
Extract transition (s¢/, ay, Sp41)
if (54, a¢,5t41) = (S¢, ap, 5p41) then
isRepeated <— True
break
end if
end for
if isRepeated = False then
Tmeta,t < Texplore > Novel transition
else
Tmeta,t < 0
end if
end if
if tag, = (reflection) then
if t > 0 then
Extract previous transition (s;—1, a;—1)
valid;_; « IsActionValid(a;—_1)
if valid;_; = False and (s;, a;) # (st—1,a;—1) then
Tmeta,t — Treflect > Effective reflection
else
Tmeta,t < 0
end if
else
Tmeta,t = 0
end if
end if
return 7 e ¢

Now it’s your turn to take an action, following these steps:

1. First, reason using ONLY ONE tag pair and express your reasoning in one
concise, brief sentence:

* <planning> Plan or replan the entire task by breaking it down into high-level
steps. Focus on outlining the full sequence required to complete the overall
task, not just the immediate next action. Use this at the beginning of complex
tasks or whenever the previous plan is incorrect or insufficient. It is necessary
to list all the points separately. eg, step 1: Xxx, step 2: Xxx, step 3: XxX, etc.

18

Under review as a conference paper at ICLR 2026

* <explore> When results are unexpected or information is lacking, use cur-
rent observations to think outside the box and list as many possible locations,
items, or actions as possible. Use this approach when facing obstacles that
require creative and innovative thinking.

* <reflection> Analyze the reasons for errors in task execution and correct
them by exploring alternative approaches. 'No known action matches that
input.’ indicates the action is invalid. This is typically used when several
consecutive actions yield no substantial progress.

* <monitor> Continuously track the current progress and history of reasoning
and execution throughout the task. Recall the current subgoal and consider the
next concrete action, ensuring agent alignment with the overall plan. Typically
used when task outcomes are as expected and no other mode of reasoning is
required.

2. After your reasoning, you MUST select and present an admissible action for
the current step within <action>...</action> tags.
Specify the next action the agent should take to progress toward the task goal,
following these guidelines:
(a) Object and Receptacle References: Use specific identifiers:
* [obj id] for objects (e.g., apple 1).
* [recep 1id] for receptacles (e.g., countertop 1).

(b) Action Validity: Follow the exact format below. Any deviation renders the
action invalid:

e Valid actions: go to [recep id], take [obj id]
from [recep id], put [ob]j id] in/on [recep
id], open/close [recep id], use [obj id],

heat/cool/clean [obj id] with [recep id].

. J

Prompt Template for ScienceWorld Environment

You are an expert agent operating in the ScienceWorld environment, which is a text-based
virtual environment centered around accomplishing tasks from the elementary science cur-
riculum.

Your current task is: {task_description}

Prior to this step, you have already taken {step_count} step(s).

Below are the most recent {history_length} observations and the corresponding actions
you took: {action_history}

You are now at step {current_step} and your current observation is:
{current_observation}

Here are the actions you may take:

e {"action": '"open OBJ", "description": "open a
container"

'{"action": "close OBJ", "description": "close a
container"}

'{"action": "activate OBJ", "description": "activate a
device"}

'{"action": "deactivate OBJ", "description":

"deactivate a device"}

e {"action": "connect OBJ to OBJ", "description":
"connect electrical components"}

e {"action": "disconnect OBJ", "description":
"disconnect electrical components"}

19

Under review as a conference paper at ICLR 2026

inventory"}

Your previous overall plan is: {planning}.
Please strictly adhere to your plan.

Now it’s your turn to take an action, following these steps:

concise, brief sentence:

* <planning>

'{"action": "use OBJ [on OBJ]", "description": "use a
device/item"}

°{"action": "look around", "description": "describe
the current room"}

e {"action": "look at OBJ", "description": "describe an
object in detail"}

°{"action": "look in OBJ", "description": "describe a
container’s contents"}

'{"action": "read OBJ", "description": "read a note or
book"}

'{"action": "move OBJ to OBJ", "description": "move an
object to a container"}

e {"action": "pick up OBJ", "description": "move an
object to the inventory"}

e {"action": "put down OBJ", "description": "drop an
inventory item"}

e {"action": "pour OBJ into OBJ", "description": "pour
a liguid into a container"}

°{"action": "dunk OBJ into OBJ", "description": "dunk
a container into a liquid"}

°{"action": "mix OBJ", "description": "chemically mix
a container"}

'{"action": "go to LOC", "description": "move to a new
location"}

* {"action": "eat OBJ", "description": "eat a food"}

'{"action": "flush OBJ", "description": "flush a
toilet"}

e {"action": "focus on OBJ", "description": "signal
intent on a task object"}

'{"action": "wait", "description": "take no action for
10 iterations"}

'{"action": "waitl", "description": "take no action
for 1 iteration"}

* {"action": "task", "description": "describe current
task"}

'{"action": "inventory", "description": "list your

1. First, reason using ONLY ONE tag pair and express your reasoning in one

Plan or replan the entire task by breaking it down into high-level steps. Focus
on outlining the full sequence required to complete the overall task, not just the
immediate next action.

Use this at the beginning of complex tasks or whenever the previous plan is
incorrect or insufficient.

It is necessary to list all the points separately. eg, step 1: XxX, step 2: XxXx, step
3: XXX, etc.

20

Under review as a conference paper at ICLR 2026

* <explore>
When results are unexpected or information is lacking, use current observations
to think outside the box and list as many possible locations, items, or actions as
possible.
Use this approach when facing obstacles that require creative and innovative
thinking.
* <reflection>
Analyze the reasons for errors in task execution and correct them by exploring
alternative approaches. ’No known action matches that input.” indicates the
action is invalid.
This is typically used when several consecutive actions yield no substantial
progress.
<monitor>
Continuously track the current progress and history of reasoning and execution
throughout the task. Recall the current subgoal and consider the next concrete
action, ensuring agent alignment with the overall plan.
Typically used when task outcomes are as expected and no other mode of
reasoning is required.

2. After your reasoning, you MUST select and present an appropriate action for
the current step within <action>...</action> tags.

G CASE STUDY OF RLVMR

Case Study Below is a trajectory segment of an agent trained with RLVMR on ALFWorld, per-
forming a novel task: find two soapbars and put them in the cabinet. We observe that, guided by
meta-cognitive rewards, the agent demonstrates a more comprehensive and meticulous reasoning
process, exhibiting significantly more adaptive reasoning patterns. At step 13, the agent is already
carrying one soapbar and is actively searching for the second. Lacking explicit information about
the soapbars’ location, the agent engages in structured and efficient exploration by systematically
hypothesizing possible locations via exploratory actions. Concurrently, it keeps track of its current
sub-goal, thereby avoiding the task confusion commonly seen in SFT-trained agents.

Notably, in step 14, the agent experiences a brief hallucination, leading to an ineffective action.
However, at step 15, rather than falling into an error loop or blindly continuing, the agent immediately
triggers reflective behavior, proposing to “double-check my inventory” to collect more information
and guard against the possibility of having already acquired both soapbars. This demonstrates a
more rigorous and robust reasoning and decision-making process. Experimental results show that
such meta-cognitively driven behavioral patterns enhance agent performance and generalization on
previously unseen tasks compared to baselines.

A trajectory segment of an agent trained with RLVMR

Step 13

Observation: You arrive at sinkbasin 2. On the sinkbasin 2, you see nothing.

Reasoning: <explore>Since there are no soapbars at sinkbasin 2, I should broaden my
search to other potential locations. The next logical area to check is the toilet, as soapbars
could potentially be found there.</explore>

Action: go to toilet 1

Step 14

Observation: You arrive at toilet 1. On the toilet 1, you see a candle 1 and a spraybottle 3.
Reasoning: <monitor>>My current sub-goal is to obtain the second soapbar. Since there are
no soapbars visible here, I will attempt to examine the environment further, just in case the
second soapbar is present but not immediately listed in the observation.</monitor>
Action: examine soapbar 2

21

Under review as a conference paper at ICLR 2026

Step 15

Observation: Nothing happens.

Reasoning: <reflection>Reflecting on my recent actions, I realize I failed to place the
second soapbar in the cabinet earlier. To proceed efficiently, I need to double-check my

inventory and ensure I’'m actually carrying both soapbars before trying again.</reflection>
Action: inventory

Step 16

Observation: You are carrying: a soapbar 1.

Reasoning: <monitor>At this point, my sub-goal is still to locate the second soapbar.
Since I am currently only carrying soapbar 1, I need to continue searching for the other
one.</monitor>

Action: go to countertop 1

Step 17

Observation: You arrive at countertop 1. On the countertop 1, you see a soapbottle 1, a
spraybottle 1, and a toiletpaper 1.

Reasoning: <explore>No soapbar is found on the countertop either, so I should expand my
search to nearby areas. Checking places like the toilet paper hanger may help ensure I’m not
missing any possible locations for the second soapbar.</explore>

Action: go to toiletpaperhanger 1

Step 18

Observation: On the toiletpaperhanger 1, you see a toiletpaper 3.

Reasoning: <explore>Since I still haven’t found a new soapbar, I should continue exploring
other potential areas, such as the hand towel holders, to make sure I don’t overlook any
possible spots where a soapbar could be located. </explore>

Action: go to handtowelholder 1

Figure 7: Sensitivity analysis of advantage coefficient o on ALFWorld using Qwen2.5-1.5B-Instruct.

Our

PARAMETER SENSITIVITY ANALYSIS

ADVANTAGE COEFFICIENT «

(a) Success Rate (b) Average Trajectory Length

\\—I—\/‘\/\MN””_

1.0

w
o

N
o

XE

&
oA
@ Y
W

{G

g

N
<]

Success Rate
o o <
» o

—_—

) -

\\

Average Trajectory Length
-
&

0.2 \ /‘\ _/ \f\\.\
Nv\./‘w*"\/.w,-/‘_/\/\,\ 10
0.0 =
0 20 40 60 80 100 0 20 40 60 80 100
Training Step Training Step

—e— w=0.0 w=0.05 -— w=0.2 —¢— w=04 = w=0.6 w=0.8 =—=— w=1.0

composite advantage function (defined in Algorithm[2) combines two complementary signals:
the outcome advantage Acpisode (Which guides the agent toward task success) and the meta-reasoning
advantage A, (which promotes effective step-level reasoning behaviors). The hyperparameter o

controls their relative weighting in the final advantage computation:

A1) = 0 - Acpisode (i) + (1 — @) - Aqgg (i)

22

Under review as a conference paper at ICLR 2026

To evaluate the robustness of our method to this hyperparameter choice, we performed a sensitivity
analysis on ALFWorld using Qwen2.5-1.5B-Instruct with o € {0.0,0.05,0.2,0.4,0.6,0.8,1.0}. The
results are shown in Figure[7]

* When « is very small (0.0 or 0.05), performance drops sharply because the local meta-
reasoning reward overwhelms the global outcome signal; in fact, @« = 0.0 removes the
success feedback entirely, preventing effective learning.

* When « is close to 1.0, the model under-weights meta-reasoning behaviors, leading to
noticeably degraded success rates and longer episode lengths, which harms the quality of
reasoning within successful trajectories as well as the model’s generalization ability.

Empirically, performance is most stable when « is moderate. In this regime, outcome and meta-
reasoning advantages provide complementary guidance: the model improves task success while also
learning higher-quality intermediate reasoning. We also observed that, as long as « is not near the
extremes, its effect on training speed and final performance remains small and within the natural
variance of RL training. Based on these findings, and without evidence favoring a more skewed
weighting, we choose o = 0.5 as a balanced and robust setting.

H.2 IMPACT OF DISCOUNT FACTOR

To examine whether discounting factor can further improve long-horizon learning, we introduce a
standard discounted return of the form
T—t
k
Gy = Z YV Ttk
k=0

where v € (0, 1] controls the degree of temporal discount- (a) GRPO

ing. Setting v = 1 recovers the undiscounted case used in 1.0

: .)]
our main experiments. We conduct controlled comparisons ;,:'é M'v-”."'ﬁ' i
on ALFWorld using Qwen2.5-1.5B-Instruct, evaluating . /'/\‘
(7]
both GRPO and RLVMR under v = 1 and v < 1. ¢ 0.5 ,-/J
Y]) y=1.0
The results in Figure[§]reveal the following trends. & Py —e= y=0.9
. . . 0.0 "
For vanilla GRPO, adding a discount factor leads to a 0 50 100 150 200
slightly faster improvement at the beginning of training, Training Step
which aligns with the intuition that discounting reduces (b) RLVMR
the influence of late-stage noise in sparse reward settings. 1o
However, the improvement remains modest and does not e ' oot eSO e e
. POans e
fundamentally enhance overall performance or alleviate 8 o’
inefficient exploration—the key limitation we targetin this @ ’
work. g /' =10
g :
For RLVMR, the effect of discounting is negligible. The = “ ./' —e— y=0.9
0.0

two curves almost overlap, indicating that the explicit 0 50 40 60 80 100
meta-reasoning rewards already provide dense, temporally Training Step

structured guidance (e.g., discouraging repeated actions).

As a result, additional temporal discounting offers little Fjgure 8: Comparison of methods with
benefit on top of the meta-reasoning signals. These find- 4nd without discount factor on ALF-
ings further support the robustness of RLVMR’s reward world using Qwen2.5-1.5B-Instruct.
design.

I ABLATION STUDY

1.1 ABLATION ON KEY COMPONENTS

We conduct ablation studies on the Unseen-L2 split using Qwen2.5-1.5B-Instruct to analyze the
impact of our framework’s key components: the trajectory-level outcome advantage signal (A7),
the meta-reasoning advantage signal (AMC), and the cold-start process (CS). The results in Table
confirm that each component is critical for achieving optimal performance.

23

Under review as a conference paper at ICLR 2026

Table 5: Ablation results on ALFWorld and ScienceWorld (success rates (%) on L2 variant).

Variant ALFWorld ScienceWorld
RLVMR (Full) 56.3 26.5
w/o AT (Outcome Reward) 12.5 7.8
w/o AMC (Meta-Reasoning Reward) 453 20.3
w/o CS (Cold-Start) 40.6 18.8

Verifiable meta-reasoning rewards are essential for tackling complex, unseen tasks. Removing
the meta-reasoning advantage signal (AMC) causes a significant performance drop, with the success
rate on ALFWorld falling by 11.0 percentage points (from 56.3% to 45.3%) and on ScienceWorld
by 6.2 points. This variant is equivalent to a standard GRPO agent fine-tuned from the cold-start
model. The sharp decline validates our central hypothesis: directly rewarding beneficial reasoning
processes is crucial for developing robust problem-solving skills. This component directly addresses
the “inefficient exploration issue” by providing dense, process-level signals that guide the agent
toward more efficient and logical behaviors, a benefit that outcome-only rewards (AT) cannot provide
alone.

QOutcome-based rewards remain indispensable for guiding the agent toward final task success.
Eliminating the trajectory-level outcome advantage (AT) results in a catastrophic performance
collapse, with the success rate plummeting to just 12.5% on ALFWorld and 7.8% on ScienceWorld.
This demonstrates that while meta-reasoning rewards effectively shape the process, the global
signal of task success is vital for orienting the agent toward the ultimate goal. The meta-reasoning
rewards are locally effective—for instance, rewarding non-repetitive exploration—but without the
final outcome signal, the agent cannot learn which explorations ultimately lead to a successful
trajectory. This confirms that the synergy between process-level and outcome-level rewards is a key
strength of the RLVMR framework.

A lightweight cold-start phase is critical for bootstrapping the agent’s reasoning capabilities.
Training the agent without the supervised fine-tuning cold-start (CS) phase leads to a substantial
performance decrease on both ALFWorld (down 15.7 points) and ScienceWorld (down 7.7 points).
The cold-start phase, which uses only 200 trajectories, is not intended to solve the tasks but to equip
the model with the basic ability to generate syntactically correct meta-reasoning tags and follow
instructions. For smaller models (e.g., 1.5B), this initial grounding is vital; without it, the agent often
fails to produce parsable outputs during RL, leading to training instability and policy collapse. This
finding underscores the efficiency of our approach: a brief, low-data cold-start is sufficient to unlock
the model’s capacity for complex reasoning, which is then honed by the RL phase.

1.2 ABLATION ON META-REASONING TYPES

To further understand the role of each meta-reasoning component, we conduct a fine-grained ablation
study by removing one type of meta-reasoning tag and its corresponding meta-reasoning reward at a
time, while keeping all other settings unchanged. Experiments are performed on the ALFWorld L2
split using the Qwen2.5-1.5B-Instruct model.

We evaluate models using the same metrics as the main paper: (i) success rate, the percentage of
episodes in which the agent completes the task; (ii) average trajectory length, the mean number of
steps taken per episode, capturing overall efficiency and the agent’s ability to find direct solutions;
(iii) repetitive action rate, the percentage of actions that repeat a previous action without changing
the environment state, quantifying inefficient exploration or loops; and (iv) invalid action rate,
the proportion of actions that are not executable in the current environment state, reflecting basic
comprehension and error frequency.

Table[6] summarizes the results. Removing reflection significantly increases both repetitive and invalid
actions, indicating that the agent struggles to recover from sequences of ineffective steps without an
explicit mechanism for self-correction. Removing explore produces substantially longer trajectories,
as the agent tends to fall into inefficient search patterns without leveraging contextual cues from
history to guide exploratory decisions. Eliminating either planning or monitor also leads to clear

24

Under review as a conference paper at ICLR 2026

performance degradation. We find that correct early-stage planning provides a global structure for the
task, reducing disorganized execution, while monitoring helps track subgoals and maintain adherence
to the planned sequence.

Overall, these ablations demonstrate that each meta-reasoning type contributes meaningfully to robust
long-horizon behavior. The meta-reasoning patterns operationalized from metacognitive theory are
therefore essential for improving both effectiveness and reliability of the agent.

Variant SR(%) 1 avg.steps| repeat(%)| invalid(%) |
full RLVMR 56.3 154 5.7 12.5
w/o planning 47.5 15.9 8.6 12.8
w/o explore 55.8 17.2 12.6 16.1
w/o reflection 46.2 16.5 14.5 20.2
w/0 monitor 52.1 16.0 7.4 15.8

Table 6: Ablation of meta-reasoning tag types on ALFWorld L2 with Qwen2.5-1.5B-Instruct.

1.3 IMPACT OF ANNOTATION MODEL CHOICE

. s Rat ALFWorld
To further examine the dependence of RLVMR on the tecess Rate on °r

teacher model used in the cold-start SFT phase, we addi-

tionally compare annotations generated by a strong closed- @ o5 ’/\‘,\Np_/“ TEANRFAN
source model (GPT-40) and a much smaller open-source 8 : R S
model (Llama-3.1-70B). Specifically, we replace the cold- @ *° /’/’5‘:: SN
start annotations with those produced by different teacher g 0a| [/ N ‘
models to train the Qwen2.5-1.5B-Instruct model, fol- 3 A e e e
lowed by the subsequent RL process. As shown in Fig- 02 4/ T oM L08 hnotete (Val2)
ure 0] the downstream RL performance under the two 00"

annotation sources is almost identical across the training ° * T,.a?ning se:ep % 10

set and the most challenging L2 evaluation split for the

Qwen2.5-1.5B-Instruct agents. This indicates that the an- Fjgure 9: Success-rate on ALFWorld-L2
notation task required in cold-start is relatively simple, and for Qwen2.5-1.5B-Instruct under differ-
that RLVMR’s final reasoning behaviors emerge primar- ent cold-start annotation sources.

ily from the RL stage rather than from teacher-specific

annotation quality.

J THE USE OF LLMS

In this work, large language models were partially employed to assist with spelling and grammar
checking, as well as minor text polishing. Specifically, we used the following prompt:

You are an expert in AL Please check the provided text for any spelling or gram-
matical errors, and point out inappropriate expressions: {text segment}

No unverifiable content was produced by the LLMs, and all technical ideas, results, and conclusions
presented in this paper originate from the authors.

25

	Introduction
	Inefficient Exploration in Long-Horizon Agents
	Experimental Setup
	The Inefficient Exploration Problem

	Methodology: RLVMR
	Meta-Reasoning Framework
	Meta-Reasoning-Aware Reward Shaping
	Group Relative Policy Optimization with Meta-Reasoning (GRPO-MR)

	Experiment
	Main Results
	Analysis

	Related Work
	Conclusion
	Case Study of Inefficient Exploration
	Setup Details
	Dataset Details
	Implementation Details

	Detailed Experiment Results
	Pseudocode of RLVMR
	Training Curves on ScienceWorld
	Prompts
	Case Study of RLVMR
	Parameter Sensitivity Analysis
	Advantage Coefficient
	Impact of Discount Factor

	Ablation Study
	Ablation on Key Components
	Ablation on Meta-Reasoning Types
	Impact of Annotation Model Choice

	The Use of LLMs

