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Abstract

Despite significant interest in developing new methods for scientific machine
learning, the behavior and effectiveness of existing methods are not thoroughly
understood. For instance, while deep multi-layer perceptrons are known to exhibit a
bias toward low-frequency data, whether this phenomenon holds for other methods
and how it manifests are less certain. We investigate the training dynamics of
convolutional neural networks in the context of operator learning and find that
the input signal’s high-frequency components are generally learned before its low-
frequency components, followed by the amplitudes of the frequency distribution.
Our results also show that networks trained on a range of frequencies tend to
perform better on high-frequency data. From an architectural standpoint, increasing
the model’s kernel size can decrease this accuracy gap and improve precision across
frequencies, but this trend does not hold for deeper models, suggesting that larger
kernel sizes may have a stronger effect on training stability and model accuracy.

1 Introduction

Neural networks have emerged as a powerful tool for solving scientific problems, particularly
in learning mappings between function spaces. While traditional numerical methods can solve
differential equations with high accuracy, they often face computational limitations and lack flexibility.
For instance, solving a complex partial differential equation (PDE) yields a solution for only one
specific case and can be computationally expensive. In contrast, neural network-based approaches
can efficiently learn and provide solutions for entire families of functions [7, 12, 15, 17].

Despite their success, neural networks—their training dynamics and spectral behavior across data
in particular—remain poorly understood. This knowledge gap limits potential improvements in
model robustness and accuracy, especially in complex, multiscale applications like fluid dynamics or
climate modeling. For instance, a key challenge in deep neural networks is the spectral bias problem,
where networks learn high-frequency components before low-frequency ones. This can be especially
problematic in complex, multiscale settings with small-scale features—such as those encountered in
fluid dynamics or climate modeling [3, 9, 14, 16, 18, 23]. Despite having been studied in multi-layer
perceptrons (MLPs), the spectral bias is not well-established in other important architectures such as
convolutional neural networks (CNNs) and neural operators.

In this work, we study the training dynamics of CNNs in a regression setting. We are interested in
understanding (i) what the CNN learns during training and (ii) whether certain architectural design
choices can improve the model’s performance. In particular, we aim to understand how the depth and
kernel size of a CNN influence its performance and robustness to different frequencies. To that end,
we generate datasets of one-variable functions as well as their derivatives and train CNNs to learn the
derivative operator d

dx . Our work builds on [20, 27] but extends it to operator learning and the CNN
architecture, and also specifically studies the early training dynamics of CNNs.
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2 Related work

Several works have shown from a Fourier perspective that neural networks often initially learn
low-frequency functions [20, 27–29]. Xu et al. [29] specifically show evidence of larger error on
high-frequency data in CNNs, but this work uses image datasets—MNIST and CIFAR—instead of
one-dimensional symbolic functions in our setting. Neural Tangent Kernel (NTK) theory has also
been used to demonstrate that in very wide networks, components within the NTK’s top eigenspace
are learned more quickly than others [2, 8, 22]. Particularly relevant to our study is the finding that
during the early training stages, a neural network’s behavior can largely be approximated by a linear
function of the data [10].

There has also been some work in designing neural networks that can better learn high-frequency
data [24, 26]. In the context of scientific machine learning, spectral bias refers to the tendency of
deep networks to learn lower-frequency components of the data before higher-frequency components,
but research in computer vision has shown a distinct yet related phenomenon in CNNs, wherein
high-frequency information plays a critical role in classification accuracy [5, 25]. In particular, Abello
et al. [1] found that middle or high-level frequencies have a disproportionately large impact on model
robustness in CNNs. In other words, CNNs can retain their accuracy when provided with only
high-frequency components of an image but struggle when given only low-frequency components. In
this study, we focus on the behavior of CNNs for regression tasks.

3 Methodology

3.1 Data preparation

We prepare three datasets of functions ug(x) that have distinct ranges of frequencies: the "low,"
"general," and "high-frequency" datasets have frequencies between 1 and 5, 1 and 10, and 6 and 10,
respectively. For each dataset, the functions generated have the form

ug(x) =

N∑
i=1

Ai sin(Fix+Φi) +

N∑
i=1

Bi cos(Fix+Ψi), (1)

where N = 10, Ai and Bi are random integers between 0 and 1 that set the amplitude of each
term, Fi is a random integer between the minimum and maximum allowed frequencies, and Ψi are
random floats between 0 and 2π specifying the phase shift for each term. Each dataset contains
500 randomly generated functions, each with 1000 uniform samples from x ∈ [0, 2π]. The training
data is generated using PyTorch, which is assumed to provide numerically precise derivatives via its
automatic differentiation engine [19]. The frequency spectrum of each function is computed using
the one-dimension Discrete Fourier Transform (DFT), given by

f̂(k) =
1

N

N−1∑
n=0

f(xn) exp(−ikxn), (2)

where N is the number of equally spaced points in the domain, and k is the frequency [6]. Fig. 1a
shows a random function from the dataset along with its ground-truth derivative, and Figs. 1b and 1c
visualize the frequencies of the function using a Fourier transform.

3.2 Training details

We consider the supervised learning regression framework where Nd = 1000 data points are given:
{(ug(xi), u

′
g(xi))}Nd

i=1. Here, ug : R → R represents a function discretized at points {xi}Nd
i=1 in its

domain, and u′
g is its derivative. In other words, the discretizations are given by:

ug = [ug(x1), ug(x2), . . . , ug(xNd
)], u′

g = [u′
g(x1), u

′
g(x2), . . . , u

′
g(xNd

)].

The objective is to train a neural network f that maps the discretized function values ug to the
corresponding derivative values u′

g. Models are trained using the standard mean-squared error (MSE)
but evaluated using the normalized mean-squared error (NMSE) to account for the higher variability
in high-frequency functions, which often results in larger losses. We train CNNs with varying layers
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(a) (b) (c)

Figure 1: Dataset information. (a) Visualizing a random function sampled from the dataset and its
ground-truth derivative. (b) Frequency information of the function in (a). (c) Frequency information
of the ground-truth derivative.

and kernel sizes, but with each not less than 3. Each hidden layer has 64 input and output channels,
with padding set to half the kernel size to preserve spatial dimensions, using a stride of 1. All models
are trained on the general frequency dataset.

4 Experiments

4.1 Early training dynamics

Analyzing the frequency of the model’s outputs during training provides insights into how and what
the model learns. First, we find that it is necessary to decrease the learning rate of the optimization
from 10−3 to 10−4 to observe any changes visually in the frequencies of the model’s outputs between
epochs, as it was difficult to observe the learning process visually with a learning rate higher than 10−3.
Fig. 2e shows that within 10 epochs of training, the model learns the high-frequency components
of the derivative before the low-frequency components, indicated by high-frequency components
having larger magnitudes, but the correct distribution of dominant frequencies is quickly learned by
the model (as indicated by Fig. 2f, which shows the frequency heatmap at epoch 100). Since a log
scale is used for the magnitude colormap, the frequency distribution looks largely correct without
needing a very large number of training epochs.

Even though the CNN learns the frequency distribution quickly, the amplitudes are incorrect. For
instance, at epoch 100, the frequency heatmap looks comparable to that of the ground-truth derivative
frequency heatmap (Fig. 2g), but the loss remains high as the amplitudes are incorrect relative to
the true amplitudes. As training progresses, the amplitudes gradually increase to their correct values
as defined by the ground-truth derivative data, suggesting that the model quickly learns information
about the frequencies of the solution and gradually learns the amplitudes of the frequencies later.

4.2 Effect of larger kernel sizes

With a fixed number of layers, increasing the kernel size tends to increase the speed at which the
model learns the distribution of frequencies. For a CNN with three layers and a kernel size of three,
changes in the frequency distribution of the model’s outputs can be visually seen within the first
ten epochs of training using a learning rate of 10−4. However, to see similar changes (i.e., Fig. 2)
in a model with a kernel size of 31, it was necessary to decrease the learning rate to 10−6. The
training dynamics were extremely similar visually: high-frequency information was learned before
low-frequency information, followed by the magnitudes for the frequencies. Since a smaller learning
rate was required to see comparable spectral behavior to the model using a smaller kernel size,
increasing the kernel size may have a powerful effect on improving the model’s ability to learn
the data’s spectral information. This effect can be attributed to expanding the model’s receptive
window, similar to how increasing the order of a numerical method can decrease its truncation error
by providing the model with more spatial information. However, we show in Appendix A.4 that
increasing the number of layers in the model does not provide similar improvements in performance:
deeper networks decrease model accuracy and training stability, which can likely be explained by the
curse of dimensionality [4].
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Figure 2: Early training dynamics. (a–c) A model quickly learns frequency information before the
amplitudes. (d–g) shows heatmaps of the general frequency dataset dominant frequencies. In (e–f),
one can see a marginally brighter magnitude in the top right corner with increasing iterations, which
corresponds to larger amplitudes at higher amplitudes. By 100 epochs, the distribution of the spectral
information is nearly indistinguishable from the ground-truth dataset, shown in (g).

(a) (b)

Figure 3: Effects of different kernel sizes. (a) compares the mean NMSE of models with the smallest
(3) and largest (35) kernel sizes over five random seeds. (b) visualizes the effect of larger kernel sizes
on model accuracy over different datasets. NMSEs are averaged over the last 50 epochs.

We also find that models with larger kernel sizes can be trained to higher precision than models with
smaller kernel sizes (using the NMSE to measure the accuracy of a model). In other words, models
with larger kernel sizes reach a lower NMSE plateau after training. Evaluations of models on the
low-frequency and high-frequency function datasets show a higher NMSE on the low-frequency
datasets than on the high-frequency datasets, which is similar to the inverse of the spectral bias
problem in MLPs, in which low-frequency functions are expected to be learned more accurately than
high-frequency functions. This trend holds throughout the entire training process but weakens with
larger kernel sizes. The accuracy gap between the low and high-frequency datasets is also the largest
during the early stages of training and gradually decreases over iterations, but still exists after 2000
epochs, when the NMSE reaches roughly 10−4 to 10−5.

5 Discussion

We investigate the training dynamics of CNNs from a spectral perspective by focusing on the derivative
operator. During early stages of training, models appear to rapidly learn the frequency information of
the solution operator while prioritizing high-frequency components over low-frequency components
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of the data. This observation of high-frequency information being preferentially learned contrasts
with the typical notion of spectral bias that has been shown to exist in MLPs, where networks fit
functions from low to high frequency. However, this phenomenon may occur because the derivative
operator scales the amplitude of a function by its frequency. Since derivatives of higher-frequency
functions therefore have larger amplitudes compared to those of lower-frequency functions, the loss
function will place more weight on the higher-frequency functions.

Certain architectural choices also seem to have a significant impact on model precision and robustness.
Increasing the kernel size while keeping the number of layers constant accelerates the model’s ability
to learn spectral information, whereas increasing the number of layers while fixing the kernel size
does not yield the same effect. Larger kernel sizes also help narrow the accuracy gap between
low-frequency and high-frequency datasets. Finally, we show that using NMSE as a loss function
instead of MSE can improve the stability of the model training process on continuous data with a
wide range of frequencies.

While our results are indicative of a form of bias, future work will focus on scaling the amplitudes
of lower-frequency functions to account for the larger amplitudes of high-frequency derivatives and
enable a more thorough analysis of whether a spectral bias indeed exists. We will also expand our
analysis to more challenging settings, such as learning the solution to a family of PDEs or leveraging
prior information about the system [13, 21]. Finally, we plan to explore whether regularization
techniques can help improve training stability or generalization across frequency regimes. For
instance, Yin et al. [30] found that low-frequency data improves robustness to high-frequency
corruptions like noise and blur but degrades performance on low-frequency corruptions like fog and
contrast. Therefore, we plan to experiment with adding mixtures of noise to our data to determine
whether the spectral bias can be mitigated by adding different frequencies of data to the training
process.
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A Appendix

A.1 Additional training details

The activation layer between layers in each CNN is ReLU, except for the final convolutional layer, which directly
outputs the convolved feature without an activation function given our continuous regression setting. Models
are trained with mini-batch gradient descent using the Adam optimizer [11] and a learning rate of 10−3 on the
general frequency dataset, which contains functions with frequencies between one and ten. Each dataset is split
into 400 functions for training and 100 functions for evaluation. All models are trained on a single GPU.

A.2 Frequency heatmaps

To visually inspect the training dynamics of the model, heatmaps of the data in frequency space are constructed.
Each heatmap displays the original functions ug from the general frequency dataset in frequency space. Function
indices are on the y-axis, where functions are sorted in ascending order by their dominant frequency (the
frequency component with the largest magnitude), each function’s frequency components are on the x-axis, and
the magnitudes of the frequencies are arranged on the colorbar in logarithmic scale.

A.3 Visualization of the learning process

Given an arbitrary function, the model produces increasingly accurate outputs over iterations. Notably, the model
requires very little time to correctly learn the shape of the output, even though the magnitudes of the function
are incorrect. This is consistent with the frequency heatmaps shown in Figs. 2 d–f, which shows the spectral
behavior of the model’s outputs during training.

A.4 NMSE as the loss

Training models using the NMSE instead of the MSE as the loss function creates a considerably different training
loss trajectory. In particular, the loss (NMSE) quickly plateaus at early stages during training, with several
small decreases before following a more typical trajectory after a certain number of epochs. In Fig. 4a, after
around 500 epochs, the optimization finds a new loss minima for the model, after which a rapid decrease in
NMSE is observed. Additionally, model training is more stable using the NMSE as the loss function; Fig. 4b
shows that the model trained using the MSE experiences larger oscillations in NMSE across the low-frequency
and high-frequency datasets. However, the accuracy gap between datasets is visible during the entire training
process in both setups, suggesting that even with a normalized error for training, the model may be biased to
preferentially learn high-frequency data during training.

(a) (b)

Figure 4: Comparison of the loss curves between a model trained using NMSE (left) and a model
trained using MSE (right).

A.5 Effect of increased layers

Fig. 3 shows that larger kernels can substantially improve the accuracy of the model while reducing the
performance gap between datasets of functions with different frequency ranges. Models with a larger kernel
size also show smaller variances in NMSE across different training runs. We find that conversely, increasing the
depth of the model tends to degrade performance and decrease the stability of training, which is consistent with
an overparameterized network. The accuracy difference across datasets of different frequencies appears to widen
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with additional layers, though the trend is less consistent compared to the steady improvement in NMSE with
larger kernel sizes. As such, there is no clear benefit to increasing model depth in this setting. The formula used
for the first-order forward difference method indicated by the horizontal line in Fig. 6 is given by

f ′(x) =
f(x+ dx)− f(x)

dx
, (3)

where f(x) = ug(x) and dx = 10−3 in our setting.

(a) (b)

Figure 5: Effect of increased model depth. (a) compares the mean NMSE of models with the fewest
and most number of layers. (b) visualizes the effect of increasing model size on model accuracy on
different datasets. Both plots are averaged over five random seeds.

(a) (b)

Figure 6: Effect of training with larger kernel sizes versus more layers. (a) shows the mean
NMSE loss using different kernel sizes, while (b) uses the different model depths. Both plots are
averaged over five different random seeds.
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