
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RLVMR: REINFORCEMENT LEARNING WITH VERI-
FIABLE META-REASONING REWARDS FOR ROBUST
LONG-HORIZON AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The development of autonomous agents for complex, long-horizon tasks is a
central goal in AI. However, dominant training paradigms face a critical limitation:
reinforcement learning (RL) methods that optimize solely for final task success
often reinforce flawed or inefficient reasoning paths, a problem we term inefficient
exploration. This leads to agents that are brittle and fail to generalize, as they
learn to find solutions without learning how to reason coherently. To address this,
we introduce RLVMR, a novel framework that integrates dense, process-level
supervision into end-to-end RL by rewarding verifiable, meta-reasoning behaviors.
RLVMR equips an agent to explicitly tag its cognitive steps—such as planning,
exploration, and reflection—and provides programmatic, rule-based rewards for
actions that contribute to effective problem-solving. These process-centric rewards
are combined with the final outcome signal and optimized using a critic-free policy
gradient method. On the challenging ALFWorld and ScienceWorld benchmarks,
RLVMR achieves new state-of-the-art results, with our 7B model reaching an
83.6% success rate on the most difficult unseen task split. Our analysis confirms
these gains stem from improved reasoning quality, including significant reductions
in redundant actions and enhanced error recovery, leading to more robust, efficient,
and interpretable agents.

1 INTRODUCTION

The quest to build autonomous agents capable of solving complex, long-horizon tasks has gained
significant momentum with the rise of Large Language Models (LLMs) (Wang et al., 2022; Zeng
et al., 2024; Bai et al., 2024). However, dominant training paradigms face a fundamental trade-off. On
one hand, Supervised Fine-Tuning (SFT) on expert trajectories can teach agents efficient behaviors,
but these policies are often brittle and fail to generalize to novel situations (Chu et al., 2025). On
the other hand, RL from environmental feedback encourages exploration and can lead to better
generalization, but it typically optimizes for a single, sparse reward signal: final task success.

This reliance on outcome-only rewards raises a critical, yet underexplored question: Are agents
learning to reason coherently, or are they just finding brittle shortcuts to success? Our work
investigates a pervasive issue we term inefficient exploration, where agents are rewarded for
successful outcomes even when their path to success is built on flawed, or redundant reasoning. This
leads to agents that exhibit high rates of repetitive actions and struggle to adapt to unseen tasks,
because their underlying problem-solving process is unsound. Standard RL inadvertently reinforces
any successful trajectory, failing to distinguish between robust and flawed reasoning processes. This
deficiency undermines agent reliability and generalization, especially as tasks grow in complexity.

We argue that to build truly robust and generalizable agents, we must move beyond rewarding only
the final outcome and begin to supervise the reasoning process itself. Inspired by metacognitive
theory (Martinez, 2006), which posits that effective problem-solving depends on “thinking about
thinking”, we propose to directly reward beneficial cognitive behaviors. Our key insight is that
high-level skills like planning, monitoring progress, exploring alternatives, and reflecting on errors
can be operationalized as distinct, verifiable steps within an agent’s reasoning process.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Env responseobs

…… rollout * N

responseobs

responseobs responseobs

responseobs responseobs

Output Rank

✓ 1

✘ N

✓ 2

T1obs

…… rollout * N

actionobs

actionobs actionobs

actionobs actionobs

Output Rank

✓ 1

✘ N

✓ 2

action T2

T2 T3

T3 T4

✓ ✘

✓ ✓

✘ ✓
Behavior with Meta-Reasoning Rewards

Behavior

Env

(a) Standard RLVR (GRPO)

Env responseobs

…… rollout * N

responseobs

responseobs responseobs

responseobs responseobs

Output Rank

✓ 1

✘ N

✓ 2

T1obs

…… rollout * N

actionobs

actionobs actionobs

actionobs actionobs

Output Rank

✓ 1

✘ N

✓ 2

action T2

T2 T3

T3 T4

✓ ✘

✓ ✓

✘ ✓
Behavior with Meta-Reasoning Rewards

Behavior

Env

(b) RLVMR (Ours)

Figure 1: Comparison of LLM agent RL training paradigms: (a) Standard RL with outcome-only
rewards (e.g., GRPO) inadvertently reinforces trajectories with inefficient or illogical intermediate
reasoning steps. (b) Our RLVMR approach provides dense, verifiable rewards for beneficial meta-
reasoning behaviors (e.g., T1-T4), directly shaping a more robust and coherent reasoning process.

To this end, we introduce Reinforcement Learning with Verifiable Meta-Reasoning Rewards
(RLVMR), a novel framework that integrates dense, process-level supervision into end-to-end
RL. As illustrated in Figure 1, RLVMR contrasts with standard RL by rewarding not only the
final outcome but also the intermediate reasoning steps. Our framework defines a set of core meta-
reasoning behaviors — planning, exploration, and reflection/monitoring — and enables the agent
to articulate its cognitive state through special tags. During online interaction, we use lightweight,
programmatic rules to grant verifiable rewards for these behaviors. For example, an ‘exploration’ tag
is rewarded when the agent discovers a new state, while a ‘reflection’ tag is rewarded when it leads
to the correction of a prior mistake. These process-centric rewards are combined with the global
outcome reward and optimized using a policy gradient method. After a brief “cold-start” supervised
fine-tuning (SFT) phase on only 200 trajectories to learn the tag syntax, the agent is trained entirely
through environmental interaction.

We demonstrate the effectiveness of RLVMR on two challenging long-horizon benchmarks, ALF-
World and ScienceWorld. Our experiments show that RLVMR achieves new state-of-the-art results
across all settings. Notably, on the hardest unseen task split (L2), our 7B model achieves an 83.6%
success rate, and surpasses the performance of the much larger models. In-depth analysis reveals
that these gains are driven by a tangible improvement in reasoning quality: RLVMR-trained agents
exhibit significant reductions in repetitive and invalid actions. This confirms that by rewarding the
process of good reasoning, we create agents that are not only more successful but also more robust,
efficient, and generalizable.

In summary, our contributions are as follows:

1. We identify and analyze a critical inefficient exploration issue in outcome-only end-to-end
RL for long-horizon LLM agents, where spurious state–action correlations override genuine
reasoning, leading to redundant reasoning steps and illogical action loops.

2. We introduce a novel framework, RLVMR, that provides dense, verifiable rewards for
meta-reasoning behaviors like planning, exploration, and reflection, enabling more robust
and efficient problem-solving.

3. We achieve SOTA performance on ALFWorld and ScienceWorld, with in-depth analysis
confirming reductions in redundant actions and improved generalization to unseen tasks.

2 INEFFICIENT EXPLORATION IN LONG-HORIZON AGENTS

This section investigates the phenomenon of “inefficient exploration” in agents designed for long-
horizon tasks. We analyze its detrimental effects on performance, which manifest as brittle efficiency
on previously seen tasks and poor generalization to unseen ones.

2.1 EXPERIMENTAL SETUP

Benchmarks To evaluate foundational capabilities and generalization, we conduct experiments on
the widely-used and challenging ALFWorld benchmark (Shridhar et al., 2020), which comprises
embodied household tasks. To systematically measure generalization, we define three evaluation
splits based on the original benchmark:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• L0 (seen-L0): seen task variants and seen task categories;

• L1 (unseen-L1): unseen held-out task variants but seen task categories;

• L2 (unseen-L2): unseen held-out task variants and unseen task categories.

L0 and L1 follow the official benchmark splits. For L2, we further partition ALFWorld by task
category, holding out entire categories from training for exclusive use in evaluation.

Training Paradigms We experiment with Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct models
using the ReAct (Yao et al., 2023) framework, which alternates between reasoning and acting steps.
We evaluate two dominant training paradigms:

• SFT (Yang et al., 2023; Tang et al., 2023; Xi et al., 2024): A widely adopted paradigm that applies
supervised fine-tuning on high-quality expert trajectories.

• GRPO (Feng et al., 2025a; Wang et al., 2025b): An end-to-end RL method that optimizes the
policy by comparing the final rewards of multiple trajectories sampled from the same initial state.

Evaluation Metrics We assess performance using the following metrics:

• Success Rate (%, ↑): The percentage of tasks successfully completed by the agent on each
evaluation split.

• Invalid Action Rate (%, ↓): The proportion of generated actions that are invalid in the current
state, reflecting basic comprehension and error frequency.

• Repetitive Action Rate (%, ↓): The percentage of steps where the agent executes a meaningless
repeated action, as defined in prior work (Yuan et al., 2025; Fu et al., 2025; Feng et al., 2025b).
This metric quantifies inefficient exploration, indicating that the agent’s policy may be overfitting
to familiar action sequences rather than being guided by robust reasoning.

2.2 THE INEFFICIENT EXPLORATION PROBLEM

While aggregate statistics show that methods like GRPO can improve agent success rates, a closer
look at individual trajectories reveals a critical flaw: the inefficient exploration problem. Even
when an agent successfully completes a task, its path to a solution is often littered with redundant
or illogical steps. This behavior, illustrated qualitatively in Appendix A, indicates a gap between
achieving a correct outcome and demonstrating robust reasoning. Our large-scale empirical results
(Figure 2) quantify the pervasiveness of this issue and expose a fundamental trade-off in current
training paradigms.

SFT creates efficient but brittle policies that fail to generalize. Supervised Fine-Tuning (SFT)
models achieve high success rates and efficiency on tasks they have seen during training. For instance,
the 7B SFT model’s success rate on in-distribution tasks (L0) jumps from 23.1% (ReAct baseline)
to 63.3%, with a low invalid action rate of 6.2%. However, this performance is brittle. On the
most challenging out-of-distribution split (L2), the model’s success rate plummets to 37.5%, and its
repetitive action rate nearly doubles. This reveals that when faced with novel situations, the agent falls
into non-productive loops, demonstrating that SFT teaches mimicry without instilling a generalizable
reasoning process.

GRPO improves generalization but fosters inefficient, flawed reasoning. In contrast, reinforce-
ment learning with outcome-only rewards (GRPO) achieves substantially better generalization, with
the 7B model attaining success rates of 77.3% on L1 and 52.3% on L2. This success, however,
comes at the cost of severe inefficiency, validating our core hypothesis. The agent’s performance
is undermined by high invalid and repetitive action rates across all difficulty levels; on the hardest
L2 tasks, the 7B model’s repetitive action rate is a staggering 31.2%. By optimizing solely for task
success, GRPO reinforces any path to a positive outcome, even those built on illogical steps and
inefficient exploration.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1.5B

Su
cc

es
s R

at
e

(%
)

0

20

40

60

80

100

L0 L1 L2

29.7

71.1
76.6

17.6

38.7
43.0

10.213.711.3

Vanilla SFT GRPO

1.5B

In
va

lid
 A

ct
io

ns
 (%

)

0

20

40

60

80

100

L0 L1 L2

21.6
17.318.8

24.9

11.88.0

82.579.376.3

Vanilla SFT GRPO

1.5B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

20

40

60

L0 L1 L2

27.1

17.618.4
21.420.2

10.7

16.6
11.310.3

Vanilla
SFT
GRPO

Qwen2.5-7B-Instruct

7B

Su
cc

es
s R

at
e

(%
)

0

20

40

60

80

100

L0 L1 L2

52.3

77.379.3

37.5

57.0
63.3

27.028.5
23.1

Vanilla SFT GRPO

7B

In
va

lid
 A

ct
io

ns
 (%

)
0

20

40

60

80

100

L0 L1 L2

13.5

25.4

14.8
6.35.56.2

13.314.713.0

Vanilla SFT GRPO

7B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

20

40

60

L0 L1 L2

31.2

20.321.5

14.4

24.5

13.9

49.6
53.3

49.0

(a) Success Rate (1.5B)

1.5B

Su
cc

es
s R

at
e

(%
)

0

20

40

60

80

100

L0 L1 L2

29.7

71.1
76.6

17.6

38.7
43.0

10.213.711.3

Vanilla SFT GRPO

1.5B

In
va

lid
 A

ct
io

ns
 (%

)

0

20

40

60

80

100

L0 L1 L2

21.6
17.318.8

24.9

11.88.0

82.579.376.3

Vanilla SFT GRPO

1.5B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

20

40

60

L0 L1 L2

27.1

17.618.4
21.420.2

10.7

16.6
11.310.3

Vanilla
SFT
GRPO

Qwen2.5-7B-Instruct

7B

Su
cc

es
s R

at
e

(%
)

0

20

40

60

80

100

L0 L1 L2

52.3

77.379.3

37.5

57.0
63.3

27.028.5
23.1

Vanilla SFT GRPO

7B

In
va

lid
 A

ct
io

ns
 (%

)

0

20

40

60

80

100

L0 L1 L2

13.5

25.4

14.8
6.35.56.2

13.314.713.0

Vanilla SFT GRPO

7B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

20

40

60

L0 L1 L2

31.2

20.321.5

14.4

24.5

13.9

49.6
53.3

49.0

(b) Invalid Actions (1.5B)

1.5B

Su
cc

es
s R

at
e

(%
)

0

20

40

60

80

100

L0 L1 L2

29.7

71.1
76.6

17.6

38.7
43.0

10.213.711.3

Vanilla SFT GRPO

1.5B

In
va

lid
 A

ct
io

ns
 (%

)

0

20

40

60

80

100

L0 L1 L2

21.6
17.318.8

24.9

11.88.0

82.579.376.3

Vanilla SFT GRPO

1.5B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

20

40

60

L0 L1 L2

27.1

17.618.4
21.420.2

10.7

16.6
11.310.3

Vanilla
SFT
GRPO

Qwen2.5-7B-Instruct

7B

Su
cc

es
s R

at
e

(%
)

0

20

40

60

80

100

L0 L1 L2

52.3

77.379.3

37.5

57.0
63.3

27.028.5
23.1

Vanilla SFT GRPO

7B

In
va

lid
 A

ct
io

ns
 (%

)

0

20

40

60

80

100

L0 L1 L2

13.5

25.4

14.8
6.35.56.2

13.314.713.0

Vanilla SFT GRPO

7B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

20

40

60

L0 L1 L2

31.2

20.321.5

14.4

24.5

13.9

49.6
53.3

49.0

(c) Repetitive Actions (1.5B)

1.5B

Su
cc

es
s R

at
e

(%
)

0

20

40

60

80

100

L0 L1 L2

29.7

71.1
76.6

17.6

38.7
43.0

10.213.711.3

Vanilla SFT GRPO

1.5B

In
va

lid
 A

ct
io

ns
 (%

)

0

20

40

60

80

100

L0 L1 L2

21.6
17.318.8

24.9

11.88.0

82.579.376.3

Vanilla SFT GRPO

1.5B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

20

40

60

L0 L1 L2

27.1

17.618.4
21.420.2

10.7

16.6
11.310.3

Vanilla
SFT
GRPO

Qwen2.5-7B-Instruct

7B

Su
cc

es
s R

at
e

(%
)

0

20

40

60

80

100

L0 L1 L2

52.3

77.379.3

37.5

57.0
63.3

27.028.5
23.1

Vanilla SFT GRPO

7B

In
va

lid
 A

ct
io

ns
 (%

)
0

20

40

60

80

100

L0 L1 L2

13.5

25.4

14.8
6.35.56.2

13.314.713.0

Vanilla SFT GRPO

7B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

20

40

60

L0 L1 L2

31.2

20.321.5

14.4

24.5

13.9

49.6
53.3

49.0

(d) Success Rate (7B)

1.5B

Su
cc

es
s R

at
e

(%
)

0

20

40

60

80

100

L0 L1 L2

29.7

71.1
76.6

17.6

38.7
43.0

10.213.711.3

Vanilla SFT GRPO

1.5B

In
va

lid
 A

ct
io

ns
 (%

)

0

20

40

60

80

100

L0 L1 L2

21.6
17.318.8

24.9

11.88.0

82.579.376.3

Vanilla SFT GRPO

1.5B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

20

40

60

L0 L1 L2

27.1

17.618.4
21.420.2

10.7

16.6
11.310.3

Vanilla
SFT
GRPO

Qwen2.5-7B-Instruct

7B

Su
cc

es
s R

at
e

(%
)

0

20

40

60

80

100

L0 L1 L2

52.3

77.379.3

37.5

57.0
63.3

27.028.5
23.1

Vanilla SFT GRPO

7B

In
va

lid
 A

ct
io

ns
 (%

)
0

20

40

60

80

100

L0 L1 L2

13.5

25.4

14.8
6.35.56.2

13.314.713.0

Vanilla SFT GRPO

7B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

20

40

60

L0 L1 L2

31.2

20.321.5

14.4

24.5

13.9

49.6
53.3

49.0

(e) Invlaid Actions (7B)

1.5B

Su
cc

es
s R

at
e

(%
)

0

20

40

60

80

100

L0 L1 L2

29.7

71.1
76.6

17.6

38.7
43.0

10.213.711.3

Vanilla SFT GRPO

1.5B

In
va

lid
 A

ct
io

ns
 (%

)

0

20

40

60

80

100

L0 L1 L2

21.6
17.318.8

24.9

11.88.0

82.579.376.3

Vanilla SFT GRPO

1.5B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

20

40

60

L0 L1 L2

27.1

17.618.4
21.420.2

10.7

16.6
11.310.3

Vanilla
SFT
GRPO

Qwen2.5-7B-Instruct

7B

Su
cc

es
s R

at
e

(%
)

0

20

40

60

80

100

L0 L1 L2

52.3

77.379.3

37.5

57.0
63.3

27.028.5
23.1

Vanilla SFT GRPO

7B

In
va

lid
 A

ct
io

ns
 (%

)

0

20

40

60

80

100

L0 L1 L2

13.5

25.4

14.8
6.35.56.2

13.314.713.0

Vanilla SFT GRPO

7B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

20

40

60

L0 L1 L2

31.2

20.321.5

14.4

24.5

13.9

49.6
53.3

49.0

(f) Repetitive Actions (7B)

Figure 2: Performance on ALFWorld. While SFT excels on seen tasks (L0) but fails to generalize,
GRPO achieves better generalization at the cost of significant inefficiency. This highlights a funda-
mental trade-off between brittle efficiency and inefficient generalization.

Scaling model size does not fix the underlying reasoning deficiencies. While scaling from a 1.5B
to a 7B model improves overall success rates, it does not resolve this fundamental issue. Notably,
while the 7B GRPO model is more successful on L2 tasks than its 1.5B counterpart (52.3% vs.
29.7%), it also exhibits a higher repetitive action rate (31.2% vs. 27.1%). This suggests a larger
model’s enhanced capacity can be misdirected to more effectively exploit flawed strategies rather
than to reason more coherently. This finding underscores that the limitation is rooted in the training
objective itself, not merely model capacity, and that simply increasing model size is not a panacea.

Current paradigms force a trade-off between brittle efficiency and inefficient generalization.
Our analysis reveals a core dilemma: SFT produces efficient but brittle policies that fail to generalize,
while GRPO achieves generalization at the cost of reinforcing inefficient and logically flawed
reasoning. Neither paradigm effectively teaches the agent how to reason well. This establishes a
clear need for a new framework that moves beyond sparse, outcome-only signals to provide direct,
process-level supervision. By rewarding coherent and efficient reasoning steps, we can guide agents
to not only find solutions but to do so robustly and intelligently — the precise goal of our work.

3 METHODOLOGY: RLVMR

Our methodology equips LLM agents with an explicit meta-reasoning framework to mitigate inef-
ficient exploration in complex tasks. As shown in Figure 3, the agent is trained in two phases: an
initial SFT stage to bootstrap the agent’s meta-reasoning capabilities, followed by a reinforcement
learning phase that uses a custom policy optimization algorithm to refine these skills based on task
outcomes and process-centric rewards.

Cold Start: Initial Meta-Reasoning Acquisition via SFT To equip the base LLM with the
foundational ability to generate structured meta-reasoning, we begin with a supervised fine-tuning
phase. This step is crucial, as reasoning patterns learned during subsequent reinforcement learning
are heavily influenced by the base model’s capabilities. The SFT data is constructed as follows:

1. We collect a dataset of successful task trajectories containing only observation-action pairs.

2. We employ a more powerful teacher model (e.g., GPT-4) to annotate these trajectories with
our meta-reasoning tags, inferring the most likely cognitive step preceding each action. This
process creates synthetic, reasoning-rich expert demonstrations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Expert Trajectory

Rollout Trajectories

m
ul

ti-
tru

n

�1
� �1

��1
�

Cold Start

Generate
Meta-reasoning

Types

Annotated Trajectory

SFT

�2
� �3

� ��
��2

� �3
� ��

��2
� �3

� ��
�...

�1
2 �1

2�1
2 �2

2 �3
2 ��

2�2
2 �3

2 ��
2�2

2 �3
2 ��

2...

�1
1 �1

1�1
1 �2

1 �3
1 ��

1�2
1 �3

1 ��
1�2

1 �3
1 ��

1... �1

�2

��

Group Relative Advantage Computing

�1
1
�1

1
�1

1

Meta-reasoning
Type (a)
Grouping

�1
1
�1

1
�1

1 �1
1
�1

1
�1

2

Meta-reasoning
Type (b)
Grouping

�1
1
�1

1
�1

2 �1
1
�1

1
�2

1

Meta-reasoning
Type (c)
Grouping

�1
1
�1

1
�2

1

Trajectory Outcome Reward
Grouping

�1
1
�1

1
��

�

Figure 3: A schematic diagram of the RLVMR framework, which consists of two training phases:
cold start and reinforcement learning. Our method provides rule-verifiable feedback signals based on
the final outcome and the relative advantages of different types of meta-reasoning behaviors.

3. The target LLM is fine-tuned on these annotated trajectories, learning to imitate the expert’s
meta-reasoning and action generation patterns.

3.1 META-REASONING FRAMEWORK

We begin by formalizing the agent-environment interaction as a Markov Decision Process. We then
introduce a novel meta-reasoning framework that extends existing agent architectures by operational-
izing principles from cognitive science.

Task Formulation as a Markov Decision Process We formalize the interaction between an agent
and its environment in long-horizon tasks as a Markov Decision Process (MDP). An MDP is defined
by a tuple (S,A,O, F,R), where S is the set of environment states, A is the action space, O is the
observation space, F : S ×A→ S is the state transition function, and R : S ×A→ R is the reward
function. In our setting, which is tailored for LLM agents, the state, action, and observation spaces
(S,A,O) are all represented as natural language sequences over a finite token vocabulary.

At each timestep t, the agent’s policy πθ generates a thought process tht and an action at based on
the current state st: (tht, at) ∼ πθ(· | st). The agent’s interaction with the environment produces a
trajectory τ = {(o1, th1, a1), (o2, th2, a2), . . . , (on, thn, an)}. In many long-horizon tasks, reward
signals are sparse, typically provided only as a final outcome reward R(τ) at the end of an episode.
This sparsity poses significant challenges for credit assignment. The agent’s objective is to learn an
optimal policy πθ that maximizes the expected cumulative reward:

max
θ

Eτ∼πθ
[R(τ)] . (1)

Operationalizing Meta-Reasoning in LLM Agents Our approach is grounded in metacognitive
theory (Martinez, 2006; Lai, 2011), which emphasizes “thinking about thinking”. Metacognition
comprises two key components: metacognitive knowledge (an agent’s self-awareness of its own
reasoning strategies) and metacognitive regulation (the active control of these processes, including
planning, monitoring, and adaptive revision). This theoretical lens suggests that for LLM agents
to solve complex tasks, they require not just domain knowledge but also the capacity for dynamic
planning, self-monitoring, and creative exploration.

To operationalize these principles, we extend the ReAct framework. While ReAct interleaves
reasoning and actions (e.g., “Think: ..., Act: ...”), it treats reasoning as a monolithic process. We
refine this by introducing a structured set of meta-reasoning tags to explicitly represent distinct
cognitive functions. This decouples reasoning from actions and enables fine-grained analysis and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

supervision. Specifically, we define four meta-reasoning tags, each enclosed in XML-style tags (e.g.,
<planning>), while all actions are contained within the <action> tag.

• Planning (<planning>): Decomposes the task into high-level steps to formulate an
overall strategy. Used at the start of a task or when replanning is needed.

• Exploration (<explore>): Generates hypotheses or options to navigate uncertainty or
bottlenecks, encouraging creative problem-solving.

• Reflection (<reflection>): Reviews history to analyze errors and formulate corrective
actions. Typically triggered after unsuccessful attempts.

• Monitoring (<monitor>): Tracks task progress against the overall plan, ensuring actions
remain aligned with subgoals. Applied during routine execution.

3.2 META-REASONING-AWARE REWARD SHAPING

During reinforcement learning, we guide the agent with a composite reward signal that combines task
completion with the quality of the reasoning process. This signal comprises a sparse outcome reward
and a dense, process-based meta-reasoning reward.

Outcome Reward (R(τ)): A binary signal awarded at the end of a trajectory: R(τ) = rs for task
success and 0 otherwise, where rs is a positive constant.

Meta-Reasoning Reward (rMR
t): A dense reward assigned at each step t to incentivize locally

beneficial behaviors.

• Planning Reward (rplanning): Awarded for a <planning> step if the trajectory succeeds.

• Exploration Reward (rexplore): Awarded if the current action targets a new object or
location, discouraging redundancy.

• Reflection Reward (rreflection): Awarded if a <reflection> step is followed by a
corrective action after a sequence of failures.

Format Reward (rformat
t): A penalty, −λformat, is applied if the model’s output at step t does not

conform to the expected <tag>...</tag><action>...</action> structure.

The total step-level reward is the sum of the process-based rewards: rt = rMR
t + rformat

t .

3.3 GROUP RELATIVE POLICY OPTIMIZATION WITH META-REASONING (GRPO-MR)

To effectively leverage our composite reward signal, we introduce Meta-Reasoning Group Policy Op-
timization (GRPO-MR). GRPO-MR computes a step-level advantage by combining global trajectory
performance with local, context-aware reasoning quality.

Trajectory-level Relative Advantage: For a batch of K trajectories collected from the same
environment, we first calculate a normalized trajectory-level advantage to capture overall performance:

Atraj
k =

R(τk)− µR

σR
, (2)

where µR and σR are the mean and standard deviation of outcome rewards across the batch.

Meta-reasoning Level Relative Advantage: The core of GRPO-MR is the computation of a context-
aware advantage. We group all steps within a batch that share the same meta-reasoning tag (e.g., all
<explore> steps) and normalize their rewards within that group:

AMR
t,tag =

rMR
t,tag − µtag

σtag
, (3)

where µtag and σtag are the mean and standard deviation of meta-reasoning rewards for all steps with
that specific tag. The final step-level advantage At is a weighted combination of these two signals:

At = α ·Atraj
k + (1− α) ·AMR

t,tag, (4)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on the benchmarks. We report the success rate (%) on seen (L0:
seen task variants and categories) and unseen (L1: unseen task variants but seen task categories; L2:
unseen task variants and categories) task variations. We also report the average cumulative reward
(score) on the ScienceWorld benchmark.

Model Method
ALFWorld ScienceWorld

L0 L1 L2 L0 L1 L2

succ. succ. succ. succ. score succ. score succ. score

GPT-4o ReAct 57.3 66.0 68.8 45.4 54.3 49.2 57.0 41.0 52.0
DeepSeek-V3 ReAct 60.2 65.9 53.9 27.3 39.1 35.2 43.0 26.5 37.1
DeepSeek-R1 ReAct 68.8 70.2 67.3 22.2 32.0 31.4 39.5 29.1 37.9
AgentGym SFT+RL 76.6 63.3 - 46.9 56.3 33.6 45.2 - -

Qwen2.5-1.5B

ReAct 11.3 13.7 10.2 1.2 9.0 0.8 7.8 0.8 7.4
+ SFT 43.0 38.7 17.6 20.3 30.9 18.0 27.8 12.5 20.9
+ ETO 64.1 66.4 25.8 39.1 47.3 22.7 29.8 15.6 23.4
+ GLIDER 66.0 68.8 35.2 40.2 50.2 25.8 32.0 19.5 25.1
+ GRPO 76.6 71.1 29.7 21.1 31.7 13.7 22.5 10.9 21.2
+ GiGPO 86.7 83.2 48.0 25.8 35.6 15.2 22.8 4.7 11.2
+ RLVMR 89.1 87.9 56.3 46.9 60.3 34.4 45.2 26.5 33.9

Qwen2.5-7B

ReAct 23.1 28.5 27.0 7.8 17.4 11.3 19.6 6.3 16.5
+ SFT 63.3 57.0 37.5 36.7 43.5 32.0 41.6 23.4 32.2
+ ETO 70.3 74.2 51.6 62.5 71.2 40.6 50.4 28.1 35.0
+ GLIDER 75.4 74.6 53.1 62.9 68.8 41.4 52.8 25.8 32.5
+ GRPO 79.3 77.3 52.3 49.1 61.8 30.1 43.1 26.6 34.3
+ GiGPO 89.5 90.2 67.2 53.4 69.2 35.2 50.7 25.8 33.2
+ RLVMR 91.4 91.8 83.6 67.2 77.8 43.0 59.4 32.2 49.1

Llama3.1-8B

ReAct 19.5 22.3 17.6 8.6 18.8 11.7 19.9 11.7 20.3
+ SFT 62.5 60.9 39.1 39.8 47.6 30.1 39.8 22.3 32.6
+ ETO 69.5 67.5 47.3 57.0 64.3 36.8 45.2 29.3 35.4
+ GLIDER 72.7 73.4 50.8 64.4 71.2 38.7 53.8 28.5 35.6
+ GRPO 73.0 70.7 45.3 45.6 55.2 28.8 40.1 25.8 33.7
+ GiGPO 86.0 87.1 68.8 60.2 73.5 39.1 55.2 30.1 42.3
+ RLVMR 92.2 91.0 83.2 71.1 80.3 49.2 63.7 38.7 51.2

where α ∈ [0, 1] is a hyperparameter balancing the influence of the global outcome and local
reasoning quality. Finally, we optimize the policy πθ using a clipped surrogate objective with KL
divergence regularization:

Lfinal = Et [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)]− λKLDKL(πθ∥πref), (5)

where rt(θ) is the importance sampling ratio, ϵ is the clipping hyperparameter, and λKL controls the
KL penalty against a reference policy πref.

4 EXPERIMENT

4.1 MAIN RESULTS

In this section, we present the core experimental results to evaluate the effectiveness of our proposed
RLVMR. In addition to ALFWorld, we also conduct experiments on ScienceWorld (Wang et al.,
2022), which focuses on text-based scientific experimentation.

We compare our approach with two major categories of advanced RL training methods in addition to
SFT: (1) Offline RL, including (i) ETO (Song et al., 2024), which iteratively refines actions using
step-level feedback along trajectories; (ii) GLIDER (Hu et al., 2025b), which decomposes complex
tasks into coherent sub-tasks to improve transferability. (2) Online End-to-end RL, including (iii)
Multi-turn GRPO (Wang et al., 2025b), which adapts the original GRPO (Shao et al., 2024) for
online multi-turn RL tasks; (iv) GiGPO (Feng et al., 2025b), which introduces a two-level structure
for finer-grained credit assignment. For broader comparison, we also report the performance of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1.5B

In
va

lid
 A

ct
io

ns
 (%

)

0

10

20

30

L0 L1 L2

12.5
14.0

11.1

21.6

17.3
18.8

24.9

11.8

8.0

SFT
GRPO
RLVMR

1.5B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

10

20

30

40

L0 L1 L2

5.74.46.1

27.1

17.618.4
21.420.2

10.7

SFT
GRPO
RLVMR

Qwen2.5-7B-Instruct

7B

In
va

lid
 A

ct
io

ns
 (%

)

0

10

20

30

L0 L1 L2

7.16.55.6

13.5

25.4

14.8

6.35.56.2

SFT
GRPO
RLVMR

7B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

10

20

30

40

L0 L1 L2

11.7
7.8

2.3

31.2

20.321.5

14.4

24.5

13.9

SFT
GRPO
RLVMR

(a) Invalid Actions

1.5B

In
va

lid
 A

ct
io

ns
 (%

)

0

10

20

30

L0 L1 L2

12.5
14.0

11.1

21.6

17.3
18.8

24.9

11.8

8.0

SFT
GRPO
RLVMR

1.5B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

10

20

30

40

L0 L1 L2

5.74.46.1

27.1

17.618.4
21.420.2

10.7

SFT
GRPO
RLVMR

Qwen2.5-7B-Instruct

7B

In
va

lid
 A

ct
io

ns
 (%

)

0

10

20

30

L0 L1 L2

7.16.55.6

13.5

25.4

14.8

6.35.56.2

SFT
GRPO
RLVMR

7B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

10

20

30

40

L0 L1 L2

11.7
7.8

2.3

31.2

20.321.5

14.4

24.5

13.9

SFT
GRPO
RLVMR

(b) Repetitive Actions

1.5B

In
va

lid
 A

ct
io

ns
 (%

)

0

10

20

30

L0 L1 L2

12.5
14.0

11.1

21.6

17.3
18.8

24.9

11.8

8.0

SFT
GRPO
RLVMR

1.5B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

10

20

30

40

L0 L1 L2

5.74.46.1

27.1

17.618.4
21.420.2

10.7

SFT
GRPO
RLVMR

Qwen2.5-7B-Instruct

7B

In
va

lid
 A

ct
io

ns
 (%

)

0

10

20

30

L0 L1 L2

7.16.55.6

13.5

25.4

14.8

6.35.56.2

SFT
GRPO
RLVMR

7B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

10

20

30

40

L0 L1 L2

11.7
7.8

2.3

31.2

20.321.5

14.4

24.5

13.9

SFT
GRPO
RLVMR

(c) Invlaid Actions (7B)

1.5B

In
va

lid
 A

ct
io

ns
 (%

)

0

10

20

30

L0 L1 L2

12.5
14.0

11.1

21.6

17.3
18.8

24.9

11.8

8.0

SFT
GRPO
RLVMR

1.5B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

10

20

30

40

L0 L1 L2

5.74.46.1

27.1

17.618.4
21.420.2

10.7

SFT
GRPO
RLVMR

Qwen2.5-7B-Instruct

7B

In
va

lid
 A

ct
io

ns
 (%

)

0

10

20

30

L0 L1 L2

7.16.55.6

13.5

25.4

14.8

6.35.56.2

SFT
GRPO
RLVMR

7B

R
ep

et
iti

ve
 A

ct
io

ns
 (%

)

0

10

20

30

40

L0 L1 L2

11.7
7.8

2.3

31.2

20.321.5

14.4

24.5

13.9

SFT
GRPO
RLVMR

(d) Repetitive Actions (7B)

Figure 4: Exploration efficiency of RLVMR compared to SFT and GRPO baselines on ALFWorld.

GPT-4o, DeepSeek-V3/R1, and AgentGym (Xi et al., 2024). Detailed information is provided in
Appendix B.

RLVMR achieves new SOTA performance across all benchmarks and model sizes. As listed
in Table 1, our RLVMR framework consistently sets a new standard for performance, outperforming
all baseline methods on both ALFWorld and ScienceWorld. With the Qwen-7B model, RLVMR
achieves success rates of 91.4% on seen ALFWorld tasks and 67.2% on seen ScienceWorld tasks,
surpassing the next-best method, GiGPO. This consistent superiority highlights the broad applicability
and effectiveness of integrating verifiable meta-reasoning rewards into the RL training loop, leading
to more capable and successful agents.

Rewarding meta-reasoning significantly enhances generalization to unseen tasks. A primary
contribution of this work is addressing the inefficient exploration issue to improve generalization.
Our results validate this claim, showing that RLVMR excels in novel scenarios, especially on the
most challenging Unseen-L2 split, which involves entirely new task categories. On ALFWorld’s L2
split, our 7B model reaches an impressive 83.6% success rate, a substantial 16.4 percentage point
improvement over the strongest baseline (GiGPO). Similarly, on ScienceWorld’s L2 split, RLVMR
outperforms all other methods. This demonstrates that by learning how to reason effectively—rather
than just memorizing solutions—our agent develops more robust and transferable problem-solving
skills, leading to superior performance on unfamiliar challenges.

4.2 ANALYSIS

Our analysis reveals that RLVMR’s verifiable meta-reasoning rewards lead to superior exploration
and training efficiency, enabling the agent to find more direct solutions with greater stability than
strong baselines. Unless otherwise stated, we report results based on Qwen2.5-1.5B on ALFWorld.

Exploration Efficiency We analyze agent exploration efficiency by measuring invalid and repetitive
actions (Figure 4). RLVMR’s verifiable meta-reasoning rewards cultivate more efficient problem-
solving strategies, significantly reducing flawed or redundant steps. On seen tasks, our 1.5B model
slashes the invalid action rate from 18.1% (GRPO) to 11.1% and the repetitive action rate from 18.4%
to 6.1%. This efficiency gain is robustly maintained on novel challenges; while GRPO’s repetitive
action rate worsens on the hardest unseen tasks (from 21.4% to 27.1%), RLVMR’s rate remains
controlled at 5.7%. This demonstrates that RLVMR learns generalizable problem-solving principles
rather than overfitting to familiar paths.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140
Step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

ALFWORLD - Success Rate

0 20 40 60 80 100
Step

10

15

20

25

30

Ep
iso

de
 L

en
gt

h
(m

ea
n)

ALFWORLD - Episode Length

RLVMR GiGPO GRPO

Figure 5: Success rate and step count curves of different approaches on ALFWorld during RL training.

Training Efficiency We evaluate training efficiency via learning stability (convergence) and policy
quality (action sequence length) in Figure 5. Agents trained with RLVMR learn more direct solutions
and converge faster and more stably than baselines. In contrast, baselines like GRPO are unstable
and produce longer solution paths. This stems from its process-level rewards, which provide a clearer
and more robust learning signal that prevents inefficient and unproductive loops.

5 RELATED WORK

LLM Reinforcement Learning RL is widely used to align LLMs with human preferences (RLHF,
DPO) (Ouyang et al., 2022; Rafailov et al., 2023). Beyond alignment, RL has been applied to
improve reasoning and emotional intelligence (Hu et al., 2025a; Muennighoff et al., 2025; Wang
et al., 2025a). Group-based methods such as GRPO, Dr.GRPO, and DAPO estimate advantages from
multiple samples of the same prompt, removing the critic and improving efficiency over actor-critic
approaches like PPO (Feng et al., 2025a; Liu et al., 2025; Yu et al., 2025; Schulman et al., 2017).
These methods achieve strong results on mathematical reasoning, search, and tool use (Yu et al.,
2025; Hu et al., 2025a). However, applying RL to multi-turn, long-horizon tasks remains difficult due
to sparse, delayed rewards – a challenge we address (Wang et al., 2025b).

LLM Agents LLMs increasingly act as agents for code generation, web interaction, embodied
control, and affective tasks (Huang et al., 2023; Zhang et al., 2024; Bai et al., 2024; Agashe et al.,
2024; Abuelsaad et al., 2024; Zeng et al., 2024; Qiao et al., 2024; Fu et al., 2025; Zhang et al., 2025).
Early systems relied on prompting and external tools (e.g., ReAct) (Yao et al., 2023; Shinn et al.,
2023), but smaller models often lack strong reasoning; SFT can improve decisions (Zhang & Zhang,
2024; Xi et al., 2024; Qin et al., 2024). Other work studies single-step or offline RL (Yu et al., 2024;
Xiong et al., 2024; Zhou & Zanette, 2024), while recent efforts train agents end to end with online
RL, learning directly from interaction and reducing reliance on complex data preparation or step-
level reward models (Wang et al., 2025b; Feng et al., 2025b). Despite progress, fine-grained credit
assignment and generalization remain challenging (Wang et al., 2025b). We employ reward shaping
grounded in verifiable meta-cognitive behaviors to promote effective reasoning and robustness.

6 CONCLUSION

We tackled the challenge of inefficient exploration in long-horizon agents by introducing RLVMR, a
new framework that guides agents using process-level supervision. Instead of relying solely on sparse
success-based rewards, RLVMR provides dense, verifiable feedback for key reasoning behaviors like
planning, exploration, and reflection. Our approach combines a lightweight initialization phase with
end-to-end training to develop more effective and adaptable agents. Experiments on ALFWorld and
ScienceWorld show that RLVMR achieves state-of-the-art performance, with better generalization to
new tasks and noticeable improvements in reasoning quality—fewer redundant actions and better
recovery from mistakes. These results highlight the value of directly supervising reasoning steps.
Future research could extend RLVMR to multi-modal environments, explore adaptive reward mecha-
nisms that dynamically adjust to task complexity, and apply the framework to real-world domains
such as robotics and software engineering.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Tamer Abuelsaad, Deepak Akkil, Prasenjit Dey, Ashish Jagmohan, Aditya Vempaty, and Ravi Kokku.
Agent-e: From autonomous web navigation to foundational design principles in agentic systems.
arXiv preprint arXiv:2407.13032, 2024.

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human. arXiv preprint arXiv:2410.08164,
2024.

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. Advances in
Neural Information Processing Systems, 37:12461–12495, 2024.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025a.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025b.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang,
Jingang Wang, Xunliang Cai, and Weiran Xu. Agentrefine: Enhancing agent generalization through
refinement tuning. arXiv preprint arXiv:2501.01702, 2025.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025a.

Zican Hu, Wei Liu, Xiaoye Qu, Xiangyu Yue, Chunlin Chen, Zhi Wang, and Yu Cheng. Divide
and conquer: Grounding LLMs as efficient decision-making agents via offline hierarchical rein-
forcement learning. In Forty-second International Conference on Machine Learning, 2025b. URL
https://openreview.net/forum?id=pdNtji3ktF.

Dong Huang, Jie M Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agent-
coder: Multi-agent-based code generation with iterative testing and optimisation. arXiv preprint
arXiv:2312.13010, 2023.

Emily R Lai. Metacognition: A literature review. 2011.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Michael E Martinez. What is metacognition? Phi delta kappan, 87(9):696–699, 2006.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang,
Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model.
Advances in Neural Information Processing Systems, 37:114843–114871, 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. In ICLR, 2024.

10

https://openreview.net/forum?id=pdNtji3ktF

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for llm agents. arXiv preprint arXiv:2403.02502, 2024.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Peisong Wang, Ruotian Ma, Bang Zhang, Xingyu Chen, Zhiwei He, Kang Luo, Qingsong Lv,
Qingxuan Jiang, Zheng Xie, Shanyi Wang, Yuan Li, Fanghua Ye, Jian Li, Yifan Yang, Zhaopeng
Tu, and Xiaolong Li. Rlver: Reinforcement learning with verifiable emotion rewards for empathetic
agents, 2025a. URL https://arxiv.org/abs/2507.03112.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. Scienceworld: Is
your agent smarter than a 5th grader? arXiv preprint arXiv:2203.07540, 2022.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in llm
agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025b.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen
Yang, Chenyang Liao, Xin Guo, Wei He, et al. Agentgym: Evolving large language model-based
agents across diverse environments. arXiv preprint arXiv:2406.04151, 2024.

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu, Xun Wang, Ke Wang, Cheng Li, Wei Peng,
and Sujian Li. Watch every step! llm agent learning via iterative step-level process refinement. In
EMNLP, 2024.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching
large language model to use tools via self-instruction. Advances in Neural Information Processing
Systems, 36:71995–72007, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Yuanqing Yu, Zhefan Wang, Weizhi Ma, Zhicheng Guo, Jingtao Zhan, Shuai Wang, Chuhan Wu,
Zhiqiang Guo, and Min Zhang. Steptool: A step-grained reinforcement learning framework for
tool learning in llms. 2024.

11

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2507.03112

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Siyu Yuan, Zehui Chen, Zhiheng Xi, Junjie Ye, Zhengyin Du, and Jiecao Chen. Agent-r: Training
language model agents to reflect via iterative self-training. arXiv preprint arXiv:2501.11425, 2025.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for llms. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 3053–3077, 2024.

Bang Zhang, Ruotian Ma, Qingxuan Jiang, Peisong Wang, Jiaqi Chen, Zheng Xie, Xingyu Chen,
Yue Wang, Fanghua Ye, Jian Li, Yifan Yang, Zhaopeng Tu, and Xiaolong Li. Sentient agent
as a judge: Evaluating higher-order social cognition in large language models, 2025. URL
https://arxiv.org/abs/2505.02847.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation with
tool-integrated agent systems for real-world repo-level coding challenges. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pp. 13643–13658. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
ACL-LONG.737. URL https://doi.org/10.18653/v1/2024.acl-long.737.

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
In Findings of the Association for Computational Linguistics ACL 2024, pp. 3132–3149, 2024.

Yifei Zhou and Andrea Zanette. Archer: training language model agents via hierarchical multi-turn
rl. In Proceedings of the 41st International Conference on Machine Learning, pp. 62178–62209,
2024.

12

https://arxiv.org/abs/2505.02847
https://doi.org/10.18653/v1/2024.acl-long.737

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A CASE STUDY OF INEFFICIENT EXPLORATION

The following is a trajectory segment of a vanilla GRPO-trained agent performing a novel task—–
put two keychains in the safe — in ALFWorld (corresponding to our L2 split). By step 7, the agent
has already arrived at dresser 1. However, we observe that in the subsequent steps, the agent falls into
a sequence of inefficient decisions: its next intention is to find the second keychain, yet it persistently
tries to go to dresser 1 for several steps, disregarding the fact that it is already there. This indicates
that its policy mainly reflects the action distribution present in the training data, rather than allowing
the reasoning process itself to truly regulate decision-making. Although the agent can form relatively
effective action strategies for completing tasks, its capacity for critically evaluating its own behavior
and understanding the underlying task requirements remains limited. This suggests that the agent has
not truly acquired the reasoning patterns necessary for robust task-solving.

A trajectory segment of an agent trained with GRPO

Step 7
Observation: You arrive at dresser 1. On the dresser 1, you see a box 1, a creditcard 1, a
keychain 2, a keychain 1, a laptop 1, a statue 1, and a tissuebox 2.
Reasoning: The current situation is that I am at dresser 1, which has multiple items including
a keychain 1, a keychain 2, a creditcard 1, etc. To complete the task of putting two keychains
in the safe, I need to select one of these keychains from the dresser.
Action: take keychain 1 from dresser 1

Step 8
Observation: You pick up the keychain 1 from the dresser 1.
Reasoning: The current situation is that I am at dresser 1 with the keychain 1 in my
possession. To put two keychains in the safe, I need to find another keychain and then move
both keychains to the safe.
Action: go to dresser 1

Step 9
Observation: Nothing happens.
Reasoning: The player has been in the room for several steps but has not yet interacted with
the safe or taken any keychains. The safe is closed initially, which might need interaction to
open it.
Action: go to dresser 1

Step 10
Observation: Nothing happens.
Reasoning: The previous steps were not successful in opening the safe or taking the
keychains. Let’s try another approach.
Action: go to dresser 1

Step 11
Observation: Nothing happens.
Reasoning: The user has taken all the steps necessary to obtain both keychains but has yet to
actually put them into the safe. The last known location of the keychains was on the dresser
before the attempt to open the safe failed (in Observation 8). To complete the task, the user
needs to move one or both keychains to the safe before attempting to open it again.
Action: move keychain 1 to safe 1

Observation: Nothing happens.

This qualitative example highlights how an ostensibly “successful” policy can still waste a large
number of steps on redundant or illogical moves.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B SETUP DETAILS

B.1 DATASET DETAILS

ALFWorld is a household task environment that requires agents to explore rooms and employ
common-sense reasoning to accomplish tasks, such as “put the pencil on the desk”. The environment
provides feedback on whether the agent successfully completes the task within a given number of
steps. ALFWorld describes the environment in purely textual form and supplies a reward signal
indicating only the final task completion status.

ScienceWorld is a text-based virtual environment designed as a comprehensive testbed for evaluating
and enhancing scientific reasoning abilities in AI systems. It features tasks spanning 10 scientific
domains and 30 subcategories, simulating a broad range of experiments found in elementary science
curricula, including state changes of matter, measurement, electricity, life sciences, plant growth,
chemical reactions, genetics, among others. Each task involves multiple subgoals, and the final
reward is computed based on the completion of these subgoals. However, to better reflect real-world
scenarios, we only use the final reward and disregard intermediate rewards. Notably, some tasks
in ScienceWorld require agents to make conclusive judgments based on experimental outcomes or
common sense; a task is considered successful only if the agent provides the correct final answer.

Both ALFWorld and ScienceWorld offer “seen” and “unseen” variants for evaluating generalization
capabilities. To further assess the agents’ robustness and generalization, we define three difficulty
levels (L0, L1, L2), with L2 comprising entirely held-out task types. Specifically, for ALFWorld, we
designate Cool & Place and Pick Two & Place as held-out tasks; for ScienceWorld, the final task
type of each topic is reserved for unseen evaluation.

In the ALFWorld environment, since only the final task success signal is provided, we evaluate
model performance using the average success rate (succ.). In contrast, the ScienceWorld environment
offers more fine-grained step rewards, enabling the agent to obtain immediate rewards based on the
importance of the steps completed, even without achieving the final goal. Therefore, in addition to
the average success rate (succ.), we also report the average cumulative reward (score).

B.2 IMPLEMENTATION DETAILS

We conducted experiments on both the Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct models.
During the cold start phase, we set the batch size per GPU to 16, used a learning rate of 1×10−5, and
trained for 5 epochs. For the RL phase, we adopted the veRL framework with necessary modifications.
The batch size per GPU was also set to 16. At each training step, we sampled from 16 distinct
environments, with each environment rolling out 8 trajectories.

The weights for outcome advantage and meta-reasoning advantage were both set to 0.5 by default.
To penalize outputs that did not adhere to the required format, we applied a reward penalty of
−0.1, where an output was considered valid only if it included at least one meta-reasoning tag (e.g.,
⟨reflection⟩) and one action tag (e.g., ⟨action⟩). The KL regularization coefficient was set to 0.01.
For all environments, the maximum number of steps per episode was fixed at 30. In the cold-start
phase, we performed supervised fine-tuning on 200 trajectories for 5 epochs. In the RL training stage,
our method was run for 100 epochs, whereas RL-based baselines were trained for 150 epochs.

AgentGym is trained on Llama-2-Chat-7B, first with behavior cloning on the AgentTraj (Xi et al.,
2024) dataset from multiple environments, and then further improved via exploration and self-
evolution on a broader instruction set.

C DETAILED EXPERIMENT RESULTS

We further report the success rates of different methods on various tasks in ALFWorld. Table 2
provides the results using the Qwen2.5-1.5B model as the base model, while Table 3 presents the
results using the Qwen2.5-7B model. Additionally, we also evaluated another model from a different
family, Llama3.1-8B, and the results are shown in Table 4. As shown in the tables, RLVMR generally
outperforms other methods across all tasks, and particularly exhibits strong performance in more

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

complex tasks. This demonstrates that RLVMR, by rewarding high-quality reasoning behaviors,
significantly enhances the robustness and adaptability of agents in multi-step interactions.

Model Method Pick Look Clean Heat Cool Pick2 All

Qwen2.5-1.5B

ReAct 23.1 18.3 10.8 8.7 3.5 0.0 13.7
+SFT 43.2 42.0 35.9 33.2 29.4 29.7 38.7
+ETO 73.6 46.3 66.2 68.3 62.8 55.6 66.4
+GLIDER 78.8 58.2 63.6 73.7 61.6 66.1 68.8
+GRPO 80.3 55.6 88.1 76.2 62.0 72.1 71.1
+GiGPO 92.8 66.5 90.7 90.9 80.2 73.8 83.2
+RLVMR 95.2 78.8 91.2 90.2 83.9 77.6 87.9

Table 2: Success rates on ALFWorld using Qwen2.5-1.5B model.

Model Method Pick Look Clean Heat Cool Pick2 All

Qwen2.5-7B

ReAct 43.1 33.2 18.7 16.4 20.2 12.8 28.5
+SFT 70.8 63.0 61.1 46.3 49.7 33.2 57.0
+ETO 88.2 70.5 82.3 83.6 71.0 51.2 74.2
+GLIDER 89.6 72.1 83.9 81.6 69.5 53.0 74.6
+GRPO 90.2 76.7 86.0 80.1 68.3 56.4 77.3
+GiGPO 91.7 85.9 93.3 90.3 89.0 83.6 90.2
+RLVMR 95.3 88.2 90.1 92.4 89.8 86.7 91.8

Table 3: Success rates on ALFWorld using Qwen2.5-7B model.

Model Method Pick Look Clean Heat Cool Pick2 All

Llama3.1-8B

ReAct 40.3 30.1 17.8 13.9 19.5 9.3 22.3
+SFT 70.8 69.0 58.6 47.7 58.9 40.4 60.9
+ETO 83.3 64.5 76.9 73.0 66.4 46.2 67.5
+GLIDER 87.7 71.2 78.0 79.5 68.2 49.7 73.4
+GRPO 87.0 75.9 82.8 74.0 67.2 55.0 70.7
+GiGPO 90.3 87.5 90.1 85.2 83.6 82.5 87.1
+RLVMR 93.5 90.0 86.5 91.5 86.5 83.5 91.0

Table 4: Success rates on ALFWorld using Llama3.1-8B model.

D PSEUDOCODE OF RLVMR

We present the pseudocode for the RLVMR training procedure in Algorithm 1, and the pseudocode
for computing the relative advantage of composite groups in Algorithm 2. Additionally, we provide
the pseudocode for computing meta-reasoning rewards in Algorithm 3.

E TRAINING CURVES ON SCIENCEWORLD

We also report the success rate curves and average step counts of different RL training methods on
ScienceWorld, as shown in Figure 6.

Counterintuitively, when training GRPO or GiGPO on ScienceWorld, the average action steps do
not decrease as success rates improve; in some cases, the number even rises. This may be because
ScienceWorld tasks require the agent not only to plan, explore, and reflect, but also to connect
scientific theories to concrete actions, which smaller models may not perform sufficiently well.
Early in training, agents often terminate trajectories early with incorrect answers before sufficient
experimentation. As training progresses, these unproductive trajectories are reduced, leading to an

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 RLVMR: Reinforcement Learning with Verifiable Meta-Reasoning Rewards

Require: Policy πθ, Environment E , Reward function R, Hyperparameter λmeta
Ensure: Optimized policy parameters θ

1: for iteration t = 1, 2, . . . , T do
2: Initialize trajectory set D = ∅
3: for episode i = 1, 2, . . . , N do
4: Get initial state from environment s(i)0 ∼ E
5: Initialize trajectory τ (i) = {}
6: t← 0
7: while episode not terminated do
8: Sample action a

(i)
t ∼ πθ(·|s(i)t)

9: Execute action and observe s
(i)
t+1, r

(i)
t = E(s(i)t , a

(i)
t)

10: // Extract reasoning type tag
11: tag(i)t ← ExtractReasoningTag(a(i)t)
12: // {⟨planning⟩, ⟨explore⟩, ⟨reflection⟩, ⟨monitor⟩}
13: τ (i) ← τ (i) ∪ {(s(i)t , a

(i)
t , r

(i)
t , tag(i)t)}

14: t← t+ 1
15: end while
16: // Compute Outcome Reward
17: R

(i)
outcome ← R(τ (i))

18: end for
19: // Compute Meta Reasoning Rewards for all trajectories
20: for episode i = 1, 2, . . . , N do
21: for each step t in τ (i) do
22: r

(i)
meta,t ← ComputeMetaReward(a(i)t , tag(i)t , τ (i), R

(i)
outcome)

23: τ (i)[t]← τ (i)[t] ∪ {r(i)meta,t} ▷ Attach meta-reasoning reward to step t
24: end for
25: D ← D ∪ {(τ (i), R(i)

outcome)}
26: end for
27: // Compute group relative advantage
28: {A(i)}Ni=1 ← ComputeGroupRelativeAdvantage(D)
29: // Group Relative Policy Optimization
30: for update step k = 1, 2, . . . ,K do
31: Compute policy gradient: ∇θJ(θ) = Eτ∼D[∇θ log πθ(a|s) ·A]
32: Update policy parameters: θ ← θ + α∇θJ(θ)
33: end for
34: end for

increase in average action steps as agents perform more comprehensive experiments. This reveals
a limitation of RL: while it can align LLM behavior with the environment, its effectiveness is
constrained by the foundation model’s capabilities. Our method mitigates this by applying a cold
start phase, allowing the foundation model to acquire essential environmental knowledge. As a result,
action steps on ScienceWorld are more stable and exhibit reliable convergence.

F PROMPTS

Below are the prompts we used in the ALFWorld and ScienceWorld environments.

Prompt Template for ALFWorld Enviroment

You are an expert agent operating in the ALFRED Embodied Environment. Your task is to:
{task description}
Prior to this step, you have already taken {step count} step(s).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2 Step-Level Group Relative Advantage Computation

Require: Trajectory data D = {(τ (i), R(i)
outcome)}Ni=1, Weight λmeta

Ensure: Advantage estimates {A(i)}Ni=1
1: // ===== Outcome Advantage Computation =====
2: Group by enviroment index: Goutcome = {gj} where gj = {i : env idx(i) = j}
3: for each group gj ∈ Goutcome do
4: Compute group mean: µj =

1
|gj |

∑
i∈gj

R
(i)
outcome

5: Compute group std: σj =
√

1
|gj |

∑
i∈gj

(R
(i)
outcome − µj)2

6: for i ∈ gj do

7: A
(i)
outcome =

R
(i)
outcome−µj

σj+ϵ

8: end for
9: end for

10: // ===== Meta Reasoning Advantage Computation =====
11: Group by (enviroment index, reasoning tag): Gmeta = {gj,k}
12: where gj,k = {i : env idx(i) = j ∧ tag(i) = k}
13: for each group gj,k ∈ Gmeta do
14: Compute group mean: µj,k = 1

|gj,k|
∑

i∈gj,k
r
(i)
meta

15: Compute group std: σj,k =
√

1
|gj,k|

∑
i∈gj,k

(r
(i)
meta − µj,k)2

16: for i ∈ gj,k do

17: A
(i)
meta =

r
(i)
meta−µj,k

σj,k+ϵ

18: end for
19: end for
20: // ===== Final Advantage Combination =====
21: for i = 1, 2, . . . , N do
22: A(i) = A

(i)
outcome + λmeta ·A(i)

meta
23: end for

return {A(i)}Ni=1

0 20 40 60 80 100 120 140
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

SCIWORLD - Success Rate

0 20 40 60 80 100
Step

12

14

16

18

20

22

Ep
iso

de
 L

en
gt

h
(m

ea
n)

SCIWORLD - Episode Length

RLVMR GiGPO GRPO

Figure 6: Success rate and step count curves of different approaches on ScienceWorld during RL
training.

Below are the most recent {history length} observations and the corresponding actions
you took: {action history}
You are now at step {current step} and your current observation is:
{current observation}
Your admissible actions of the current situation are: {admissible actions}.
Your previous overall plan is: {planning}. Please strictly adhere to your plan.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 3 Meta-Reasoning Reward Computation

Require: Action at, State st, Reasoning tag tagt, Trajectory τ , Outcome reward R(τ)
Require: Reward hyperparameters {rplan, rexplore, rreflect}, discount factor γ
Ensure: Meta-reasoning reward rmeta,t

1: rmeta,t ← 0
2: validt ← IsActionValid(at)
3: if validt = False then
4: return 0 ▷ Invalid actions receive no reward
5: end if
6: if tagt = ⟨planning⟩ then
7: if R(τ) > 0 then ▷ Planning rewarded only on successful trajectories
8: k ← NumPlanningAfter(t, τ)
9: rmeta,t ← rplan · γk

10: else
11: rmeta,t ← 0
12: end if
13: end if
14: if tagt = ⟨explore⟩ then
15: isRepeated← False
16: for t′ = 0 to t− 1 do
17: Extract transition (st′ , at′ , st′+1)
18: if (st, at, st+1) = (st′ , at′ , st′+1) then
19: isRepeated← True
20: break
21: end if
22: end for
23: if isRepeated = False then
24: rmeta,t ← rexplore ▷ Novel transition
25: else
26: rmeta,t ← 0
27: end if
28: end if
29: if tagt = ⟨reflection⟩ then
30: if t > 0 then
31: Extract previous transition (st−1, at−1)
32: validt−1 ← IsActionValid(at−1)
33: if validt−1 = False and (st, at) ̸= (st−1, at−1) then
34: rmeta,t ← rreflect ▷ Effective reflection
35: else
36: rmeta,t ← 0
37: end if
38: else
39: rmeta,t = 0
40: end if
41: end if

return rmeta,t

Now it’s your turn to take an action, following these steps:
1. First, reason using ONLY ONE tag pair and express your reasoning in one

concise, brief sentence:
• <planning> Plan or replan the entire task by breaking it down into high-level

steps. Focus on outlining the full sequence required to complete the overall
task, not just the immediate next action. Use this at the beginning of complex
tasks or whenever the previous plan is incorrect or insufficient. It is necessary
to list all the points separately. eg, step 1: xxx, step 2: xxx, step 3: xxx, etc.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• <explore> When results are unexpected or information is lacking, use cur-
rent observations to think outside the box and list as many possible locations,
items, or actions as possible. Use this approach when facing obstacles that
require creative and innovative thinking.

• <reflection> Analyze the reasons for errors in task execution and correct
them by exploring alternative approaches. ’No known action matches that
input.’ indicates the action is invalid. This is typically used when several
consecutive actions yield no substantial progress.

• <monitor> Continuously track the current progress and history of reasoning
and execution throughout the task. Recall the current subgoal and consider the
next concrete action, ensuring agent alignment with the overall plan. Typically
used when task outcomes are as expected and no other mode of reasoning is
required.

2. After your reasoning, you MUST select and present an admissible action for
the current step within <action> . . .</action> tags.
Specify the next action the agent should take to progress toward the task goal,
following these guidelines:
(a) Object and Receptacle References: Use specific identifiers:

• [obj id] for objects (e.g., apple 1).
• [recep id] for receptacles (e.g., countertop 1).

(b) Action Validity: Follow the exact format below. Any deviation renders the
action invalid:

• Valid actions: go to [recep id], take [obj id]
from [recep id], put [obj id] in/on [recep
id], open/close [recep id], use [obj id],
heat/cool/clean [obj id] with [recep id].

Prompt Template for ScienceWorld Environment

You are an expert agent operating in the ScienceWorld environment, which is a text-based
virtual environment centered around accomplishing tasks from the elementary science cur-
riculum.
Your current task is: {task description}
Prior to this step, you have already taken {step count} step(s).
Below are the most recent {history length} observations and the corresponding actions
you took: {action history}
You are now at step {current step} and your current observation is:
{current observation}
Here are the actions you may take:

• {"action": "open OBJ", "description": "open a
container"}

• {"action": "close OBJ", "description": "close a
container"}

• {"action": "activate OBJ", "description": "activate a
device"}

• {"action": "deactivate OBJ", "description":
"deactivate a device"}

• {"action": "connect OBJ to OBJ", "description":
"connect electrical components"}

• {"action": "disconnect OBJ", "description":
"disconnect electrical components"}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• {"action": "use OBJ [on OBJ]", "description": "use a
device/item"}

• {"action": "look around", "description": "describe
the current room"}

• {"action": "look at OBJ", "description": "describe an
object in detail"}

• {"action": "look in OBJ", "description": "describe a
container’s contents"}

• {"action": "read OBJ", "description": "read a note or
book"}

• {"action": "move OBJ to OBJ", "description": "move an
object to a container"}

• {"action": "pick up OBJ", "description": "move an
object to the inventory"}

• {"action": "put down OBJ", "description": "drop an
inventory item"}

• {"action": "pour OBJ into OBJ", "description": "pour
a liquid into a container"}

• {"action": "dunk OBJ into OBJ", "description": "dunk
a container into a liquid"}

• {"action": "mix OBJ", "description": "chemically mix
a container"}

• {"action": "go to LOC", "description": "move to a new
location"}

• {"action": "eat OBJ", "description": "eat a food"}
• {"action": "flush OBJ", "description": "flush a
toilet"}

• {"action": "focus on OBJ", "description": "signal
intent on a task object"}

• {"action": "wait", "description": "take no action for
10 iterations"}

• {"action": "wait1", "description": "take no action
for 1 iteration"}

• {"action": "task", "description": "describe current
task"}

• {"action": "inventory", "description": "list your
inventory"}

Your previous overall plan is: {planning}.
Please strictly adhere to your plan.

Now it’s your turn to take an action, following these steps:
1. First, reason using ONLY ONE tag pair and express your reasoning in one

concise, brief sentence:
• <planning>

Plan or replan the entire task by breaking it down into high-level steps. Focus
on outlining the full sequence required to complete the overall task, not just the
immediate next action.
Use this at the beginning of complex tasks or whenever the previous plan is
incorrect or insufficient.
It is necessary to list all the points separately. eg, step 1: xxx, step 2: xxx, step
3: xxx, etc.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• <explore>
When results are unexpected or information is lacking, use current observations
to think outside the box and list as many possible locations, items, or actions as
possible.
Use this approach when facing obstacles that require creative and innovative
thinking.

• <reflection>
Analyze the reasons for errors in task execution and correct them by exploring
alternative approaches. ’No known action matches that input.’ indicates the
action is invalid.
This is typically used when several consecutive actions yield no substantial
progress.

• <monitor>
Continuously track the current progress and history of reasoning and execution
throughout the task. Recall the current subgoal and consider the next concrete
action, ensuring agent alignment with the overall plan.
Typically used when task outcomes are as expected and no other mode of
reasoning is required.

2. After your reasoning, you MUST select and present an appropriate action for
the current step within <action> . . .</action> tags.

G CASE STUDY OF RLVMR

Case Study Below is a trajectory segment of an agent trained with RLVMR on ALFWorld, per-
forming a novel task: find two soapbars and put them in the cabinet. We observe that, guided by
meta-cognitive rewards, the agent demonstrates a more comprehensive and meticulous reasoning
process, exhibiting significantly more adaptive reasoning patterns. At step 13, the agent is already
carrying one soapbar and is actively searching for the second. Lacking explicit information about
the soapbars’ location, the agent engages in structured and efficient exploration by systematically
hypothesizing possible locations via exploratory actions. Concurrently, it keeps track of its current
sub-goal, thereby avoiding the task confusion commonly seen in SFT-trained agents.

Notably, in step 14, the agent experiences a brief hallucination, leading to an ineffective action.
However, at step 15, rather than falling into an error loop or blindly continuing, the agent immediately
triggers reflective behavior, proposing to “double-check my inventory” to collect more information
and guard against the possibility of having already acquired both soapbars. This demonstrates a
more rigorous and robust reasoning and decision-making process. Experimental results show that
such meta-cognitively driven behavioral patterns enhance agent performance and generalization on
previously unseen tasks compared to baselines.

A trajectory segment of an agent trained with RLVMR

Step 13
Observation: You arrive at sinkbasin 2. On the sinkbasin 2, you see nothing.
Reasoning: <explore>Since there are no soapbars at sinkbasin 2, I should broaden my
search to other potential locations. The next logical area to check is the toilet, as soapbars
could potentially be found there.</explore>
Action: go to toilet 1

Step 14
Observation: You arrive at toilet 1. On the toilet 1, you see a candle 1 and a spraybottle 3.
Reasoning: <monitor>My current sub-goal is to obtain the second soapbar. Since there are
no soapbars visible here, I will attempt to examine the environment further, just in case the
second soapbar is present but not immediately listed in the observation.</monitor>
Action: examine soapbar 2

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Step 15
Observation: Nothing happens.
Reasoning: <reflection>Reflecting on my recent actions, I realize I failed to place the
second soapbar in the cabinet earlier. To proceed efficiently, I need to double-check my
inventory and ensure I’m actually carrying both soapbars before trying again.</reflection>
Action: inventory

Step 16
Observation: You are carrying: a soapbar 1.
Reasoning: <monitor>At this point, my sub-goal is still to locate the second soapbar.
Since I am currently only carrying soapbar 1, I need to continue searching for the other
one.</monitor>
Action: go to countertop 1

Step 17
Observation: You arrive at countertop 1. On the countertop 1, you see a soapbottle 1, a
spraybottle 1, and a toiletpaper 1.
Reasoning: <explore>No soapbar is found on the countertop either, so I should expand my
search to nearby areas. Checking places like the toilet paper hanger may help ensure I’m not
missing any possible locations for the second soapbar.</explore>
Action: go to toiletpaperhanger 1

Step 18
Observation: On the toiletpaperhanger 1, you see a toiletpaper 3.
Reasoning: <explore>Since I still haven’t found a new soapbar, I should continue exploring
other potential areas, such as the hand towel holders, to make sure I don’t overlook any
possible spots where a soapbar could be located.</explore>
Action: go to handtowelholder 1

H PARAMETER SENSITIVITY ANALYSIS

H.1 ADVANTAGE COEFFICIENT α

0 20 40 60 80 100
Training Step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

(a) Success Rate

0 20 40 60 80 100
Training Step

10

15

20

25

30

Av
er

ag
e

Tr
aj

ec
to

ry
 L

en
gt

h

(b) Average Trajectory Length

w=0.0 w=0.05 w=0.2 w=0.4 w=0.6 w=0.8 w=1.0

Figure 7: Sensitivity analysis of advantage coefficient α on ALFWorld using Qwen2.5-1.5B-Instruct.

Our composite advantage function (defined in Algorithm 2) combines two complementary signals:
the outcome advantage Aepisode (which guides the agent toward task success) and the meta-reasoning
advantage Atag (which promotes effective step-level reasoning behaviors). The hyperparameter α
controls their relative weighting in the final advantage computation:

A(i) = α ·Aepisode(i) + (1− α) ·Atag(i) (6)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

To evaluate the robustness of our method to this hyperparameter choice, we performed a sensitivity
analysis on ALFWorld using Qwen2.5-1.5B-Instruct with α ∈ {0.0, 0.05, 0.2, 0.4, 0.6, 0.8, 1.0}. The
results are shown in Figure 7.

• When α is very small (0.0 or 0.05), performance drops sharply because the local meta-
reasoning reward overwhelms the global outcome signal; in fact, α = 0.0 removes the
success feedback entirely, preventing effective learning.

• When α is close to 1.0, the model under-weights meta-reasoning behaviors, leading to
noticeably degraded success rates and longer episode lengths, which harms the quality of
reasoning within successful trajectories as well as the model’s generalization ability.

Empirically, performance is most stable when α is moderate. In this regime, outcome and meta-
reasoning advantages provide complementary guidance: the model improves task success while also
learning higher-quality intermediate reasoning. We also observed that, as long as α is not near the
extremes, its effect on training speed and final performance remains small and within the natural
variance of RL training. Based on these findings, and without evidence favoring a more skewed
weighting, we choose α = 0.5 as a balanced and robust setting.

H.2 IMPACT OF DISCOUNT FACTOR

To examine whether discounting factor can further improve long-horizon learning, we introduce a
standard discounted return of the form

Gt =

T−t∑
k=0

γkrt+k,

0 50 100 150 200
Training Step

0.0

0.5

1.0

Su
cc

es
s

Ra
te

(a) GRPO

γ=1.0
γ=0.9

0 20 40 60 80 100
Training Step

0.0

0.5

1.0

Su
cc

es
s

Ra
te

(b) RLVMR

γ=1.0
γ=0.9

Figure 8: Comparison of methods with
and without discount factor on ALF-
World using Qwen2.5-1.5B-Instruct.

where γ ∈ (0, 1] controls the degree of temporal discount-
ing. Setting γ = 1 recovers the undiscounted case used in
our main experiments. We conduct controlled comparisons
on ALFWorld using Qwen2.5-1.5B-Instruct, evaluating
both GRPO and RLVMR under γ = 1 and γ < 1.

The results in Figure 8 reveal the following trends.

For vanilla GRPO, adding a discount factor leads to a
slightly faster improvement at the beginning of training,
which aligns with the intuition that discounting reduces
the influence of late-stage noise in sparse reward settings.
However, the improvement remains modest and does not
fundamentally enhance overall performance or alleviate
inefficient exploration—the key limitation we target in this
work.

For RLVMR, the effect of discounting is negligible. The
two curves almost overlap, indicating that the explicit
meta-reasoning rewards already provide dense, temporally
structured guidance (e.g., discouraging repeated actions).
As a result, additional temporal discounting offers little
benefit on top of the meta-reasoning signals. These find-
ings further support the robustness of RLVMR’s reward
design.

I ABLATION STUDY

I.1 ABLATION ON KEY COMPONENTS

We conduct ablation studies on the Unseen-L2 split using Qwen2.5-1.5B-Instruct to analyze the
impact of our framework’s key components: the trajectory-level outcome advantage signal (AT),
the meta-reasoning advantage signal (AMC), and the cold-start process (CS). The results in Table 5
confirm that each component is critical for achieving optimal performance.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 5: Ablation results on ALFWorld and ScienceWorld (success rates (%) on L2 variant).

Variant ALFWorld ScienceWorld
RLVMR (Full) 56.3 26.5

w/o AT (Outcome Reward) 12.5 7.8
w/o AMC (Meta-Reasoning Reward) 45.3 20.3
w/o CS (Cold-Start) 40.6 18.8

Verifiable meta-reasoning rewards are essential for tackling complex, unseen tasks. Removing
the meta-reasoning advantage signal (AMC) causes a significant performance drop, with the success
rate on ALFWorld falling by 11.0 percentage points (from 56.3% to 45.3%) and on ScienceWorld
by 6.2 points. This variant is equivalent to a standard GRPO agent fine-tuned from the cold-start
model. The sharp decline validates our central hypothesis: directly rewarding beneficial reasoning
processes is crucial for developing robust problem-solving skills. This component directly addresses
the “inefficient exploration issue” by providing dense, process-level signals that guide the agent
toward more efficient and logical behaviors, a benefit that outcome-only rewards (AT) cannot provide
alone.

Outcome-based rewards remain indispensable for guiding the agent toward final task success.
Eliminating the trajectory-level outcome advantage (AT) results in a catastrophic performance
collapse, with the success rate plummeting to just 12.5% on ALFWorld and 7.8% on ScienceWorld.
This demonstrates that while meta-reasoning rewards effectively shape the process, the global
signal of task success is vital for orienting the agent toward the ultimate goal. The meta-reasoning
rewards are locally effective—for instance, rewarding non-repetitive exploration—but without the
final outcome signal, the agent cannot learn which explorations ultimately lead to a successful
trajectory. This confirms that the synergy between process-level and outcome-level rewards is a key
strength of the RLVMR framework.

A lightweight cold-start phase is critical for bootstrapping the agent’s reasoning capabilities.
Training the agent without the supervised fine-tuning cold-start (CS) phase leads to a substantial
performance decrease on both ALFWorld (down 15.7 points) and ScienceWorld (down 7.7 points).
The cold-start phase, which uses only 200 trajectories, is not intended to solve the tasks but to equip
the model with the basic ability to generate syntactically correct meta-reasoning tags and follow
instructions. For smaller models (e.g., 1.5B), this initial grounding is vital; without it, the agent often
fails to produce parsable outputs during RL, leading to training instability and policy collapse. This
finding underscores the efficiency of our approach: a brief, low-data cold-start is sufficient to unlock
the model’s capacity for complex reasoning, which is then honed by the RL phase.

I.2 ABLATION ON META-REASONING TYPES

To further understand the role of each meta-reasoning component, we conduct a fine-grained ablation
study by removing one type of meta-reasoning tag and its corresponding meta-reasoning reward at a
time, while keeping all other settings unchanged. Experiments are performed on the ALFWorld L2
split using the Qwen2.5-1.5B-Instruct model.

We evaluate models using the same metrics as the main paper: (i) success rate, the percentage of
episodes in which the agent completes the task; (ii) average trajectory length, the mean number of
steps taken per episode, capturing overall efficiency and the agent’s ability to find direct solutions;
(iii) repetitive action rate, the percentage of actions that repeat a previous action without changing
the environment state, quantifying inefficient exploration or loops; and (iv) invalid action rate,
the proportion of actions that are not executable in the current environment state, reflecting basic
comprehension and error frequency.

Table 6 summarizes the results. Removing reflection significantly increases both repetitive and invalid
actions, indicating that the agent struggles to recover from sequences of ineffective steps without an
explicit mechanism for self-correction. Removing explore produces substantially longer trajectories,
as the agent tends to fall into inefficient search patterns without leveraging contextual cues from
history to guide exploratory decisions. Eliminating either planning or monitor also leads to clear

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

performance degradation. We find that correct early-stage planning provides a global structure for the
task, reducing disorganized execution, while monitoring helps track subgoals and maintain adherence
to the planned sequence.

Overall, these ablations demonstrate that each meta-reasoning type contributes meaningfully to robust
long-horizon behavior. The meta-reasoning patterns operationalized from metacognitive theory are
therefore essential for improving both effectiveness and reliability of the agent.

Variant SR(%) ↑ avg steps ↓ repeat(%) ↓ invalid(%) ↓
full RLVMR 56.3 15.4 5.7 12.5
w/o planning 47.5 15.9 8.6 12.8
w/o explore 55.8 17.2 12.6 16.1
w/o reflection 46.2 16.5 14.5 20.2
w/o monitor 52.1 16.0 7.4 15.8

Table 6: Ablation of meta-reasoning tag types on ALFWorld L2 with Qwen2.5-1.5B-Instruct.

I.3 IMPACT OF ANNOTATION MODEL CHOICE

0 20 40 60 80 100
Training Step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Success Rate on ALFWorld

Llama3.1-70B Annotate(Train)
GPT-4o Annotate (Train)
Llama3.1-70B Annotate (Val-L2)
GPT-4o Annotate (Val-L2)

Figure 9: Success-rate on ALFWorld-L2
for Qwen2.5-1.5B-Instruct under differ-
ent cold-start annotation sources.

To further examine the dependence of RLVMR on the
teacher model used in the cold-start SFT phase, we addi-
tionally compare annotations generated by a strong closed-
source model (GPT-4o) and a much smaller open-source
model (Llama-3.1-70B). Specifically, we replace the cold-
start annotations with those produced by different teacher
models to train the Qwen2.5-1.5B-Instruct model, fol-
lowed by the subsequent RL process. As shown in Fig-
ure 9, the downstream RL performance under the two
annotation sources is almost identical across the training
set and the most challenging L2 evaluation split for the
Qwen2.5-1.5B-Instruct agents. This indicates that the an-
notation task required in cold-start is relatively simple, and
that RLVMR’s final reasoning behaviors emerge primar-
ily from the RL stage rather than from teacher-specific
annotation quality.

J THE USE OF LLMS

In this work, large language models were partially employed to assist with spelling and grammar
checking, as well as minor text polishing. Specifically, we used the following prompt:

You are an expert in AI. Please check the provided text for any spelling or gram-
matical errors, and point out inappropriate expressions: {text segment}

No unverifiable content was produced by the LLMs, and all technical ideas, results, and conclusions
presented in this paper originate from the authors.

25

	Introduction
	Inefficient Exploration in Long-Horizon Agents
	Experimental Setup
	The Inefficient Exploration Problem

	Methodology: RLVMR
	Meta-Reasoning Framework
	Meta-Reasoning-Aware Reward Shaping
	Group Relative Policy Optimization with Meta-Reasoning (GRPO-MR)

	Experiment
	Main Results
	Analysis

	Related Work
	Conclusion
	Case Study of Inefficient Exploration
	Setup Details
	Dataset Details
	Implementation Details

	Detailed Experiment Results
	Pseudocode of RLVMR
	Training Curves on ScienceWorld
	Prompts
	Case Study of RLVMR
	Parameter Sensitivity Analysis
	Advantage Coefficient
	Impact of Discount Factor

	Ablation Study
	Ablation on Key Components
	Ablation on Meta-Reasoning Types
	Impact of Annotation Model Choice

	The Use of LLMs

