

RLVMR: REINFORCEMENT LEARNING WITH VERIFIABLE META-REASONING REWARDS FOR ROBUST LONG-HORIZON AGENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

The development of autonomous agents for complex, long-horizon tasks is a central goal in AI. However, dominant training paradigms face a critical limitation: reinforcement learning (RL) methods that optimize solely for final task success often reinforce flawed or inefficient reasoning paths, a problem we term **inefficient exploration**. This leads to agents that are brittle and fail to generalize, as they learn to find solutions without learning *how* to reason coherently. To address this, we introduce **RLVMR**, a novel framework that integrates dense, process-level supervision into end-to-end RL by rewarding verifiable, meta-reasoning behaviors. RLVMR equips an agent to explicitly tag its cognitive steps—such as planning, exploration, and reflection—and provides programmatic, rule-based rewards for actions that contribute to effective problem-solving. These process-centric rewards are combined with the final outcome signal and optimized using a critic-free policy gradient method. On the challenging ALFWorld and ScienceWorld benchmarks, RLVMR achieves new state-of-the-art results, with our 7B model reaching an 83.6% success rate on the most difficult unseen task split. Our analysis confirms these gains stem from improved reasoning quality, including significant reductions in redundant actions and enhanced error recovery, leading to more robust, efficient, and interpretable agents.

1 INTRODUCTION

The quest to build autonomous agents capable of solving complex, long-horizon tasks has gained significant momentum with the rise of Large Language Models (LLMs) (Wang et al., 2022; Zeng et al., 2024; Bai et al., 2024). However, dominant training paradigms face a fundamental trade-off. On one hand, Supervised Fine-Tuning (SFT) on expert trajectories can teach agents efficient behaviors, but these policies are often brittle and fail to generalize to novel situations (Chu et al., 2025). On the other hand, RL from environmental feedback encourages exploration and can lead to better generalization, but it typically optimizes for a single, sparse reward signal: final task success.

This reliance on outcome-only rewards raises a critical, yet underexplored question: *Are agents learning to reason coherently, or are they just finding brittle shortcuts to success?* Our work investigates a pervasive issue we term **inefficient exploration**, where agents are rewarded for successful outcomes even when their path to success is built on flawed, or redundant reasoning. This leads to agents that exhibit high rates of repetitive actions and struggle to adapt to unseen tasks, because their underlying problem-solving process is unsound. Standard RL inadvertently reinforces any successful trajectory, failing to distinguish between robust and flawed reasoning processes. This deficiency undermines agent reliability and generalization, especially as tasks grow in complexity.

We argue that to build truly robust and generalizable agents, we must move beyond rewarding only the final outcome and begin to supervise the reasoning *process* itself. Inspired by metacognitive theory (Martinez, 2006), which posits that effective problem-solving depends on “thinking about thinking”, we propose to directly reward beneficial cognitive behaviors. Our key insight is that high-level skills like planning, monitoring progress, exploring alternatives, and reflecting on errors can be operationalized as distinct, verifiable steps within an agent’s reasoning process.

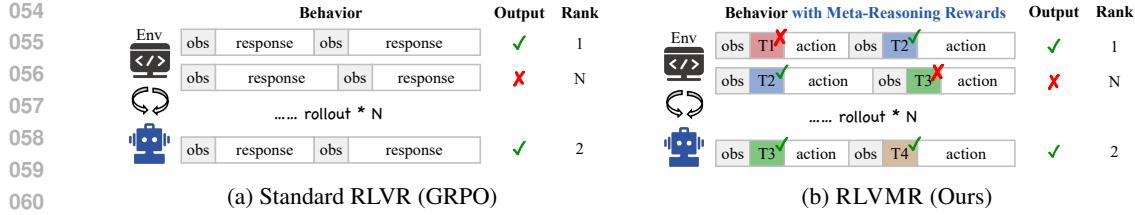


Figure 1: Comparison of LLM agent RL training paradigms: (a) Standard RL with outcome-only rewards (e.g., GRPO) inadvertently reinforces trajectories with inefficient or illogical intermediate reasoning steps. (b) Our RLVMR approach provides dense, verifiable rewards for beneficial meta-reasoning behaviors (e.g., T1-T4), directly shaping a more robust and coherent reasoning process.

To this end, we introduce **Reinforcement Learning with Verifiable Meta-Reasoning Rewards (RLVMR)**, a novel framework that integrates dense, process-level supervision into end-to-end RL. As illustrated in Figure 1, RLVMR contrasts with standard RL by rewarding not only the final outcome but also the intermediate reasoning steps. Our framework defines a set of core meta-reasoning behaviors — *planning*, *exploration*, and *reflection/monitoring* — and enables the agent to articulate its cognitive state through special tags. During online interaction, we use lightweight, programmatic rules to grant verifiable rewards for these behaviors. For example, an ‘exploration’ tag is rewarded when the agent discovers a new state, while a ‘reflection’ tag is rewarded when it leads to the correction of a prior mistake. These process-centric rewards are combined with the global outcome reward and optimized using a policy gradient method. After a brief “cold-start” supervised fine-tuning (SFT) phase on only 200 trajectories to learn the tag syntax, the agent is trained entirely through environmental interaction.

We demonstrate the effectiveness of RLVMR on two challenging long-horizon benchmarks, ALF-World and ScienceWorld. Our experiments show that RLVMR achieves new state-of-the-art results across all settings. Notably, on the hardest unseen task split (L2), our 7B model achieves an 83.6% success rate, and surpasses the performance of the much larger models. In-depth analysis reveals that these gains are driven by a tangible improvement in reasoning quality: RLVMR-trained agents exhibit significant reductions in repetitive and invalid actions. This confirms that by rewarding the *process* of good reasoning, we create agents that are not only more successful but also more robust, efficient, and generalizable.

In summary, our contributions are as follows:

1. We identify and analyze a critical inefficient exploration issue in outcome-only end-to-end RL for long-horizon LLM agents, where spurious state–action correlations override genuine reasoning, leading to redundant reasoning steps and illogical action loops.
2. We introduce a novel framework, RLVMR, that provides dense, verifiable rewards for meta-reasoning behaviors like planning, exploration, and reflection, enabling more robust and efficient problem-solving.
3. We achieve SOTA performance on ALFWORLD and ScienceWorld, with in-depth analysis confirming reductions in redundant actions and improved generalization to unseen tasks.

2 INEFFICIENT EXPLORATION IN LONG-HORIZON AGENTS

This section investigates the phenomenon of “inefficient exploration” in agents designed for long-horizon tasks. We analyze its detrimental effects on performance, which manifest as **brittle efficiency** on previously seen tasks and **poor generalization** to unseen ones.

2.1 EXPERIMENTAL SETUP

Benchmarks To evaluate foundational capabilities and generalization, we conduct experiments on the widely-used and challenging **ALFWORLD** benchmark (Shridhar et al., 2020), which comprises embodied household tasks. To systematically measure generalization, we define three evaluation splits based on the original benchmark:

- 108 • **L0** (*seen-L0*): seen task variants and seen task categories;
- 109 • **L1** (*unseen-L1*): unseen held-out task variants but seen task categories;
- 110 • **L2** (*unseen-L2*): unseen held-out task variants and unseen task categories.

113 L0 and L1 follow the official benchmark splits. For L2, we further partition ALFWorld by task
 114 category, holding out entire categories from training for exclusive use in evaluation.

116 **Training Paradigms** We experiment with Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct models
 117 using the **ReAct** (Yao et al., 2023) framework, which alternates between reasoning and acting steps.
 118 We evaluate two dominant training paradigms:

- 120 • **SFT** (Yang et al., 2023; Tang et al., 2023; Xi et al., 2024): A widely adopted paradigm that applies
 121 supervised fine-tuning on high-quality expert trajectories.
- 122 • **GRPO** (Feng et al., 2025a; Wang et al., 2025b): An end-to-end RL method that optimizes the
 123 policy by comparing the final rewards of multiple trajectories sampled from the same initial state.

125 **Evaluation Metrics** We assess performance using the following metrics:

- 127 • **Success Rate (%)**, \uparrow : The percentage of tasks successfully completed by the agent on each
 128 evaluation split.
- 129 • **Invalid Action Rate (%)**, \downarrow : The proportion of generated actions that are invalid in the current
 130 state, reflecting basic comprehension and error frequency.
- 132 • **Repetitive Action Rate (%)**, \downarrow : The percentage of steps where the agent executes a **meaningless**
 133 **repeated action**, as defined in prior work (Yuan et al., 2025; Fu et al., 2025; Feng et al., 2025b).
 134 This metric quantifies inefficient exploration, indicating that the agent’s policy may be overfitting
 135 to familiar action sequences rather than being guided by robust reasoning.

137 2.2 THE INEFFICIENT EXPLORATION PROBLEM

139 While aggregate statistics show that methods like GRPO can improve agent success rates, a closer
 140 look at individual trajectories reveals a critical flaw: the **inefficient exploration problem**. Even
 141 when an agent successfully completes a task, its path to a solution is often littered with redundant
 142 or illogical steps. This behavior, illustrated qualitatively in Appendix A, indicates a gap between
 143 achieving a correct outcome and demonstrating robust reasoning. Our large-scale empirical results
 144 (Figure 2) quantify the pervasiveness of this issue and expose a fundamental trade-off in current
 145 training paradigms.

146 **SFT creates efficient but brittle policies that fail to generalize.** Supervised Fine-Tuning (SFT)
 147 models achieve high success rates and efficiency on tasks they have seen during training. For instance,
 148 the 7B SFT model’s success rate on in-distribution tasks (L0) jumps from 23.1% (ReAct baseline)
 149 to 63.3%, with a low invalid action rate of 6.2%. However, this performance is brittle. On the
 150 most challenging out-of-distribution split (L2), the model’s success rate plummets to 37.5%, and its
 151 repetitive action rate nearly doubles. This reveals that when faced with novel situations, the agent falls
 152 into non-productive loops, demonstrating that SFT teaches mimicry without instilling a generalizable
 153 reasoning process.

155 **GRPO improves generalization but fosters inefficient, flawed reasoning.** In contrast, reinforce-
 156 ment learning with outcome-only rewards (GRPO) achieves substantially better generalization, with
 157 the 7B model attaining success rates of 77.3% on L1 and 52.3% on L2. This success, however,
 158 comes at the cost of severe inefficiency, validating our core hypothesis. The agent’s performance
 159 is undermined by high invalid and repetitive action rates across all difficulty levels; on the hardest
 160 L2 tasks, the 7B model’s repetitive action rate is a staggering 31.2%. By optimizing solely for task
 161 success, GRPO reinforces any path to a positive outcome, even those built on illogical steps and
 inefficient exploration.

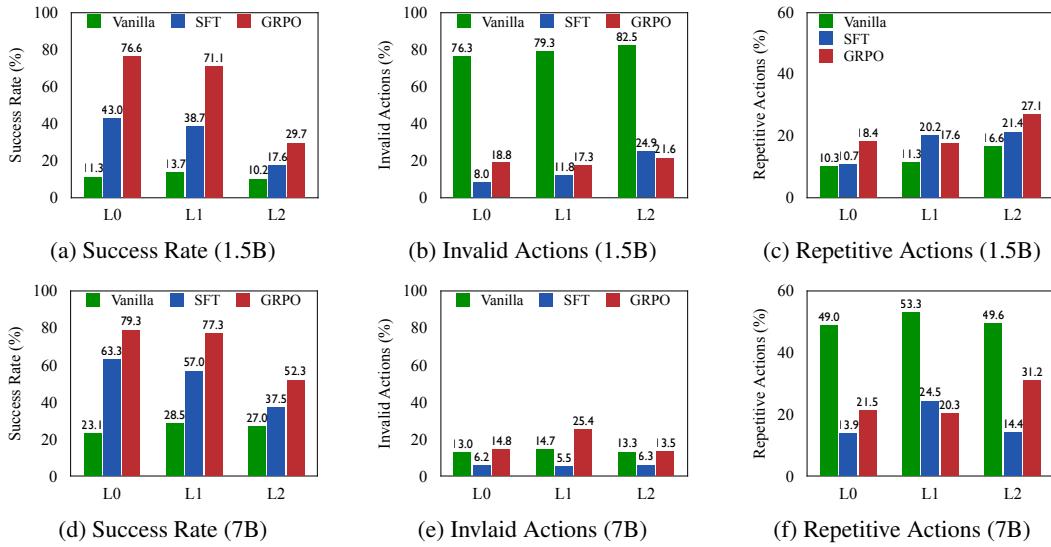


Figure 2: Performance on ALFWorld. While SFT excels on seen tasks (L0) but fails to generalize, GRPO achieves better generalization at the cost of significant inefficiency. This highlights a fundamental trade-off between brittle efficiency and inefficient generalization.

Scaling model size does not fix the underlying reasoning deficiencies. While scaling from a 1.5B to a 7B model improves overall success rates, it does not resolve this fundamental issue. Notably, while the 7B GRPO model is more successful on L2 tasks than its 1.5B counterpart (52.3% vs. 29.7%), it also exhibits a *higher* repetitive action rate (31.2% vs. 27.1%). This suggests a larger model’s enhanced capacity can be misdirected to more effectively exploit flawed strategies rather than to reason more coherently. This finding underscores that the limitation is rooted in the training objective itself, not merely model capacity, and that simply increasing model size is not a panacea.

Current paradigms force a trade-off between brittle efficiency and inefficient generalization. Our analysis reveals a core dilemma: SFT produces efficient but brittle policies that fail to generalize, while GRPO achieves generalization at the cost of reinforcing inefficient and logically flawed reasoning. Neither paradigm effectively teaches the agent *how* to reason well. This establishes a clear need for a new framework that moves beyond sparse, outcome-only signals to provide direct, **process-level supervision**. By rewarding coherent and efficient reasoning steps, we can guide agents to not only find solutions but to do so robustly and intelligently — the precise goal of our work.

3 METHODOLOGY: RLVMR

Our methodology equips LLM agents with an explicit meta-reasoning framework to mitigate inefficient exploration in complex tasks. As shown in Figure 3, the agent is trained in two phases: an initial SFT stage to bootstrap the agent’s meta-reasoning capabilities, followed by a reinforcement learning phase that uses a custom policy optimization algorithm to refine these skills based on task outcomes and process-centric rewards.

Cold Start: Initial Meta-Reasoning Acquisition via SFT To equip the base LLM with the foundational ability to generate structured meta-reasoning, we begin with a supervised fine-tuning phase. This step is crucial, as reasoning patterns learned during subsequent reinforcement learning are heavily influenced by the base model’s capabilities. The SFT data is constructed as follows:

1. We collect a dataset of successful task trajectories containing only observation-action pairs.
2. We employ a more powerful teacher model (e.g., GPT-4) to annotate these trajectories with our meta-reasoning tags, inferring the most likely cognitive step preceding each action. This process creates synthetic, reasoning-rich expert demonstrations.

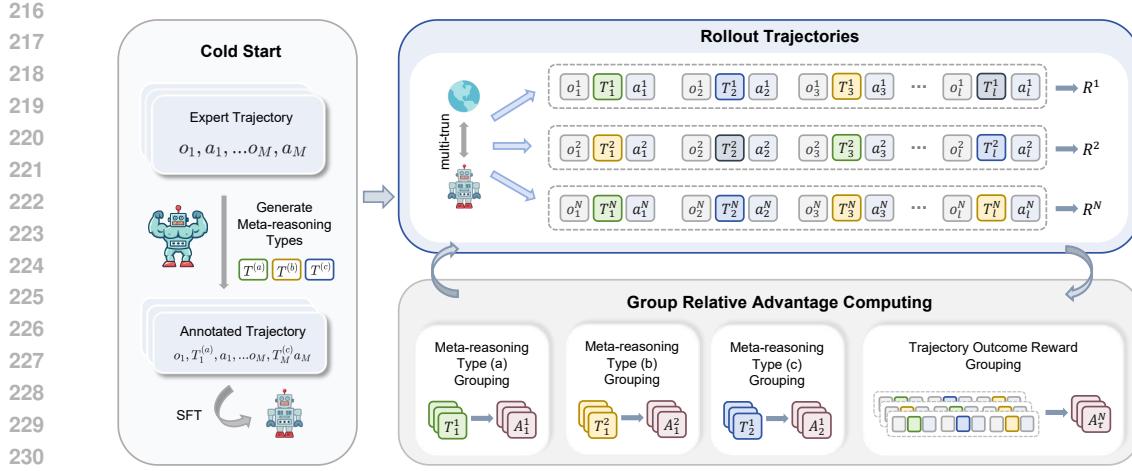


Figure 3: A schematic diagram of the RLVMR framework, which consists of two training phases: cold start and reinforcement learning. Our method provides rule-verifiable feedback signals based on the final outcome and the relative advantages of different types of meta-reasoning behaviors.

3. The target LLM is fine-tuned on these annotated trajectories, learning to imitate the expert’s meta-reasoning and action generation patterns.

3.1 META-REASONING FRAMEWORK

We begin by formalizing the agent-environment interaction as a Markov Decision Process. We then introduce a novel meta-reasoning framework that extends existing agent architectures by operationalizing principles from cognitive science.

Task Formulation as a Markov Decision Process We formalize the interaction between an agent and its environment in long-horizon tasks as a Markov Decision Process (MDP). An MDP is defined by a tuple (S, A, O, F, R) , where S is the set of environment states, A is the action space, O is the observation space, $F : S \times A \rightarrow S$ is the state transition function, and $R : S \times A \rightarrow \mathbb{R}$ is the reward function. In our setting, which is tailored for LLM agents, the state, action, and observation spaces (S, A, O) are all represented as natural language sequences over a finite token vocabulary.

At each timestep t , the agent’s policy π_θ generates a thought process th_t and an action a_t based on the current state s_t : $(th_t, a_t) \sim \pi_\theta(\cdot | s_t)$. The agent’s interaction with the environment produces a trajectory $\tau = \{(o_1, th_1, a_1), (o_2, th_2, a_2), \dots, (o_n, th_n, a_n)\}$. In many long-horizon tasks, reward signals are sparse, typically provided only as a final outcome reward $R(\tau)$ at the end of an episode. This sparsity poses significant challenges for credit assignment. The agent’s objective is to learn an optimal policy π_θ that maximizes the expected cumulative reward:

$$\max_{\theta} \mathbb{E}_{\tau \sim \pi_\theta} [R(\tau)]. \quad (1)$$

Operationalizing Meta-Reasoning in LLM Agents Our approach is grounded in metacognitive theory (Martinez, 2006; Lai, 2011), which emphasizes “thinking about thinking”. Metacognition comprises two key components: *metacognitive knowledge* (an agent’s self-awareness of its own reasoning strategies) and *metacognitive regulation* (the active control of these processes, including planning, monitoring, and adaptive revision). This theoretical lens suggests that for LLM agents to solve complex tasks, they require not just domain knowledge but also the capacity for dynamic planning, self-monitoring, and creative exploration.

To operationalize these principles, we extend the ReAct framework. While ReAct interleaves reasoning and actions (e.g., “Think: ..., Act: ...”), it treats reasoning as a monolithic process. We refine this by introducing a structured set of meta-reasoning tags to explicitly represent distinct cognitive functions. This decouples reasoning from actions and enables fine-grained analysis and

270 supervision. Specifically, we define four meta-reasoning tags, each enclosed in XML-style tags (e.g.,
 271 `<planning>`), while all actions are contained within the `<action>` tag.
 272

- 273 • **Planning (`<planning>`)**: Decomposes the task into high-level steps to formulate an
 274 overall strategy. Used at the start of a task or when replanning is needed.
- 275 • **Exploration (`<explore>`)**: Generates hypotheses or options to navigate uncertainty or
 276 bottlenecks, encouraging creative problem-solving.
- 277 • **Reflection (`<reflection>`)**: Reviews history to analyze errors and formulate corrective
 278 actions. Typically triggered after unsuccessful attempts.
- 279 • **Monitoring (`<monitor>`)**: Tracks task progress against the overall plan, ensuring actions
 280 remain aligned with subgoals. Applied during routine execution.
 281

282 3.2 META-REASONING-AWARE REWARD SHAPING

284 During reinforcement learning, we guide the agent with a composite reward signal that combines task
 285 completion with the quality of the reasoning process. This signal comprises a sparse outcome reward
 286 and a dense, process-based meta-reasoning reward.
 287

288 **Outcome Reward ($R(\tau)$)**: A binary signal awarded at the end of a trajectory: $R(\tau) = r_s$ for task
 289 success and 0 otherwise, where r_s is a positive constant.

290 **Meta-Reasoning Reward (r_t^{MR})**: A dense reward assigned at each step t to incentivize locally
 291 beneficial behaviors.

- 293 • **Planning Reward (r_{planning})**: Awarded for a `<planning>` step if the trajectory succeeds.
- 294 • **Exploration Reward (r_{explore})**: Awarded if the current action targets a new object or
 295 location, discouraging redundancy.
- 296 • **Reflection Reward ($r_{\text{reflection}}$)**: Awarded if a `<reflection>` step is followed by a
 297 corrective action after a sequence of failures.
 298

299 **Format Reward (r_t^{format})**: A penalty, $-\lambda_{\text{format}}$, is applied if the model’s output at step t does not
 300 conform to the expected `<tag>...</tag><action>...</action>` structure.

301 The total step-level reward is the sum of the process-based rewards: $r_t = r_t^{\text{MR}} + r_t^{\text{format}}$.
 302

303 3.3 GROUP RELATIVE POLICY OPTIMIZATION WITH META-REASONING (GRPO-MR)

305 To effectively leverage our composite reward signal, we introduce Meta-Reasoning Group Policy Opti-
 306 mization (GRPO-MR). GRPO-MR computes a step-level advantage by combining global trajectory
 307 performance with local, context-aware reasoning quality.

308 **Trajectory-level Relative Advantage**: For a batch of K trajectories collected from the same
 309 environment, we first calculate a normalized trajectory-level advantage to capture overall performance:
 310

$$311 A_k^{\text{traj}} = \frac{R(\tau_k) - \mu_R}{\sigma_R}, \quad (2)$$

313 where μ_R and σ_R are the mean and standard deviation of outcome rewards across the batch.
 314

315 **Meta-reasoning Level Relative Advantage**: The core of GRPO-MR is the computation of a context-
 316 aware advantage. We group all steps within a batch that share the same meta-reasoning tag (e.g., all
 317 `<explore>` steps) and normalize their rewards *within* that group:

$$319 A_{t,\text{tag}}^{\text{MR}} = \frac{r_{t,\text{tag}}^{\text{MR}} - \mu_{\text{tag}}}{\sigma_{\text{tag}}}, \quad (3)$$

321 where μ_{tag} and σ_{tag} are the mean and standard deviation of meta-reasoning rewards for all steps with
 322 that specific tag. The final step-level advantage A_t is a weighted combination of these two signals:
 323

$$A_t = \alpha \cdot A_k^{\text{traj}} + (1 - \alpha) \cdot A_{t,\text{tag}}^{\text{MR}}, \quad (4)$$

324
 325 Table 1: Performance comparison on the benchmarks. We report the success rate (%) on seen (L0:
 326 **seen task variants and categories**) and unseen (L1: **unseen task variants** but **seen task categories**; L2:
 327 **unseen task variants and categories**) task variations. We also report the average cumulative reward
 328 (score) on the ScienceWorld benchmark.

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348			329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348					
			329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348			329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348			329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348		
			329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	L0	L1	L2	L0	329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348	329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
			succ.	succ.	succ.	succ.	score	succ.	score	succ.	score
GPT-4o	ReAct		57.3	66.0	68.8	45.4	54.3	49.2	57.0	41.0	52.0
DeepSeek-V3	ReAct		60.2	65.9	53.9	27.3	39.1	35.2	43.0	26.5	37.1
DeepSeek-R1	ReAct		68.8	70.2	67.3	22.2	32.0	31.4	39.5	29.1	37.9
AgentGym	SFT+RL		76.6	63.3	-	46.9	56.3	33.6	45.2	-	-
	ReAct		11.3	13.7	10.2	1.2	9.0	0.8	7.8	0.8	7.4
	+ SFT		43.0	38.7	17.6	20.3	30.9	18.0	27.8	12.5	20.9
	+ ETO		64.1	66.4	25.8	39.1	47.3	22.7	29.8	15.6	23.4
Qwen2.5-1.5B	+ GLIDER		66.0	68.8	35.2	40.2	50.2	25.8	32.0	19.5	25.1
	+ GRPO		76.6	71.1	29.7	21.1	31.7	13.7	22.5	10.9	21.2
	+ GiGPO		86.7	83.2	48.0	25.8	35.6	15.2	22.8	4.7	11.2
	+ RLVMR		89.1	87.9	56.3	46.9	60.3	34.4	45.2	26.5	33.9
	ReAct		23.1	28.5	27.0	7.8	17.4	11.3	19.6	6.3	16.5
	+ SFT		63.3	57.0	37.5	36.7	43.5	32.0	41.6	23.4	32.2
	+ ETO		70.3	74.2	51.6	62.5	71.2	40.6	50.4	28.1	35.0
Qwen2.5-7B	+ GLIDER		75.4	74.6	53.1	62.9	68.8	41.4	52.8	25.8	32.5
	+ GRPO		79.3	77.3	52.3	49.1	61.8	30.1	43.1	26.6	34.3
	+ GiGPO		89.5	90.2	67.2	53.4	69.2	35.2	50.7	25.8	33.2
	+ RLVMR		91.4	91.8	83.6	67.2	77.8	43.0	59.4	32.2	49.1
	ReAct		19.5	22.3	17.6	8.6	18.8	11.7	19.9	11.7	20.3
	+ SFT		62.5	60.9	39.1	39.8	47.6	30.1	39.8	22.3	32.6
	+ ETO		69.5	67.5	47.3	57.0	64.3	36.8	45.2	29.3	35.4
Llama3.1-8B	+ GLIDER		72.7	73.4	50.8	64.4	71.2	38.7	53.8	28.5	35.6
	+ GRPO		73.0	70.7	45.3	45.6	55.2	28.8	40.1	25.8	33.7
	+ GiGPO		86.0	87.1	68.8	60.2	73.5	39.1	55.2	30.1	42.3
	+ RLVMR		92.2	91.0	83.2	71.1	80.3	49.2	63.7	38.7	51.2

356
 357 where $\alpha \in [0, 1]$ is a hyperparameter balancing the influence of the global outcome and local
 358 reasoning quality. Finally, we optimize the policy π_θ using a clipped surrogate objective with KL
 359 divergence regularization:

$$\mathcal{L}_{\text{final}} = \mathbb{E}_t [\min(r_t(\theta)A_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon)A_t)] - \lambda_{\text{KL}} D_{\text{KL}}(\pi_\theta \| \pi_{\text{ref}}), \quad (5)$$

360 where $r_t(\theta)$ is the importance sampling ratio, ϵ is the clipping hyperparameter, and λ_{KL} controls the
 361 KL penalty against a reference policy π_{ref} .

365 4 EXPERIMENT

366 4.1 MAIN RESULTS

367 In this section, we present the core experimental results to evaluate the effectiveness of our proposed
 368 RLVMR. In addition to **ALFWorld**, we also conduct experiments on **ScienceWorld** (Wang et al.,
 369 2022), which focuses on text-based scientific experimentation.

370 We compare our approach with two major categories of advanced RL training methods in addition to
 371 SFT: (1) Offline RL, including (i) **ETO** (Song et al., 2024), which iteratively refines actions using
 372 step-level feedback along trajectories; (ii) **GLIDER** (Hu et al., 2025b), which decomposes complex
 373 tasks into coherent sub-tasks to improve transferability. (2) Online End-to-end RL, including (iii)
 374 **Multi-turn GRPO** (Wang et al., 2025b), which adapts the original GRPO (Shao et al., 2024) for
 375 online multi-turn RL tasks; (iv) **GiGPO** (Feng et al., 2025b), which introduces a two-level structure
 376 for finer-grained credit assignment. For broader comparison, we also report the performance of
 377

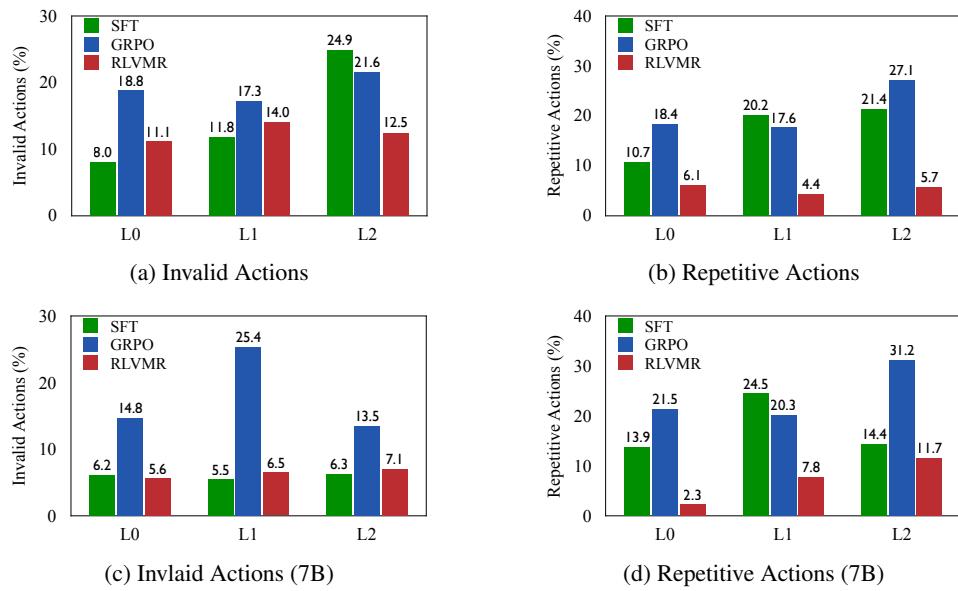


Figure 4: Exploration efficiency of RLVMR compared to SFT and GRPO baselines on ALFWorld.

GPT-4o, DeepSeek-V3/R1, and AgentGym (Xi et al., 2024). Detailed information is provided in Appendix B.

RLVMR achieves new SOTA performance across all benchmarks and model sizes. As listed in Table 1, our RLVMR framework consistently sets a new standard for performance, outperforming all baseline methods on both ALFWorld and ScienceWorld. With the Qwen-7B model, RLVMR achieves success rates of 91.4% on seen ALFWorld tasks and 67.2% on seen ScienceWorld tasks, surpassing the next-best method, GiGPO. This consistent superiority highlights the broad applicability and effectiveness of integrating verifiable meta-reasoning rewards into the RL training loop, leading to more capable and successful agents.

Rewarding meta-reasoning significantly enhances generalization to unseen tasks. A primary contribution of this work is addressing the inefficient exploration issue to improve generalization. Our results validate this claim, showing that RLVMR excels in novel scenarios, especially on the most challenging Unseen-L2 split, which involves entirely new task categories. On ALFWorld’s L2 split, our 7B model reaches an impressive 83.6% success rate, a substantial 16.4 percentage point improvement over the strongest baseline (GiGPO). Similarly, on ScienceWorld’s L2 split, RLVMR outperforms all other methods. This demonstrates that by learning **how** to reason effectively—rather than just memorizing solutions—our agent develops more robust and transferable problem-solving skills, leading to superior performance on unfamiliar challenges.

4.2 ANALYSIS

Our analysis reveals that RLVMR’s verifiable meta-reasoning rewards lead to superior exploration and training efficiency, enabling the agent to find more direct solutions with greater stability than strong baselines. Unless otherwise stated, we report results based on Qwen2.5-1.5B on ALFWorld.

Exploration Efficiency We analyze agent exploration efficiency by measuring invalid and repetitive actions (Figure 4). RLVMR’s verifiable meta-reasoning rewards cultivate more efficient problem-solving strategies, significantly reducing flawed or redundant steps. On seen tasks, our 1.5B model slashes the invalid action rate from 18.1% (GRPO) to 11.1% and the repetitive action rate from 18.4% to 6.1%. This efficiency gain is robustly maintained on novel challenges; while GRPO’s repetitive action rate worsens on the hardest unseen tasks (from 21.4% to 27.1%), RLVMR’s rate remains controlled at 5.7%. This demonstrates that RLVMR learns generalizable problem-solving principles rather than overfitting to familiar paths.

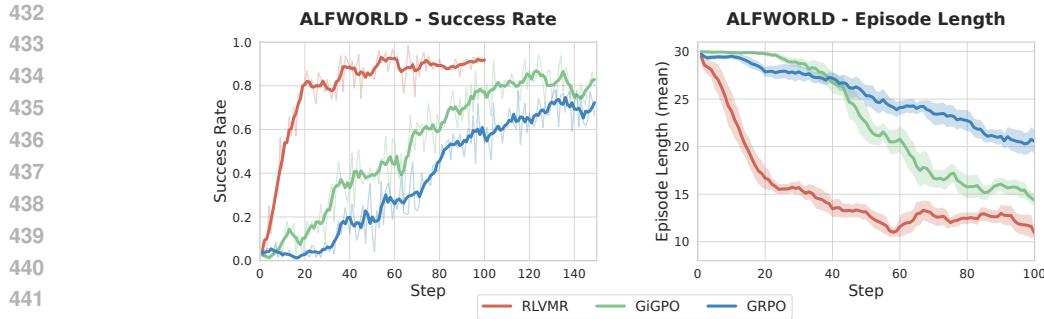


Figure 5: Success rate and step count curves of different approaches on ALFWORLD during RL training.

Training Efficiency We evaluate training efficiency via learning stability (convergence) and policy quality (action sequence length) in Figure 5. Agents trained with RLVMR learn more direct solutions and converge faster and more stably than baselines. In contrast, baselines like GRPO are unstable and produce longer solution paths. This stems from its process-level rewards, which provide a clearer and more robust learning signal that prevents inefficient and unproductive loops.

5 RELATED WORK

LLM Reinforcement Learning RL is widely used to align LLMs with human preferences (RLHF, DPO) (Ouyang et al., 2022; Rafailov et al., 2023). Beyond alignment, RL has been applied to improve reasoning and emotional intelligence (Hu et al., 2025a; Muennighoff et al., 2025; Wang et al., 2025a). Group-based methods such as GRPO, Dr.GRPO, and DAPO estimate advantages from multiple samples of the same prompt, removing the critic and improving efficiency over actor-critic approaches like PPO (Feng et al., 2025a; Liu et al., 2025; Yu et al., 2025; Schulman et al., 2017). These methods achieve strong results on mathematical reasoning, search, and tool use (Yu et al., 2025; Hu et al., 2025a). However, applying RL to multi-turn, long-horizon tasks remains difficult due to sparse, delayed rewards – a challenge we address (Wang et al., 2025b).

LLM Agents LLMs increasingly act as agents for code generation, web interaction, embodied control, and affective tasks (Huang et al., 2023; Zhang et al., 2024; Bai et al., 2024; Agashe et al., 2024; Abuelsaad et al., 2024; Zeng et al., 2024; Qiao et al., 2024; Fu et al., 2025; Zhang et al., 2025). Early systems relied on prompting and external tools (e.g., ReAct) (Yao et al., 2023; Shinn et al., 2023), but smaller models often lack strong reasoning; SFT can improve decisions (Zhang & Zhang, 2024; Xi et al., 2024; Qin et al., 2024). Other work studies single-step or offline RL (Yu et al., 2024; Xiong et al., 2024; Zhou & Zanette, 2024), while recent efforts train agents end to end with online RL, learning directly from interaction and reducing reliance on complex data preparation or step-level reward models (Wang et al., 2025b; Feng et al., 2025b). Despite progress, fine-grained credit assignment and generalization remain challenging (Wang et al., 2025b). We employ reward shaping grounded in verifiable meta-cognitive behaviors to promote effective reasoning and robustness.

6 CONCLUSION

We tackled the challenge of inefficient exploration in long-horizon agents by introducing RLVMR, a new framework that guides agents using process-level supervision. Instead of relying solely on sparse success-based rewards, RLVMR provides dense, verifiable feedback for key reasoning behaviors like planning, exploration, and reflection. Our approach combines a lightweight initialization phase with end-to-end training to develop more effective and adaptable agents. Experiments on ALFWORLD and ScienceWorld show that RLVMR achieves state-of-the-art performance, with better generalization to new tasks and noticeable improvements in reasoning quality—fewer redundant actions and better recovery from mistakes. These results highlight the value of directly supervising reasoning steps. Future research could extend RLVMR to multi-modal environments, explore adaptive reward mechanisms that dynamically adjust to task complexity, and apply the framework to real-world domains such as robotics and software engineering.

486 REFERENCES
487

- 488 Tamer Abuelsaad, Deepak Akkil, Prasenjit Dey, Ashish Jagmohan, Aditya Vempaty, and Ravi Kokku.
489 Agent-e: From autonomous web navigation to foundational design principles in agentic systems.
490 *arXiv preprint arXiv:2407.13032*, 2024.
- 491 Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
492 open agentic framework that uses computers like a human. *arXiv preprint arXiv:2410.08164*,
493 2024.
- 494 Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
495 Training in-the-wild device-control agents with autonomous reinforcement learning. *Advances in*
496 *Neural Information Processing Systems*, 37:12461–12495, 2024.
- 497 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
498 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
499 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.
- 500 Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
501 agent training. *arXiv preprint arXiv:2505.10978*, 2025a.
- 502 Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
503 agent training. *arXiv preprint arXiv:2505.10978*, 2025b.
- 504 Dayuan Fu, Keqing He, Yeqie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang,
505 Jingang Wang, Xunliang Cai, and Weiran Xu. Agentrefine: Enhancing agent generalization through
506 refinement tuning. *arXiv preprint arXiv:2501.01702*, 2025.
- 507 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
508 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
509 model. *arXiv preprint arXiv:2503.24290*, 2025a.
- 510 Zican Hu, Wei Liu, Xiaoye Qu, Xiangyu Yue, Chunlin Chen, Zhi Wang, and Yu Cheng. Divide
511 and conquer: Grounding LLMs as efficient decision-making agents via offline hierarchical rein-
512 force learning. In *Forty-second International Conference on Machine Learning*, 2025b. URL
513 <https://openreview.net/forum?id=pdNtji3ktF>.
- 514 Dong Huang, Jie M Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agent-
515 coder: Multi-agent-based code generation with iterative testing and optimisation. *arXiv preprint*
516 *arXiv:2312.13010*, 2023.
- 517 Emily R Lai. Metacognition: A literature review. 2011.
- 518 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
519 Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*,
520 2025.
- 521 Michael E Martinez. What is metacognition? *Phi delta kappan*, 87(9):696–699, 2006.
- 522 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
523 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
524 scaling. *arXiv preprint arXiv:2501.19393*, 2025.
- 525 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
526 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
527 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
528 27744, 2022.
- 529 Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang,
530 Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model.
531 *Advances in Neural Information Processing Systems*, 37:114843–114871, 2024.
- 532 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
533 Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
534 apis. In *ICLR*, 2024.

- 540 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 541 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 542 *in neural information processing systems*, 36:53728–53741, 2023.
- 543
- 544 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 545 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
- 546
- 547 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 548 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
 549 mathematical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.
- 550
- 551 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 552 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing*
 553 *Systems*, 36:8634–8652, 2023.
- 554
- 555 Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
 556 Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. *arXiv*
 557 *preprint arXiv:2010.03768*, 2020.
- 558
- 559 Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
 560 Exploration-based trajectory optimization for llm agents. *arXiv preprint arXiv:2403.02502*, 2024.
- 561
- 562 Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
 563 paca: Generalized tool learning for language models with 3000 simulated cases. *arXiv preprint*
 564 *arXiv:2306.05301*, 2023.
- 565
- 566 Peisong Wang, Ruotian Ma, Bang Zhang, Xingyu Chen, Zhiwei He, Kang Luo, Qingsong Lv,
 567 Qingxuan Jiang, Zheng Xie, Shanyi Wang, Yuan Li, Fanghua Ye, Jian Li, Yifan Yang, Zhaopeng
 568 Tu, and Xiaolong Li. Rlver: Reinforcement learning with verifiable emotion rewards for empathetic
 569 agents, 2025a. URL <https://arxiv.org/abs/2507.03112>.
- 570
- 571 Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. Scienceworld: Is
 572 your agent smarter than a 5th grader? *arXiv preprint arXiv:2203.07540*, 2022.
- 573
- 574 Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
 575 Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in llm
 576 agents via multi-turn reinforcement learning. *arXiv preprint arXiv:2504.20073*, 2025b.
- 577
- 578 Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen
 579 Yang, Chenyang Liao, Xin Guo, Wei He, et al. Agentgym: Evolving large language model-based
 580 agents across diverse environments. *arXiv preprint arXiv:2406.04151*, 2024.
- 581
- 582 Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu, Xun Wang, Ke Wang, Cheng Li, Wei Peng,
 583 and Sujian Li. Watch every step! llm agent learning via iterative step-level process refinement. In
 584 *EMNLP*, 2024.
- 585
- 586 Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching
 587 large language model to use tools via self-instruction. *Advances in Neural Information Processing*
 588 *Systems*, 36:71995–72007, 2023.
- 589
- 590 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 591 React: Synergizing reasoning and acting in language models. In *International Conference on*
 592 *Learning Representations (ICLR)*, 2023.
- 593
- 594 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 595 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
 596 scale. *arXiv preprint arXiv:2503.14476*, 2025.
- 597
- 598 Yuanqing Yu, Zhefan Wang, Weizhi Ma, Zhicheng Guo, Jingtao Zhan, Shuai Wang, Chuhan Wu,
 599 Zhiqiang Guo, and Min Zhang. Steptool: A step-grained reinforcement learning framework for
 600 tool learning in llms. 2024.

- 594 Siyu Yuan, Zehui Chen, Zhiheng Xi, Junjie Ye, Zhengyin Du, and Jiecao Chen. Agent-r: Training
 595 language model agents to reflect via iterative self-training. *arXiv preprint arXiv:2501.11425*, 2025.
 596
- 597 Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
 598 Enabling generalized agent abilities for llms. In *Findings of the Association for Computational
 599 Linguistics ACL 2024*, pp. 3053–3077, 2024.
- 600 Bang Zhang, Ruotian Ma, Qingxuan Jiang, Peisong Wang, Jiaqi Chen, Zheng Xie, Xingyu Chen,
 601 Yue Wang, Fanghua Ye, Jian Li, Yifan Yang, Zhaopeng Tu, and Xiaolong Li. Sentient agent
 602 as a judge: Evaluating higher-order social cognition in large language models, 2025. URL
 603 <https://arxiv.org/abs/2505.02847>.
- 604 Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation with
 605 tool-integrated agent systems for real-world repo-level coding challenges. In Lun-Wei Ku, Andre
 606 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for
 607 Computational Linguistics (Volume 1: Long Papers)*, ACL 2024, Bangkok, Thailand, August 11-16,
 608 2024, pp. 13643–13658. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
 609 ACL-LONG.737. URL <https://doi.org/10.18653/v1/2024.acl-long.737>.
- 610
- 611 Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
 612 In *Findings of the Association for Computational Linguistics ACL 2024*, pp. 3132–3149, 2024.
- 613 Yifei Zhou and Andrea Zanette. Archer: training language model agents via hierarchical multi-turn
 614 rl. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 62178–62209,
 615 2024.
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

648 A CASE STUDY OF INEFFICIENT EXPLORATION
649
650

651 The following is a trajectory segment of a vanilla GRPO-trained agent performing a novel task—
652 *put two keychains in the safe*—in ALFWorld (corresponding to our L2 split). By step 7, the agent
653 has already arrived at dresser 1. However, we observe that in the subsequent steps, the agent falls into
654 a sequence of inefficient decisions: its next intention is to find the second keychain, yet it persistently
655 tries to go to dresser 1 for several steps, disregarding the fact that it is already there. This indicates
656 that its policy mainly reflects the action distribution present in the training data, rather than allowing
657 the reasoning process itself to truly regulate decision-making. Although the agent can form relatively
658 effective action strategies for completing tasks, its capacity for critically evaluating its own behavior
659 and understanding the underlying task requirements remains limited. This suggests that the agent has
660 not truly acquired the reasoning patterns necessary for robust task-solving.
661

662 A trajectory segment of an agent trained with GRPO
663

664 **Step 7**

665 **Observation:** You arrive at dresser 1. On the dresser 1, you see a box 1, a creditcard 1, a
666 keychain 2, a keychain 1, a laptop 1, a statue 1, and a tissuebox 2.
667

668 **Reasoning:** The current situation is that I am at dresser 1, which has multiple items including
669 a keychain 1, a keychain 2, a creditcard 1, etc. To complete the task of putting two keychains
670 in the safe, I need to select one of these keychains from the dresser.
671

672 **Action:** take keychain 1 from dresser 1
673

674 **Step 8**

675 **Observation:** You pick up the keychain 1 from the dresser 1.
676

677 **Reasoning:** The current situation is that I am at dresser 1 with the keychain 1 in my
678 possession. To put two keychains in the safe, I need to find another keychain and then move
679 both keychains to the safe.
680

681 **Action:** go to dresser 1
682

683 **Step 9**

684 **Observation:** Nothing happens.
685

686 **Reasoning:** The player has been in the room for several steps but has not yet interacted with
687 the safe or taken any keychains. The safe is closed initially, which might need interaction to
688 open it.
689

690 **Action:** go to dresser 1
691

692 **Step 10**

693 **Observation:** Nothing happens.
694

695 **Reasoning:** The previous steps were not successful in opening the safe or taking the
696 keychains. Let's try another approach.
697

698 **Action:** go to dresser 1
699

700 **Step 11**

701 **Observation:** Nothing happens.
702

703 **Reasoning:** The user has taken all the steps necessary to obtain both keychains but has yet to
704 actually put them into the safe. The last known location of the keychains was on the dresser
705 before the attempt to open the safe failed (in Observation 8). To complete the task, the user
706 needs to move one or both keychains to the safe before attempting to open it again.
707

708 **Action:** move keychain 1 to safe 1
709

710 **Observation:** Nothing happens.
711

712 This qualitative example highlights how an ostensibly “successful” policy can still waste a large
713 number of steps on redundant or illogical moves.
714

702 **B SETUP DETAILS**
703704 **B.1 DATASET DETAILS**
705706 **ALFWorld** is a household task environment that requires agents to explore rooms and employ
707 common-sense reasoning to accomplish tasks, such as “put the pencil on the desk”. The environment
708 provides feedback on whether the agent successfully completes the task within a given number of
709 steps. ALFWorld describes the environment in purely textual form and supplies a reward signal
710 indicating only the final task completion status.711 **ScienceWorld** is a text-based virtual environment designed as a comprehensive testbed for evaluating
712 and enhancing scientific reasoning abilities in AI systems. It features tasks spanning 10 scientific
713 domains and 30 subcategories, simulating a broad range of experiments found in elementary science
714 curricula, including state changes of matter, measurement, electricity, life sciences, plant growth,
715 chemical reactions, genetics, among others. Each task involves multiple subgoals, and the final
716 reward is computed based on the completion of these subgoals. However, to better reflect real-world
717 scenarios, we only use the final reward and disregard intermediate rewards. Notably, some tasks
718 in ScienceWorld require agents to make conclusive judgments based on experimental outcomes or
719 common sense; a task is considered successful only if the agent provides the correct final answer.720 Both ALFWorld and ScienceWorld offer “seen” and “unseen” variants for evaluating generalization
721 capabilities. To further assess the agents’ robustness and generalization, we define three difficulty
722 levels (L0, L1, L2), with L2 comprising entirely held-out task types. Specifically, for ALFWorld, we
723 designate *Cool & Place* and *Pick Two & Place* as held-out tasks; for ScienceWorld, the final task
724 type of each topic is reserved for unseen evaluation.725 In the ALFWorld environment, since only the final task success signal is provided, we evaluate
726 model performance using the average success rate (**succ.**). In contrast, the ScienceWorld environment
727 offers more fine-grained step rewards, enabling the agent to obtain immediate rewards based on the
728 importance of the steps completed, even without achieving the final goal. Therefore, in addition to
729 the average success rate (**succ.**), we also report the average cumulative reward (**score**).
730731 **B.2 IMPLEMENTATION DETAILS**
732733 We conducted experiments on both the Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct models.
734 During the cold start phase, we set the batch size per GPU to 16, used a learning rate of 1×10^{-5} , and
735 trained for 5 epochs. For the RL phase, we adopted the veRL framework with necessary modifications.
736 The batch size per GPU was also set to 16. At each training step, we sampled from 16 distinct
737 environments, with each environment rolling out 8 trajectories.738 The weights for outcome advantage and meta-reasoning advantage were both set to 0.5 by default.
739 To penalize outputs that did not adhere to the required format, we applied a reward penalty of
740 -0.1 , where an output was considered valid only if it included at least one meta-reasoning tag (e.g.,
741 `(reflection)`) and one action tag (e.g., `(action)`). The KL regularization coefficient was set to 0.01.
742 For all environments, the maximum number of steps per episode was fixed at 30. In the cold-start
743 phase, we performed supervised fine-tuning on 200 trajectories for 5 epochs. In the RL training stage,
744 our method was run for 100 epochs, whereas RL-based baselines were trained for 150 epochs.745 AgentGym is trained on Llama-2-Chat-7B, first with behavior cloning on the AgentTraj (Xi et al.,
746 2024) dataset from multiple environments, and then further improved via exploration and self-
747 evolution on a broader instruction set.
748749 **C DETAILED EXPERIMENT RESULTS**
750752 We further report the success rates of different methods on various tasks in ALFWorld. Table 2
753 provides the results using the Qwen2.5-1.5B model as the base model, while Table 3 presents the
754 results using the Qwen2.5-7B model. Additionally, we also evaluated another model from a different
755 family, Llama3.1-8B, and the results are shown in Table 4. As shown in the tables, RLVMR generally
outperforms other methods across all tasks, and particularly exhibits strong performance in more

756 complex tasks. This demonstrates that RLVMR, by rewarding high-quality reasoning behaviors,
 757 significantly enhances the robustness and adaptability of agents in multi-step interactions.
 758

Model	Method	Pick	Look	Clean	Heat	Cool	Pick2	All
Qwen2.5-1.5B	ReAct	23.1	18.3	10.8	8.7	3.5	0.0	13.7
	+SFT	43.2	42.0	35.9	33.2	29.4	29.7	38.7
	+ETO	73.6	46.3	66.2	68.3	62.8	55.6	66.4
	+GLIDER	78.8	58.2	63.6	73.7	61.6	66.1	68.8
	+GRPO	80.3	55.6	88.1	76.2	62.0	72.1	71.1
	+GiGPO	92.8	66.5	90.7	90.9	80.2	73.8	83.2
	+RLVMR	95.2	78.8	91.2	90.2	83.9	77.6	87.9

768 Table 2: Success rates on ALFWorld using Qwen2.5-1.5B model.
 769
 770

Model	Method	Pick	Look	Clean	Heat	Cool	Pick2	All
Qwen2.5-7B	ReAct	43.1	33.2	18.7	16.4	20.2	12.8	28.5
	+SFT	70.8	63.0	61.1	46.3	49.7	33.2	57.0
	+ETO	88.2	70.5	82.3	83.6	71.0	51.2	74.2
	+GLIDER	89.6	72.1	83.9	81.6	69.5	53.0	74.6
	+GRPO	90.2	76.7	86.0	80.1	68.3	56.4	77.3
	+GiGPO	91.7	85.9	93.3	90.3	89.0	83.6	90.2
	+RLVMR	95.3	88.2	90.1	92.4	89.8	86.7	91.8

779 Table 3: Success rates on ALFWorld using Qwen2.5-7B model.
 780
 781

Model	Method	Pick	Look	Clean	Heat	Cool	Pick2	All
Llama3.1-8B	ReAct	40.3	30.1	17.8	13.9	19.5	9.3	22.3
	+SFT	70.8	69.0	58.6	47.7	58.9	40.4	60.9
	+ETO	83.3	64.5	76.9	73.0	66.4	46.2	67.5
	+GLIDER	87.7	71.2	78.0	79.5	68.2	49.7	73.4
	+GRPO	87.0	75.9	82.8	74.0	67.2	55.0	70.7
	+GiGPO	90.3	87.5	90.1	85.2	83.6	82.5	87.1
	+RLVMR	93.5	90.0	86.5	91.5	86.5	83.5	91.0

791 Table 4: Success rates on ALFWorld using Llama3.1-8B model.
 792
 793794

D PSEUDOCODE OF RLVMR

 795

796 We present the pseudocode for the RLVMR training procedure in Algorithm 1, and the pseudocode
 797 for computing the relative advantage of composite groups in Algorithm 2. [Additionally, we provide](#)
 798 [the pseudocode for computing meta-reasoning rewards in Algorithm 3.](#)
 799

800

E TRAINING CURVES ON SCIENCEWORLD

 801

803 We also report the success rate curves and average step counts of different RL training methods on
 804 ScienceWorld, as shown in Figure 6.

805 Counterintuitively, when training GRPO or GiGPO on ScienceWorld, the average action steps do
 806 not decrease as success rates improve; in some cases, the number even rises. This may be because
 807 ScienceWorld tasks require the agent not only to plan, explore, and reflect, but also to connect
 808 scientific theories to concrete actions, which smaller models may not perform sufficiently well.
 809 Early in training, agents often terminate trajectories early with incorrect answers before sufficient
 experimentation. As training progresses, these unproductive trajectories are reduced, leading to an

864 **Algorithm 2** Step-Level Group Relative Advantage Computation

865

866 **Require:** Trajectory data $\mathcal{D} = \{(\tau^{(i)}, R_{\text{outcome}}^{(i)})\}_{i=1}^N$, Weight λ_{meta}

867 **Ensure:** Advantage estimates $\{A^{(i)}\}_{i=1}^N$

868 1: // ===== Outcome Advantage Computation =====

869 2: Group by environment index: $\mathcal{G}_{\text{outcome}} = \{g_j\}$ where $g_j = \{i : \text{env_idx}^{(i)} = j\}$

870 3: **for** each group $g_j \in \mathcal{G}_{\text{outcome}}$ **do**

871 4: Compute group mean: $\mu_j = \frac{1}{|g_j|} \sum_{i \in g_j} R_{\text{outcome}}^{(i)}$

872 5: Compute group std: $\sigma_j = \sqrt{\frac{1}{|g_j|} \sum_{i \in g_j} (R_{\text{outcome}}^{(i)} - \mu_j)^2}$

873 6: **for** $i \in g_j$ **do**

874 7: $A_{\text{outcome}}^{(i)} = \frac{R_{\text{outcome}}^{(i)} - \mu_j}{\sigma_j + \epsilon}$

875 8: **end for**

876 9: **end for**

877 10: // ===== Meta Reasoning Advantage Computation =====

878 11: Group by (environment index, reasoning tag): $\mathcal{G}_{\text{meta}} = \{g_{j,k}\}$

879 12: where $g_{j,k} = \{i : \text{env_idx}^{(i)} = j \wedge \text{tag}^{(i)} = k\}$

880 13: **for** each group $g_{j,k} \in \mathcal{G}_{\text{meta}}$ **do**

881 14: Compute group mean: $\mu_{j,k} = \frac{1}{|g_{j,k}|} \sum_{i \in g_{j,k}} r_{\text{meta}}^{(i)}$

882 15: Compute group std: $\sigma_{j,k} = \sqrt{\frac{1}{|g_{j,k}|} \sum_{i \in g_{j,k}} (r_{\text{meta}}^{(i)} - \mu_{j,k})^2}$

883 16: **for** $i \in g_{j,k}$ **do**

884 17: $A_{\text{meta}}^{(i)} = \frac{r_{\text{meta}}^{(i)} - \mu_{j,k}}{\sigma_{j,k} + \epsilon}$

885 18: **end for**

886 19: **end for**

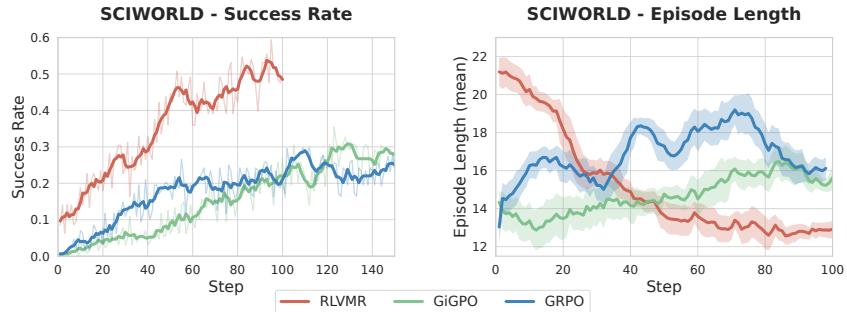
887 20: // ===== Final Advantage Combination =====

888 21: **for** $i = 1, 2, \dots, N$ **do**

889 22: $A^{(i)} = A_{\text{outcome}}^{(i)} + \lambda_{\text{meta}} \cdot A_{\text{meta}}^{(i)}$

890 23: **end for**

891 **return** $\{A^{(i)}\}_{i=1}^N$



906 Figure 6: Success rate and step count curves of different approaches on ScienceWorld during RL
907 training.

910 Below are the most recent {history_length} observations and the corresponding actions
911 you took: {action_history}

912 You are now at step {current_step} and your current observation is:
913 {current_observation}

914 **Your admissible actions of the current situation are:** {admissible_actions}.

915 **Your previous overall plan is:** {planning}. Please strictly adhere to your plan.

918 **Algorithm 3** Meta-Reasoning Reward Computation

919

920 **Require:** Action a_t , State s_t , Reasoning tag tag_t , Trajectory τ , Outcome reward $R(\tau)$

921 **Require:** Reward hyperparameters $\{r_{\text{plan}}, r_{\text{explore}}, r_{\text{reflect}}\}$, discount factor γ

922 **Ensure:** Meta-reasoning reward $r_{\text{meta},t}$

923 1: $r_{\text{meta},t} \leftarrow 0$

924 2: $\text{valid}_t \leftarrow \text{IsActionValid}(a_t)$

925 3: **if** $\text{valid}_t = \text{False}$ **then**

926 4: **return** 0 ▷ Invalid actions receive no reward

927 5: **end if**

928 6: **if** $\text{tag}_t = \langle \text{planning} \rangle$ **then**

929 7: **if** $R(\tau) > 0$ **then** ▷ Planning rewarded only on successful trajectories

930 8: $k \leftarrow \text{NumPlanningAfter}(t, \tau)$

931 9: $r_{\text{meta},t} \leftarrow r_{\text{plan}} \cdot \gamma^k$

932 10: **else**

933 11: $r_{\text{meta},t} \leftarrow 0$

934 12: **end if**

935 13: **end if**

936 14: **if** $\text{tag}_t = \langle \text{explore} \rangle$ **then**

937 15: $\text{isRepeated} \leftarrow \text{False}$

938 16: **for** $t' = 0$ to $t - 1$ **do**

939 17: Extract transition $(s_{t'}, a_{t'}, s_{t'+1})$

940 18: **if** $(s_t, a_t, s_{t+1}) = (s_{t'}, a_{t'}, s_{t'+1})$ **then**

941 19: $\text{isRepeated} \leftarrow \text{True}$

942 20: **break**

943 21: **end if**

944 22: **end for**

945 23: **if** $\text{isRepeated} = \text{False}$ **then** ▷ Novel transition

946 24: $r_{\text{meta},t} \leftarrow r_{\text{explore}}$

947 25: **else**

948 26: $r_{\text{meta},t} \leftarrow 0$

949 27: **end if**

950 28: **end if**

951 29: **if** $\text{tag}_t = \langle \text{reflection} \rangle$ **then**

952 30: **if** $t > 0$ **then**

953 31: Extract previous transition (s_{t-1}, a_{t-1})

954 32: $\text{valid}_{t-1} \leftarrow \text{IsActionValid}(a_{t-1})$

955 33: **if** $\text{valid}_{t-1} = \text{False}$ **and** $(s_t, a_t) \neq (s_{t-1}, a_{t-1})$ **then** ▷ Effective reflection

956 34: $r_{\text{meta},t} \leftarrow r_{\text{reflect}}$

957 35: **else**

958 36: $r_{\text{meta},t} \leftarrow 0$

959 37: **end if**

960 38: **else**

961 39: $r_{\text{meta},t} = 0$

962 40: **end if**

963 41: **end if**

964 **return** $r_{\text{meta},t}$

Now it's your turn to take an action, following these steps:

1. First, reason using **ONLY ONE** tag pair and express your reasoning in *one concise, brief sentence*:

- <planning> Plan or replan the entire task by breaking it down into high-level steps. Focus on outlining the full sequence required to complete the overall task, not just the immediate next action. Use this at the beginning of complex tasks or whenever the previous plan is incorrect or insufficient. It is necessary to list all the points separately. eg, step 1: xxx, step 2: xxx, step 3: xxx, etc.

- 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
- <explore> When results are unexpected or information is lacking, use current observations to think outside the box and list as many possible locations, items, or actions as possible. Use this approach when facing obstacles that require creative and innovative thinking.
 - <reflection> Analyze the reasons for errors in task execution and correct them by exploring alternative approaches. 'No known action matches that input.' indicates the action is invalid. This is typically used when several consecutive actions yield no substantial progress.
 - <monitor> Continuously track the current progress and history of reasoning and execution throughout the task. Recall the current subgoal and consider the next concrete action, ensuring agent alignment with the overall plan. Typically used when task outcomes are as expected and no other mode of reasoning is required.
2. **After your reasoning, you *MUST* select and present an admissible action for the current step within <action> ... </action> tags.**
- Specify the next action the agent should take to progress toward the task goal, following these guidelines:
- (a) **Object and Receptacle References:** Use specific identifiers:
 - [obj id] for objects (e.g., apple 1).
 - [recep id] for receptacles (e.g., countertop 1).
 - (b) **Action Validity:** Follow the exact format below. Any deviation renders the action invalid:
 - Valid actions: go to [recep id], take [obj id] from [recep id], put [obj id] in/on [recep id], open/close [recep id], use [obj id], heat/cool/clean [obj id] with [recep id].

Prompt Template for ScienceWorld Environment

You are an expert agent operating in the **ScienceWorld** environment, which is a text-based virtual environment centered around accomplishing tasks from the elementary science curriculum.

Your current task is: {task_description}

Prior to this step, you have already taken {step_count} step(s).

Below are the most recent {history_length} observations and the corresponding actions you took: {action.history}

You are now at step {current_step} and your current observation is: {current_observation}

Here are the actions you may take:

- {"action": "open OBJ", "description": "open a container"}
- {"action": "close OBJ", "description": "close a container"}
- {"action": "activate OBJ", "description": "activate a device"}
- {"action": "deactivate OBJ", "description": "deactivate a device"}
- {"action": "connect OBJ to OBJ", "description": "connect electrical components"}
- {"action": "disconnect OBJ", "description": "disconnect electrical components"}

- ```

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

```
- {"action": "use OBJ [on OBJ]", "description": "use a device/item"}
  - {"action": "look around", "description": "describe the current room"}
  - {"action": "look at OBJ", "description": "describe an object in detail"}
  - {"action": "look in OBJ", "description": "describe a container's contents"}
  - {"action": "read OBJ", "description": "read a note or book"}
  - {"action": "move OBJ to OBJ", "description": "move an object to a container"}
  - {"action": "pick up OBJ", "description": "move an object to the inventory"}
  - {"action": "put down OBJ", "description": "drop an inventory item"}
  - {"action": "pour OBJ into OBJ", "description": "pour a liquid into a container"}
  - {"action": "dunk OBJ into OBJ", "description": "dunk a container into a liquid"}
  - {"action": "mix OBJ", "description": "chemically mix a container"}
  - {"action": "go to LOC", "description": "move to a new location"}
  - {"action": "eat OBJ", "description": "eat a food"}
  - {"action": "flush OBJ", "description": "flush a toilet"}
  - {"action": "focus on OBJ", "description": "signal intent on a task object"}
  - {"action": "wait", "description": "take no action for 10 iterations"}
  - {"action": "wait1", "description": "take no action for 1 iteration"}
  - {"action": "task", "description": "describe current task"}
  - {"action": "inventory", "description": "list your inventory"}

**Your previous overall plan is:** {planning}.

Please strictly adhere to your plan.

Now it's your turn to take an action, following these steps:

1. **First, reason using *ONLY ONE* tag pair and express your reasoning in *one concise, brief sentence*:**

- <planning>

Plan or replan the entire task by breaking it down into high-level steps. Focus on outlining the full sequence required to complete the overall task, not just the immediate next action.

Use this at the beginning of complex tasks or whenever the previous plan is incorrect or insufficient.

It is necessary to list all the points separately. eg, step 1: xxx, step 2: xxx, step 3: xxx, etc.

1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097

- <explore>  
When results are unexpected or information is lacking, use current observations to think outside the box and list as many possible locations, items, or actions as possible.  
Use this approach when facing obstacles that require creative and innovative thinking.
- <reflection>  
Analyze the reasons for errors in task execution and correct them by exploring alternative approaches. 'No known action matches that input.' indicates the action is invalid.  
This is typically used when several consecutive actions yield no substantial progress.
- <monitor>  
Continuously track the current progress and history of reasoning and execution throughout the task. Recall the current subgoal and consider the next concrete action, ensuring agent alignment with the overall plan.  
Typically used when task outcomes are as expected and no other mode of reasoning is required.

1098 2. **After your reasoning, you *MUST* select and present an appropriate action for  
1099 the current step within <action> ... </action> tags.**

1100  
1101

## G CASE STUDY OF RLVMR

1102 **Case Study** Below is a trajectory segment of an agent trained with RLVMR on ALFWorld, per-  
1103 forming a novel task: *find two soapbars and put them in the cabinet*. We observe that, guided by  
1104 meta-cognitive rewards, the agent demonstrates a more comprehensive and meticulous reasoning  
1105 process, exhibiting significantly more adaptive reasoning patterns. At step 13, the agent is already  
1106 carrying one soapbar and is actively searching for the second. Lacking explicit information about  
1107 the soapbars' location, the agent engages in structured and efficient exploration by systematically  
1108 hypothesizing possible locations via exploratory actions. Concurrently, it keeps track of its current  
1109 sub-goal, thereby avoiding the task confusion commonly seen in SFT-trained agents.

1110 Notably, in step 14, the agent experiences a brief hallucination, leading to an ineffective action.  
1111 However, at step 15, rather than falling into an error loop or blindly continuing, the agent immediately  
1112 triggers reflective behavior, proposing to "double-check my inventory" to collect more information  
1113 and guard against the possibility of having already acquired both soapbars. This demonstrates a  
1114 more rigorous and robust reasoning and decision-making process. Experimental results show that  
1115 such meta-cognitively driven behavioral patterns enhance agent performance and generalization on  
1116 previously unseen tasks compared to baselines.

1117  
1118

1119 A trajectory segment of an agent trained with RLVMR

1120

### Step 13

1121 **Observation:** You arrive at sinkbasin 2. On the sinkbasin 2, you see nothing.

1122 **Reasoning:** <explore>Since there are no soapbars at sinkbasin 2, I should broaden my  
1123 search to other potential locations. The next logical area to check is the toilet, as soapbars  
1124 could potentially be found there.</explore>

1125 **Action:** go to toilet 1

1126  
1127

### Step 14

1128 **Observation:** You arrive at toilet 1. On the toilet 1, you see a candle 1 and a spraybottle 3.

1129 **Reasoning:** <monitor>My current sub-goal is to obtain the second soapbar. Since there are  
1130 no soapbars visible here, I will attempt to examine the environment further, just in case the  
1131 second soapbar is present but not immediately listed in the observation.</monitor>

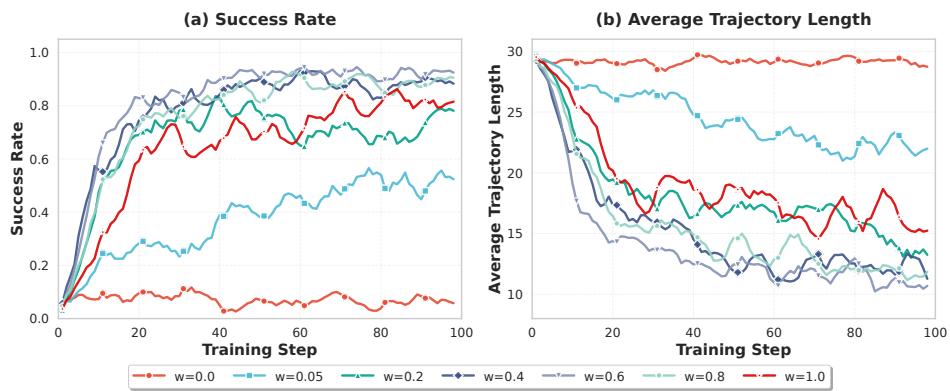
1132 **Action:** examine soapbar 2

1133

1134  
 1135     **Step 15**  
 1136     **Observation:** Nothing happens.  
 1137     **Reasoning:** <reflection>Reflecting on my recent actions, I realize I failed to place the  
 1138     second soapbar in the cabinet earlier. To proceed efficiently, I need to double-check my  
 1139     inventory and ensure I'm actually carrying both soapbars before trying again.</reflection>  
 1140     **Action:** inventory  
 1141  
 1142     **Step 16**  
 1143     **Observation:** You are carrying: a soapbar 1.  
 1144     **Reasoning:** <monitor>At this point, my sub-goal is still to locate the second soapbar.  
 1145     Since I am currently only carrying soapbar 1, I need to continue searching for the other  
 1146     one.</monitor>  
 1147     **Action:** go to countertop 1  
 1148  
 1149     **Step 17**  
 1150     **Observation:** You arrive at countertop 1. On the countertop 1, you see a soapbottle 1, a  
 1151     spraybottle 1, and a toiletpaper 1.  
 1152     **Reasoning:** <explore>No soapbar is found on the countertop either, so I should expand my  
 1153     search to nearby areas. Checking places like the toilet paper hanger may help ensure I'm not  
 1154     missing any possible locations for the second soapbar.</explore>  
 1155     **Action:** go to toiletpaperhanger 1  
 1156  
 1157     **Step 18**  
 1158     **Observation:** On the toiletpaperhanger 1, you see a toiletpaper 3.  
 1159     **Reasoning:** <explore>Since I still haven't found a new soapbar, I should continue exploring  
 1160     other potential areas, such as the hand towel holders, to make sure I don't overlook any  
 1161     possible spots where a soapbar could be located.</explore>  
 1162     **Action:** go to handtowelholder 1

## H PARAMETER SENSITIVITY ANALYSIS

### H.1 ADVANTAGE COEFFICIENT $\alpha$



1181     Figure 7: Sensitivity analysis of advantage coefficient  $\alpha$  on ALFWorld using Qwen2.5-1.5B-Instruct.  
 1182

1183     Our composite advantage function (defined in Algorithm 2) combines two complementary signals:  
 1184     the outcome advantage  $A_{\text{episode}}$  (which guides the agent toward task success) and the meta-reasoning  
 1185     advantage  $A_{\text{tag}}$  (which promotes effective step-level reasoning behaviors). The hyperparameter  $\alpha$   
 1186     controls their relative weighting in the final advantage computation:  
 1187

$$A(i) = \alpha \cdot A_{\text{episode}}(i) + (1 - \alpha) \cdot A_{\text{tag}}(i) \quad (6)$$

1188  
 1189 To evaluate the robustness of our method to this hyperparameter choice, we performed a sensitivity  
 1190 analysis on ALFWorld using Qwen2.5-1.5B-Instruct with  $\alpha \in \{0.0, 0.05, 0.2, 0.4, 0.6, 0.8, 1.0\}$ . The  
 1191 results are shown in Figure 7.

- 1192  
 1193 • When  $\alpha$  is very small (0.0 or 0.05), performance drops sharply because the local meta-  
 1194 reasoning reward overwhelms the global outcome signal; in fact,  $\alpha = 0.0$  removes the  
 1195 success feedback entirely, preventing effective learning.  
 1196 • When  $\alpha$  is close to 1.0, the model under-weights meta-reasoning behaviors, leading to  
 1197 noticeably degraded success rates and longer episode lengths, which harms the quality of  
 1198 reasoning within successful trajectories as well as the model’s generalization ability.

1199 Empirically, performance is most stable when  $\alpha$  is moderate. In this regime, outcome and meta-  
 1200 reasoning advantages provide complementary guidance: the model improves task success while also  
 1201 learning higher-quality intermediate reasoning. We also observed that, as long as  $\alpha$  is not near the  
 1202 extremes, its effect on training speed and final performance remains small and within the natural  
 1203 variance of RL training. Based on these findings, and without evidence favoring a more skewed  
 1204 weighting, we choose  $\alpha = 0.5$  as a balanced and robust setting.

## 1205 H.2 IMPACT OF DISCOUNT FACTOR

1206 To examine whether discounting factor can further improve long-horizon learning, we introduce a  
 1207 standard discounted return of the form

$$1209 \quad G_t = \sum_{k=0}^{T-t} \gamma^k r_{t+k},$$

1212 where  $\gamma \in (0, 1]$  controls the degree of temporal discounting. Setting  $\gamma = 1$  recovers the undiscounted case used in  
 1213 our main experiments. We conduct controlled comparisons  
 1214 on ALFWorld using Qwen2.5-1.5B-Instruct, evaluating  
 1215 both GRPO and RLVMR under  $\gamma = 1$  and  $\gamma < 1$ .

1216 The results in Figure 8 reveal the following trends.

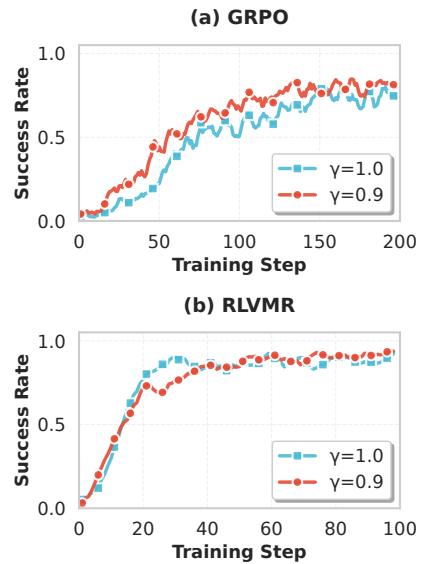
1217 For vanilla GRPO, adding a discount factor leads to a  
 1218 slightly faster improvement at the beginning of training,  
 1219 which aligns with the intuition that discounting reduces  
 1220 the influence of late-stage noise in sparse reward settings.  
 1221 However, the improvement remains modest and does not  
 1222 fundamentally enhance overall performance or alleviate  
 1223 inefficient exploration—the key limitation we target in this  
 1224 work.

1225 For RLVMR, the effect of discounting is negligible. The  
 1226 two curves almost overlap, indicating that the explicit  
 1227 meta-reasoning rewards already provide dense, temporally  
 1228 structured guidance (e.g., discouraging repeated actions).  
 1229 As a result, additional temporal discounting offers little  
 1230 benefit on top of the meta-reasoning signals. These find-  
 1231 ings further support the robustness of RLVMR’s reward  
 1232 design.

## 1233 I ABLATION STUDY

### 1234 I.1 ABLATION ON KEY COMPONENTS

1235 We conduct ablation studies on the Unseen-L2 split using Qwen2.5-1.5B-Instruct to analyze the  
 1236 impact of our framework’s key components: the trajectory-level outcome advantage signal ( $A^T$ ),  
 1237 the meta-reasoning advantage signal ( $A^{MC}$ ), and the cold-start process (CS). The results in Table 5  
 1238 confirm that each component is critical for achieving optimal performance.



1239 Figure 8: Comparison of methods with  
 1240 and without discount factor on ALF-  
 1241 World using Qwen2.5-1.5B-Instruct.

1242 Table 5: Ablation results on ALFWorld and ScienceWorld (success rates (%)) on L2 variant).  
1243

| 1244 <b>Variant</b>                       | 1245 <b>ALFWorld</b> | 1246 <b>ScienceWorld</b> |
|-------------------------------------------|----------------------|--------------------------|
| 1247 RLVMR (Full)                         | 1248 <b>56.3</b>     | 1249 <b>26.5</b>         |
| 1250 w/o $A^T$ (Outcome Reward)           | 1251 12.5            | 1252 7.8                 |
| 1253 w/o $A^{MC}$ (Meta-Reasoning Reward) | 1254 45.3            | 1255 20.3                |
| 1256 w/o CS (Cold-Start)                  | 1257 40.6            | 1258 18.8                |

1251 **Verifiable meta-reasoning rewards are essential for tackling complex, unseen tasks.** Removing  
1252 the meta-reasoning advantage signal ( $A^{MC}$ ) causes a significant performance drop, with the success  
1253 rate on ALFWorld falling by 11.0 percentage points (from 56.3% to 45.3%) and on ScienceWorld  
1254 by 6.2 points. This variant is equivalent to a standard GRPO agent fine-tuned from the cold-start  
1255 model. The sharp decline validates our central hypothesis: directly rewarding beneficial reasoning  
1256 processes is crucial for developing robust problem-solving skills. This component directly addresses  
1257 the “inefficient exploration issue” by providing dense, process-level signals that guide the agent  
1258 toward more efficient and logical behaviors, a benefit that outcome-only rewards ( $A^T$ ) cannot provide  
1259 alone.

1260 **Outcome-based rewards remain indispensable for guiding the agent toward final task success.**  
1261 Eliminating the trajectory-level outcome advantage ( $A^T$ ) results in a catastrophic performance  
1262 collapse, with the success rate plummeting to just 12.5% on ALFWorld and 7.8% on ScienceWorld.  
1263 This demonstrates that while meta-reasoning rewards effectively shape the **process**, the global  
1264 signal of task success is vital for orienting the agent toward the ultimate goal. The meta-reasoning  
1265 rewards are locally effective—for instance, rewarding non-repetitive exploration—but without the  
1266 final outcome signal, the agent cannot learn which explorations ultimately lead to a successful  
1267 trajectory. This confirms that the synergy between process-level and outcome-level rewards is a key  
1268 strength of the RLVMR framework.

1269 **A lightweight cold-start phase is critical for bootstrapping the agent’s reasoning capabilities.**  
1270 Training the agent without the supervised fine-tuning cold-start (CS) phase leads to a substantial  
1271 performance decrease on both ALFWorld (down 15.7 points) and ScienceWorld (down 7.7 points).  
1272 The cold-start phase, which uses only 200 trajectories, is not intended to solve the tasks but to equip  
1273 the model with the basic ability to generate syntactically correct meta-reasoning tags and follow  
1274 instructions. For smaller models (e.g., 1.5B), this initial grounding is vital; without it, the agent often  
1275 fails to produce parseable outputs during RL, leading to training instability and policy collapse. This  
1276 finding underscores the efficiency of our approach: a brief, low-data cold-start is sufficient to unlock  
1277 the model’s capacity for complex reasoning, which is then honed by the RL phase.

## 1279 I.2 ABLATION ON META-REASONING TYPES

1280 To further understand the role of each meta-reasoning component, we conduct a fine-grained ablation  
1281 study by removing one type of meta-reasoning tag and its corresponding meta-reasoning reward at a  
1282 time, while keeping all other settings unchanged. Experiments are performed on the ALFWorld L2  
1283 split using the Qwen2.5-1.5B-Instruct model.

1284 We evaluate models using the same metrics as the main paper: (i) *success rate*, the percentage of  
1285 episodes in which the agent completes the task; (ii) *average trajectory length*, the mean number of  
1286 steps taken per episode, capturing overall efficiency and the agent’s ability to find direct solutions;  
1287 (iii) *repetitive action rate*, the percentage of actions that repeat a previous action without changing  
1288 the environment state, quantifying inefficient exploration or loops; and (iv) *invalid action rate*,  
1289 the proportion of actions that are not executable in the current environment state, reflecting basic  
1290 comprehension and error frequency.

1291 Table 6 summarizes the results. Removing *reflection* significantly increases both repetitive and invalid  
1292 actions, indicating that the agent struggles to recover from sequences of ineffective steps without an  
1293 explicit mechanism for self-correction. Removing *explore* produces substantially longer trajectories,  
1294 as the agent tends to fall into inefficient search patterns without leveraging contextual cues from  
1295 history to guide exploratory decisions. Eliminating either *planning* or *monitor* also leads to clear

1296 performance degradation. We find that correct early-stage planning provides a global structure for the  
 1297 task, reducing disorganized execution, while monitoring helps track subgoals and maintain adherence  
 1298 to the planned sequence.

1299 Overall, these ablations demonstrate that each meta-reasoning type contributes meaningfully to robust  
 1300 long-horizon behavior. The meta-reasoning patterns operationalized from metacognitive theory are  
 1301 therefore essential for improving both effectiveness and reliability of the agent.

| Variant        | SR(%) $\uparrow$ | avg_steps $\downarrow$ | repeat(%) $\downarrow$ | invalid(%) $\downarrow$ |
|----------------|------------------|------------------------|------------------------|-------------------------|
| full RLVMR     | <b>56.3</b>      | <b>15.4</b>            | <b>5.7</b>             | <b>12.5</b>             |
| w/o planning   | 47.5             | 15.9                   | 8.6                    | 12.8                    |
| w/o explore    | 55.8             | 17.2                   | 12.6                   | 16.1                    |
| w/o reflection | 46.2             | 16.5                   | 14.5                   | 20.2                    |
| w/o monitor    | 52.1             | 16.0                   | 7.4                    | 15.8                    |

1310 Table 6: Ablation of meta-reasoning tag types on ALFWorld L2 with Qwen2.5-1.5B-Instruct.

### 1313 I.3 IMPACT OF ANNOTATION MODEL CHOICE

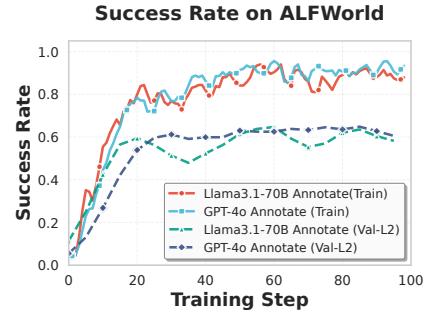
1315 To further examine the dependence of RLVMR on the  
 1316 teacher model used in the cold-start SFT phase, we addi-  
 1317 tionally compare annotations generated by a strong closed-  
 1318 source model (GPT-4o) and a much smaller open-source  
 1319 model (Llama-3.1-70B). Specifically, we replace the cold-  
 1320 start annotations with those produced by different teacher  
 1321 models to train the Qwen2.5-1.5B-Instruct model, fol-  
 1322 lowed by the subsequent RL process. As shown in Fig-  
 1323 ure 9, the downstream RL performance under the two  
 1324 annotation sources is almost identical across the training  
 1325 set and the most challenging L2 evaluation split for the  
 1326 Qwen2.5-1.5B-Instruct agents. This indicates that the an-  
 1327 notation task required in cold-start is relatively simple, and  
 1328 that RLVMR’s final reasoning behaviors emerge primar-  
 1329 ily from the RL stage rather than from teacher-specific  
 1330 annotation quality.

## 1331 J THE USE OF LLMs

1333 In this work, large language models were partially employed to assist with spelling and grammar  
 1334 checking, as well as minor text polishing. Specifically, we used the following prompt:

1336 *You are an expert in AI. Please check the provided text for any spelling or gram-  
 1337 matical errors, and point out inappropriate expressions: {text segment}*

1338 No unverifiable content was produced by the LLMs, and all technical ideas, results, and conclusions  
 1339 presented in this paper originate from the authors.



1340 Figure 9: Success-rate on ALFWorld-L2  
 1341 for Qwen2.5-1.5B-Instruct under differ-  
 1342 ent cold-start annotation sources.