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ABSTRACT

Dynamic graph datasets often exhibit strong temporal patterns, such as recency,
which prioritizes recent interactions, and popularity, which favors frequently occur-
ring nodes. We demonstrate that simple heuristics leveraging only these patterns
can perform on par or outperform state-of-the-art neural network models under stan-
dard evaluation protocols. To further explore these dynamics, we introduce metrics
that quantify the impact of recency and popularity across datasets. Our experiments
on BenchTemp (Huang et al., 2024a) and the Temporal Graph Benchmark (Huang
et al., 2024b) show that our approaches achieve state-of-the-art performance across
all datasets in the latter and secure top ranks on multiple datasets in the former.
These results emphasize the importance of refined evaluation schemes to enable
fair comparisons and promote the development of more robust temporal graph
models. Additionally, they reveal that current deep learning methods often struggle
to capture the key patterns underlying predictions in real-world temporal graphs.
For reproducibility, we have made our code publicly available1.

1 INTRODUCTION

Dynamic graphs model evolving real-world relationships, where nodes represent entities and edges
capture their interactions. These graphs are dynamic, with nodes, edges, weights, or attributes
continuously added, removed, or updated over time. Analyzing their temporal patterns is a critical
challenge due to their broad applications in fields such as social networks and biological systems.
To support this, challenging benchmarks using real-world datasets have been developed, facilitating
efficient learning on dynamic graphs (Huang et al., 2024b;a). A key task in this domain is link
prediction; to forecast future node links and is foundational for dynamic graph analysis.

Recent methods have increasingly focused on advanced neural network architectures for dynamic
graph tasks (Kumar et al., 2019a; Xu et al., 2020; Rossi et al., 2020b; Wu et al., 2024; Gravina et al.,
2024). However, dynamic graph datasets often exhibit strong recency and popularity patterns that can
be effectively captured with simple memorization heuristics. Despite their simplicity, these heuristics
have proven to be surprisingly robust baselines, frequently matching or outperforming more complex
neural network-based approaches (Poursafaei et al., 2022b;a; Daniluk & Dąbrowski, 2023).

This work enhances the understanding of recency and popularity in temporal graphs by introducing
heuristics that effectively capture multi-scale temporal patterns. These simple yet powerful methods
demonstrate “unreasonable effectiveness”, outperforming neural models in multiple datasets while
also providing a scalable framework to analyze how temporal dynamics influence ranking behavior.

2 RELATED WORK

The effect of recency and popularity patterns has been extensively studied in the recommender system
literature where it is typically attributed to selection, exposure, presentation, and other biases in
interaction data (Chen et al., 2023; Wang et al., 2023; Klimashevskaia et al., 2024). Prior research on
temporal patterns in dynamic graph datasets has focused on three main directions.

∗Equal contribution.
1Available at https://openreview.net/forum?id=cTckUeh0Sw.
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Summary metrics. A range of metrics has been developed to characterize the presence of various
temporal patterns. For instance, Poursafaei et al. (2022a) characterized novelty (new edges per
timestamp), reoccurrence (fraction of transductive edges), and surprise (test-only edges), demonstrat-
ing the challenge of predicting entirely new connections. Similarly, Daniluk & Dąbrowski (2023)
proposed statistical distance-based measures to capture both short- and long-term global popularity
dynamics, exposing weaknesses in existing evaluation protocols and negative sampling strategies.

Tools for interpretation and visualization. Complementing metrics are tools designed to make
temporal patterns more interpretable. Poursafaei et al. (2022a) introduced Temporal Edge Appearance
(TEA) and Temporal Edge Traffic (TET) plots, revealing when memorization-based approaches
may fail – particularly in sparse graphs or when reoccurrence is low (i.e., a high surprise index).
Shirzadkhani et al. (2024) later built on this work to provide deeper insights into data characteristics.

Leveraging temporal heuristics for prediction. Beyond measurement and visualization, researchers
have proposed models and heuristics to exploit temporal information for prediction tasks. Poursafaei
et al. (2022a) presented the EdgeBank heuristic, which achieves strong performance in transductive
settings, while Daniluk & Dąbrowski (2023) introduced PopTrack, a simple popularity-based heuristic
that outperformed state-of-the-art methods on multiple benchmarks which was then used to create
harder negative samples. In a related vein, Poursafaei et al. (2022b) demonstrated that combining
structural, interaction-based, and temporal features can produce expressive node representations for
accurate classification in both static and dynamic scenarios.

3 METHOD

The Notion of Recency. Analyses of multiple benchmark datasets indicate that among various link
prediction heuristics for dynamic graphs, recency (how recently a node has appeared as a destination)
emerges as one of the most effective. In many real-world networks, recently active nodes often
continue to participate, making recency a robust predictor. Moreover, frequent events also remain
highly ranked through continually updated timestamps, reducing the need for added weighting.
Building on those observations, the concept of recency is extended to multiple temporal scales,
providing a more comprehensive perspective on dynamic graph behavior.

Global Recency (GR). This score identifies the most recently observed destination nodes across
the entire graph. Instead of estimating a distribution, a simpler approach records each node’s
last appearance as a destination node, emphasizing temporal precision through memorization:
GR(v, t) = max({−1} ∪ {τ | (u, v, τ) ∈ G, τ < t}), where G ⊂ V × V × T is the set of temporal
edges (u, v, t), and t ∈ T is a timestamp of the most recent destination occurrence of v ∈ V .

Local Recency (LR). This score captures the node-level temporal activity of individual destination
nodes by focusing on their incoming connections. Rather than relying on a fixed time window,
as in EdgeBank, each node retains a time-sorted list of its incoming nodes, effectively reflecting
immediate temporal interactions: LR(u, v, t) = max({−1} ∪ {τ | (u, v, τ) ∈ G, τ < t}), where t is
the timestamp of the most recent interaction between u and v.

The Notion of Popularity. As highlighted by Daniluk & Dąbrowski (2023), many dynamic graph
datasets exhibit a pronounced correlation with the historical popularity of destination nodes, re-
flecting a “rich-get-richer” dynamic in which frequently connected nodes continue to attract new
links. This effect appears in various real-world systems, where once a node becomes popular, ad-
ditional edges concentrate around it. Building on this insight, popularity-based heuristics can be
implemented analogously to recency-based approaches, capturing how often nodes have served as
popular destinations.

Global Popularity (GP). This score counts the total number of times v has appeared as a destination
node, being updated at each timestamp: GP(v, t) =

∑
τ<t

∑
u′∈V 1((u′, v, τ) ∈ G), where 1(·) is

the indicator function that equals 1 if the condition holds, and 0 otherwise.

Local Popularity (LP). The score for a node v with respect to a source node u is defined as:
LP(u, v, t) =

∑
τ<t 1((u, v, τ) ∈ G), where the summation counts the number of times v has

appeared as a destination node specifically for source node u.

The pseudocode for the proposed heuristics is provided in Algorithm 1.
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3.1 COMBINING HEURISTICS

Algorithm 1 Recency and Popularity
Heuristics
Require: Temporal edges (u, v, t) ∈ G,

metric function m(·) (e.g., MRR)
1: Initialize LR, GR, LP, GP as empty dic-

tionaries
2: for t ∈ T do
3: for (u, v) ∈ Gt do
4: for h ∈ {LR,GR,LP,GP} do
5: Compute m(h, u, v, t)

6: for (u, v) ∈ Gt do
7: LR[u][v]← t
8: GR[v]← t
9: LP[u][v]← LP[u][v] +1

10: GP[v]← GP[v] +1

11: return Scores for LR, GR, LP, GP

Tailored heuristics are crucial for different datasets
due to their unique characteristics. For example, the
Local Recency heuristic performs poorly on the tgbl-
review dataset because users rarely review the same
product twice. This conflicts with the low novelty in-
dex (Poursafaei et al., 2022a) required for LR, as it can-
not score unseen nodes for a given source. This high-
lights the need for complementary strategies. Insights
from static graph methods, where heuristic combina-
tions leverage individual strengths (Ma et al., 2024),
suggest promising directions for dynamic graphs.

The proposed algorithms also face challenges with
ranking ties, which occur when multiple entities re-
ceive the same score. Unlike most machine learning
models that produce continuous scores, f : G → R,
these heuristics rely on discrete scoring functions,
such as counts or timestamps, i.e., f : G → N. For
recency-based heuristics, the frequency of ties is in-
fluenced by the granularity of dataset timing, with
coarse-grained timestamps increasing the likelihood
of identical scores. While ties are less common in sampled evaluations with fewer negative examples,
they become more prevalent in full-ranking evaluations on datasets with coarser temporal resolution.

An approach in which heuristics are combined addresses this issue by stacking multiple heuristics into
a product space, f : G → N|H|, whereH = {h1, h2, . . . , hn} is an ordered set of heuristics. When
candidates share the same score under heuristic hi, the next heuristic hi+1 determines their internal
ranks. This process iterates until ranks are fully resolved, or all heuristics are applied. Structuring
the combination this way minimizes ranking ties, reduces discrepancies and improves prediction
specificity across datasets. This approach applies to any heuristic in the family H : G → S, where
S ⊆ N. For recency heuristics, S represents possible timestamps, while for popularity heuristics,
S = {0, . . . , |E|}, with |E| as the number of edges. Selecting optimal heuristics for speed and
performance depends on the dataset and is left for future study. In this work, unless stated otherwise,
we use the order LR→ GR→ LP→ GP.

4 EXPERIMENTS AND RESULTS

We evaluate the proposed approaches on the TGB (Huang et al., 2024b) and BenchTemp (Huang
et al., 2024a) benchmarks using their respective proposed and standardized metrics (MRR with fixed
set of negatives for TGB, AUC for BenchTemp). As shown in Table 1, the heuristic algorithms
demonstrate competitive performance, achieving top positions on the TGB leaderboard2 at the time
of writing. Recency mostly outperforms popularity as a predictor across most datasets. However,
popularity effectively resolves ties, serving as a complement to methods like LR. Detailed results
in terms of both performance and runtime on BenchTemp and performance on TGB compared to
baseline models are provided in Appendix A.

Two key observations emerge. First, heuristic approaches often outperform modern neural network
methods when strong temporal patterns are present. Second, the same dataset, such as Wikipedia,
can yield different metric values when evaluated under varying protocols, such as those used in TGB
and BenchTemp. We hypothesize that these discrepancies stem from two main factors. First, neural
network models may struggle to capture dominant temporal patterns, as they are often designed to
prioritize long-term dependencies. Second, differences in evaluation protocols can highlight distinct
aspects of the data, leading to inconsistencies, especially in sampled settings where results are highly
sensitive to the number, quality, and selection of negative examples.

2https://tgb.complexdatalab.com/docs/leader_linkprop/
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(a) TGB tgbl-coin dataset.
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(b) TGB tgbl-review dataset.
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(c) BenchTemp Enron dataset.

Figure 1: Complementary Normalized Rank (CNR) plots comparing optimistic (R+) and pessimistic
(R−) ranks across various heuristics and their combinations. Each curve shows a method’s perfor-
mance using the CNR metric across percentiles of all edges, illustrating its ranking effectiveness.

Dataset / Heuristic LR GR LP GP Combined

tgbl-coin 0.773 (1) 0.613 (3) 0.692 (3) 0.726 (3) 0.809 (1)
tgbl-comment 0.164 (5) 0.354 (4) 0.106 (7) 0.723 (1) 0.455 (3)

tgbl-flight 0.831 (1) 0.603 (3) 0.871 (1) 0.183 0.88 (1)
tgbl-review 0.001 0.321 0.001 0.394 (3) 0.52 (1)

tgbl-wiki 0.817 (1) 0.04 (12) 0.693 (5) 0.157 (9) 0.821 (1)

Table 1: Mean Reciprocal Rank (MRR) on TGB test splits, with leaderboard rankings in parentheses.

5 HEURISTICS AS ANALYSIS TOOLS

The prevalence of recency and popularity patterns in a dataset is shaped by its underlying creation
processes. To analyze their impact on ranking behavior, we introduce Complementary Normalized
Rank (CNR) metric, computed using optimistic (R+) and pessimistic (R−) ranks (Ali et al., 2021;
Huang et al., 2024b), where R+ assumes favorable tie-breaking, and R− ranks tied candidates
conservatively. At a given p, CNR is defined as CNR(p) = 1−Rp/|E|, indicating that a fraction
p of edges was ranked at least as high as Rp = |E|(1 − CNR(p)). While not intended for direct
method comparisons, this metric provides insights into dataset predictability and helps assess ranking
effectiveness. As shown in Figure 1, CNR plots offer a comprehensive view of how temporal patterns
shape ranking performance. While ranking all edges at every timestamp is infeasible for conventional
methods, our heuristics enable efficient computation in logarithmic time with respect to S. Further
implementation details are provided in Appendix B, and the discussion of CNR plots in Appendix C.

6 CONCLUSION

Our findings show that simple and highly efficient heuristics often outperform modern neural network
approaches across a range of real-world benchmarks. Their effectiveness depends on dataset char-
acteristics, while the methods introduced provide practical tools for interpreting these patterns and
understanding temporal graph behavior. Inspired by recommender system research, we argue that
accurately modeling recency and popularity patterns in temporal graph data may not always improve
domain-specific metrics, as these patterns often reflect unintended biases such as selection, position,
and exposure effects. We defer the exploration of de-biasing techniques for temporal graph datasets,
better evaluation protocols, and methods for integrating heuristic signals into neural models to future
work.
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APPENDIX

A ADDITIONAL RESULTS

Table 2 presents TGB test MRR results alongside the official leaderboard3, showing that our heuristics
consistently outperform baseline methods across all cases. Table 3 reports AUC-ROC results for our
heuristics compared to the BenchTemp leaderboard4, highlighting substantial performance variability
across datasets. These results reinforce that each heuristic’s effectiveness depends on the presence of
the specific temporal pattern it is designed to exploit.

3https://tgb.complexdatalab.com/docs/leader_linkprop/
4https://my-website-6gnpiaym0891702b-1257259254.tcloudbaseapp.com/
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For TGB, we use baseline results from the official leaderboard, except for tgbl-review and tgbl-
subreddit, as the former was updated and the latter was not included at the time of writing. In these
cases, we conduct our own evaluations using the reference code, maintaining the TGB hyperparameter
configurations. For BenchTemp, we adopt leaderboard baselines and ensure fair comparisons by
applying its negative sampling method with a 3-fold evaluation for robust metric estimation.

In the corresponding benchmarks, we compare our approach against JODIE (Kumar et al., 2019b),
NeurTW (Jin et al., 2022), DyGFormer (Yu et al., 2023), NAT (Luo & Li, 2022), TNCN (Zhang et al.,
2024), CAWN (Wang et al., 2021b), TGN (Rossi et al., 2020a), TCL (Wang et al., 2021a), TGAT (Xu
et al., 2020), DyRep (Trivedi et al., 2019), and GraphMixer (Cong et al., 2023).

Dataset tgbl-wiki tgbl-coin tgbl-review tgbl-comment tgbl-flight tgbl-subreddit

DyGFormer 0.798 ± 0.004 0.752 ± 0.004 — 0.670 ± 0.001 — —
NAT 0.749 ± 0.010 — — — — —

TNCN 0.718 ± 0.001 0.762 ± 0.004 — 0.697 ± 0.006 0.820 ± 0.004 —
CAWN 0.711 ± 0.006 — — — — —

EdgeBanktw 0.571 0.580 0.020 0.149 0.387 0.589
EdgeBank∞ 0.495 0.359 0.021 0.129 0.167 0.485

TGN 0.396 ± 0.060 0.586 ± 0.037 0.414 ± 0.011 0.379 ± 0.021 0.705 ± 0.020 0.49 ± 0.022
TCL 0.207 ± 0.025 — — — — —

TGAT 0.141 ± 0.007 — 0.355 ± 0.012 — — 0.388 ± 0.01
GraphMixer 0.118 ± 0.002 — 0.255 ± 0.193 — — 0.195 ± 0.001

Baseline Models

DyRep 0.050 ± 0.017 0.452 ± 0.046 0.106 ± 0.016 0.289 ± 0.033 0.556 ± 0.014 0.113 ± 0.022

GR 0.157 0.726 0.394 0.723 0.200 0.097
LR 0.817 0.773 0.001 0.164 0.840 0.716
GP 0.193 0.613 0.321 0.354 0.619 0.193
LP 0.707 0.692 0.001 0.106 0.876 0.738

Heuristics

Combined 0.821 0.809 0.522 0.455 0.88 0.717

Table 2: Comparison of the TGB (Huang et al., 2024b) leaderboard and the proposed heuristics using
standardized test MRR, with the best, second-best, and third-best results highlighted in bold and
color-coded.

B EFFICIENT IMPLEMENTATION OF HEURISTICS

Computing top-K ranking metrics, such as MRR, across an entire dataset is often computationally
expensive. A brute-force approach to determine the exact rank of an entity requires scoring all entities
against a query, resulting in a complexity of O(|V |). To speed up evaluation, many methods sample a
smaller set of false (negative) examples and rank the positive item within this subset. However, such
methods are biased and inconsistent estimators of true ranking metrics (Krichene & Rendle, 2020).
Only AUC-ROC has been proven to provide consistent evaluations, where expected values converge
to true performance as the sample size grows.

In contrast, the proposed heuristics enable efficient calculation of full rankings for arbitrary queries
in O(logS) time by leveraging optimized data structures. When scores are integer-based, each
score effectively becomes an index in a consolidated list, grouping all nodes with the same score.
This arrangement facilitates direct calculation of exact optimistic and pessimistic ranks by summing
nodes in indices below (and, for optimistic ranks, equal to) a particular score. For recency-based
heuristics, Fenwick Trees (Fenwick, 1994) are used for efficient ranking by storing and retrieving
these contiguous sums, which reduces the worst-case complexity of computing full ranks fromO(|V |)
to O(logS), while the memory usage is bounded by O(S + |V |) where S represents the number of
unique timestamps, and |V | is the number of nodes.

In essence, the algorithm manages edge updates by dynamically tracking their occurrences across
timestamps in both global and local settings. This design achieves a balance between precision and
scalability, making it well-suited for large-scale temporal graph data. It should be noted that combin-
ing heuristics increases overall complexity, as their independence results in higher computational
demands compared to using a single heuristic.

To demonstrate effectiveness, we present the runtime measurements in Table 4. For heuristic methods,
we report the runtime for a single pass through the training combined with the average runtime
through both test sets. Model runtimes are obtained from the BenchTemp leaderboard, where they
are executed on GPUs, whereas heuristic methods are run on a CPU.
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Dataset Heuristics Baseline Models

Combined GR LR GP LP CAWN DyRep JODIE NAT NeurTW TGAT TGN

Inductive

CanParl 0.632 ± 0.002 0.627 ± 0.002 0.655 ± 0.001 0.630 ± 0.003 0.653 ± 0.001 0.715 ± 0.097 0.553 ± 0.009 0.501 ± 0.016 0.621 ± 0.073 0.887 ± 0.014 0.580 ± 0.007 0.573 ± 0.027
CollegeMsg 0.934 ± 0.000 0.921 ± 0.001 0.838 ± 0.001 0.788 ± 0.002 0.836 ± 0.001 0.916 ± 0.004 0.484 ± 0.012 0.510 ± 0.031 0.960 ± 0.017 0.973 ± 0.000 0.715 ± 0.001 0.777 ± 0.052
Contact 0.978 ± 0.000 0.875 ± 0.000 0.966 ± 0.000 0.623 ± 0.001 0.939 ± 0.000 0.969 ± 0.003 0.865 ± 0.043 0.936 ± 0.003 0.947 ± 0.013 0.984 ± 0.000 0.557 ± 0.005 0.952 ± 0.006
Enron 0.940 ± 0.002 0.811 ± 0.003 0.918 ± 0.001 0.540 ± 0.004 0.910 ± 0.003 0.916 ± 0.002 0.712 ± 0.060 0.804 ± 0.022 0.952 ± 0.006 0.905 ± 0.003 0.553 ± 0.015 0.816 ± 0.023
Flights 0.927 ± 0.000 0.784 ± 0.001 0.851 ± 0.000 0.827 ± 0.001 0.850 ± 0.000 0.983 ± 0.000 0.869 ± 0.013 0.922 ± 0.009 0.983 ± 0.003 0.916 ± 0.000 0.832 ± 0.004 0.952 ± 0.004
LastFM 0.910 ± 0.000 0.760 ± 0.001 0.902 ± 0.000 0.491 ± 0.000 0.889 ± 0.000 0.908 ± 0.002 0.799 ± 0.044 0.801 ± 0.034 0.914 ± 0.004 0.884 ± 0.000 0.520 ± 0.014 0.828 ± 0.014
MOOC 0.707 ± 0.000 0.694 ± 0.001 0.664 ± 0.000 0.533 ± 0.001 0.616 ± 0.000 0.948 ± 0.001 0.827 ± 0.018 0.778 ± 0.058 0.733 ± 0.043 0.804 ± 0.022 0.737 ± 0.006 0.887 ± 0.025
Reddit 0.994 ± 0.008 0.904 ± 0.042 0.933 ± 0.000 0.799 ± 0.045 0.933 ± 0.000 0.987 ± 0.000 0.958 ± 0.000 0.951 ± 0.005 0.991 ± 0.003 0.980 ± 0.001 0.965 ± 0.000 0.976 ± 0.000
SocialEvo 0.952 ± 0.001 0.786 ± 0.000 0.952 ± 0.000 0.481 ± 0.002 0.861 ± 0.000 0.930 ± 0.000 0.916 ± 0.004 0.896 ± 0.023 0.896 ± 0.016 – 0.675 ± 0.002 0.924 ± 0.008
Taobao 0.219 ± 0.001 0.213 ± 0.001 0.521 ± 0.000 0.201 ± 0.002 0.521 ± 0.000 0.774 ± 0.003 0.703 ± 0.001 0.701 ± 0.001 0.999 ± 0.000 0.884 ± 0.002 0.526 ± 0.012 0.774 ± 0.003
UCI 0.932 ± 0.001 0.920 ± 0.001 0.835 ± 0.000 0.783 ± 0.004 0.833 ± 0.000 0.918 ± 0.002 0.430 ± 0.043 0.752 ± 0.006 0.962 ± 0.017 0.969 ± 0.003 0.702 ± 0.005 0.808 ± 0.024
UNTrade 0.632 ± 0.003 0.552 ± 0.001 0.691 ± 0.001 0.473 ± 0.003 0.594 ± 0.001 0.740 ± 0.001 0.647 ± 0.011 0.673 ± 0.013 0.648 ± 0.066 0.592 ± 0.033 – 0.673 ± 0.013
UNVote 0.54 ± 0.000 0.517 ± 0.000 0.639 ± 0.001 0.374 ± 0.001 0.499 ± 0.001 0.591 ± 0.001 0.499 ± 0.010 0.512 ± 0.001 0.779 ± 0.008 0.586 ± 0.000 0.477 ± 0.005 0.588 ± 0.012
USLegis 0.58 ± 0.002 0.604 ± 0.002 0.576 ± 0.004 0.375 ± 0.003 0.539 ± 0.004 0.967 ± 0.003 0.598 ± 0.010 0.584 ± 0.013 0.745 ± 0.029 0.971 ± 0.001 0.557 ± 0.008 0.613 ± 0.005
Wikipedia 0.963 ± 0.001 0.916 ± 0.000 0.917 ± 0.000 0.431 ± 0.001 0.917 ± 0.000 0.989 ± 0.000 0.910 ± 0.003 0.931 ± 0.002 0.996 ± 0.003 0.990 ± 0.000 0.934 ± 0.003 0.978 ± 0.001

Inductive (New–New)

CanParl 0.566 ± 0.004 0.564 ± 0.003 0.643 ± 0.004 0.561 ± 0.000 0.644 ± 0.000 0.701 ± 0.124 0.443 ± 0.007 0.435 ± 0.009 0.569 ± 0.033 0.888 ± 0.005 0.596 ± 0.007 0.563 ± 0.040
CollegeMsg 0.931 ± 0.001 0.920 ± 0.003 0.843 ± 0.001 0.729 ± 0.003 0.842 ± 0.000 0.930 ± 0.002 0.527 ± 0.005 0.532 ± 0.027 0.940 ± 0.037 0.976 ± 0.001 0.783 ± 0.003 0.797 ± 0.011
Contact 0.979 ± 0.001 0.872 ± 0.003 0.968 ± 0.001 0.460 ± 0.004 0.952 ± 0.002 0.965 ± 0.001 0.660 ± 0.040 0.753 ± 0.006 0.949 ± 0.003 0.982 ± 0.000 0.545 ± 0.006 0.912 ± 0.005
Enron 0.966 ± 0.001 0.773 ± 0.004 0.952 ± 0.004 0.404 ± 0.009 0.953 ± 0.001 0.961 ± 0.005 0.657 ± 0.052 0.680 ± 0.002 0.969 ± 0.005 0.939 ± 0.000 0.531 ± 0.018 0.764 ± 0.018
Flights 0.918 ± 0.001 0.771 ± 0.003 0.876 ± 0.000 0.717 ± 0.003 0.876 ± 0.000 0.987 ± 0.001 0.890 ± 0.027 0.930 ± 0.008 0.991 ± 0.001 0.941 ± 0.000 0.857 ± 0.006 0.965 ± 0.002
LastFM 0.966 ± 0.000 0.910 ± 0.000 0.962 ± 0.000 0.500 ± 0.001 0.962 ± 0.001 0.970 ± 0.000 0.868 ± 0.016 0.885 ± 0.009 0.974 ± 0.002 0.963 ± 0.000 0.509 ± 0.033 0.875 ± 0.001
MOOC 0.688 ± 0.001 0.669 ± 0.003 0.647 ± 0.003 0.314 ± 0.009 0.613 ± 0.000 0.942 ± 0.000 0.722 ± 0.018 0.707 ± 0.016 0.656 ± 0.029 0.805 ± 0.009 0.740 ± 0.006 0.876 ± 0.004
Reddit 1.000 ± 0.000 0.938 ± 0.088 0.875 ± 0.000 0.979 ± 0.030 0.875 ± 0.000 0.995 ± 0.002 0.953 ± 0.005 0.938 ± 0.009 0.995 ± 0.001 0.988 ± 0.000 0.960 ± 0.004 0.981 ± 0.000
SocialEvo 0.950 ± 0.001 0.784 ± 0.006 0.951 ± 0.001 0.237 ± 0.004 0.901 ± 0.001 0.932 ± 0.000 0.774 ± 0.022 0.648 ± 0.049 0.928 ± 0.047 – 0.466 ± 0.007 0.879 ± 0.004
Taobao 0.170 ± 0.002 0.164 ± 0.001 0.522 ± 0.000 0.133 ± 0.001 0.522 ± 0.000 0.785 ± 0.015 0.717 ± 0.001 0.717 ± 0.001 1.000 ± 0.000 0.908 ± 0.001 0.523 ± 0.005 0.708 ± 0.001
UCI 0.929 ± 0.001 0.917 ± 0.002 0.840 ± 0.001 0.724 ± 0.003 0.838 ± 0.000 0.924 ± 0.003 0.477 ± 0.010 0.639 ± 0.016 0.947 ± 0.026 0.972 ± 0.002 0.768 ± 0.004 0.805 ± 0.021
UNTrade 0.587 ± 0.018 0.554 ± 0.003 0.704 ± 0.006 0.262 ± 0.014 0.703 ± 0.010 0.746 ± 0.008 0.536 ± 0.015 0.592 ± 0.009 0.688 ± 0.018 0.594 ± 0.060 – 0.507 ± 0.006
UNVote 0.379 ± 0.001 0.516 ± 0.001 0.634 ± 0.002 0.145 ± 0.004 0.615 ± 0.003 0.578 ± 0.002 0.473 ± 0.003 0.491 ± 0.020 0.720 ± 0.075 0.567 ± 0.000 0.500 ± 0.006 0.634 ± 0.002
USLegis 0.442 ± 0.002 0.490 ± 0.003 0.538 ± 0.004 0.175 ± 0.003 0.538 ± 0.004 0.974 ± 0.006 0.564 ± 0.019 0.539 ± 0.008 0.890 ± 0.022 0.979 ± 0.000 0.532 ± 0.029 0.890 ± 0.022
Wikipedia 0.976 ± 0.001 0.929 ± 0.001 0.940 ± 0.000 0.352 ± 0.002 0.940 ± 0.000 0.993 ± 0.001 0.926 ± 0.003 0.935 ± 0.005 0.998 ± 0.001 0.996 ± 0.000 0.958 ± 0.004 0.986 ± 0.001

Inductive (New–Old)

CanParl 0.648 ± 0.002 0.641 ± 0.002 0.539 ± 0.020 0.645 ± 0.004 0.641 ± 0.002 0.723 ± 0.085 0.507 ± 0.001 0.508 ± 0.001 0.628 ± 0.081 0.885 ± 0.010 0.572 ± 0.006 0.569 ± 0.022
CollegeMsg 0.933 ± 0.000 0.921 ± 0.003 0.481 ± 0.028 0.807 ± 0.003 0.921 ± 0.003 0.917 ± 0.003 0.517 ± 0.036 0.832 ± 0.001 0.973 ± 0.019 0.968 ± 0.002 0.701 ± 0.005 0.772 ± 0.037
Contact 0.978 ± 0.000 0.876 ± 0.000 0.857 ± 0.045 0.632 ± 0.001 0.876 ± 0.000 0.969 ± 0.003 0.935 ± 0.003 0.934 ± 0.003 0.935 ± 0.020 0.984 ± 0.000 0.556 ± 0.004 0.953 ± 0.005
Enron 0.937 ± 0.001 0.817 ± 0.002 0.692 ± 0.065 0.559 ± 0.005 0.785 ± 0.013 0.918 ± 0.003 0.786 ± 0.013 0.904 ± 0.003 0.949 ± 0.008 0.901 ± 0.004 0.559 ± 0.024 0.810 ± 0.020
Flights 0.928 ± 0.000 0.786 ± 0.001 0.847 ± 0.000 0.839 ± 0.000 0.786 ± 0.001 0.983 ± 0.000 0.917 ± 0.011 0.847 ± 0.000 0.986 ± 0.003 0.913 ± 0.000 0.829 ± 0.004 0.950 ± 0.004
LastFM 0.877 ± 0.000 0.676 ± 0.001 0.698 ± 0.036 0.486 ± 0.001 0.676 ± 0.001 0.868 ± 0.003 0.730 ± 0.005 0.846 ± 0.000 0.914 ± 0.001 0.831 ± 0.000 0.519 ± 0.003 0.763 ± 0.023
MOOC 0.709 ± 0.001 0.697 ± 0.001 0.827 ± 0.013 0.563 ± 0.002 0.697 ± 0.001 0.949 ± 0.002 0.791 ± 0.048 0.616 ± 0.000 0.749 ± 0.046 0.805 ± 0.024 0.744 ± 0.006 0.881 ± 0.033
Reddit 0.994 ± 0.008 0.893 ± 0.049 0.955 ± 0.000 0.741 ± 0.067 0.893 ± 0.049 0.985 ± 0.000 0.949 ± 0.004 0.949 ± 0.004 0.995 ± 0.002 0.979 ± 0.002 0.964 ± 0.000 0.974 ± 0.000
SocialEvo 0.952 ± 0.001 0.786 ± 0.000 0.918 ± 0.005 0.499 ± 0.001 0.786 ± 0.000 0.916 ± 0.000 0.895 ± 0.030 0.858 ± 0.001 0.879 ± 0.032 – 0.684 ± 0.003 0.926 ± 0.009
Taobao 0.276 ± 0.001 0.270 ± 0.002 0.699 ± 0.000 0.280 ± 0.002 0.270 ± 0.002 0.757 ± 0.003 0.699 ± 0.002 0.521 ± 0.000 0.999 ± 0.000 0.862 ± 0.003 0.527 ± 0.024 0.757 ± 0.003
UCI 0.933 ± 0.001 0.921 ± 0.001 0.426 ± 0.040 0.803 ± 0.004 0.921 ± 0.001 0.918 ± 0.003 0.714 ± 0.011 0.830 ± 0.000 0.975 ± 0.016 0.970 ± 0.004 0.684 ± 0.008 0.802 ± 0.027
UNTrade 0.631 ± 0.002 0.552 ± 0.001 0.631 ± 0.014 0.488 ± 0.003 0.552 ± 0.001 0.741 ± 0.001 0.665 ± 0.011 0.584 ± 0.002 0.581 ± 0.096 – 0.596 ± 0.037 0.596 ± 0.017
UNVote 0.546 ± 0.000 0.517 ± 0.000 0.502 ± 0.020 0.389 ± 0.000 0.517 ± 0.000 0.593 ± 0.001 0.521 ± 0.008 0.489 ± 0.001 0.779 ± 0.019 0.588 ± 0.000 0.479 ± 0.003 0.589 ± 0.011
USLegis 0.621 ± 0.005 0.641 ± 0.002 0.567 ± 0.010 0.443 ± 0.004 0.641 ± 0.002 0.967 ± 0.003 0.580 ± 0.021 0.540 ± 0.004 0.531 ± 0.100 0.968 ± 0.002 0.560 ± 0.009 0.641 ± 0.002
Wikipedia 0.957 ± 0.001 0.910 ± 0.001 0.882 ± 0.003 0.466 ± 0.002 0.910 ± 0.001 0.989 ± 0.000 0.908 ± 0.004 0.906 ± 0.000 0.996 ± 0.002 0.988 ± 0.000 0.918 ± 0.002 0.970 ± 0.001

Transductive

CanParl 0.731 ± 0.000 0.722 ± 0.001 0.723 ± 0.000 0.717 ± 0.003 0.722 ± 0.001 0.720 ± 0.091 0.794 ± 0.006 0.723 ± 0.001 0.692 ± 0.072 0.892 ± 0.017 0.708 ± 0.022 0.758 ± 0.069
CollegeMsg 0.951 ± 0.002 0.923 ± 0.001 0.870 ± 0.000 0.875 ± 0.001 0.923 ± 0.001 0.916 ± 0.004 0.573 ± 0.069 0.870 ± 0.000 0.906 ± 0.012 0.970 ± 0.000 0.808 ± 0.003 0.923 ± 0.001
Contact 0.982 ± 0.000 0.878 ± 0.000 0.976 ± 0.000 0.794 ± 0.000 0.878 ± 0.000 0.969 ± 0.003 0.928 ± 0.021 0.938 ± 0.007 0.946 ± 0.021 0.984 ± 0.000 0.558 ± 0.009 0.977 ± 0.003
Enron 0.929 ± 0.001 0.818 ± 0.002 0.904 ± 0.001 0.690 ± 0.003 0.818 ± 0.002 0.916 ± 0.003 0.799 ± 0.036 0.829 ± 0.015 0.921 ± 0.003 0.896 ± 0.005 0.616 ± 0.021 0.862 ± 0.017
Flights 0.965 ± 0.000 0.794 ± 0.000 0.922 ± 0.000 0.907 ± 0.000 0.794 ± 0.000 0.986 ± 0.000 0.898 ± 0.006 0.945 ± 0.007 0.975 ± 0.006 0.930 ± 0.000 0.902 ± 0.003 0.979 ± 0.003
LastFM 0.899 ± 0.000 0.620 ± 0.001 0.895 ± 0.000 0.615 ± 0.000 0.620 ± 0.001 0.875 ± 0.001 0.679 ± 0.055 0.677 ± 0.059 0.854 ± 0.003 0.839 ± 0.000 0.509 ± 0.007 0.774 ± 0.026
MOOC 0.768 ± 0.001 0.741 ± 0.001 0.728 ± 0.001 0.674 ± 0.001 0.741 ± 0.001 0.946 ± 0.001 0.824 ± 0.032 0.790 ± 0.021 0.757 ± 0.031 0.807 ± 0.019 0.739 ± 0.006 0.900 ± 0.021
Reddit 0.976 ± 0.000 0.881 ± 0.000 0.958 ± 0.000 0.898 ± 0.001 0.881 ± 0.000 0.989 ± 0.000 0.980 ± 0.000 0.976 ± 0.001 0.985 ± 0.002 0.984 ± 0.002 0.981 ± 0.000 0.987 ± 0.000
SocialEvo 0.957 ± 0.000 0.783 ± 0.001 0.957 ± 0.000 0.724 ± 0.001 0.783 ± 0.001 0.952 ± 0.000 0.902 ± 0.003 0.867 ± 0.023 0.920 ± 0.006 – 0.785 ± 0.005 0.934 ± 0.000
Taobao 0.744 ± 0.004 0.617 ± 0.008 0.664 ± 0.000 0.752 ± 0.006 0.617 ± 0.008 0.771 ± 0.003 0.841 ± 0.001 0.840 ± 0.001 0.894 ± 0.002 0.876 ± 0.001 0.540 ± 0.009 0.865 ± 0.001
UCI 0.954 ± 0.001 0.926 ± 0.001 0.875 ± 0.000 0.877 ± 0.003 0.926 ± 0.001 0.919 ± 0.002 0.509 ± 0.065 0.879 ± 0.002 0.908 ± 0.012 0.967 ± 0.003 0.800 ± 0.005 0.888 ± 0.016
UNTrade 0.73 ± 0.001 0.554 ± 0.001 0.694 ± 0.001 0.720 ± 0.001 0.554 ± 0.001 0.751 ± 0.001 0.638 ± 0.003 0.679 ± 0.010 0.783 ± 0.047 – 0.592 ± 0.037 0.654 ± 0.010
UNVote 0.643 ± 0.001 0.519 ± 0.000 0.647 ± 0.001 0.643 ± 0.001 0.519 ± 0.000 0.604 ± 0.002 0.624 ± 0.031 0.652 ± 0.008 0.678 ± 0.041 0.587 ± 0.000 0.513 ± 0.003 0.718 ± 0.011
USLegis 0.816 ± 0.004 0.775 ± 0.004 0.771 ± 0.007 0.695 ± 0.009 0.775 ± 0.004 0.964 ± 0.004 0.743 ± 0.037 0.828 ± 0.002 0.782 ± 0.026 0.972 ± 0.001 0.774 ± 0.006 0.828 ± 0.002
Wikipedia 0.983 ± 0.000 0.906 ± 0.000 0.963 ± 0.000 0.672 ± 0.002 0.906 ± 0.000 0.989 ± 0.000 0.943 ± 0.001 0.951 ± 0.003 0.979 ± 0.003 0.991 ± 0.000 0.951 ± 0.002 0.985 ± 0.000

Table 3: Comparison of the BenchTemp (Huang et al., 2024a) leaderboard and the proposed heuristics,
with the best, second-best, and third-best results highlighted in bold and color-coded. We observe
that, in some cases, the metric becomes fully saturated, likely due to shortcomings in the sampled
evaluation scenario, which tends to overestimate performance by including excessively easy negative
examples.

C COMPLEMENTARY NORMALIZED RANKING PLOTS

Figure 2 presents CNR plots for multiple datasets, illustrating how predicted ranks are distributed
across different heuristics and highlighting key patterns in how recency and popularity influence
ranking performance.

For instance, Figure 2a reveals the exceptionally poor performance of LR, largely due to approximately
98% of new edges connecting to previously unseen destination nodes. This aligns with the dataset’s
nature, where users typically review a product only once, making historical edges unreliable predictors
of new interactions. As a result, LR struggles, as it prioritizes recently seen destinations that rarely
reappear. To address this, we apply an inverse LR heuristic, which penalizes previously seen
destinations and prioritizes unseen nodes. This adjustment better reflects the dataset’s dynamics,
where new interactions are more likely to involve unreviewed products. We further refine this
approach by combining inverse LR with GR, significantly improving the resulting performance.

Similarly, Figure 2k shows minimal recency and popularity effects in the TaoBao dataset, a user-item
bipartite network with a low average degree of 0.94, consistent with its structural characteristics.

Displaying both pessimistic (R−) and optimistic (R+) ranks is crucial for evaluating heuristics like
Local Recency, which often produce ties. For example, the USLegis dataset (Figure 2o) exhibits a
significant gap between R+ and R−, reflecting frequent ties. Identifying such discrepancies helps
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reduce uncertainty and informs whether a single heuristic suffices or if multiple ranking strategies are
needed.
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(a) tgbl-review dataset.

0.0 0.2 0.4 0.6 0.8 1.0
Percentile

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

tgbl-wiki

R + , Global Popularity 
R , Global Popularity 
R + , Local Recency
R , Local Recency
R + , Local+Global Recency 
R , Local+Global Recency 

(b) tgbl-wiki dataset.
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(c) tgbl-comment dataset.
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(d) tgbl-flight dataset.
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(e) tgbl-lastfm dataset.
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(f) tgbl-subreddit dataset.
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(g) CollegeMsg dataset.

0.0 0.2 0.4 0.6 0.8 1.0
Percentile

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

lastfm

R + , Global Popularity 
R , Global Popularity 
R + , Local Recency
R , Local Recency
R + , Local+Global Recency 
R , Local+Global Recency 

(h) LastFM dataset.
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(i) MOOC dataset.
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(j) SocialEvo dataset.
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(k) TaoBao dataset
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(l) UCI dataset.
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(m) UNtrade dataset.
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(n) UNVote dataset
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(o) USLegis dataset.

Figure 2: Complementary Normalized Ranking Plots showing optimistic (R+) and pessimistic (R−)
ranks for different heuristics and their combinations, for TGB (panels a-f) and BenchTemp (panels
g-o) datasets. Each curve represents a method’s performance across different percentiles of all edges
in the dataset, illustrating how well it ranks them overall.
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GPU CPU

Dataset CAWN DyRep JODIE NAT NeurTW TGAT TGN LR GR LP GP Combined

CanParl 234.65 2.44 1.96 3.79 4566.24 46.28 3.03 0.3 0.19 0.77 1.64 3.31
CollegeMsg 111.96 2.42 1.87 2.83 2097.39 45.8 2.85 0.82 0.93 0.95 1.03 3.65

Contact 12100.94 58.20 41.99 96.35 114274.38 1645.1 69.60 — — — — —
Enron 398.38 3.45 2.41 5.70 10896.81 92.24 4.13 0.8 0.94 2.84 3.15 7.45
Flights 12105.70 197.61 180.80 76.91 143731.99 1195.3 262.51 17.01 11.42 39.24 49.13 1304.46

LastFM 5527.12 39.61 29.42 51.95 51007.3 882.36 45.98 27.42 24.25 25.86 30.64 104.88
MOOC 1913.38 33.54 30.19 16.48 13497.27 256.26 41.48 6.16 6.6 6.66 11.21 29.8
Reddit 10896.80 4.10 3.40 38.60 5.7 398.3 92.20 14.39 12.24 18.21 18.91 61.76

SocialEvo 12292.31 42.57 27.77 84.72 — 1544.52 51.35 31.27 27.54 60.78 61.99 176.47
Taobao 135.04 38.03 32.17 4.12 1156.96 29.15 34.51 0.73 0.43 1.3 0.68 10.05

UCI 121.41 2.49 1.89 2.90 3801.79 57.49 2.72 0.82 0.93 0.95 1.04 3.67
UNTrade 1860.84 11.75 7.89 21.57 39402.43 — 14.17 8.25 5.24 15.22 21.16 34.92

UNVote 6414.90 25.53 22.31 40.51 88939.57 686.15 28.97 17.57 11.13 32.76 45.64 67.11
USLegis 220.41 2.73 2.15 3.16 3208.23 36.69 2.93 0.33 0.27 0.73 1.35 3.21

Wikipedia 270.83 10.02 9.37 6.15 4388.59 109.24 12.17 2.48 2.42 3.63 2.63 10.57

Table 4: Epoch runtimes for various models, measured in seconds.
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