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Abstract

Current efficient fine-tuning methods (e.g.,001
adapters (Houlsby et al., 2019), prefix-tuning002
(Li and Liang, 2021a), etc.) have optimized003
conditional text generation via training a small004
set of extra parameters of the neural language005
model, while freezing the rest for efficiency.006
While showing strong performance on some007
generation tasks, they don’t generalize across008
all generation tasks. In this work, we show that009
prompt based conditional text generation can010
be improved with simple and efficient methods011
that simulate modeling the discourse structure012
of human written text. We introduce two key013
design choices: First, we show that a higher-014
level discourse structure of human written text015
can be modelled with hierarchical blocking on016
prefix parameters. It enables spanning different017
parts of the input and output text and yields018
more coherent output generations. Second, we019
propose sparse prefix tuning by introducing at-020
tention sparsity on the prefix parameters at dif-021
ferent layers of the network and learn sparse022
transformations on the softmax-function, re-023
spectively. We find that sparse attention enables024
the prefix-tuning to better control of the input025
contents (salient facts) yielding more efficient026
tuning of the prefix-parameters. Our experi-027
ments show that structured design of prefix pa-028
rameters can yield more coherent, faithful and029
relevant generations than baseline prefix-tuning030
on all generation tasks and perform at par with031

fine-tuning while being more efficient.1032

1 Introduction033

Recent advances in pre-trained langauge models034

(PLMs) (Lewis et al., 2020; Raffel et al., 2020;035

Radford et al., 2019) have made great impact on036

text generation research, especially when they are037

fine-tuned on downstream tasks such as summa-038

rization, data-to-text generation, long-question an-039

swering, etc. Consequent research have shown040

1All supporting code will be publicly released.

that PLMs’ impact can further be improved when 041

trained with more parameters, on more data and 042

with more compute (GPT-3 (Brown et al., 2020), 043

Megatron (Kharya and Alvi, 2021)). On the flip 044

side, storing larger LMs or fully fine-tuning them 045

(updating all the parameters) on downstream tasks 046

usually causes resource or over-fitting issues. 047

To mitigate fine-tuning issues, recent work have 048

proposed prompt-based learning (Liu et al., 2021a), 049

which focus on learning textual prompts to steer 050

PLMs’ continuation towards desired output while 051

keeping the model parameters frozen. While pro- 052

viding strong control of the PLMs, such prompt en- 053

gineering could be time consuming requiring man- 054

ual crafting. There is a growing research direction 055

under prompt learning towards lightweight fine- 056

tuning (Houlsby et al., 2019; Lester et al., 2021), 057

which update only a small number of existing or 058

extra parameters while keeping the rest of the pre- 059

trained parameters frozen. Among them is prefix- 060

tuning (Li and Liang, 2021b), which focuses on text 061

generation tasks. It prepends tunable continuous 062

task-specific prompt vectors called prefixes to the 063

input and only trains these continuous prompts dur- 064

ing fine-tuning. Although prefix-tuning can yield 065

comparable results to full fine-tuning on some gen- 066

eration tasks, it did not generalize well to known 067

generation tasks like abstractive summarization. 068

In this work, we focus on prefix-tuning and pro- 069

pose approaches to improve its generalization on 070

text generation tasks. We investigate efficient de- 071

sign choices considering text generation challenges 072

to close the gap with the full fine-tuning while pro- 073

viding evidences to answer the following questions: 074

(1) Do different parts of the transformer network 075

process the prefix parameters more efficiently?; (2) 076

Do prefix parameters capture high-level discourse 077

structure of the input text?; (3) Can constrain- 078

ing prefix attention distribution to be structurally 079

sparse enable better transfer of task features? 080

To address (1), we conduct empirical analysis on 081
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prefix-tuned BART (Lewis et al., 2020), by varying082

the size of prefix parameters at the encoder and083

decoder networks on text generation tasks. We find084

that the prefix parameters at higher layers impact085

the performance the most, while sparse prefixes086

can be sufficient at the lower layers (§ 6.1).087

Motivated by this finding and to address (2), we088

introduce discourse-aware prompting via hierar-089

chical blocking of prefix parameters. Previous text090

generation work (e.g., abstractive summarization)091

has shown that abstraction can be better modeled092

with hierarchically structured architectures (Liu093

and Lapata, 2019; Fabbri et al., 2019; Xiao et al.,094

2021). To simulate a hierarchical discourse struc-095

ture while only tuning additional prefix parame-096

ters, we first split the input and output text into097

segments and then assign sets of prefix parame-098

ters to each segment at different layers. With this099

structure, a set of prefixes can only be reached by100

their designated input or output segments during101

self-attention. We argue that for conditional gener-102

ation tasks with hierarchically structured blocking103

of prefixes, we can simulate the structure of human104

writing styles: in input text each paragraph is a105

distinct section of related sentences and in output106

text (e.g., summary) each output sentence outlines107

salient concepts. Thus, a set of prefixes designated108

to each input and output segment at different layers109

can learn levels of abstractions from each section.110

We show strong performance improvements over111

baseline prefix tuning, yielding comparable results112

to full fine-tuning in all generation tasks in § 6.2.113

Inspired by these findings, we address (3) by114

introducing a suite of sparse attention alterna-115

tives to standard full-attention matrix. Prior work116

have shown that sparsity in self-attention not only117

improves training efficiency, but also focusing on118

salient features while pushing down unrelated fea-119

tures and relations can provide better control for120

the model. This improves language modeling121

(Sukhbaatar et al., 2021; Wang et al., 2020), lan-122

guage understanding (Shi et al., 2021; Cui et al.,123

2019) and text generation (Zaheer et al., 2020; Li124

et al., 2021; Liu et al., 2021b; Manakul and Gales,125

2021). Motivated by this, we introduce sparsity126

into the self-attention by substituting the softmax127

function with a sparse alternative under encoder128

prefix-tuning without introducing any additional129

model parameters. Our quantitative and human130

evaluations as well as spectral analysis (to analyze131

if sparse prefix-tuned models can encode impor-132

tant features better than dense models) collectively 133

yield that sparse attention enables better control 134

of the input contents (salient facts) yielding more 135

efficient tuning of the prefix-parameters (§ 6.3). 136

Efficient tuning of PLMs offers a promising new 137

direction for many NLP tasks including text gen- 138

eration, which we study in this work. Our results 139

support our hypothesis that prompt design with 140

hierarchical structure and sparsity in prefix pa- 141

rameters: (i) generate more coherent and faithful 142

text than baseline prefix-tuning across several sum- 143

marization and structure-to-text generation tasks 144

on quantitative and human evaluation metrics, (ii) 145

perform at par with fine-tuning on most tasks while 146

being more efficient at training time, (iii) outper- 147

form all the baselines in low-resource settings. 148

2 Related Work 149

Prompt Tuning. Recent years have observed sev- 150

eral efficient methods for prompt-based tuning of 151

large-scale PLMs (Liu et al., 2021a). These range 152

from prompt engineering (Petroni et al., 2019; Cui 153

et al., 2021), to more advanced approaches such 154

as prompt ensembling (Mao et al., 2021), compo- 155

sition (Han et al., 2021), or prompt-aware training 156

methods (Lester et al., 2021; Gu et al., 2021). Li 157

and Liang (2021a) propose prefix-tuning and show 158

strong results on some text generation tasks, leav- 159

ing room for further generalization. Here, we build 160

directly upon the prefix-tuning from Li and Liang 161

(2021a), showing where it falls short and providing 162

several discourse-aware prompt design approaches. 163

We find that the prefix-tuning struggles with encod- 164

ing of salient concepts that constraint generation 165

models require. This setting bears similarities to 166

discourse modeling, which we discuss below. 167

Discourse Modeling. A large family of methods 168

make architectural design choices to teach mod- 169

els about the overall document discourse structure 170

(Marcu, 1997; Barzilay and Lee, 2004; Barzilay 171

and Lapata, 2008; Li and Hovy, 2014) to improve 172

the summarization task. Recent work investigate 173

different architectures to model the discourse struc- 174

ture via: structured attention (Cohan et al., 2018a), 175

graph based methods (Dong et al., 2021), or hi- 176

erarchical encoders (Pasunuru et al., 2021). We 177

simulate the discourse structure of text via hierar- 178

chical prefix structure and propose discourse-aware 179

prompt-design for efficient PLM tuning. 180

Sparse Language Models. Most work on spar- 181

sity in transformers aim at improving the time and 182
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Figure 1: Encoder self-attention matrices A from layers 1, 6
and 12 of prefix-tuned models showing query attention scores
(on y-axis) over all prefix+inputs keys (on x-axis). Top row are
matrices of models on E2E dataset where the first 10 features
on x-axis are prefix features, and bottom row are on CNN/DM
dataset where first 100 features are prefix parameters.

space bottleneck of dense transformers (Tay et al.,183

2021). Work on text generation imbue sparsity184

to improve coherence, fluency, n-gram diversity185

and reduce repetition. These work range from:186

sparse methods on posterior vocabulary distribu-187

tions at inference time (Fan et al., 2018; Holtzman188

et al., 2020), sparse attention mechanisms (Cui189

et al., 2019; Liu et al., 2021b; Shi et al., 2021;190

Sukhbaatar et al., 2021), modified softmax Mar-191

tins et al. (2020), or loss functions (Welleck et al.,192

2020) to improve LM coherence. Following these193

work, we introduce sparsity on the attention matrix194

of prefix+input features to improve the knowledge195

transferred to downstream text generation tasks and196

generating more relevant and coherent text.197

3 Preliminaries198

We build our models on the encoder-decoder Trans-199

former architecture (Vaswani et al., 2017; Lewis200

et al., 2020), with a stack of layers composed of a201

multi-head self-attention and feedforward network202

(FFN) sublayers. A decoder usually has another203

multi-head cross-attention module between the self-204

attention and FFN, which we omit for simplicity.205

Self-Attention. The output of each timestep t is206

the hidden state h
l
t∈ Rd at layer l, which is then207

projected to key k
l
t=W

l
kh

l
t, value v

l
t=W

l
vh

l
t, and208

query q
l
t= W

l
qh

l
t vectors. We focus on a single209

layer and omit the layer index l for brevity. The210

W
l
q ,W l

k, W l
v are parameters learnt to project in-211

puts to queries, keys and values. Context infor-212

mation is obtained through attention ati∈A distri-213

bution: ati=Softmax (q⊤t ki) to create the output214

ot=Wo∑T
i=1 ativi, where i,t=1⋯T and l=1⋯L.215

Prefix-Tuning. Extending text-based prompt tun-216

ing methods (Liu et al., 2021a), prefix-tuning (Li217

and Liang, 2021b) introduces task-specific prompt 218

parameters. At each layer, it prepends P tunable 219

prefix parameters as additional keys kp∈RL×d and 220

values vp∈RL×d to multi-head self-attention: 221

atn = Softmax
i∈1...T, j∈1...P

(q⊤t [k
p
j , ki])

ot = Wo (∑P
j=1 atjv

p
j +∑T

i=P+1 ativi) .
(1) 222

[, ] indicates concatenation, n=1⋯(P+T ). During 223

training only the parameters corresponding to the 224

prefix keys W p
k and values W p

v are initialized and 225

the same objective function as finetuning is used. 226

4 Discourse Aware Prompt Design 227

Visualizing prompt impact. To motivate the 228

discourse-aware prompt design, we investigate the 229

impact of prefix-parameters on transformer mod- 230

els during prefix-tuning. We first analyze the at- 231

tention behaviour similar to (Sun and Lu, 2020). 232

We prefix-tune two BART-LARGE models, one on 233

structure-to-text generation task with E2E dataset 234

(Duš ek et al., 2019), and another on summariza- 235

tion with CNN/DM (Hermann et al., 2015). For 236

E2E we use 10-prefixes (the first 10 keys are from 237

prefix parameters) and 100-prefixes for CNN/DM2. 238

In Figure 1, we plot the encoder self-attention dis- 239

tributions A for different layers averaging over all 240

head vectors. The x-axis represent the keys (ki) 241

while y-axis denote the queries (qt). For attention 242

matrices of all the layers, see Appendix A.4 Fig- 243

ure 6. The attention scores show stronger relations 244

with the prefix-keys in the E2E model compared to 245

CNN/DM, where the prefixes exhibit weaker rela- 246

tions compared to the input keys. We attribute this 247

to a few issues which we investigate in this work: 248

Modeling hierarchical structure. Firstly, dur- 249

ing prefix-tuning, the model should not only fo- 250

cus on learning the task specific semantics, but 251

also the models should learn the corresponding dis- 252

course structure of the downstream task datasets. 253

To model the intrinsic structure of input text, bi- 254

asing transformer models with a type of hierarchy 255

has been shown to improve the generation perfor- 256

mance. For example, previous work (Cohan et al., 257

2018b; Liu and Lapata, 2019) learns the discourse 258

structure of human written text (e.g., the begin- 259

ning, body, conclusion paragraphs, topic shifts, 260

etc.) with hierarchically structured transformers 261

to capture the salient aspects in the input text neces- 262

sary for improved performance in summarization. 263

2The length of per instance input tokens is 680 in CNN/DM
and 26 in E2E dataset, so we use less prefix parameters.
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With probing experiments Jawahar et al. (2019)264

show that BERT (Devlin et al., 2019) captures sur-265

face features and phrase-level information in the266

lower layers, syntactic features in the middle and267

semantic features and long-distance dependencies268

at the higher layers. Motivated by these, we intro-269

duce variations of hierarchical blocking on prefix270

parameters at different layers of the network and271

investigate their impact on text generation with272

qualitative and quantitative experiments.273

Introducing sparsity. Secondly, the weaker pre-274

fix attention in longer inputs (Figure 1-CNN/DM275

attention matrices) may imply that the attention276

neglects important connections, and potentially dis-277

turbed by many unrelated words. This issue can be278

attributed to the softmax function at attention score279

calculation (Laha et al., 2018; Cui et al., 2019).280

Softmax produces attention distribution with dense281

dependencies between words, and fails to assign282

near/exactly zero probability to less meaningful283

relations. Thus, the model neglects to pay more284

attention to important connections while also be-285

ing easily disturbed by many unrelated words (Cui286

et al., 2019). This issue is more pronounced in tasks287

like abstractive summarization, since only a hand-288

ful of salient input aspects is needed to compose a289

coherent summary. Sparse attention mechanisms290

(Liu et al., 2021b; Shi et al., 2021) can remedy this291

issue by learning to avoid attending to the content292

unrelated to the query. We introduce soft-attention293

blocking on the prefix and input parameters to put294

emphasis on important prefixes and tokens.295

We introduce below a suite of blocking schemes296

and sparsity as sketched in Figure 2. Each block297

represents attention matrix A∈RT×(P+T ), with298

each key-feature (column) denoting to attention299

weights at,n of P prefix and T input-key features.300

4.1 Prefix Blocking301

As shown in Figure 2-(b) and (e), the two variations302

of prefix-blocking we introduce here are a type of303

structural bias we imbue the models to simulate304

high-level discourse structure of documents:305

(i) Uniform Blocking (UniBlock): We first split306

the sequence of input tokens into segments. We307

allocate different sets of prefix parameters to each308

segment and apply blocking on the rest of the pre-309

fix parameters. In baseline prefix-tuning, a query310

of a token can bind with all the prefix and input311

key and value parameters, while in the uniform312

blocked prefix-tuning, the query of a token in the313

Figure 2: Attention matrices A of prefix-tuning models rep-
resenting different prefix design patterns. p-keys and i-keys
denote P prefix and T input keys. Sparsity of attention scores
are indicated by color gradations. White cells in any row rep-
resent blocked input prefix parameters for the query.

input or output segment can bind with all input key 314

and values but only with the designated prefix key 315

and value vectors. For example, if P=100 prefix 316

parameters are introduced and we split the input 317

tokens into 2 segments, the first 50 prefix keys kpj 318

and values vpj (j=1..50) can only be bound with the 319

query vectors of input tokens from the first input 320

segment and so on. We only apply blocking to the 321

prefix parameters and let all inputs tokens attend to 322

each other, see Figure 2-(b). In uniform blocking, 323

we use the same blocking schema at each layer. 324

(ii) Hierarchical Blocking (HierBlock): To bias 325

the prefix parameters with a form of hierarchy, we 326

use the uniform prefix-blocking on the lower layers 327

of the transformer, while we let all tokens attend to 328

all prefixes at the top layers as shown in Figure 2- 329

(e). The attention matrix of the top layers is same as 330

the standard prefix-tuning of (Li and Liang, 2021b) 331

where no blocking on prefixes is applied. 332

4.2 Sparse Attention Prefix-Tuning 333

To train a prefix-tuning model that learns to high- 334

light important input content, we introduce four 335

sparse attention design options for the encoder. 336

(a) Truncated Sparse Attention (TruncSA): We 337

apply top-p sampling on both the prefix and input 338

keys as follows: we first add all the row elements 339

of the attention matrix, namely the attention scores 340

contributing from all the queries, then normalize 341

across all key-features, which yields a key-feature 342

impact row vector ã ∈ R(P+T ) and ãt ∈ ã: 343

ān = ∑T
i at,i ãt = āt/(∑(P+T )

n ān) (2) 344

Using top-p sampling (Holtzman et al., 2020) we 345

truncate the feature key scores ã and use the top-p 346

portion of the probably mass in each key attention 347

score. We create a binary mask for each key fea- 348

ture via mask(ã) = top-p(ã, τ) by assigning 1.0 349

4



to the keys that the top-p sampling has selected,350

0 otherwise and threshold parameter τ controls351

sparsity. Lastly, we broadcast point-wise multipli-352

cation between the sparse mask and the attention353

matrix A to obtain the top-p sparse attention matrix354

Ã = mask(ã)⊙A, as sketched in Figure 2-(c).355

Our top-p sampling is similar to using dropout on356

randomly selected features of the network during357

training while controlling the dropout rate with a358

user-defined threshold to compensate for overfitting359

and performance. Although top-p sparse attention360

provides automatic control over attention sparsity,361

truncation completely masks some features. Next,362

we show how to dynamically learn to apply soft-363

sparsity via sampling from a distribution.364

(b) Soft Sparse Attention (SoftSA): Influencing365

the attention distribution with a stochastic mask to366

attend to salient tokens can potentially help build367

higher quality sparse attention for text modeling.368

Several work investigate novel approaches to learn369

the sparsity in attention matrix (Li et al., 2021;370

Roy et al., 2021; Shi et al., 2021) using a sampling371

method to formulate the right amount of sparsity.372

They associate the attention scores at,i with each373

position (t, i) in A and define a sampling distri-374

bution to learn the attention mask during training375

as sketched in Figure 2-(d). Similarly, we define376

relaxed Bernoulli distribution as a sampler to con-377

struct our stochastic mask. Since sampling from378

Bernoulli distribution is not differentible, we use379

the Gumbel Softmax reparameterization trick (Jang380

et al., 2017) with gumbel-softmax:381

ãtn = Softmax
n∈1...(P+T )

(at,n, g, τ) (3)382

where g=− log(− log(u)) is an independent Gum-383

bel noise generated from the uniform distribution384

u ∼ U(0, 1) and τ is a temperature. As τ ap-385

proaches zero, the gumbel output approaches to a386

discrete distribution in {0, 1}, becomes identical to387

those from the Bernoulli distribution.388

(c & d) Hierarchical Sparse Attention: To sim-389

ulate an intrinsic discourse structure of the input390

text, similar to the hierarchical blocking in § 4.1,391

we apply sparsity on the parameters only at the392

lower layers. We train hierarchical models with the393

dense attention at the higher layers, and apply (c)394

truncated (HTruncSA) or (d) soft sparse attention395

(HSoftSA) at the lower layers (see Figure 2-(f)).396

(e) Hierarchical Blocking with Sparse Attention397

(HierBlock+SoftSA): The hierarchical blocking398

models we introduced in § 4.1 puts restrictions on399

Dataset Domain #Data
Summarization Train/Val/Test
XSum (2018) News 204K/11K/11K
CNN/DM (2015) News 287K/13K/11K
Wikihow (2018) DIY 157K/5.6K/5.6k
SAMSum (2019) Dialog 15.7K/<1K/<1K
Pubmed (2018b) Clinical 203K/6K/6K
Structure to Text (S2T)
E2E (2017; 2019) Reviews 33K/4K/4.7K
DART (2021) Reviews 63K/7K/12.5K

Table 1: Datasets used in the experiments.

the prefix parameters that input tokens can bind 400

with at different layers of the network. To ana- 401

lyze the impact of ensemble of prefix blocking and 402

sparsity, we introduce sparsity to the hierarchically 403

blocked prefix-tuning models. We apply soft spar- 404

sity (SoftSA) on the lower layers of the network 405

attention matrices of HierBlock models and keep 406

the higher layer attention matrices dense. 407

5 Experiment Setup 408

Methods. All of the models are based on BART- 409

LARGE (Lewis et al., 2020), though our methods 410

can be applied to any architecture. We compare our 411

discourse aware prefix-tuning approaches to full pa- 412

rameter fine-tuning and baseline prefix-tuning (Li 413

and Liang, 2021a). Finetuning updates all the LM 414

parameters, while all prefix-tuning models freeze 415

LM parameters and only update the prefix parame- 416

ters. Baseline prefix-tuning models update prefix 417

parameters at each layer (full-stack) of the trans- 418

formers using dense attention while our proposed 419

models use variations of sparse and blocked atten- 420

tion at different layers of the network. We choose 421

the best models on validation dataset during train- 422

ing and repeat each experiment ∼3-5 times with 423

different random seeds and report the average re- 424

sults. For details of the setup see Appendix A.1. 425

Datasets. We conduct experiments across six 426

datasets on two tasks: abstractive summarization 427

and structure-to-text (S2T) generation. We present 428

a summary of the datasets in Table 1 and provide 429

more details about the datasets in Appendix A.2. 430

Metrics. For all the tasks and datasets we use the 431

n-gram match metrics: ROUGE-1/2/L, and report 432

human evaluations to compare the results of the 433

models on various qualitative evaluation criteria. 434

6 Experiment Results 435

6.1 Are all prefix-parameters useful? 436

Finding: Prefix-tuning models encode diverse but 437

task specific features at each layer differently, while 438
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XSum CNN/DM PubMed Wikihow SAMSum Avg.
Method R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL -
Finetune 43.37/20.55/35.31 42.46/19.78/29.56 40.51/15.50/23.93 41.61/17.76/32.40 51.02/25.70/41.58 32.07
Prefix-tune 42.31/19.28/34.37 42.31/19.47/28.94 34.07/12.58/20.38 37.32/14.37/27.17 51.98/27.37/43.28 30.78

Prefix-tune with Blocking
UniBlock 42.91/19.64/34.61 42.04/19.50/29.16 38.93/14.24/22.63 39.31/16.60/30.85 51.07/26.50/42.53 30.82
HierBlock 42.99/19.56/34.76 43.04/20.21/29.73 39.10/14.50/22.91 39.10/16.42/30.59 51.53/26.83/42.94 31.66
Table 2: Prefix blocking experiment results in comparison to finetuning and prefix-tuning on summarization tasks. Uniform
(UniBlock) and Hierarchical (HierBlock) prefix blocking represent models which use prefix-blocking at different layers of the
network (§ 4.1). The top-two best results across models are bolded.

the top-layer prefixes encode abstract features.439

Analysis: Earlier work (Jiang et al., 2021; Elazar440

et al., 2021; Yates et al., 2021) suggests that some441

layers of the transformers are better than others442

at producing representations that are useful for a443

given task. To investigate if similar patterns show444

up in prefix-tuned models, we take XSum dataset445

and train models with prefix parameters only at the446

top layers, the bottom layers, and at a single layer.

Layers Rouge-1/2/L
Top (8-12) 40.1/16.8/31.4
Low (1-7) 33.7/13.1/26.9
All (1-12) 41.2/18.4/33.4
Table 3: Validation
Rouge scores of prefix-
tuned models on XSum
using only top/low layers.

0 2 4 6 8 10 12

28

30

32

Layers

Figure 3: Validation
Rouge-L on single-layer
prefix-tuning with XSum.

447 We show layer-specific prefix-tuned models’ val-448

idation performance results in Table 3. The ’Top’449

layers model is tuned with only the top-layer prefix450

parameters (i.e., top 4 layers have additional prefix451

parameters), the ’Low’ layers model uses only the452

lower-layer prefix-parameters (i.e., bottom 7 layers453

have additional prefix parameters) and ’All’ layers454

prefix parameters is same as baseline prefix-tuning.455

On inspection, we see a large performance gap be-456

tween the models trained with top/lower layers up457

to 6.4 Rouge-1 scores, while we obtain the best per-458

formance when we tune all-layer prefix parameters.459

We see similar patterns on the SAMSum dialog460

summarization and E2E structure to text genera-461

tion tasks (details in Appendix A.5). We also build462

models when prefix parameters are used at a single463

layer of the network. Our analysis on single layers464

in Figure 3 suggest that the top layer prefixes can465

encode summary related abstract information.466

6.2 Are hierarchical prompts effective?467

Finding: Hierarchical design of prefix parameters468

can yield more robust information transfer in text469

generation outperforming baseline prefix-tuning.470

Analysis: To bias prefix parameters with the struc-471

ture of the input documents to learn discourse re-472

lated representations (as discussed in §4), we ex- 473

periment with two hierarchical structures: uniform 474

(UniBlock) and hierarchical (HierBlock) from 475

§ 4.1. In Table 2 we report the performance of our 476

models in comparison to fine-tuning and baseline 477

prefix-tuning on abstractive summarization tasks. 478

Our results indicate that prefix-blocking models im- 479

prove over the baseline prefix-tuning on all summa- 480

rization tasks by up to +1.0 ROUGE score overall, 481

and even outperforming fine-tuning on CNN/DM 482

dataset. Especially for PubMed and Wikihow, 483

which are considered long document summariza- 484

tion tasks, structure in prefixes improves learn- 485

ing better semantic representations of the down- 486

stream tasks compared to baseline models with 487

no structural bias. In addition, the performance 488

gap is larger in news article summarization com- 489

pared to SAMSum conversational summarization 490

dataset. The reason behind this may be that SAM- 491

Sum input tokens are shorter and hierarchical dis- 492

course structure is not prominent as much as in 493

the long document encoding tasks. We further ob- 494

serve that hierarchical blocking on prefixes also 495

helps for structure-to-text tasks, though the perfor- 496

mance impact of structural bias is more prominent 497

in summarization tasks. We show detailed results 498

of structure-to-text tasks and provide samples of 499

generated outputs in Appendix A.6. 500

6.3 Does sparse attention help prefix-tuning? 501

Finding: With hierarchically structured sparsity 502

training, prefix tuning show more sparse patterns 503

at the lower layers. Sparse prefix parameters at 504

lower layers, and dense at higher layers enable 505

more efficient tuning of the prefix-parameters. 506

Spectrum Analysis: To investigate if our sparse 507

models do in fact learn sparse representations, we 508

conduct spectrum analysis on the encoder attention 509

matrix A zooming in on the prefix parameters3. To 510

3A similar spectrum analysis has been used to prove the
sparsity of the attention matrix in Linformer (Wang et al.,
2020), a sparse transformer.
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analyze the variation of attention scores we cal-511

culate the principal components of the attention512

scores of prefix parameters4. We observe that the513

spectrum distribution of prefixes in lower layers is514

more skewed than in higher layers, meaning that,515

in lower layers, more information is concentrated516

in the largest singular values and the rank of A is517

lower. With sparse attention at the lower layers and518

dense attention at the top layers, the prefix-tuned519

models can encode salient features controlling the520

generation. Details on spectrum analysis are pro-521

vided in Appendix A.7 and Figure 7.522

Sparsity Analysis: To further support the find-523

ings from the spectrum analysis, we investigate524

the impact of sparsity on the performance of525

the prefix-tuning models. For a fair compari-526

son, we also apply attention sparsity on the fine-527

tuned models. We build prefix-tuning models528

with (a) Truncated Sparse Attention (TruncSA), (b)529

Soft Sparse Attention (SoftSA), (c) Hierarchical530

TruncSA (HTruncSA), with top-p sparsity at the531

lower layers, and dense attention at the top layers,532

(d) Hierarchical Soft Sparse Attention (HSoftSA),533

with soft sparse attention at the lower layers but534

dense at top layers.535

We show the ROUGE-L results in Table 4. We536

observe that when sparsity is used on the prefix-537

parameters, the prefix-tuned models learn to en-538

code more salient features about the summariza-539

tion task and outperform baseline all-dense prefix-540

tuning models on all datasets. The performance541

improvements are more pronounced on long docu-542

ment summarization tasks such as Pubmed, reach-543

ing more than 2.0 ROUGE score improvements.544

Comparing all layers sparse models of (a) and (b)545

to hierarchically biased sparsity models of (c) and546

(d), we observe improvements with the hierarchi-547

cally structured sparse prefix-tuning models. More548

details on quantitative analysis are provided in Ap-549

pendix A.7 and Table 11.550

6.4 Does sparsity on hierarchically blocked551

prefixes further improve performance?552

Finding: The most performance gains are obtained553

when sparsity constraints are applied on the hierar-554

chically blocked prefixes (Table 5).555

Analysis: Recall from the earlier discussions in556

§6.2 that, if we apply blocking on the lower lay-557

ered prefixes, while we let all tokens attend to all558

4Eigenvalues capture the variation of the attention scores
distribution along different principal components.

Method XSum CNN PubMed Wikihow SAMSum
Finetune

Dense 35.31 29.56 23.93 32.40 41.58
(a) TruncSA 34.90 28.36 20.90 27.88 41.46
(b) SoftSA 35.34 29.32 23.73 32.50 41.42

Prefix-tune
Dense 34.37 34.37 20.38 27.17 43.28
(a) TruncSA 35.14 29.59 22.60 27.63 43.31
(b) SoftSA 35.14 29.64 22.66 27.70 43.80
(c) HTruncSA 35.26 28.54 22.75 27.59 43.57
(d) HSoftSA 35.20 29.69 22.70 27.66 43.73

Table 4: Sparse Attention experiment ROUGE-L results
on Finetuning, and Prefix-tuning using dense and soft sparse
attention designs in §6.3. Best performing finetune and sparse
prefix-tune model results are bolded within each block.

Dataset HierBlock HierBlock+SoftSA
R1/R2/RL R1/R2/RL

Summarization
XSum 42.99/19.56/34.76 43.26/19.89/34.99
CNN/DM 43.04/20.21/29.73 43.04/20.24/29.81
PubMED 39.10/14.50/22.91 39.10/14.46/22.91
Wikihow 39.10/16.42/30.59 38.45/16.35/30.54
SAMSum 51.53/26.83/42.94 52.91/27.56/43.63
Structure to Text
E2E 72.10/43.79/51.27 71.61/43.49/50.85
DART 74.44/48.18/56.72 74.62/48.60/57.03
Table 5: What happens when we introduce sparsity to hier-
archically blocked prompt design? Experiment results com-
paring dense and sparse prefix-tuning with structurally biased
prefix design (via hierarchical blocking) on various text gener-
ation tasks. The best results across models are bolded.

prefixes at the top layers (HierBlock models), we 559

observe significant performance improvements. On 560

separate set of ablations in §6.3, we also observe 561

that if we introduce sparsity at different layers of 562

the network, the sparse parameters influence the 563

performance compared to the dense prefix tuned 564

parameters at all layers. We now introduce sparsity 565

on the hierarchically blocked prefix-models, com- 566

bining the best hierarchically blocked prefix-tuned 567

models with the sparse attention. 568

In Table 5 we show results of our hierarchical 569

prefix blocking (HierBlock) model against hier- 570

archical prefix blocking model with soft sparse 571

attention (HierBlock+SoftSA). To build the Hi- 572

erBlock+SoftSA models, we apply soft sparsity 573

at the lower layers with blocked prefix param- 574

eters, while the top layers use dense prefixes 575

with all tokens attending to all prefixes. In Ta- 576

ble 5 we repeat the results of the last row from 577

Table 2 for easy comparison. We observe per- 578

formance improvements on almost all the sum- 579

marization tasks: XSum, CNN/DM, SAMSum, 580

PubMED. We find that HierBlock+SoftSA mod- 581

els show significant improvements on SAMSum 582

(±1.3; p<1 × 10
−4). On the structure to text gen- 583

eration tasks the sparsity on hierarchical blocking 584
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Wins % matches
Faithfullness PT HSoftSA HB+SoftSA HB

L
os

es
% PT 64.0 52.9 74.7

HSoftSA 36.0 46.4 65.3
HB+SoftSA 47.6 53.6 58.0

HB 25.3 34.7 42.0
Wins % matches

Overall PT HSoftSA HB+SoftSA HB

L
os

es
% PT 67.5 48.3 63.7

HSoftSA 32.5 47.3 55.2
HB+SoftSA 51.7 52.7 57.3

HB 36.3 44.8 42.7

Table 6: Human evaluation results on Faithfullness
(top) and Overall (bottom) ratings. PT: Prefixtune,
HSoftSA: Hierarchical Soft Attention, HB: HierBlock,
HB+SoftSA: HierBlock with Soft Sparse Attention.
Bold win %s indicate significance (p < .05).

helps on some datasets (with E2E), though both585

HierBlock and HierBlock+SoftSA perform better586

than baseline prefix-tuning models (see App. Ta-587

ble 9). More details are provided in Appendix A.8.588

6.5 Do human evals. support our claims?589

Finding: Humans generally prefer generated text590

from hierarchically blocked prefix-tuned models591

over all other models, find overall quality of gener-592

ations indistinguishable from fine-tuning.593

Analysis: To evaluate the generated text from our594

proposed methods against baseline models, we ask595

human annotators to rate generations on five crite-596

ria: faithfulness (consistent with the context), rele-597

vance (captures key-points), grammaticality, coher-598

ence (form a cohesive whole), and overall quality599

(helpful, informative). Table 6 shows the results600

of the study on faithfulness, and overall metrics.601

The columns show the percentage of wins of the602

model against its opponent on a given row. Our603

Hierarhical Blocking (HierBlock) and Hierarchi-604

cal Soft Sparse Attention (HSoftSA) models beat605

prefix-tuning and HierBlock significantly (p < .05)606

beats most of our sparse models on all axes includ-607

ing factuality. In Table 12 we provide comparisons608

with fine-tuning and observe that HierBlock models609

perform as good as finetuning on all criteria. More610

details about the evaluation setup as well as results611

on all the criteria comparing against fine-tuning612

and prefix-tuning can be found in Appendix A.10.613

6.6 Which structural features are harder to614

transfer in low-resource settings?615

Finding: In low-resource settings, hierarchically616

designed sparse prefix parameters can efficiently617

transfer knowledge and represent the semantics 618

and structure of input text yielding more accurate 619

output generations. 620

Analysis: We simulate a low-resource setting by 621

randomly sampling k% (k=5,10,25,50) from the 622

training dataset of two summarization tasks: XSum 623

on news, and Wikihow on DIY domains (see train 624

data sizes in Table 1). We use the same hyperpa- 625

rameter settings as our previous models detailed in 626

§ 5. We compare our approach to finetuning and 627

prefix-tuning under low-resource settings. 628

0 10 20 30 40 50

28

29

30

31

% train samples xtick

Finetune Prefix-tune
HierBlock HierBlock+SA

Figure 4: Average
ROUGE-L scores on
low-resource settings.

In Figure 4 on the right, 629

we plot ROUGE-L aver- 630

aging scores of models 631

trained on XSUM and 632

Wikihow. Our structured 633

prefix-tuned models, Hi- 634

erBlock (blue) and its 635

sparse extension which 636

uses sparse features, Hi- 637

erBlock+SA (red) outper- 638

forms fine-tuned (green) and prefix-tuned models 639

(olive), while using the same number of parameters 640

in low resources settings (when <50% training sam- 641

ples are used). Although HierBlock models show 642

consistent performance, on low-resource settings 643

HierBlock-SA performance is more stable. (See 644

Appendix A.11 for more details.) 645

7 Conclusion and Limitations 646

We have described simple but effective prompt de- 647

sign options for prefix-tuning of text generation 648

tasks. We enrich prefix parameters with structural 649

biases by way of: prefix-blocking at different layers 650

of the network, sparsity on prefix-parameters and 651

an ensemble of both biases. We show with quan- 652

titative and human evaluations on metrics such as 653

coherence and faithfullness that discourse aware 654

prefix designs outperforms baseline prefix-tuning 655

across all text generation tasks even at low data 656

settings and perform at par with finetuning. 657

We note a few limitations of our work: (1) our 658

experiments are limited by available datasets, and 659

only evaluated on limited closed domain text gen- 660

eration tasks; (2) we focused on efficient prefix- 661

tuning, while ensemble of different efficient tuning 662

models can boost performance even further; (3) we 663

conduct experiments with ∼300M parameter mod- 664

els as in past work, but it will be valuable for future 665

work to scale to larger models which may exhibit 666

more coherent generations. 667
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8 Ethics Statement668

In this work we propose a new encoder-decoder669

modeling architecture and build several models670

to benchmark our new architecture with baseline671

architectures on several open source text generation672

datasets.673

Intended use. Our architecture is designed to674

build models of abstractive document summariza-675

tion and table summarization. Potentially our archi-676

tecture could be used to train models for summariz-677

ing any type of datasets (e.g., any documents, tex-678

tual conversational dialogues, blog posts, reports,679

meetings, legal forms, etc.) to further improve680

the productivity and efficiency of the users in their681

daily activities without needing to read/listen to682

long documents/conversations/meetings.683

Failure mode. Even though our models yield684

factually consistent summaries, as judged by us and685

raters, they can still generate factually inconsistent686

summaries or sometimes hallucinate information687

that the source document does not include. This688

might be due to the bias or noise in the training data.689

Model builders wanting to use our architecture to690

build models on their datasets should build models691

with consideration of intellectual properties and692

privacy rights.693

Misuse Potential. We note the models to be built694

with our architecture should be used with careful695

consideration especially if used to build summariza-696

tion models. The generated summaries produced697

by our models are not controlled and use gener-698

ative approaches, therefore, they could generate699

unreliable text. Researchers working on abstractive700

summarization should focus on generating factu-701

ally correct, ethical and reliable text. If our models702

are trained on news datasets, a careful considera-703

tion should be made on factuality of the generated704

text and measures have been taken to prevent model705

hallucinations.706
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A Appendix 1015

Context: How to straighten a curly wig?
It is the best method for both straightening and curling a
wig. It is also the best method for synthetic wigs that may
be more delicate to heated styling tools.
Allow the hair to fall straight down without resting on
anything. Tripods work brilliantly if you fit a mannequin
head on them.
Boil about 1.5L for a long wig and 1L or less for a short
wig. The heat of the water will soften the plastic fibers
and will pull them down. Use a wide soft-bristled brush.
For extremely curly wigs, it will take more than one treat-
ment and a lot of time. It does no damage to the wig and
can be done while the wig is still wet. This is a permanent
style; you will need to re-curl the wig if you don’t want it
straight anymore. You’re basically remolding plastic into
a new shape, so will need to mold it back if you want the
curls again.
Output Summaries:
Human : consider trying the hot water method. place the
wig on a stand. boil a pot full of water. pour it carefully
over the wig, making sure that it completely covers it.
avoid combing or brushing a wig when it is wet. wait until
it is dry. repeat the method if necessary.
Finetune: understand that this method is best for very
curly wigs. place the wig on a flat surface. boil water in a
large pot. remove the pot from the heat and gently brush
the wig with a wide-bristled brush. repeat the process until
the entire wig is curled.
Prefixtune: put the wig on a tripod. boil water in a large
pot. brush the wig with a soft brush. repeat the process
until the hair is completely straight. repeat as needed. re-
peat until the wig is fully straightened. repeat this process
for longer wigs.
SoftSA: wash the wig with warm water. place the wig
on a tripod. boil the wig. brush the wig down with a
soft-bristled brush. let the wig air dry for a few minutes.
repeat the process if you want the hair to stay straight.
HSoftSA: understand the benefits of this method. lay the
wig flat on a flat surface. boil water. brush the wig with a
soft-bristled brush. let the hair air dry. repeat the process
as needed. re-curl the wig if necessary.
HierBlock: put the wig in a bowl of warm water. place
the wig on a tripod. pour the water over the wig. brush
the hair with a soft-bristled brush. repeat as needed.
HierBlock+SoftSA: wash the wig with warm water. put
the wig on a tripod. boil the water. brush the wig down
with a soft-bristled brush. let the hair air dry. repeat the
process with the wig if you want it to stay straight.

Figure 5: Model Generated Output Text on Wikihow
Dataset. The red colored text indicates factual errors,
repetitions, and incoherent text.

A.1 Hyperparameters (Cont. from § 5) 1016

We fit our BART-Large models to their respective 1017

datasets with the hyperparameters shown in Table 7. 1018

Encoder/decoder block sizes indicate the size of 1019

the segments we split the input/output tokens. For 1020

instance, if the encoder block size is 2, we split the 1021

input tokens into two segments. Each segment has 1022

designated set of prefixes which can vary at each 1023
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Parameter Xsum CNN/DM PubMed Wikihow SAMSum E2E DART
learning rate 5e-05 5e-05 5e-05 5e-05 5e-05 5e-05 5e-05
# epochs 30 30 30 30 20 10 10
batch size 8 8 8 8 16 16 16
prefix-length 100 50 50 100 10 10 10
beamsize 5 5 5 5 5 5 5
Hierarchical Blocking
encoder block size 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3
decoder block size 1,2 1,2 1,2 1,2 1,2 1,2 1,2
Sparse Attention
top-p 95.% 95.% 95.% 95.% 95.% 95.% 95.%
τ (top-p) 1.0,0.1 1.0,0.1 1.0,0.1 1.0,0.1 1.0,0.1 1.0,0.1 1.0,0.1
τ (soft attn.) 1.0,0.1,0.01 1.0,0.1,0.01 1.0,0.1,0.01 1.0,0.1,0.01 1.0,0.1,0.01 1.0,0.1,0.01 1.0,0.1,0.01

Table 7: Hyperparameters of different prefix-tuned models.

Corpus Version License Citation Link
XSum v1 MIT Narayan et al. (2018) https://github.com/EdinburghNLP/XSum

CNN/DM v1 MIT Hermann et al. (2015) https://github.com/abisee/cnn-dailymail

PubMed v1 Creative Commons Cohan et al. (2018b) https://github.com/armancohan/long-summarization

WikiHow v1 CC-BY-NC-SA Koupaee and Wang (2018) https://github.com/mahnazkoupaee/WikiHow-Dataset

SAMSum v1 CC BY-NC-ND 4.0 Gliwa et al. (2019) https://github.com/giancolu/Samsung-dataset

E2E v1 CC4.0-BY-SA Duš ek et al. (2019) https://github.com/tuetschek/e2e-cleaning

DART v1 MIT Nan et al. (2021) https://github.com/Yale-LILY/dart

Table 8: Additional documentation of scientific artifacts used in our paper.

layer. In hierarchical blocking models (HierBlock)1024

we segment the lower layers, so the prefixes are1025

blocked for different segments, while at the top1026

layers no segmentation or blocking is applied. We1027

use at most two segments in the output text since1028

the text generations tasks we investigate in this1029

work contain much shorter output tokens compared1030

to the input tokens.1031

A.2 Dataset Details (Cont. from §5)1032

All datasets are in English language. The summa-1033

rization datasets range from extreme abstractive1034

summarization with XSum (Narayan et al., 2018)1035

to summarize documents into one summary sen-1036

tence, conversational summarization using SAM-1037

Sum dataset (Gliwa et al., 2019), long clinical doc-1038

ument summarization with PubMed (Cohan et al.,1039

2018b)5 and DIY domain with Wikihow (Koupaee1040

and Wang, 2018), and commonly used CNN/DM1041

(Hermann et al., 2015; See et al., 2017) news article1042

summarization dataset with an ”Inverted Pyramid”1043

(PurdueOWL, 2019) document structure (Kryscin-1044

ski et al., 2019). We also investigate S2T datasets1045

on customer reviewers including E2E (Novikova1046

et al., 2017; Duš ek et al., 2019) and DART (Nan1047

et al., 2021) with each input being a semantic RDF1048

triple set derived from data records in tables and1049

5We acknowledge that the source of dataset is the NLM
Catalog, and the citations used in Pubmed corpus may not
reflect the most current/accurate data available from NLM,
which is updated regularly.

sentence descriptions that cover all facts in the 1050

triple set. 1051

XSum (Narayan et al., 2018) is a collection of 1052

227k BBC News articles ranging from 2010 to 1053

2017. The dataset covers a wide range of subjects. 1054

The single-sentence summaries are written by pro- 1055

fessionals. 1056

CNN/DailyMail (Hermann et al., 2015) dataset 1057

contains 93k news articles extracted from CNN 1058

News, and around 220k articles extracted from the 1059

Daily Mail newspapers. The summaries are human 1060

written bullet point text which are provided in the 1061

same source documents. In our experiments we use 1062

the non-anonymized version, which is commonly 1063

used in summarization research papers. 1064

PubMed (Cohan et al., 2018b) is a long docu- 1065

ment dataset of 215K scientific publications from 1066

PubMed. The task is to generate the abstract from 1067

the paper body. 1068

WikiHow (Koupaee and Wang, 2018) is a large- 1069

scale dataset of 200K instructions from the on- 1070

line WikiHow.com website. Each instance consists 1071

of multiple instruction-step paragraphs and an ac- 1072

companying summary sentence of each paragraph. 1073

The task is to generate the concatenated summary- 1074

sentences from the paragraphs. 1075

SAMSum (Gliwa et al., 2019) is a multi-turn 1076

dialog corpus of 16K chat dialogues and manually 1077
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annotated summaries. The task is to generate an1078

abstractive summary of the dialog with coherent1079

discourse structure of the original dialog.1080

E2E (Duš ek et al., 2019) is a structured data1081

to natural langauge summary dataset that provides1082

information about restaurants. The structured in-1083

puts consists of different attributes (slots) such as1084

name, type of food or area and their values. It1085

contains 50K instances of diverse descriptions of1086

the structured input introducing challenges, such1087

as open vocabulary, complex syntactic structures1088

and diverse discourse phenomena.1089

DART (Nan et al., 2021) is a text generation1090

dataset for open-domain structured data-record to1091

text generation. It consists of 82K examples from1092

variety of domains. The inputs are in semantic RDF1093

triple set form which are derived from data records1094

in tables and tree ontology of the schema. The out-1095

put generations are human annotated with sentence1096

descriptions that cover all facts in the triple set.1097

Licence details In our experiments, we use sev-1098

eral datasets (as detailed above) from public re-1099

sources . Table 8 summarizes the licences. All data1100

are solely used for research purposes.1101

A.3 Compute Infrastructure and Run time1102

Each experiment runs on a single machine with1103

8 GPUs. Depending on the training dataset size,1104

summarization models require from 5.5 hours to1105

18 hours to train. The structure-to-text datasets1106

are much smaller which takes less than 4 hours.1107

All fine-tuned models follow the BART-large trans-1108

former architecture with a total of 12 layers, 10241109

hidden dimensions, and 406M parameters. The1110

prefix-models increase the parameters size of fine-1111

tune models by 0.1% up to 2% depending on the1112

number of prefix parameters. See hyperparameters1113

details in Appendix A.1.1114

A.4 Visualization of Prefix Parameters (Cont.1115

from § 41116

To analyze the attention behaviour (similar to (Sun1117

and Lu, 2020)) we plot the attention matrix of the1118

prefix-tuned models focusing on the prefix parame-1119

ters. We use a prefix-tuned BART-Large (12-layer1120

stacked transformer) on two tasks: structure-to-text1121

generation on E2E (Duš ek et al., 2019) and sum-1122

marization on CNN/DM (Hermann et al., 2015). In1123

Figure 6, we plot the encoder self-attention distri-1124

butions A for different layers averaging over head1125

E2E DART
Method R1/R2/RL R1/R2/RL
Finetune 71.12/42.87/49.61 73.92/47.98/56.44
Prefix-tune 71.65/43.18/50.50 74.48/48.42/56.70
Prefix-tune with Blocking
UniBlock 71.27/42.81/47.80 74.37/48.00/55.94
HierBlock 72.10/43.79/51.27 74.44/48.18/56.72

Table 9: Blocked prompt design experiment re-
sults in comparison to finetuning and prefix-tuning on
structure-to-text tasks. The top-two best results across
models are bolded.

vectors. The x-axis represent the keys (ki) while 1126

y-axis denote the queries (qt). 1127

A.5 Are All Prefix Parameters Useful? (Cont. 1128

from § 6.1) 1129

We investigate the influence of prefix parameters 1130

on different layers of the network. For this experi- 1131

ments we trained BART-Large and introduced pre- 1132

fix parameters only at the top layers, lower layers 1133

and all layers (this is same as baseline prefix-tuning 1134

models). On XSum dataset, we observed a large 1135

performance gap between the models trained with 1136

top/lower layers, while we obtain the best perfor- 1137

mance when we tune all-layer prefix parameters 1138

(in Table 3 in the main text). Here, we investigate 1139

if similar perforamance gains are observed on di- 1140

alog summarization (SAMSum) and data to text 1141

generation (E2E) tasks. 1142

We show the performance scores of our exper- 1143

iments on validation datasets in Table 10. We 1144

observe similar results as the analysis on XSum 1145

dataset. Top layers prefix parameters learn salient 1146

features related to the task, though using prefixes 1147

at all layers yields better performance. 1148

SAMSum E2E
Method R1/R2/RL R1/R2/RL
Top (8-12) 50.61/24.24/40.95 66.37/38.10/50.31
Low (1-7) 41.87/19.98/34.12 62.32/33.60/46.22
All (1-12) 52.56/26.93/42.96 67.18/39.71/50.31

Table 10: Validation Rouge scores of prefix- tuned mod-
els on SAMSum (from the summarization task) and E2E
(from the structure to text task) datasets using only the
top/low layers.

A.6 Investigation of Hierarchical Prompt 1149

Design (Cont. from § 6.2) 1150

We investigate if blocking prefixes helps for 1151

structure-to-text tasks. Table 9 shows the results. 1152

Similar to summarization experiments in § 6.2, we 1153

observe improvements with hierarchical blocking 1154

on structure-to-text datasets, though the structural 1155

bias we introduce prefix-tuning models with hierar- 1156
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Figure 6: Encoder self-attention matrices A of prefix-tuned models indicating the query attention scores over all keys
(prefix+inputs) on the y-axis. The scores are averaged over all heads. The left block is for E2E dataset where the first 10 features
represent prefix features, while CNN/DM dataset on the right with first 100 features represent the prefixes.

chical blocking is more prominent in summariza-1157

tion tasks. The models with blocked prefix dis-1158

course structure have outperformed finetuning on1159

both tasks by up to 1.0 ROUGE score. We attribute1160

this to potential overfitting of finetuning models1161

on rather smaller size downstream task datasets1162

(compared to summarization tasks, E2E and DART1163

datasets are much smaller in size (Table 1)). We1164

conclude from these results that the prefix models1165

tuned with structurally biased additional set of pa-1166

rameters can yield more robust information transfer1167

outperforming finetuning models.1168

In Figure 5 we show the output summaries gen-1169

erated by some of our best discourse aware prefix-1170

tuned models in comparison to baseline fine-tuned1171

and prefix-tuned models.1172

A.7 Investigation of the Impact of Sparsity1173

(Cont. from § 6.3)1174

Spectrum Analysis: We conduct spectrum anal-1175

ysis of the encoder attention matrix A zooming in1176

on the prefix parameters to investigate if our sparse1177

models do in fact learn sparse representations. A1178

similar spectrum analysis has been used to prove1179

the sparsity of the attention matrix in Linformer1180

(Wang et al., 2020), a sparse transformer. Our goal1181

is to analyze the principal components of the sub-1182

space that captures the variation of the attention1183

scores in prefix parameters. The eigenvalues cap-1184

ture the variation of the attention scores distribution1185

along different principal components. The higher1186

the elbow in the spectrum graph, the less parame-1187

ters are used and the model learns to represent the1188

inputs with only the salient terms ignoring super-1189

Figure 7: Spectrum analysis of the self-attention matrix com-
paring the baseline (Dense) and our Sparse Prefix-Tuned (PT)
transformer model zooming in on prefix parameters of size
100. The Y-axis is the normalized cumulative singular value
of the self-attantion matrix A, and the X-axis the index of
largest eigenvalue. The results are based on BART-Large on
XSum dataset. The left plots the averages of all A on the lower
layers, while right plots averages over higher layers. Spectrum
distribution of prefixes in lower layers is more skewed than in
higher layers, meaning that, in lower layers, more information
is concentrated in the largest singular values and the rank of A
is lower.

fluous details. 1190

For our spectrum analysis, we compare the base- 1191

line prefix-tuning, which encodes a dense atten- 1192

tion matrix everywhere in the network (Dense PT) 1193

against one of our sparse prefix-tuned models with 1194

truncated attention matrix (Sparse PT), as we ex- 1195

plained in § 4.2-(a), using top-p sampling. Both 1196

models are a 12-layer stacked transformer (BART- 1197

Large) trained on XSum extreme summarization 1198

task. We apply singular value decomposition into 1199

A across different layers and different heads of the 1200

model, and plot the normalized cumulative singular 1201

value averaged over 1000 sentences. We compare 1202
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Xsum CNN/DM PubMed Wikihow SAMSum
Method R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL R1/R2/RL

Finetune
Dense 43.37/20.55/35.31 42.46/19.78/29.56 40.51/15.50/23.93 41.61/17.76/32.40 51.02/25.70/41.58
(a) TruncSA 43.10/20.17/34.90 40.58/18.80/28.36 36.01/12.46/20.90 35.89/14.02/27.88 50.38/25.55/41.46
(b) SoftSA 43.34/20.42/35.34 41.97/19.44/29.32 40.32/15.31/23/73 41.55/17.80/32.50 50.51/25.71/41.42

Prefix-tune
Dense 42.31/19.28/34.37 42.31/19.28/34.37 34.07/12.58/20.38 37.32/14.37/27.17 51.98/27.37/43.28
(a) TruncSA 43.12/19.97/35.14 42.80/20.01/29.59 38.57/14.08/22.60 37.74/14.81/27.63 52.13/27.41/43.31
(b) SoftSA 43.08/20.04/35.14 42.88/20.10/29.64 39.00/14.40/22.66 37.77/14.85/27.70 52.48/27.93/43.80
(c) HTruncSA 43.19/20.14/35.26 42.74/19.98/29.54 39.04/14.40/22.75 37.70/14.74/27.59 52.55/27.87/43.57
(d) HSoftSA 43.15/20.16/35.20 42.83/20.05/29.59 39.04/14.40/22.70 37.73/14.85/27.66 52.71/27.93/43.73

Table 11: Sparse Attention experiment results on Finetuning, and Prefix-tuning using Truncated (TruncSA) and Bernoulli
Sampling soft attention (SoftSA) and Hierarchical Truncated (HTruncSA) and Soft Attention (HSoftSA) for Prefix-Tuning. Each
model is repeated 3 times and the average results are reported. Best performing finetune and sparse prefix-tune model results are
bolded within each block.

the models’ sparsity patterns at the top and at the1203

lower layers separately as shown in Figure 7. The1204

two figures exhibit a long-tail spectrum distribution1205

across layers and heads. This implies that most1206

of the information of matrix A can be recovered1207

from the first few largest singular values. We ob-1208

serve that the spectrum distribution in lower layers1209

is more skewed than in higher layers, meaning that,1210

in lower layers, more information is concentrated1211

in the largest singular values and the rank of A is1212

lower. With sparse attention at the lower layers and1213

dense attention at the top layers, the prefix-tuned1214

models can encode salient features controlling the1215

generation.1216

Sparsity Analysis: In Table 11 we show the1217

ROUGE-1, ROUGE-2 and ROUGE-L scores of1218

fine-tuned and prefix-tuned models comparing1219

dense and sparse attention impact. We observe1220

that when sparsity is used on the prefix-parameters,1221

the prefix-tuned models outperform dense coun-1222

terparts. The performance improvements are more1223

pronounced on long document summarization tasks1224

such as Pubmed and Wikihow, reaching up to 4.01225

ROUGE-1 and 2.0 ROUGE-L score improvements.1226

A.8 Investigation of the Impact of Sparsity on1227

Hierarchically Blocked Prefixes (Cont.1228

from § 6.4)1229

In Table 5 we showed ROUGE-L results of our1230

hierarchical prefix blocking (HierBlock) model1231

against hierarchical prefix blocking model with1232

soft sparse attention (HierBlock+SoftSA). We ob-1233

serve improvements on performance on almost all1234

the summarization tasks including news summa-1235

rization (XSum and CNN/DM), dialog summariza-1236

tion (SAMSum), and clinical document summariza-1237

tion (PubMED). We find that HierBlock+SoftSA1238

models show significant improvements on dialog 1239

summarization (SAMSum) (±1.3; p<1 × 10
−4). 1240

On the structure to text generation tasks the 1241

sparsity on hierarchical blocking helps on some 1242

datasets (with E2E), though both HierBlock and 1243

HierBlock+SoftSA perform better than the baseline 1244

prefix-tuning models (see Table 9). 1245

In fact, our results from the hierarchical sparsity 1246

models (HSoftSA) in Table 4 as well as the hierar- 1247

chical blocking models (HierBlock+SoftSA) in Ta- 1248

ble 5 on SAMSum dataset is not surprising: From 1249

the original SAMSum work (Gliwa et al., 2019) 1250

and a very recent dialog summarization work (Chen 1251

et al., 2021), we know that the main difficulties 1252

of summarizing the dialogues originates partially 1253

from the inherent discourse structures in multi-turn 1254

dialogues and that models lacking this property 1255

perform poorly. Both the hierarchical blocking 1256

structures and sparsity on the prefix-parameters 1257

can enrich the models with the discourse structure 1258

it thrives to generate summaries. 1259

A.9 Automatic Evaluations (Cont. from § 5) 1260

For model evaluations we use ROUGE-1/2/L us- 1261

ing Python rouge-score 0.0.4 version licensed un- 1262

der the Apache 2.0 License. We use the default 1263

ROUGE script rouge.py from the GEM evaluation 1264

shared task. 1265

A.10 Human Evaluations (Cont. from § 6.5) 1266

We perform human evaluations to establish that 1267

our model’s ROUGE improvements are correlated 1268

with human judgments. We compare the genera- 1269

tions from four models: baseline prefix-tune (PT), 1270

Hierarchically Blocked PT (HierBlock/HB), Hier- 1271

archical Soft Sparse Attention PT (HSoftSA) and 1272

the ensemble of the blocked sparse model (Hi- 1273
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Criteria Prefixtune HierBlock Prefixtune HSoftSA Prefixtune HierBlock+SoftSA
wins wins same wins wins same wins wins same

factuality 20 59 34 27 48 39 40 45 28
relevance 33 48 32 25 39 50 46 40 27
gramaticality 27 40 46 18 42 54 45 31 37
coherence 31 42 40 29 54 40 43 37 33
overall 33 58 22 26 54 34 44 41 28
Criteria HierBlock HSoftSA HierBlock HierBlock+SoftSA HSoftSA HierBlock+SoftSA

wins wins same wins wins same wins wins same
factuality 47 25 41 40 29 44 37 32 44
relevance 42 39 32 40 28 45 39 36 38
gramaticality 34 32 47 28 23 62 42 28 43
coherence 39 37 37 31 27 55 41 37 35
overall 48 39 26 47 35 31 39 35 39
Criteria Finetune HierBlock Finetune HierBlock+SoftSA

wins wins same wins wins same
factuality 14 31 43 8 7 10
relevance 14 36 38 8 6 11
gramaticality 20 19 49 7 7 11
coherence 23 18 47 9 7 9
overall 22 40 26 10 6 9

Table 12: Head-to-Head comparison of human evaluations on random subset of Wikihow dataset.
Document Human Summary Model-A Model-B Faithfullness Relevance Grammatically Coherence Overall

Table 13: Human annotation screen as used in spread-sheet format.

erBlock+SoftSA). We use the following as eval-1274

uation criteria for generated summaries, which we1275

inlcude in the instructions for the annotators.1276

Faithfulness: Are the details in the summary1277

fully consistent with the details in the source docu-1278

ment? The summary must not change any details1279

from the source document. The summary also must1280

not hallucinate any information that is not in the1281

source document.1282

Relevance: Does the summary capture the key1283

points of the text? Are only the important as-1284

pects contained in the summary? Is there any ex-1285

tra/irrelevant information?1286

Grammaticality: Considers the grammatical1287

quality of each individual sentence in the summary.1288

For each sentence, does it sound natural and gram-1289

matically correct?1290

Coherence: Does the summary form a cohesive,1291

coherent whole? Is it well-written, well-structured1292

and well-organized? Is it easy to follow? It should1293

not be a heap of related information, but should1294

build from sentence to sentence to a coherent body1295

of information about a topic.1296

Overall Quality: Given the input context, is the1297

summary satisfactory? Does the summary provide1298

good quality information to the user? Is it helpful,1299

informative and detailed enough given the informa-1300

tion that’s contained in the text? Which summary1301

of the two do you prefer best overall? 1302

Annotator Details: Human annotation was con- 1303

ducted by 9 professional raters (7 linguist raters, 1 1304

linguist subject-matter-expert and 1 linguist) em- 1305

ployed by an outsourcing company handling con- 1306

tent moderation. All raters are monolingual native 1307

speakers of English; 6 have a minimum of high 1308

school degree or equivalent and 3 have a bachelor’s 1309

degree. Raters received compensation starting at 1310

$18 per hour (which is close to 2.5 minimum wage 1311

in the state where the raters are located) and were 1312

also provided with Premium Differential as part 1313

of their contracts. Each rater conducted between 1314

44 and 175 pairwise evaluations. Data collection 1315

protocol was reviewed by a expert reviewers and re- 1316

ceived expedited approval as the data presented to 1317

the raters did not contain any sensitive or integrity- 1318

violating content. Participant consent was obtained 1319

as part of the non-disclosure agreement signed by 1320

each rater employee upon hire. All raters have also 1321

signed a sensitive content agreement that outlined 1322

the types of content they may encounter as part of 1323

their employment, associated potential risks and 1324

information and wellness resources provided by 1325

the outsourcing company to its employees. 1326

Human Evaluation Procedure: We randomly 1327

select 50 samples from the Wikihow test set and ask 1328

9 trained judges to evaluate them on the 5 criteria 1329

defined above. We perform head-to-head evalu- 1330
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ation (more common in DUC style evaluations),1331

where judges are shown the original document, the1332

ground truth summary and two model summaries1333

in random order. The judges are then asked to1334

compare two model summaries based on each of1335

the five criteria. In each case, a judge either has1336

the option to choose a model summary that ranks1337

higher on a given criterion (i.e., respond by iden-1338

tifying the winning summary), or assert that both1339

summaries are similar given the criterion and rate1340

the comparison as "same". The evaluation of each1341

pair of summaries across all 5 criteria takes on av-1342

erage between 5 and 10 minutes to complete. The1343

raters were shown the data, as shown in Table ??,1344

to be rated in a spread sheet, where each line con-1345

tained multiple columns in sequence: document,1346

human written summary, model-A generated sum-1347

mary, model-B generation summary, and five addi-1348

tional columns indicating faithfulness, relevance,1349

gramaticality, coherence, overall quality. The head-1350

ers of the columns were clearly stated. The rates1351

enter a/b/same in each corresponding cell when1352

comparing summaries head-to-head based on each1353

criteria.1354

Human Evaluation Results: In Table 12 we1355

show head-to-head evaluation scores on all five1356

metrics showing wins from each model as well as1357

when both are selected as equal. Each sub-table1358

compare a different model. Our Hierarhical Block-1359

ing (HierBlock) and Hierarchical Soft Sparse At-1360

tention (HSoftSA) models beat prefix-tuning and1361

HierBlock significantly (p < .05) beats most of our1362

sparse models on all axes including factuality. In1363

On a small data annotation, we also com-1364

pare two of our best models HierBlock and Hi-1365

erBlock+SoftSA againts best finetuning model gen-1366

erations, which are shown in the same Table 12.1367

We observe that in most cases both of our models1368

are prefered as good as finetuning on all criteria,1369

except on overall, the HierBlock summaries are1370

ranked much higher than fine-tuning models.1371

A.11 Low-data settings (Cont. from § 6.6)1372

In Figure 8, we plot the ROUGE-1, ROUGE-2 and1373

ROUGE-L scores averaging scores from two sum-1374

marization tasks (XSUM and Wikihow). Our struc-1375

tured prefix parameter tuned models, HierBlock1376

(blue) and its sparse extension which uses sparse1377

features, HierBlock+SA (red) outperforms Prefix-1378

tuned models (olive), while using the same num-1379

ber of parameters in low resources settings (when1380
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Figure 8: Quantitative analysis on low-resource settings.
The charts show average of ROUGE-1, ROUGE-2, ROUGE-
L scores from models trained on two summarization tasks:
XSUM and Wikihow. Our structurally biased parameter tuned
HierBlock (blue) and HierBlock+SA (red) consistently outper-
forms the baseline Finetuned (green) and Prefix-tuned models
(olive) when <50% training data is used.

<50% training samples are used). Both models out- 1381

perform Finetuned models (green) on ROUGE-1 1382

and ROUGE-2 metrics (Figure 8-(a)&(b)). While 1383

the HierBlock models show consistent perfor- 1384

mance, we conclude that on low-resource settings 1385

HierBlock-SA performance is more stable. 1386
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