
Under review as a conference paper at ICLR 2023

A SUBSPACE CORRECTION METHOD FOR
RELU NEURAL NETWORKS FOR SOLVING PDES

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose a novel algorithm called Neuron-wise Parallel Subspace
Correction Method (NPSC) for training ReLU neural networks for numerical so-
lution of partial differential equations (PDEs). Despite of extremely extensive
research activities in applying neural networks for numerical PDEs, there is still a
serious lack of training algorithms that can be used to obtain approximation with
adequate accuracy. Based on recent results on the spectral properties of linear
layers and landscape analysis for single neuron problems, we develop a special
type of subspace correction method that deals with the linear layer and each neu-
ron in the nonlinear layer separately. An optimal preconditioner that resolves the
ill-conditioning of the linear layer is presented, so that the linear layer is trained
in a uniform number of iterations with respect to the number of neurons. In each
single neuron problem, a good local minimum is found by a superlinearly conver-
gent algorithm, avoiding regions where the loss function is flat. Performance of
the proposed method is demonstrated through numerical experiments for function
approximation problems and PDEs.

1 INTRODUCTION

Neural networks, thanks to the universal approximation property (Cybenko, 1989; Pinkus, 1999), are
promising tools for numerical solutions of partial differential equations (PDEs). Moreover, it was
shown in Siegel & Xu (2022b) that the approximation properties of neural networks have higher
asymptotic approximation rates than that of traditional numerical algorithms such as finite element
methods. Such powerful approximation properties, however, can hardly be observed in numerical
experiments even in simple tasks of function approximation. It was shown in Hong et al. (2022)
that conventional training algorithms such as gradient descent converge too slowly to an accurate
solution even for a very simple function. Therefore, applying neural networks to solutions of PDEs
must require novel training algorithms, different from the conventional ones for regression, image
classification, and pattern recognition tasks. In this viewpoint, there are many works on designing
and analyzing training algorithms for neural networks to try to narrow the gap between the theo-
retical optimum and training results. A hybrid least squares/gradient descent method was proposed
in Cyr et al. (2020). Plateau phenomena (Park et al., 2000) occurring in the gradient dynamics of
ReLU shallow neural networks were analyzed in a rigorous manner in Ainsworth & Shin (2021),
and a training algorithm called active neuron least squares was designed to avoid plateau phenomena
in Ainsworth & Shin (2022). As a completely different approach, the orthogonal greedy algorithm
was shown to achieve an optimal convergence rate (Siegel & Xu, 2022c) with respect to the number
of neurons when it is applied to certain shallow neural networks in Siegel & Xu (2022a).

A surprising recent result on training of neural networks is that optimizing the linear layer parame-
ters in a neural network is one bottleneck that leads to a large number of iterations of a gradient-based
method. More precisely, it was proven in Hong et al. (2022) that optimizing the linear layer param-
eters in a ReLU shallow neural network requires solving a very ill-conditioned linear problem in
general. This work motivates us to separately design efficient solvers for the outer linear layer and
the inner nonlinear layer, respectively, and train them alternately.

Meanwhile, there have been some encouraging works on learning a single neuron, a more simplified
model than a nonlinear layer. Convergence analyses of gradient methods for the single neuron prob-
lem with ReLU activation were presented in Soltanolkotabi (2017); Tian (2017); Yehudai & Ohad

1

Under review as a conference paper at ICLR 2023

(2020) under various assumptions on input distributions. The case of a single ReLU neuron with
bias was analyzed in Vardi et al. (2021). All of these results show that the global convergence of gra-
dient methods for the single ReLU neuron problem can be attained under certain conditions. Hence,
learning a single neuron can be regarded as a much more hopeful task than learning a nonlinear layer
with multiple neurons.

In this paper, we use the idea of subspace correction (Xu, 1992), which is well-known in the fields of
numerical analysis and scientific computing. Subspace correction methods provide a unified frame-
work to design and analyze many modern iterative numerical methods such as block coordinate
descent, multigrid, and domain decomposition methods. In subspace correction methods, the solu-
tion space of a target problem is decomposed into a sum of subspaces, and local problems defined on
subspaces are solved separately in either sequential or parallel manner. Then a solution of the whole
problem is constructed by assembling the solutions of the local problems appropriately. Mathemat-
ical theory of subspace correction methods for convex optimization problems can be found in Park
(2020); Tai & Xu (2002). Subspace correction methods have been successfully applied to various
nonlinear optimization problems appearing in engineering fields (see, e.g., Badea & Krause (2012);
Lee & Park (2019)). In particular, there have been successful applications of block coordinate de-
scent methods (Wright, 2015) for training of neural networks (Zeng et al., 2019; Zhang & Brand,
2017). Therefore, we expect that the idea of the subspace correction method is also suitable for
training of ReLU shallow neural networks.

Inspired by the above works, we propose a new training algorithm called Neuron-wise Parallel
Subspace Correction Method (NPSC), which is a special type of subspace correction method for a
ReLU shallow neural network. The proposed method utilizes a space decomposition for the linear
layer and each individual neuron. In the first step of each epoch of the NPSC, the linear layer is
fully trained by solving a relevant linear system. This resolves ill-conditioning of the linear layer.
We design an optimal preconditioner for the linear layer problem in one-dimension, based on the
relation between ReLU neural networks and linear finite elements investigated in He et al. (2020);
Hong et al. (2022). In the second step, we train each single neuron in parallel, taking advantages of
better convergence properties of learning a single neuron explained above. Each neuron is trained
by a superlinearly convergent algorithm (Marquardt, 1963). Finally, an update for the parameters
in the nonlinear layer is computed by assembling the corrections obtained in the local problems for
each neuron. Due to the intrinsic parallel structure, NPSC is suitable for parallel computation on
distributed memory computers. We present applications of NPSC to various function approximation
problem and PDEs, and numerically verify that it outperforms conventional training algorithms.

The rest of this paper is organized as follows. In Section 2, we summarize key features of ReLU
shallow networks and describe our model problem. The proposed NPSC is presented in Section 3.
Applications of NPSC to various function approximation problems and PDEs are presented in Sec-
tion 4 to demonstrate the effectiveness of NPSC. We conclude the paper with remarks in Section 5.

2 MODEL PROBLEM

We consider a shallow neural network with n neurons and d-dimensional inputs x ∈ Rd given by

u(x; θ) =

n∑
i=1

aiσ(ωi · x+ bi), θ = {a, ω, b} = {(ai)ni=1, (ωi)
n
i=1, (bi)

n
i=1} , (1)

where θ is the collection of parameters consisting of ai ∈ R, ωi ∈ Rd, and bi ∈ R for 1 ≤ i ≤ n,
and σ : R→ R is a ReLU activation function defined by σ(x) = max{0, x}. The neural network (1)
possesses total (d+ 2)n parameters.

Let Ω ⊂ Rd be a bounded domain and let f ∈ L2(Ω). As a model problem, we consider the
following minimization problem:

min
θ

{
E(θ) :=

1

2
a (u(x; θ), u(x; θ))−

∫
Ω

f(x)u(x; θ) dx

}
, (2)

where a(·, ·) is a continuous, coercive, and symmetric bilinear form defined on a Hilbert space
V ⊂ L2(Ω). The problem (2) can be seen as the Galerkin approximation of the problem

min
u∈V

{
1

2
a(u, u)−

∫
Ω

fu dx

}
,

2

Under review as a conference paper at ICLR 2023

Figure 1: (a) Space decomposition of the solution space Θ of (2) into subspaces A and {Wi}ni=1.
(b) Subspace correction procedure of NPSC.

which can represent various elliptic PDEs (E & Yu, 2018; Xu, 2020), on the space

Σ1
n =

{
v(x) =

n∑
i=1

aiσ(ωi · x+ bi) : ai ∈ R, ωi ∈ Rd, bi ∈ R

}
.

The space Σ1
n enjoys the universal approximation property (Cybenko, 1989; Pinkus, 1999), namely,

any function with sufficient regularity can be uniformly approximated by functions in Σ1
n. Recent

results on the approximation property of Σ1
n can be found in Siegel & Xu (2022c).

3 NEURON-WISE PARALLEL SUBSPACE CORRECTION METHOD (NPSC)

In this section, we introduce NPSC, a subspace correction method (Xu, 1992) that deals with each
neuron in parallel for the problem (2). We first present a space decomposition for NPSC.

Let Θ = R(d+2)n denote the solution space of (2), i.e., the space for the parameter θ. It admits a
natural decomposition Θ = A ⊕W , where A = Rn and W = R(d+1)n are the spaces for a and
{ω, b}, respectively, and ⊕ denotes direct sum. Since any {ω, b} ∈ W consists of the parameters
({ωi, bi})ni=1 from n neurons, W can be further decomposed asW =

⊕n
i=1Wi, where Wi = Rd+1

is the space for {ωi, bi}. Finally, we have the following space decomposition of Θ:

Θ = A⊕
n⊕

i=1

Wi. (3)

A graphical description for the space decomposition (3) is presented in Figure 1(a).

NPSC, our proposed method, is presented in Algorithm 1. It is a subspace correction method (Xu,
1992) for (2) based on the space decomposition (3). At the kth epoch, NPSC updates the parameter
a first by minimizing the loss function with respect to a, then it updates the parameters in each
neuron by minimizing E with respect to {ωi, bi} in parallel. The update of {ωi, bi} is relaxed by
an appropriate learning rate τk > 0 as in the existing parallel subspace correction methods for
optimization problems (Lee & Park, 2019; Tai & Xu, 2002). The overall structure of NPSC is
depicted in Figure 1(b). In the remainder of this section, we discuss parts of Algorithm 1 in detail.

3.1 ADJUSTMENT OF PARAMETERS

We call that a neuron with parameter {ωi, bi} is dead if σ(ωi · x + bi) vanishes almost every-
where (a.e.) on the domain Ω. In Vardi et al. (2021, Theorem 3.1), it was shown that a neuron is
initialized as dead with probability close to half if we employ a usual random initialization scheme.
A similar observation was made in Lu et al. (2020). Such a dead neuron makes the functions
{σ(ωi · x + bi)}ni=1 linearly dependent, i.e., there exist ai ∈ R, 1 ≤ i ≤ n, not all zero, such
that

∑n
i=1 aiσ(ωi · x + bi) = 0. Meanwhile, the linear dependence may occur by a combination

of several non-dead neurons. Theorem 1 characterizes some situations when {σ(ωi · x + bi)}ni=1
becomes linearly dependent; see Appendix A for a proof.
Theorem 1. Consider the shallow neural network (1). The followings hold.

3

Under review as a conference paper at ICLR 2023

Algorithm 1 Neuron-wise Parallel Subspace Correction Method (NPSC) for (2)

Choose an initial guess θ(0) = {a(0), ω(0), b(0)} and an initial learning rate τ0 = 1.
for k = 1, . . . , T do

Adjust {ω(k−1), b(k−1)} to avoid linear dependence of the neurons (see Algorithm 2).
a(k) ∈ argmin

a∈Rn

E({a, ω(k−1), b(k−1)}) (see (6))

for i = 1, . . . , n in parallel do

{ω(k− 1
2)

i , b
(k− 1

2)
i } ∈ argmin

{ωi,bi}∈Rd+1

E

a(k), ωi ⊕
n⊕

j=1,j ̸=i

ω
(k−1)
j , bi ⊕

n⊕
j=1,j ̸=i

b
(k−1)
j

(4)
end for
Determine the learning rate τk by backtracking (see Algorithm 3).
for i = 1, . . . , n in parallel do
ω
(k)
i = (1− τk)ω(k−1)

i + τkω
(k− 1

2)
i

b
(k)
i = (1− τk)b(k−1)

i + τkb
(k− 1

2)
i

end for
end for

1. If a neuron satisfies bi ≤ − ess supx∈Ω ωi · x, then it is dead.

2. If there are more than d+ 1 neurons such that bi ≥ − ess infx∈Ω ωi · x, then the functions
σ(ωi · x+ bi) corresponding to these neurons are linearly dependent in Ω.

Linear dependence of the functions {σ(ωi · x+ bi)}ni=1 in the neural network (1) should be avoided
because it means that several neurons are redundant and they are not utilized to improve the approx-
imability of (1). Theorem 1 motivates us to consider an adjustment procedure for {ω(k−1), b(k−1)}
when we enter the kth iteration of NPSC so that linear dependence does not occur. Algorithm 2
summarizes the adjustment procedure for a given {ω, b} ∈W .

Algorithm 2 Adjustment for {ω, b} in Algorithm 1
for i = 1, . . . , n in parallel do

Set ωi ←
ωi

|ωi|
and bi ←

bi
|ωi|

.

if bi ̸∈
(
−max

x∈Ω
ωi · x,−min

x∈Ω
ωi · x

)
then

Reset bi ∈ R such that bi ∼ Uniform

(
−max

x∈Ω
ωi · x,−min

x∈Ω
ωi · x

)
.

end if
end for

Since ωi determines the direction of a function σ(ωi · x + bi), we may normalize {ωi, bi} so that
|ωi| = 1 in Algorithm 2. Then, for each bi that is not on the interval between the minimum and
maximum of ωi · x, we relocate it on the interval. Since the extrema in Ω agree with the essential
extrema under mild conditions on Ω, this relocation step lets the neurons avoid the scenario of linear
dependence described in Theorem 1.

In Algorithm 2, evaluations of the extrema of ωi · x are simple linear programs, so that they can
be done efficiently by conventional algorithms for linear programming (Nocedal & Wright, 2006).
In particular, if Ω is a polyhedral domain, then we can evaluate the extrema of ωi · x by hands; we
simply compute ωi · x at all the vertices of Ω and take the extrema among them.

4

Under review as a conference paper at ICLR 2023

3.2 a-MINIMIZATION PROBLEMS

In Algorithm 1, a-minimization problems have the general form

min
a∈Rn

E({a, ω, b}), (5)

where {ω, b} ∈W . The first-order optimality condition for (5) reads as

Ka = β, (6)

where K ∈ Rn×n and β ∈ Rn are given by

Kij = a (σ(ωj · x+ bj), σ(ωi · x+ bi)) , βi =

∫
Ω

f(x)σ(ωi · x+ bi) dx, 1 ≤ i, j ≤ n. (7)

Assuming the basis functions {σ(ωi · x + bi)}ni=1 are linearly independent in Ω, the matrix K is
symmetric and positive definite. Hence, the system (6) can be solved efficiently by the conjugate
gradient method, and the efficiency can be improved with an appropriate preconditioner.

Theorem 2 presents an optimal preconditioner in one-dimension. While it was proven in Hong et al.
(2022) that the matrix K is usually ill-conditioned, the preconditioner in Theorem 2 can resolve
this issue. We refer readers to Appendix A for a proof of Theorem 2. Computational aspects and
numerical results regarding the preconditioner are presented in Appendix B.
Theorem 2. Let Ω = [0, 1] ⊂ R. Assume that 0 ≤ x1 < x2 < · · · < xn ≤ 1 under an appropriate
reordering, where xi = −bi/ωi for 1 ≤ i ≤ n. Then we can find a matrix P ∈ Rn×n explicitly
such that the condition number κ(PK) of a preconditioned operator PK has an upper bound
independent of n, ω, and b, i.e., κ(PK) = O(1).

3.3 {ωi, bi}-MINIMIZATION PROBLEMS

Training the nonlinear layer is challenging because of its nonconvexity. Moreover, it was shown
in Lu et al. (2020) that training of ReLU networks usually suffers from dead neurons. In the follow-
ing, we claim that training each neuron in the nonlinear layer separately has an advantage that some
“good” local minima that avoid dead neurons can be found (cf. Vardi et al. (2021)).

We consider the {ωi, bi}-minimization problem (4) in Algorithm 1 for a fixed i. We may assume
that ai ̸= 0; otherwise, the minimization problem becomes trivial. Under some elementary manipu-
lations, (4) is rewritten as

min
{ωi,bi}∈Rd+1

{
Ei(ωi, bi) :=

1

2
a (σ(ωi · x+ bi), σ(ωi · x+ bi))−

∫
Ω

F (x)σ(ωi · x+ bi) dx

}
,

(8)
where F ∈ L2(Ω) is a function determined in terms of f , a(k), ω(k−1)

j , and b(k−1)
j for j ̸= i.

A notable advantage of single neuron training (8) is that we can easily avoid regions where the loss
function is flat. The following theorem says that all the critical points of (8) on the flat regions make
the neuron dead, and that all the critical points outside the flat regions have less loss values than
those on the flat regions. A proof of Theorem 3 can be found in Appendix A.
Theorem 3. Consider the single neuron problem (8). The followings hold:

1. If {ω∗
i , b

∗
i } ∈ Rd+1 is a critical point of (8) such that σ(ω∗

i · x + b∗i) vanishes on Ω, then
we have Ei(ω

∗
i , b

∗
i) = Ei(0).

2. If {ω∗
i , b

∗
i } ∈ Rd+1 is a critical point of (8) such that σ(ω∗

i · x+ b∗i) does not vanish on a
subset of Ω with nonzero measure, then we have Ei(ω

∗
i , b

∗
i) < Ei(0).

Theorem 3 implies that, if we choose an initial guess {ω(0)
i , b

(0)
i } such that Ei(ω

(0)
i , b

(0)
i) < Ei(0)

for a monotone training algorithm, then the algorithm converges to a good local minimum that
prevents the neuron to be dead. That is, each {ωi, bi}-minimization problem of NPSC finds a good
local solution. Note that the condition Ei(ω

(0)
i , b

(0)
i) < Ei(0) is satisfied by a random initialization

of {ω(0)
i , b

(0)
i } around 0 under some mild conditions; see Vardi et al. (2021, Theorem 5.4).

5

Under review as a conference paper at ICLR 2023

Various optimization algorithms including first- and second-order methods can be used to solve (8).
Among them, a good option is the Levenberg–Marquardt algorithm (Marquardt, 1963); PDEs usu-
ally arise from physics, so that the dimension d+1 of {ωi, bi} is not very big in general. The major
computational cost of each iteration of the Levenberg–Marquardt algorithm is to solve a linear sys-
tem with d+1 unknowns; it is not time-consuming when d+1 is small. The Levenberg–Marquardt
algorithm does not require explicit assembly of the Hessian, and it converges to a local minimum
with the superlinear convergence rate (Yamashita & Fukushima, 2001), which is much faster than
that of the first-order methods.

3.4 BACKTRACKING FOR LEARNING RATES

Recently, it was shown in Park (2022) that parallel subspace correction methods for convex opti-
mization problems can be accelerated by adopting a backtracking scheme. Hence, it is natural to
utilize a backtracking scheme to find a suitable value for the learning rate τk in Algorithm 1. Due
to the nonconvexity of the loss function E of (2), we are not able to adopt the backtracking scheme
proposed in Park (2022) directly to Algorithm 1. Moreover, since ReLU activation in (2) makes
E nonsmooth, conventional backtracking schemes such as Calatroni & Chambolle (2019); Schein-
berg et al. (2014) are not applicable. A simple but effective backtracking scheme for finding τk is
presented in Algorithm 3. By allowing adaptive increase and decrease of τk along the epochs, the
convergence rate of NPSC is improved.

Algorithm 3 Backtracking scheme to find τk in Algorithm 1
Choose a minimum learning rate τmin = 10−12.
τk ← 2τk−1

repeat
for i = 1, . . . , n in parallel do
ω̂i = (1− τk)ω(k−1)

i + τkω
(k− 1

2)
i

b̂i = (1− τk)b(k−1)
i + τkb

(k− 1
2)

i
end for
if E({a(k), ω̂, b̂}) > E({a(k), ω(k−1), b(k−1)}) then
τk ← τk/2

end if
until E({a(k), ω̂, b̂}) ≤ E({a(k), ω(k−1), b(k−1)}) or τk < τmin

4 NUMERICAL RESULTS

In this section, we present numerical results of NPSC applied to various function approxima-
tion problems and PDEs of the form (2). The following algorithms are compared with NPSC in
our numerical experiments: gradient descent (GD), Adam (Kingma & Ba, 2015), hybrid least-
squares/gradient descent (LSGD) (Cyr et al., 2020), and the proposed NPSC. All the algorithms
were implemented in ANSI C with OpenMPI compiled by Intel C++ Compiler. They were executed
on a computer cluster equipped with multiple Intel Xeon SP-6148 CPUs (2.4GHz, 20C) and the
operating system CentOS 7.4 64bit.

In all experiments, we use the He initialization (He et al., 2015) to initialize the parameters of (2).
That is, we set ai ∼ N(0, 2/n), ωi ∼ (N(0, 2/d))d, and bi ∼ (N(0, 2/d)) in (2). All the nu-
merical results presented in this section are averaged over 10 random initializations. As shown in
Appendix C, the performances of conventional training algorithms can be improved by utilizing the
backtracking scheme presented in Algorithm 3. Hence, for GD, Adam, and LSGD, we employ Al-
gorithm 3 to find learning rates. In LSGD and NPSC, a-minimization problems (6) are solved by
the preconditioned conjugate gradient method with the preconditioner P in Theorem 2 and the stop
criterion

∥Ka(k) − β∥ℓ2
∥Ka(0) − β∥ℓ2

< 10−10. (9)

6

Under review as a conference paper at ICLR 2023

Figure 2: Numerical results for the function approximation problems (a–c) (11) and (d–f) (12). (a,
d) Decay of the relative energy error E(θ(k))−E∗

|E∗| in various training algorithms (n = 25). (b, e)
Exact solution and its approximations (n = 25, 103 epochs). (c, f) L2-errors with respect to the
number of neurons (103 epochs). The dotted line represents the theoretical optimal approximation
rate.

Finally, {ωi, bi}-minimization problems (8) in NPSC are solved by the Levenberg–Marquardt algo-
rithm (Marquardt, 1963) with the stop criterion

|E(n−1)
i − E(n)

i |
|E(n)

i |
< 10−10.

MPI parallelization is applied to NPSC in a way that each {ωi, bi}-minimization problem is assigned
to a single processor and solved in parallel.

4.1 L2-FUNCTION APPROXIMATION PROBLEMS

If we set
V = L2(Ω), a(u, v) =

∫
Ω

uv dx, u, v ∈ V (10)

in (2), then we obtain theL2-function approximation problem, which is the most elementary instance
of (2). That is, the solution of (2) in this case is the best L2-approximation of f found in Σ1

n. As our
first example, we consider L2-approximation (10) for a sine function; we set

Ω = [0, 1] ⊂ R, u(x) = sin 2πx (11)

in (2). For numerical integration, we use the trapezoidal rule on 10,000 uniformly sampled points;
see Appendix D. Figure 2(a) plots the relative energy errors E(θ(k))−E∗

|E∗| obtained by NPSC, GD,
Adam, and LSGD per epoch, where E∗ is the loss corresponding to the exact solution. It is clear
from the loss decay that NPSC outperforms all the other methods. The exact solution of (11) and
its approximations obtained by 103 epochs of the training algorithms with 25 neurons are depicted
in Figure 2(b). One can readily observe that the NPSC result is most accurate among the approx-
imations. The L2-errors between the exact solution and its approximations for various numbers of
neurons are presented in Figure 2(c). Only the NPSC result seems to be comparable to O(n−2), the
theoretical optimal rate derived in Siegel & Xu (2022c).

The second example is the following highly oscillatory instance of (10):

Ω = [0, 1] ⊂ R, u(x) =

{
10 (sin 2πx+ sin 6πx) , if 0 ≤ x < 1

2 ,

10 (sin 8πx+ sin 18πx+ sin 26πx) , if 1
2 ≤ x ≤ 1,

(12)

7

Under review as a conference paper at ICLR 2023

Figure 3: Numerical results for the elliptic PDEs (a, b) (14) and (c, d) (15). (a, c) Decay of the
relative energy error E(θ(k))−E∗

|E∗| in various training algorithms (n = 25). (b, d) L2-errors with
respect to the number of neurons (103 epochs). The dotted line represents the theoretical optimal
approximation rate.

in which a similar problem appeared in Cai et al. (2020). We note that it was demonstrated in Kr-
ishnapriyan et al. (2021) that training for complex functions like (12) is a much harder task than
training for simple functions. Same as in (11), we use the trapezoidal rule on 10,000 uniformly sam-
pled points for numerical integration. Figures 2(d–f) present numerical results for the problem (12).
In Figure 2(d), NPSC shows stable decay of the loss while the losses of GD and Adam are stagnant
along the epochs and that of LSGD blows up at in the beginning epochs and varies very rapidly. In
Figure 2(e), one can observe that the NPSC result captures both low- and high-frequency parts of
the target function well, while the other ones captures the low-frequency part only (Xu et al., 2020).
Moreover, as shown in Figure 2(f), the L2-error of the NPSC decreases when the number of neurons
increases, while those of the other algorithms seem to stagnate. This highlights the robustness of
NPSC for complex problems.

4.2 ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Next, we consider the case

V = H1(Ω), a(u, v) =

∫
Ω

(∇u · ∇v + uv) dx, u, v ∈ V (13)

in the problem (2), where H1(Ω) is the usual Sobolev space consisting of L2(Ω)-functions with
square-integrable gradients. It is well-known that (2) becomes the Galerkin approximation of the
weak formulation of the following elliptic PDE on Σ1

n (Xu, 2020):

−∆u+ u = f in Ω,
∂u

∂n
= 0 on ∂Ω,

where ∂u/∂n denotes the normal derivative of u to ∂Ω. Hence, one can find a numerical approxi-
mation for the solution of the above PDE by solving (13). We set

Ω = [−1, 1] ⊂ R, f(x) = (1 + 9π2) cos 3πx+ (1 + 121π2) cos 11πx (14)
in (13); the exact solution is u(x) = cos 3πx + cos 11πx. We can observe in Figure 3(a) that
NPSC achieves a superior level of accuracy such that the other algorithms do not reach even with
a large number of epochs. As shown in Figures 3(b), L2–errors of the NPSC results decrease as
the number of neuron increases, and their decreasing rates are comparable to the theoretical optimal
rates in (Siegel & Xu, 2022c).

Finally, we consider the following two-dimensional example for (13):
Ω = [0, 1]2 ⊂ R2, f(x1, x2) = (1 + 2π2) cosπx1 cosπx2, (15)

whose exact solution is u(x1, x2) = cosπx cosπy. Since the preconditioner in Theorem 2 is appli-
cable for one-dimension only, in this example, a-minimization problems are solved by n iterations of
the unpreconditioned conjugate gradient method. We use the quasi-Monte Carlo method (Caflisch,
1998) with 10,000 sampling points for numerical integration; see Appendix D for details. It is ver-
ified by the numerical results for (15) presented in Figure 3(c, d) that NPSC outperforms the other
methods and provides reasonable L2-errors in high-dimensional problems as well.

8

Under review as a conference paper at ICLR 2023

Figure 4: Ablation studies for NPSC on the relative energy error E(θ(k))−E∗

|E∗| . “No adj.” and “No L–
M” denote NPSC without the adjustment step and the Levenberg–Marquardt algorithm, respectively.

Remark 1. When we train a neural network (1) for solving the PDE (13) with a gradient-based
method, we have to evaluate the second-order derivative of σ(x), which is the Dirac delta function.
In our experiments, we simply ignore Dirac delta terms in numerical integration. This motivates us
to consider high-order activation functions like ReLUk (Siegel & Xu, 2022b) as a future work.

4.3 ABLATION STUDIES

Key components of the proposed NPSC are the adjustment step for parameters (Algorithm 2), the
optimal preconditioner for a-minimization problems (Theorem 2), the Levenberg–Marquardt algo-
rithm for {ωi, bi}-minimization problems, and the backtracking scheme for learning rates (Algo-
rithm 3). In order to validate the effects of these components, we conduct ablation studies for the
adjustment step and the Levenberg–Marquardt algorithm; relevant results for the preconditioner and
the backtracking scheme can be found in Appendices B and C, respectively.

Figure 4 depicts numerical comparisons among three algorithms: NPSC, NPSC without Algo-
rithm 2, and NPSC without the Levenberg–Marquardt algorithm. In the last algorithm, each {ωi, bi}-
minimization problem is solved approximately by 20 iterations of GD. Since the variants of NPSC
achieve slower convergence rates than NPSC in all the examples, one can conclude that both Algo-
rithm 2 and the Levenberg–Marquardt algorithm contribute to the fast convergence of NPSC. We
also note that Algorithm 2 helps NPSC to avoid unstable convergence behaviors like Figure 4(c, d).

5 CONCLUSION

In this paper, we proposed NPSC for training ReLU neural networks for numerical solution of
PDEs. Separately designing efficient solvers for the linear layer and each neuron and training them
alternately, NPSC yields accurate results for function approximation problems and PDEs.

This paper leaves us several interesting and important topics for future research. Although NPSC
adopts the well-established framework of subspace correction methods, its rigorous convergence
analysis is still open due to the nonconvexity of the model. To solve high-order PDEs, we should
generalize NPSC so that it can be applied to different kind of activation functions. In addition, we
should consider optimal preconditioners for optimizing linear layer in high dimensions. Generaliza-
tion of NPSC to many layers is not clear yet, and we consider this topic as a future work.

Reducing the gap between the theoretical approximation properties and training results is a chal-
lenging issue even for simple neural networks. To the best of our knowledge, NPSC is the first
result that deals with the ill-conditioning of layers and successfully reduces the gap. We believe that
this paper can play a role of a good preliminary work for efficient and accurate training of general
network architectures.

REFERENCES

Mark Ainsworth and Yeonjong Shin. Plateau phenomenon in gradient descent training of ReLU net-
works: Explanation, quantification, and avoidance. SIAM J. Sci. Comput., 43(5):A3438–A3468,

9

Under review as a conference paper at ICLR 2023

2021.

Mark Ainsworth and Yeonjong Shin. Active Neuron Least Squares: A training method for multi-
variate rectified neural networks. SIAM J. Sci. Comput., 44(4):A2253–A2275, 2022.

Lori Badea and Rolf Krause. One-and two-level Schwarz methods for variational inequalities of the
second kind and their application to frictional contact. Numer. Math., 120(4):573–599, 2012.

Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer,
New York, 2011.

Richard L. Burden, J. Douglas Faires, and Annette M. Burden. Numerical Analysis. Cengage
Learning, Boston, MA, 2015.

Russel E. Caflisch. Monte Carlo and quasi-Monte Carlo methods. Acta Numer., 7:1–49, 1998.

Wei Cai, Xiaoguang Li, and Lizuo Liu. A phase shift deep neural network for high frequency
approximation and wave problems. SIAM J. Sci. Comput., 42(5):A3285–A3312, 2020.

Luca Calatroni and Antonin Chambolle. Backtracking strategies for accelerated descent methods
with smooth composite objectives. SIAM J. Optim., 29(3):1772–1798, 2019.

George Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signals
Syst., 2(4):303–314, 1989.

Eric C. Cyr, Mamikon A. Gulian, Ravi G. Patel, Mauro Perego, and Nathaniel A. Trask. Robust
training and initialization of deep neural networks: An adaptive basis viewpoint. In Proceedings of
The First Mathematical and Scientific Machine Learning Conference, volume 107 of Proceedings
of Machine Learning Research, pp. 512–536. PMLR, 2020.

Weinan E and Bing Yu. The deep Ritz method: a deep learning-based numerical algorithm for
solving variational problems. Commun. Math. Stat., 6(1):1–12, 2018.

Juncai He, Lin Li, Jinchao Xu, and Chunyue Zheng. ReLU deep neural networks and linear finite
elements. J. Comput. Math., 38(3):502–527, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 1026–1034, 2015.

Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA,
second edition, 2002.

Qingguo Hong, Qinyang Tan, Jonathan W. Siegel, and Jinchao Xu. On the activation function
dependence of the spectral bias of neural networks. arXiv preprint arXiv:2208.04924, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

Ladislav Kocis and William J. Whiten. Computational investigations of low-discrepancy sequences.
ACM Trans. Math. Software, 23(2):266–294, 1997.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W. Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. In Advances in Neural
Information Processing Systems, volume 34, pp. 26548–26560. Curran Associates, Inc., 2021.

Chang-Ock Lee and Jongho Park. Fast nonoverlapping block Jacobi method for the dual Rudin–
Osher–Fatemi model. SIAM J. Imaging Sci., 12(4):2009–2034, 2019.

Lu Lu, Yeonjong Shin, Yanhui Su, and George E. Karniadakis. Dying ReLU and initialization:
Theory and numerical examples. Commun. Comput. Phys., 28(5):1671–1706, 2020.

Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. J. Soc.
Ind. Appl. Math., 11(2):431–441, 1963.

10

Under review as a conference paper at ICLR 2023

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, second edition,
2006.

Hyeyoung Park, S.-I. Amari, and Kenji Fukumizu. Adaptive natural gradient learning algorithms
for various stochastic models. Neural Netw., 13(7):755–764, 2000.

Jongho Park. Additive Schwarz methods for convex optimization as gradient methods. SIAM J.
Numer. Anal., 58(3):1495–1530, 2020.

Jongho Park. Additive Schwarz methods for convex optimization with backtracking. Comput. Math.
Appl., 113:332–344, 2022.

Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta Numer., 8:143–
195, 1999.

Katya Scheinberg, Donald Goldfarb, and Xi Bai. Fast first-order methods for composite convex
optimization with backtracking. Found. Comput. Math., 14(3):389–417, 2014.

Jonathan W. Siegel and Jinchao Xu. Optimal convergence rates for the orthogonal greedy algorithm.
IEEE Trans. Inform. Theory, 68(5):3354–3361, 2022a.

Jonathan W. Siegel and Jinchao Xu. High-order approximation rates for shallow neural networks
with cosine and ReLUk activation functions. Appl. Comput. Harmon. Anal., 58:1–26, 2022b.

Jonathan W. Siegel and Jinchao Xu. Sharp bounds on the approximation rates, metric entropy,
and n-widths of shallow neural networks. Found. Comput. Math., 2022c. doi: 10.1007/
s10208-022-09595-3.

Mahdi Soltanolkotabi. Learning ReLUs via gradient descent. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Xue-Cheng Tai and Jinchao Xu. Global and uniform convergence of subspace correction methods
for some convex optimization problems. Math. Comp., 71(237):105–124, 2002.

Yuandong Tian. An analytical formula of population gradient for two-layered ReLU network and its
applications in convergence and critical point analysis. In Proceedings of the 34th International
Conference on Machine Learning, volume 70, pp. 3404–3413. PMLR, 2017.

Gal Vardi, Gilad Yehudai, and Ohad Shamir. Learning a single neuron with bias using gradient
descent. In Advances in Neural Information Processing Systems, volume 34, 2021.

Stephen J. Wright. Coordinate descent algorithms. Math. Program., 151(1):3–34, 2015.

Jinchao Xu. Iterative methods by space decomposition and subspace correction. SIAM Rev., 34(4):
581–613, 1992.

Jinchao Xu. Finite neuron method and convergence analysis. Commun. Comput. Phys., 28(5):
1707–1745, 2020.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. Commun. Comput. Phys., 28(5):1746–1767,
2020.

N. Yamashita and M. Fukushima. On the rate of convergence of the Levenberg-Marquardt method.
In Topics in Numerical Analysis, volume 15 of Comput. Suppl., pp. 239–249. Springer, Vienna,
2001.

Gilad Yehudai and Shamir Ohad. Learning a single neuron with gradient methods. In Proceedings
of Thirty Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning
Research, pp. 3756–3786. PMLR, 2020.

Jinshan Zeng, Tim T.-K. Lau, Shaobo Lin, and Yuan Yao. Global convergence of block coordi-
nate descent in deep learning. In Proceedings of the 36th International Conference on Machine
Learning, volume 97, pp. 7313–7323. PMLR, 2019.

Ziming Zhang and Matthew Brand. Convergent block coordinate descent for training tikhonov regu-
larized deep neural networks. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

11

Under review as a conference paper at ICLR 2023

A DEFERRED PROOFS

In this appendix, we provide proofs of Theorems 1–3. First, we provide the proof of Theorem 1.

Proof of Theorem 1. If bi ≤ − ess supx∈Ω ωi · x for some i, then we have
ωi · x+ bi ≤ ess sup

x∈Ω
ωi · x+ bi ≤ 0 a.e. in Ω.

Hence, σ(ωi · x+ bi) = 0 a.e. in Ω, which means that the corresponding neuron is dead.

Now, we suppose that bi ≥ − ess infx∈Ω ωi · x for 1 ≤ i ≤ d+ 2. Then we have
ωi · x+ bi ≥ ess inf

x∈Ω
ωi · x+ bi ≥ 0 a.e. in Ω.

This implies that σ(ωi · x+ bi) = ωi · x+ bi a.e. in Ω, i.e., each σ(ωi · x+ bi) is affine in Ω. Since
the dimension of the space of all affine functions in Ω is d + 1, {σ(ωi · x + bi)}d+2

i=1 are linearly
dependent in Ω.

Next, we introduce some preliminaries that will be used in the proof of Theorem 2. For brevity, we
only consider the case 0 < x1 < x2 < · · · < xn < 1; the cases x1 = 0 and xn = 1 can be proven
similarly. By the Lax–Milgram theorem (Brezis, 2011, Corollary 5.8), there exists a bijective linear
operator A : V → V such that

a(u, v) =

∫
Ω

(Au)v dx, u, v ∈ V. (16)

We denote
ψi(x) = σ(ωix+ bi), 1 ≤ i ≤ n,

and write them as a column vector Ψ(x) = [ψ1(x), . . . , ψn(x)]
T. Then it follows that

K =

∫
Ω

(AΨ(x))Ψ(x)T dx,

where K was defined in (7) and A is applied entrywise. In addition, we define
ψ0(x) = σ(ω0x+ b0) = σ(x), ψn+1(x) = σ(ωn+1x+ bn+1) = σ(−x+ 1),

and write Ψ(x) = [ψ0(x), ψ1(x), . . . , ψn+1(x)]
T. We readily have Ψ(x) = RΨ(x), where

R = [0, In,0] ∈ Rn×(n+2). (17)
In (17), 0 and In denote the zero column vector of length n and the Rn×n identity matrix, respec-
tively. If we write

K =

∫
Ω

(AΨ(x))Ψ(x)T dx, (18)

then we get M = RKRT. Invoking He et al. (2020, Theorem 2.1) implies that {ψi(x)}n+1
i=0 are

linearly independent, so that they form a basis for the space Vn of continuous and piecewise linear
functions on the grid 0 = x0 < x1 < · · · < xn+1 = 1, where xi = −bi/ωi.

Meanwhile, Vn admits another set of basis functions {ϕi(x)}n+1
i=0 , which is given by

ϕi(x) =

x− xi−1

xi − xi−1
, if x ∈ (xi−1, xi],

x− xi+1

xi − xi+1
, if x ∈ [xi, xi+1),

0, otherwise,

0 ≤ i ≤ n+ 1,

with conventions x−1 = 0 and xn+2 = 1. That is, {ϕi(x)}n+1
i=0 is the collection of the

standard hat basis functions defined on the grid {xi}n+1
i=0 Similar to (18), we write Φ(x) =

[ϕ0(x), ϕ1(x), . . . , ϕn(x)]
T and set

Kϕ =

∫
Ω

(AΦ(x))Φ(x)T dx.

The following lemma, which can be deduced by using elementary linear algebra, is an ingredient of
the proof of Theorem 2.

12

Under review as a conference paper at ICLR 2023

Lemma 1. For two positive integers m ≥ n, let A, B ∈ Rm×m be nonsingular matrices and let
R ∈ Rn×m be a surjective matrix. Then RB−1RT is nonsingular and

κ
((
RB−1RT

)−1
RART

)
≤ κ(BA).

Proof. Since B−1 is nonsingular and RT is injective, we get

αTRB−1RTα = 0 ⇔ RTα = 0 ⇔ α = 0

for α ∈ Rn, which implies that RB−1RT is nonsingular.

Let λmin and λmax stand for the minimum and maximum eigenvalues, respectively. Then it follows
that

λmin

((
RB−1RT

)−1
RART

)
= min

α ̸=0

αTRARTα

αTRB−1RTα

= min
ᾱ∈ranRT,

ᾱ ̸=0

ᾱTAᾱ

ᾱTB−1ᾱ
≥ min

ᾱ̸=0

ᾱTAᾱ

ᾱTB−1ᾱ
= λmin(BA). (19)

In the same manner, we have

λmax

((
RB−1RT

)−1
RART

)
≤ λmax(BA). (20)

Combining (19) and (20) yields the desired result.

Now, we are ready to present our proof of Theorem 2.

Proof of Theorem 2. First, we define Ψ
+
(x) = [ψ+

0 (x), ψ
+
1 (x), . . . , ψ

+
n+1(x)]

T, where each ψ+
i (x)

is given by

ψ+
i (x) =

{
σ(x− xi), if 0 ≤ i ≤ n,
σ(−x+ xi), if i = n+ 1.

It follows by direct calculation that

ψi(x) =

{
|ωi|ψ+

i (x), if ωi > 0 or i = n+ 1,

ωi(1− xi)ψ+
0 (x)− ωiψ

+
i (x)− ωixiψ

+
n+1(x), otherwise.

(21)

Using (21), it is straightforward to construct a matrix C1 ∈ R(n+2)×(n+2) satisfying

Ψ(x) = C1Ψ
+
(x). (22)

The matrixC1 is nonsingular since both {ψi(x)}n+1
i=0 and {ψ+

i (x)}
n+1
i=0 forms bases for Vn (He et al.,

2020). Meanwhile, one can verify the following relation between {{ϕi(x)}n+1
i=0 and {ψ+

i (x)}
n+1
i=0

by direct calculation:

ϕ0(x) = −1− x1
x1

ψ+
0 (x) +

1

x1
ψ+

1 (x) + ψ+
n+1(x),

ϕi(x) =
1

xi − xi−1
ψ+

i−1(x)−
xi+1 − xi−1

(xi+1 − xi)(xi − xi−1)
ψ+

i (x) +
1

xi+1 − xi
ψ+

i+1(x), 1 ≤ i ≤ n− 1,

ϕn(x) =
1

xn − xn−1
ψ+

n−1(x)−
1− xn−1

(1− xn)(xn − xn−1)
ψ+

n (x),

ϕn+1(x) =
1

1− xn
ψ+

n (x).

(23)

Hence, we can construct a matrix C2 ∈ R(n+2)×(n+2) such that

Φ(x) = C2Ψ
+
(x) (24)

explicitly using (23). Combining (22) and (24) yields

Φ(x) = CΨ(x), (25)

13

Under review as a conference paper at ICLR 2023

where C = C2C
−1
1 . See Appendix B for how to compute multiplication by C−1

1 efficiently. Equa-
tion (25) implies that two matrices K and Kϕ are related as follows:

K =

∫
Ω

(AΨ(x))Ψ(x)T dx =

∫
Ω

C−1(AΦ(x))Φ(x)TC−T dx = C−1KϕC
−T. (26)

Since M = RKRT, invoking Lemma 1, setting P = CTK
−1

ϕ C and

P =
(
RP

−1
RT

)−1

(27)

completes the proof, where R was defined in (17). A computationally cheap way of multiplication
by P is presented in Appendix B.

Remark 2. In the case of the L2-function approximation problem (10), we can construct an al-
ternative preconditioner Palt whose computational cost is a bit cheaper than P . Let P alt =
CT diag(Kϕ)

−1C. It follows from (26) that

P altK = CT diag(Kϕ)
−1CK = CT diag(Kϕ)

−1KϕC
−T.

In (10), Kϕ is a mass matrix for the linear finite element method defined on the grid {xi}n+1
i=0 , so

that it satisfies κ(diag(Kϕ)
−1Kϕ) = O(1). Then we have

κ(P altK) = κ(CT diag(Kϕ)
−1KϕC

−T) = κ(diag(Kϕ)
−1Kϕ) = O(1).

Therefore, Palt = (RP
−1

altR
T)−1 satisfies κ(PaltK) = O(1) by Lemma 1. It is evident that the

computational cost of diag(Kϕ)
−1 is cheaper than that of K

−1

ϕ .

Finally, we present our proof of Theorem 3.

Proof of Theorem 3. Let {ω∗
i , b

∗
i } be a critical point of (8). If σ(ω∗

i ·x+ b∗i) vanishes on Ω, then we
readily get

Ei(ω
∗
i , b

∗
i) = 0 = Ei(0).

Now, we suppose that σ(ω∗
i · x+ b∗i) is nontrivial, i.e., the set

D = {x ∈ Ω : ω∗
i · x+ b∗i > 0}

has nonzero measure. Note that σ(ω∗
i · x+ b∗i) = ω∗

i · x+ b∗i and σ′(ω∗
i · x+ b∗i) = 1 on D. Since

∇Ei(ω
∗
i , b

∗
i) = 0, we obtain

0 = ∇Ei(ω
∗
i)

=

∫
Ω

(Aσ(ω∗
i · x+ b∗i)− F (x))σ′(ω∗

i ·x+b∗i)
[
x
1

]
dx =

∫
D

(A(ω∗
i · x+ b∗i)− F (x))

[
x
1

]
dx,

(28)

where the operator A was given in (16) and the integrals are done entrywise. It follows that

Ei(ω
∗
i , b

∗
i) =

1

2

∫
D

[A(ω∗
i · x+ b∗i)] (ω

∗
i · x+ b∗i) dx−

∫
D

F (x)(ω∗
i · x+ b∗i) dx

=

[
ω∗
i
b∗i

]
·
∫
D

[A(ω∗
i · x+ b∗i)− F (x)]

[
x
1

]
dx− 1

2

∫
D

[A(ω∗
i · x+ b∗i)] (ω

∗
i · x+ b∗i) dx

(28)
= −1

2

∫
D

[A(ω∗
i · x+ b∗i)] (ω

∗
i · x+ b∗i) dx

< 0 = Ei(0),

which completes the proof.

Remark 3. In Vardi et al. (2021, Theorem 4.2), a stronger result than Theorem 3 for the following
special case was presented:

a(u, v) =

∫
Ω

uv dx, F (x) = σ(ŵi · x+ b̂i)

for some ŵi and b̂i. It was proven that any critical point ω∗
i of (8) such that σ(ω∗

i ·x+b∗i) is nontrivial
is a global minimum.

14

Under review as a conference paper at ICLR 2023

B COMPUTATIONAL ASPECTS OF THE PRECONDITIONER IN THEOREM 2

In this appendix, we present computational aspects of the preconditioner P presented in Theorem 2.
Although the preconditioner P defined in (27) seems a bit complicated at the first glance, its com-
putation requires only a cheap cost. We provide a detailed explanation on how to deal with the
preconditioner P in implementation. In addition, we present numerical comparisons between the
preconditioned and unpreconditioned conjugate gradient methods to support our theoretical result
and highlight the computational efficiency of the preconditioner P .

B.1 IMPLEMENTATION ISSUES

Three nontrivial parts in the preconditioner P are the inverses of the matrices C1, RP
−1
RT, and

Kϕ. First, we consider how to compute C−1
1 α when a vector α ∈ Rn+2 is given. We solve a linear

system C1β = α in order to obtain C−1
1 α. Thanks to the sparsity pattern of C1, this linear system

can be solved directly by the following O(n) elementary arithmetic operations:

β1 =
α1

(C1)1,1
,

βi =
1

(C1)ii

(
αi −

(C1)i1
(C1)1,1

α1 −
(C1)i,n+2

(C1)n+2,n+2
αn+2

)
, 2 ≤ i ≤ n+ 1,

βn+2 =
αn+2

(C1)n+2,n+2
.

Similarly, for α ∈ Rn, one can compute (RP
−1
RT)−1α by solving a linear system

RP
−1
RTβ = α. (29)

In (29), by the definition (17) of R, we get

P
−1
RTβ =

[
p
α
q

]

for some p, q ∈ R. Using the fact that the first and last entries of RTβ are zero, two constants p and
q can be determined by the following system of linear equations:

P 1,1p+ P 1,n+2q = −P 1,2:n+1α,

Pn+2,1p+ Pn+2,n+2q = −Pn+2,2:n+1α,

where 2 : n+ 1 means “from the second to (n+ 1)th columns.” Now, β is obtained by

β = RP

[
p
α
q

]
.

Finally, we consider how to computeK
−1

ϕ α when a vector α ∈ Rn+2 is given. In most applications,
the bilinear form a(·, ·) is defined in terms of differential operators as in (13). This implies that the
matrixKϕ is tridiagonal, so thatK

−1

ϕ α can be obtained by the Thomas algorithm (see, e.g., Higham
(2002, Section 9.6)), which requires only O(n) elementary arithmetic operations. In conclusion, the
computation of the preconditioner P can be done efficiently.

B.2 NUMERICAL RESULTS

We turn our attention to numerical experiments for the preconditioner P . We consider the a-
minimization problem (6) appearing in training of neural networks that solve the L2-function ap-
proximation problem (12) and the elliptic PDE (14). In (6), we set the parameters ω and b as follows:

ωi = 1, bi = −
i

n+ 1
, 1 ≤ i ≤ n.

15

Under review as a conference paper at ICLR 2023

n
Problem (12) Problem (14)

Prec. Unprec. Prec. Unprec.
24 2 34 3 19
25 2 107 2 37
26 2 310 4 59
27 3 1018 4 103
28 3 3470 5 173

Table 1: Number of preconditioned and unpreconditioned conjugate gradient iterations to solve the
a-minimization problems (6) corresponding to the L2-function approximation problem (12) and the
elliptic PDE (14), where n denotes the number of neurons.

Figure 5: Decay of the relative energy error E(θ(k))−E∗

|E∗| in various training algorithms for solv-
ing (11). “Backt” denotes the backtracking scheme presented in Algorithm 3, and τ denotes the
fixed learning rate.

We compare the numerical performances of the preconditioned and unpreconditioned conjugate
gradient methods solving (6). The initial guess a(0) is given by the zero vector. Table 1 presents
the number of iterations of the preconditioned and unpreconditioned conjugate gradient methods
to meet the stop condition (9) with respect to various numbers of neurons n. While the number of
unpreconditioned iterations increases rapidly as n increases, the number of preconditioned iterations
is uniformly bounded with respect to n. This supports our theoretical result presented in Theorem 2,
which claims that the condition number of the preconditioned operator PK is O(1). Since the
computational cost of P is cheap, we can conclude that the preconditioner P is numerically efficient.

C EFFECT OF BACKTRACKING FOR CONVENTIONAL TRAINING
ALGORITHMS

In this appendix, we present numerical results that show that the backtracking scheme presented in
Algorithm 3 is useful not only for the proposed NPSC but also for conventional training algorithms
such as GD, Adam (Kingma & Ba, 2015), and LSGD (Cyr et al., 2020).

Figure 5 plots the relative energy error E(θ(k))−E∗

|E∗| of GD, Adam, and LSGD for solving the prob-
lem (11), averaged over 10 random initializations, where k denotes the number of epochs and E∗ is
the energy corresponding to the exact solution of the problem. The number of neurons used is 25;
while we can observe similar results for the other numbers of neurons, we only provide the result
of 25 neurons for brevity. We observe that the algorithms equipped with the backtracking scheme
outperform those with constant learning rates τ = 10−2, 10−3, and 10−4 in the sense of the con-
vergence rate. That is, Algorithm 3 seems to successfully find a good learning rate at each iteration
of conventional training algorithms as well. Hence, in Section 4, we employ Algorithm 3 to find
learning rates of GD, Adam, and LSGD.

16

Under review as a conference paper at ICLR 2023

D NUMERICAL INTEGRATION

This appendix is devoted to numerical integration schemes for computing the integral in our model
problem (2). If d = 1, i.e., if the domain Ω = [xL, xR] ⊂ R for some xL, xR ∈ R, then we
approximate the integral of a function g(x) defined on Ω by the following simple trapezoidal rule:∫

Ω

g(x) dx ≈
N−1∑
j=1

g(xj) + g(xj+1)

2
(xj+1 − xj), (30)

where xL = x1 < x2 < · · · < xN = xR are N uniform sampling points between xL and xR, i.e.,
xj = xL + j−1

N−1 (xR − xL), 1 ≤ j ≤ N . Approximation properties of the trapezoidal rule (30) can
be found in standard textbooks on numerical analysis; see, e.g., Burden et al. (2015).

When d ≥ 2, we adopt the quasi-Monte Carlo method (Caflisch, 1998) based on Halton se-
quences (Kocis & Whiten, 1997), which is known to overcome the curse of dimensionality in the
sense that approximation error bounds independent of the dimension d are available. In the quasi-
Monte Carlo method, the integral of a function g(x) defined on Ω is approximated by the average of
the function evaluated at N sampling points:∫

Ω

g(x) dx ≈ 1

N

N∑
j=1

g(xj), (31)

where {xj}Nj=1 is a low-discrepancy sequence in Ω defined in terms of Halton sequences. For the
sake of description, we assume that Ω = [0, 1]d ∈ Rd. Then the kth coordinate of xj (1 ≤ j ≤ N ,
1 ≤ k ≤ d) is the number j written in pk-ary representation, inverted, and written after the decimal
point, where pk is the kth smallest prime number. For example, if d = 3, then the first four points
of {xj}Nj=1 is given by

x1 =

(
1

2
,
1

3
,
1

5

)
, x2 =

(
1

22
,
2

3
,
2

5

)
, x3 =

(
3

22
,
1

32
,
3

5

)
, x4 =

(
1

23
,
4

32
,
4

5

)
.

Approximation properties of (31) can be found in Caflisch (1998).

17

	Introduction
	Model Problem
	Neuron-wise Parallel Subspace Correction Method (NPSC)
	Adjustment of Parameters
	a-minimization Problems
	(omegai, bi)-minimization Problems
	Backtracking for Learning Rates

	Numerical Results
	L2-function approximation problems
	Elliptic Partial Differential Equations
	Ablation Studies

	Conclusion
	Deferred Proofs
	Computational Aspects of the Preconditioner in Theorem 2
	Implementation Issues
	Numerical Results

	Effect of Backtracking for Conventional Training Algorithms
	Numerical Integration

