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Abstract

Foundation models for time series imputation remain largely unexplored. Recently, two
such models, TabPFN-TS and MoTM, have emerged. These models share a common philosophy
that places them within the family of time-indexed foundation models. This paper presents
the first large-scale empirical study of these models for zero-shot imputation, which enables
missing value recovery without retraining across a wide range of scenarios. We conduct
extensive univariate experiments across 33 out-of-domain datasets (=~ 1.3M imputation
windows) and evaluate their ability to integrate covariates at inference time to improve
accuracy without fine-tuning. Our results demonstrate that time-indexed foundation models
are a powerful and practical step toward achieving general-purpose, zero-shot imputation for
real-world time series.

1 Introduction

Real-world time series from domains such as healthcare, industry, and climate science are often irregularly
sampled or incomplete due to sensor failures and decentralized data collection (Schulz & Stattegger, (1997}
Clark & Bjernstad) 2004). Reliable imputation is thus a critical first step toward downstream tasks like
forecasting, classification, or anomaly detection. Yet, while recent deep learning methods have advanced
imputation performance (Cao et al., |2018; |Du et al., |2023a)), they typically lack robustness to distribution
shifts and fail to generalize to out-of-domain data.

Recently, zero-shot forecasting models have emerged in the time series community, enabling inference on
unseen datasets without retraining. This shift has given rise to time series foundation models, offering key
benefits: (i) a single deployable model across diverse domains, (ii) strong performance on new datasets,
often exceeding supervised baselines and (iii) emerging capabilities beyond simple memorization. While
forecasting-oriented foundation models are now relatively well-studied (Auer et all 2025b; Das et al.; [2024;
Woo et al., [2024; |Ansari et al., [2024), imputation-focused counterparts remain scarce. Zero-shot imputation
in out-of-domain settings is particularly challenging due to heterogeneous sampling rates, diverse missingness
patterns, unaligned or irregular time series, and the potential presence of covariates whose predictive value is
often underexploited.

A promising direction to overcome these challenges lies in continuous-time modeling, which learns a contextual
representation H (t) at each timestamp ¢, thereby casting imputation as a regression problem. Within this
paradigm, time-indexed foundation models such as TabPFN-TS (Hoo et al.| [2025) and MoTM (Le Naour et al.l
2025|) have recently been introduced, enabling zero-shot imputation through continuous-time representations.
These models offer strong out-of-domain generalization without requiring retraining, making them particularly
attractive for real-world applications where training data and computational resources are limited.

In this paper, we conduct the first extensive study of time-indexed foundation models for time series
imputation, and summarize our key contributions as follows:

« Extensive univariate evaluation. We evaluate TabPFN-TS and MoTM across 33 out-of-domain
univariate datasets (covering roughly 1.3M windows to impute), benchmarking them against a wide
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range of baselines. TabPFN-TS yields the highest overall performance with a notable margin, whereas
MoTM also surpasses all supervised and local baselines but remains behind TabPFN-TS.

o Evaluating covariate integration without retraining. On three complex datasets, we show that
both foundation models can seamlessly incorporate additional covariates at inference time, drastically
improving imputation accuracy without any covariate-specific pretraining.

o Limitations and discussion. We analyze the practical constraints of these approaches and identify
scenarios where they are most effective. We also discuss potential directions toward more efficient
and generalizable foundation models for time series imputation.

2 Considered imputation baselines for the benchmark

This section presents the imputation baselines considered in the benchmark, covering a spectrum of approaches
from simple statistical heuristics to modern foundation models. In Section we present local and supervised
models, which, respectively, require dataset-specific training or rely on handcrafted rules; and in Section
we present time-indexed foundation models, which generalize across datasets in a zero-shot manner without
retraining. Further information on the models and their implementations can be found in Section [A]

2.1 Local imputers and supervised models

Local Imputers. Within the benchmark, local imputation methods serve as fundamental baselines due to
their simplicity, interpretability, and low computational cost. These approaches estimate missing values using
only neighboring observations or straightforward statistical rules. Representative techniques include Linear
Interpolation, which connects adjacent observations under a constant-rate assumption; Last Observation
Carried Forward (LOCF), which propagates the most recent available value; and the Seasonal Naive
method, which repeats the last observed value of a given periodicity (e.g., daily or weekly). While these
methods perform adequately for small and isolated gaps, they generally fail to capture long-term dependencies,
seasonal structures, or nonlinear dynamics commonly observed in real-world time series.

Supervised Models for Imputation. Supervised models constitute the conventional approach for tackling
complex imputation tasks, where models are trained end-to-end on specific datasets and evaluated on held-out
test sets. These task-specific models — such as SAITS (Du et al.| [2023a), BRITS (Cao et al.| [2018), CSDI
(Tashiro et al) 2021), TimesNet (Wu et al., 2023)), or TimeMixer++ (Wang et al., 2025) — are typically deep
learning architectures based on recurrent networks, attention mechanisms, or diffusion processes. Their
main advantage lies in their ability to capture intricate temporal dependencies and model complex data
distributions through direct optimization on the target dataset. However, their reliance on large training
datasets often limits their generalization ability in zero-shot or cross-dataset scenarios, requiring retraining
on each new task.

2.2 Time-Indexed Foundation Models for Imputation

The emergence of foundation models marks a paradigm shift toward general-purpose approaches for time
series analysis. These models are characterized by their zero-shot capability: rather than being fine-tuned for
the imputation task, they directly apply their pre-acquired knowledge to new data.

Models such as MoTM (Le Naour et all [2025) and TabPFN-TS (Hoo et al., 2025) differ from conventional
foundation models for time series forecasting, which often rely on patch-based attention architectures or
extended LSTM variants (e.g., xLSTM in TiReX (Auer et al., 2025b))). Patch-based forecasters are trained to
predict ground truth values over a given horizon conditioned on sequences of dense fully-observed contexts.
However, such models do not handle the diverse missingness patterns of irregular time series inherent to the
imputation task. On the other hand, both MoTM and TabPFN-TS adopt a continuous-time modeling design
that naturally generalizes to unobserved timestamps and allows, at inference time, to: (i) handle irregular or
unaligned time series, (ii) operate across different sampling rates, (iii) impute arbitrarily missing regions, and
(iv) integrate covariates through concatenation with contextual representations.
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In essence, these two time-indezed models learn a contextual representation H () at every timestamp ¢t. A
regressor r¢(-) is then applied to map H (t) to the observed time series value z(t). Yet, despite their conceptual
proximity, both models differ substantially in their architectural design. Below we describe both methods.

MoTM (Mixture of TimeFlow Models). MoTM (Le Naour et al. 2025) extends the continuous-time
modeling paradigm by leveraging a sophisticated feature extraction mechanism inherited from the TimeFlow
architecture (Le Naour et al., [2024)). Its core principle is to represent any time series through a pre-trained
basis of modulated Implicit Neural Representations (INRs).

(i) Representation Learning via Modulated INR Basis. Specifically, MoTM does not learn a single function for
the time series but rather a basis of K distinct INRs. Each INR is a small neural network, parameterized
by a hypernetwork (Dupont et all |2022), that maps a continuous time coordinate t to a feature vector.
These basis functions are "modulated" in the sense that their parameters are dynamically generated for
each new window, allowing them to capture a wide range of temporal patterns (e.g., trends, seasonalities,
high-frequency oscillations) without being restricted to predefined frequencies like Fourier features. For any
given timestamp ¢, the rich contextual representation H (t) is formed by concatenating the outputs of all K
basis INRs evaluated at that time.

(i) In-Context Imputation via Local Regression. The key mechanism of MoTM for imputation lies in its local,
in-context fitting procedure. Given a time series with missing values, MoTM first considers a context window of
observed points. It then fits a simple ridge regressor to learn the linear mapping from the high-dimensional
representations H (t) of these observed points to their actual values 2:(¢). This local regressor, fitted specifically
on the available context, is finally used to predict the values at any missing timestamp ;55 by applying it to
the corresponding representation H (tmiss)-

This framework naturally extends to: e Covariates integration with no retraining. Assuming full observation,
additional contextual information available at timestamp ¢ are simply stacked to the target contextual
representation H(t). Ridge adaptation proceeds then in the same way as in the univariate setting, leaving the
pretrained basis of INRs unchanged. e Quantification of uncertainty. By replacing the ridge regressor with a
quantile regressor, MoTM can generate quantile predictions to produce uncertainty quantification intervals
around the imputed values.

TabPFN-TS. |Hoo et al.| (2025) apply the continuous-time modeling philosophy by reframing the time
series imputation task as a standard tabular regression problem. This allows the direct application of the
powerful, pre-trained TabPFN model (Hollmann et al. 2025) for zero-shot time series analysis. The model’s
design philosophy is conceptually inverse to that of MoTM: it pairs a simple, handcrafted feature representation
with a highly expressive regression model.

(i) Handcrafted Temporal Representations. Unlike MoTM’s learned representations, TabPFN-TS employs a
straightforward feature engineering approach. The contextual representation H (t) for each timestamp ¢ is
constructed by combining the normalized time index itself with a set of pre-defined Fourier basis functions
(i.e., sine and cosine pairs). These Fourier features are chosen to capture key seasonalities expected in the
data (e.g., daily, weekly). This method results in a simple, fixed feature set that explicitly encodes temporal
position and periodicity, serving as the input for the regression model (see Section .

(ii) Imputation via In-Context Learning with TabPFN. The core expressive power of TabPFN-TS resides in its
regressor, the TabPFN model. TabPFN is a large transformer-based architecture pre-trained on hundreds of
millions of synthetically generated tabular regression tasks. Its defining characteristic is in-context learning:
at inference time, it ingests a set of observed data points—pairs of temporal features and their corresponding
values, (H (tops), Z(tops)) as a single "prompt." The model processes this entire context within its attention
layers to infer the underlying functional relationship between the features and the series values. It then applies
this inferred function to predict the values x(tmiss) for the query features H ({yiss) of missing timestamps, all
within a single forward pass and without any gradient-based fine-tuning.

This framework also naturally supports the Integration of covariates with no retraining and Uncertainty
quantification. In particular, TabPFN inherently models uncertainty by returning distribution over outputs.
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3 Experiments

We design our experimental study to assess two key aspects: (i) zero-shot generalization across out-of-domain
datasets and (ii) the ability to incorporate auxiliary covariates without retraining. Thus, experiments are
organized into two main parts: a large-scale univariate benchmark covering 33 datasets (Section , and a
focused covariate integration study on three datasets (Section .

3.1 Univariate Benchmark: Out-of-Domain Zero-Shot Imputation

In this section, we evaluate the out-of-domain (OoD) zero-shot performance of TabPFN-TS and MoTM across
33 diverse real-world datasets. These datasets cover a wide range of sampling rates (5min, 10min, 15min,
30min, 1h) and exhibit heterogeneous temporal patterns and seasonalities. They originate from open-source
collections spanning multiple domains, including climate, energy, traffic, etc. Most are drawn from LOTSA
(Woo et al., 2024) and GIFT-eval (Aksu et all, [2024), with strict safeguards to prevent leakage from the
three pretraining datasets of MoTM. For all details on the datasets please refer to Section In total, the
evaluation involves more than 1.3M incomplete windows.

Protocol and Baselines. All datasets are split chronologically intro train, validation and test fractions
with respective ratios specified in Section The test split is divided into four-week segments. For each
window, we generate four distinct missing data scenarios, by randomly removing: either (i) 50% and (ii) 70%
of the observations (Pointwise scenarios); or (iii) two and (iv) four entire days (Block scenarios). Note that
only the supervised baselines (denoted as Task Specific Models) benefit from the train and validation sets.
The benchmark includes all the methods described in Section [2] Implementation details, hyperparameters,
and method-specific configurations are provided in Section [A]

3.1.1 Main results

The aggregated results of our univariate benchmark are shown in Figure [I} summarizing the mean normalized
MAE across all 33 out-of-domain datasets. Each bar represents the overall imputation accuracy of a
model averaged over the four missingness regimes. Models are grouped into three categories reflecting
their underlying paradigm: (i) local methods, which impute from within each series without any learned
representation; (ii) task-specific models, trained in a supervised manner on each dataset; and (iii) foundation
models evaluated in a fully zero-shot setting. To complement these aggregated results, we provide in Figure
a critical difference (CD) diagram (Ismail Fawaz et al., 2019) summarizing the average ranks of all models
across datasets and missingness scenarios.

TabPFN-TS

MoTM

SAITS

BRITS

Linear

Seasonal naive

Model

LOCF

CsDI
Timesnet
Timemixerpp

Tslanet

0.0 0.2 0.4 0.6 0.8
Agg. Normalized MAE (mean)

B Foundation Models (Zero Shot) mmm Task Specific Models mm Local Models]

Figure 1: Univariate Benchmark on Out-of-Domain datasets, reported results are z-normalized MAEs.
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Figure 2: Critical difference diagram over all 33 univariate OOD zero-shot imputation tasks.

Results. As shown in Figures[l] and [2], three consistent trends emerge from the benchmark.

(i) Time-index foundation models lead the benchmark. Both TabPFN-TS and MoTM achieve the lowest aggregated
normalized errors and the best average ranks, substantially outperforming all supervised and local baselines
despite being evaluated in a fully zero-shot setting. The CD diagram further confirms that these two models
are statistically superior compared to all others, except MoTM compared to SAITS. Among them, TabPFN-TS
attains the top performance (MAE = 0.293, avg. rank = 1.35), suggesting that large-scale synthetic pretrained
regressor combined with explicit temporal encodings confers a measurable advantage over the Ridge on top
of learned continuous representations.

(it) Task-specific models show limited robustness. While SAITS achieves competitive accuracy (0.386, avg. rank
= 3.56), other supervised approaches such as BRITS, CSDI, or TimesNet lag behind, sometimes performing
worse than simple local heuristics (e.g., Seasonal Naive, LOCF). This mixed behavior highlights the limited
generalization capacity of fully supervised models, which tend to overfit dataset-specific temporal dynamics
— particularly when training data is scarce.

(i) Local baselines remain resilient. Classical approaches leveraging temporal priors still deliver reasonable
performance in heterogeneous settings, as reflected in both their MAFE and ranking consistency. However,
the pronounced gap separating them from foundation models clearly illustrates the benefits of pretraining
time-indexed models, which provide both accuracy and adaptability without retraining.

Overall, the aggregated metrics and the rank-based analysis provide clear evidence that foundation models

— particularly TabPFN-TS — deliver the most consistent and robust performance for zero-shot time-series
imputation across diverse domains. MoTM also achieves an honorable level of accuracy despite relying on a
comparatively simple regressor, underscoring the effectiveness of its pretrained time-indexed representations.
Complete benchmark results are reported in Section while additional experiments on datasets with lower
sampling rates (daily and weekly) are provided in Section

3.1.2 Uncertainty quantification results

Beyond pointwise accuracy, it is important to assess how well models capture predictive uncertainty. Both
TabPFN-TS and MoTM natively support quantile estimation, allowing them to produce calibrated uncertainty
bounds around each imputed value. Among the baselines, only CSDI provides comparable quantile predictions.

We report in Table [1] the average Weighted Quantile Loss (WQL) (see Section for loss definition) across
eleven representative datasets (full results and more details in Section . This metric evaluates both
imputation accuracy and quantile calibration. The WQL is computed over nine quantile levels, from 0.1 to
0.9, providing a comprehensive measure of the models’ probabilistic consistency across the predictions.

Table 1: Weighted Quantile Loss (WQL) average scores on eleven representative univariate datasets.

TabPFN-TS MoTM CSDI SAITS-Q
WQL 0.241 0.316 0.453 0.476
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Results. Quantitatively, TabPFN-TS achieves the lowest overall WQL score, followed by MoTM and CSDI.
SAITS-Q, a variant of SAITS where one model is trained independently per quantile level, obtains the highest
WQL. This suggests that foundation-based models such as TabPFN-TS and MoTM not only reconstruct missing
values more accurately but also provide better-calibrated uncertainty estimates.

Qualitative examples in Figure [] confirm these trends: both foundation models adjust their uncertainty
bands (5-95 and 25-75 quantile ranges) to local signal variability. TabPFN-TS produces sharper, high-fidelity
reconstructions that closely follow the ground truth, while MoTM yields smooth yet robust imputations with
stable and well-calibrated uncertainty envelopes. Additional examples are provided in Section [C.3.3}

NUAVAWMM ‘W\/V\MM

-2
0.0 0.2 0.4 0.6 0.8 1.0
—— Ground Truth « Context TabPFN IQR 5-95 [ TabPFN IQR 25-75 —— TabPFN Quantile 0.50 ‘
(a) TabPFN on JenaWeatherH dataset
5]
1]
° g A
»«\&/ My g
—21
0.4 0.6 0.8 1.0
—— Ground Truth - Context MoTM IQR 5-95 [0 MoTM IQR 25-75 —— MoTM Quantile 0.50 I

(b) MoTM on Hog dataset

Figure 3: Qualitative quantile results in the 70% missing values scenario (Pointwise 2).

3.2 Integration of Covariates in Zero-Shot OoD Imputation

For a model to be practically deployable in real-world applications, it must be capable of incorporating
covariates, which often enhance predictive accuracy by providing additional contextual information. This
requirement is recognized as one of the major challenges for foundation models in time series forecasting as
well (Auer et al 2025a). In this section, we investigate how TabPFN-TS and MoTM handle covariates in a
zero-shot setting. We conduct experiments on three datasets where the dependence of the time series values
on covariates ranges from weak to critical, in order to evaluate how efficiently they integrate this additional
information into their imputations.

Datasets, Baselines, and Protocol. We evaluate the models on imputation tasks across three datasets:
e PV-France; aggregated photovoltaic (PV) production curves with the associated global solar irradiance
as a covariate, ® Wind-France; aggregated wind production curves with wind speed as a covariate, and e
Load-France; aggregated electricity consumption curves with temperature as a covariate. Further details on
the datasets and preprocessing are provided in Section [B.2]
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The train / validation / test splits follow the same protocol as in Section A key difference is that
at inference, the covariate is always assumed to be fully observed. We compare the following methods:
TabPFN-TS and MoTM both with or without covariates, a ridge regression using only the covariate to predict
the target variable, and SAITS. Results are showcased in Table [2]

Table 2: Complete MAE results on datasets with covariates. The best score for each setting is shown in bold,
second-best is underlined.

TabPFN-TS MoTM Other baselines

Dat " Setti TabPFN-TS TabPFN-TS MoTM MoTM Ridge SAITS
atase cting (W/ Covar) (W/o Covar) (W/ Covar) (W/o Covar) on Covar Multivar

Pointwise 1 0.045 0.109 0.054 0.102 0.115 0.390

PV-Fr Pointwise 2 0.051 0.160 0.069 0.131 0.123 0.443

-rrance Blocks 1 0.052 0.175 0.086 0.191 0.104 0.496

Blocks 2 0.049 0.190 0.086 0.179 0.106 0.485

Pointwise 1 0.101 0.098 0.128 0.186 0.318 0.359

Wind-France Pointwise 2 0.138 0.153 0.161 0.244 0.322 0.408

- Blocks 1 0.275 0.470 0.335 0.600 0.321 0.590

Blocks 2 0.248 0.470 0.317 0.594 0.335 0.581

Pointwise 1 0.037 0.037 0.138 0.146 0.667 0.292

Load-Fr Pointwise 2 0.056 0.059 0.158 0.164 0.667 0.321

cac-trance Blocks 1 0.143 0.146 0.236 0.243 0.669 0.490

Blocks 2 0.170 0.178 0.262 0.270 0.674 0.498

Integrating covariate improvement / 31.54% / 31.03% / /

Results. As shown in Table[2] incorporating covariates generally improves performance, both for TabPFN-TS
and MoTM. Substantial gains are observed on datasets for which the covariate strongly informs about the
target variable (global irradiance for PV power production, wind speed for wind power production). Under
these scenarios and particularly in the challenging block settings, incorporating covariates allows MoTM to
outperform the impressive univariate performances of TabPFN-TS. This emphasizes how fundamental it is
to enhance pretrained univariate foundation models with additional contextual information for them to be
deployable in real-world applications. On the other hand, weaker relationships, such as between national-level
electricity demand and average temperature, yield marginal to no improvement. Overall, TabPFN-TS (With
Covar) achieves the best results in most scenarios, confirming its strong capacity to integrate heterogeneous
contextual inputs for robust zero-shot imputation.

3.2.1 Qualitative covariates results

To better visualize the impact of incorporating covariates, we present qualitative results for both TabPFN-TS
and MoTM. Figure [4 and Figure [5] show examples from the Wind-France dataset, illustrating how the inclusion
of covariate information helps each model reconstruct the four one-day missing blocks more accurately.

3

5]

1]

0] 1 / /w”s
—1AM{,\\Q’ % FW

0.0 0.2 0.4 0.6 0.8 1.0

—— Ground Truth . Context —— TabPFN (no covar) TabPFN (with covar) Covariate

Figure 4: Wind-France dataset. TabPFN-TS qualitative results with and without covariates in the four one-day
missing blocks scenario.
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Figure 5: Wind-France dataset. MoTM qualitative results with and without covariates in the four one-day
missing blocks scenario.

Results. As illustrated in Figures [ and [5] incorporating covariates visually improves the reconstructions
for both TabPFN-TS and MoTM. The covariate-enhanced versions capture missing intervals more smoothly and
better follow short-term temporal variations within the four one-day gaps. We observe that the interpolations
of TabPFN-TS align more closely with the ground truth and preserve sharper transitions across missing regions.
In contrast, if MoTM consistently benefits from covariate information, its reconstructions sometimes struggle
to capture sudden changes with great accuracy. More covariate plots are showcased in Section |D| confirming
that the most visible gains are observed on the Wind-France and PV-France datasets, while the impact
remains limited for Load-France.

4 Practical considerations

While the previous sections establish the strong zero-shot performance of foundation models, it is equally
important to assess their practical limitations and behavioral consistency under different conditions. This
section provides complementary analyses covering two key aspects: (i) the computational efficiency of the
proposed models across datasets of varying scales, and (ii) their robustness to different missingness patterns.

4.1 Computational cost

In this section, we compare the computational efficiency of the proposed models across datasets of varying
sizes in Figure [l The reported times correspond solely to inference for TabPFN-TS, MoTM, and Linear, as
these methods operate in a zero-shot manner. For the supervised baseline SAITS, we report the total time
including both training and inference. The analysis spans four representative datasets — ranging from small
(Covid19 Energy) to large-scale (Traffic) — to illustrate the scalability and practical trade-offs between
methods. For each dataset, the reported MAE results are averaged over the four missing-data scenarios. All
experiments are carried out on a single NVIDIA H100-80G GPU.

Results. As shown in Figure [6] TabPFN-TS consistently achieves the lowest MAE but at the cost of
substantially higher inference time, especially on large datasets. In contrast, MoTM offers a favorable balance
between accuracy and efficiency, being up to two orders of magnitude faster while maintaining competitive
performance. SAITS attains moderate error levels but requires significant computational overhead due to
its supervised training phase. Finally, Linear is the fastest overall but shows markedly poorer accuracy,
particularly on more complex datasets. These results highlight the trade-off between zero-shot generalization
and computational cost, emphasizing MoTM as a scalable alternative to TabPFN-TS.
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Figure 6: Compute time (log-scale) versus MAE across datasets of increasing size.

4.2 Breakdown by missing patterns

A detailed breakdown of results across the four missingness regimes is provided in Section The
analysis highlights a clear dependence of model performance on the structure of the missing values. For
sparse pointwise removal (50-70% pointwise removal), Linear Interpolation remains highly competitive,
occasionally matching foundation models—indicating that simple local continuity assumptions suffice when
gaps are isolated. However, performance rapidly degrades under structured, block-wise missingness (two
and four one-day gaps), where both TabPFN-TS and MoTM maintain stable accuracy and clearly dominate all
baselines. Overall, these results confirm the robustness of foundation models to temporally correlated gaps,
while emphasizing that local methods remain effective only in low-missingness, unstructured regimes.

5 Conclusion and Discussion

Our experiments demonstrate that TabPFN-TS achieves very strong zero-shot performance, both in univariate
imputation and when integrating covariates. Nevertheless, its inference times remain a significant limitation
for some real-world deployment scenarios. MoTM also delivers strong zero-shot performance, outperforming all
supervised baselines on the univariate benchmark. Similarly to TabPFN-TS, its ability at leveraging additional
contextual information is remarkable. However, it is generally less accurate than TabPFN-TS, although it
offers substantially faster inference.

These two highly flexible foundation models represent a significant step forward toward “off-the-shelf” zero-shot
imputation solutions applicable across a wide range of domains. A promising avenue to combine performance
and efficiency would be to build a more powerful regressor on top of the modulated INR features used by
MoTM, replacing the current ridge regressor with a model trained via in-context learning, potentially merging
the strengths of both approaches.
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A Baselines details and implementation

In this section, we present the imputers included in our experimental evaluation and detail their implementation.
As introduced in Section [2] our selection spans a broad spectrum: from simple naive baselines, through
state-of-the-art supervised deep-learning models, to recent time-indexed foundation models. This diversity
ensures coverage of both lightweight, assumption-free methods and advanced architectures capable of capturing
long-range and cross-variable dependencies.

A.1 Local imputers

We considered three naive baselines: a simple linear interpolation, a last observation carried forward, and a
seasonal repeat. Note that each imputer operates independently on each incomplete segment and does not
use any cross-variable information.

Linear. This baseline imputes a missing value at timestamp ¢ by linearly interpolating between the closest
observed neighbors surrounding the gap. Concretely, it uses the last observation before ¢ and the first
observation after ¢ as anchors and fills the interior points on the straight line between them. If a leading gap
has no past anchor, we adopt a next-observation-carried-backward (NOCB) fallback; if a trailing gap has no
future anchor, we fall back to last-observation-carried-forward (LOCF).

LOCF. This baseline imputes a missing value at timestamp t by copying the most recent available past
value (the last observation before t). If the series begins with a gap and no past value exists, we perform a
single NOCB initialization by copying the first available future observation backward.

Seasonal Naive. This baseline imputes a missing value at timestamp ¢ by using the observation from
the previous seasonal period, i.e., the value at ¢t — S. The seasonal period S is pre-defined for each dataset
based on its dominant frequency (e.g., daily or weekly). If the value at ¢t — S is also missing, the method
sequentially searches for an available observation at other seasonal timestamps (e.g., t + S, then ¢t — 2.5, etc.).
If this search fails to yield a value, the method falls back to a simple LOCF imputation.

A.2 Supervised imputers

We considered six supervised deep-learning baselines spanning complementary neural paradigms: recurrent,
Transformers, and diffusion-based approaches. These include methods built specifically for imputation as well
as recent multi-task time-series backbones (convolutional and token-mixing/Transformer hybrids) that tackle
imputation via masked-reconstruction training. This diversity probes different inductive biases and offers a
balanced accuracy/efficiency trade-off.

All models implementations are taken from the PyPOTS (Du et al., [2023b) Python toolbox and trained on
fixed-length windows where a subset of observed entries is randomly masked; each model reconstructs these
masks from the remaining context (values + binary observation mask). Inputs are z-score normalized per
variable, training minimizes the mean absolute error (MAE) on masked positions only, model selection uses
validation MSE with early stopping, and test metrics are computed on the 4 missing points scenario detailed
in Section [3.1] Hyperparameter choices were inspired by the default settings recommended by each method’s
authors in their original papers and/or public implementations. Note that we use the Adam optimizer
(Kingma & Bay, [2015) for all models with a batch size of 64, train for at most 50 epochs, and apply early
stopping with a patience of 5 epochs.

SAITS. A Transformer imputer with two diagonally-masked self-attention (DMSA) blocks that jointly
capture temporal and cross-feature dependencies; a learned gating mechanism combines both blocks to predict
missing values efficiently (Du et al., [2023al).

Hyperparameters. We use Nayers = 2, dmodel = 256, Nheads = 4 With d = d, = 64, feed-forward size dg, = 128
and dropout = 0.1. This setting follows the authors’ recommended defaults and balances capacity with
training stability.
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BRITS. A bidirectional RNN imputer with learned temporal decay that processes each window forward
and backward, jointly estimating hidden states and missing values while enforcing consistency between
directions (Cao et al., |2018]).

Hyperparameters. A single-stack bidirectional GRU with rnn_ hidden_ size = 64 and dropout = 0.3. This
mirrors common BRITS configurations and provides a compact baseline for irregular gaps.

CSDI. A conditional diffusion imputer that models p(Xmiss | Xobs) via score-based denoising; training adds
Gaussian noise to targets and conditions the denoiser (Transformer/U-Net with time embeddings) on values
and masks, enabling stochastic imputations at inference (Tashiro et al., [2021)).

Hyperparameters. Transformer/U-Net backbone with niayers = 4, Nheads = 4, Nchannels = 64; time, feature,
and diffusion embeddings of sizes 128, 32, and 128, respectively. We use naifusion_steps = 90, and a quadratic
noise schedule type. These values track the public defaults for efficient training while preserving sampling
quality.

TimesNet. A multi-periodic convolutional model that folds each 1D series into 2D tensors along discovered
periods and applies multi-scale 2D CNN blocks to capture intra- and cross-period structure; we train it for
masked-value reconstruction (Wu et al., 2023).

Hyperparameters. We set Niayers = 2, dmodel = 128, dgn = 256, Nkernels = 6, top__k= 3, and dropout = 0.1.
This lightweight configuration keeps computation modest while retaining the multi-periodic 2D convolutional
capacity.

TimeMixer++4. A token-mixing hybrid (Transformer/MLP) designed for multi-periodic patterns with
lightweight mixing blocks and skip connections; adapted here to imputation by reconstructing randomly
masked entries from the observed context (Wang et al.| |2025)).

Hyperparameters. We use Niayers = 3, dmodel = 64, dgn = 128, top_k= 8, Nkerncls = 6, Nheads = 4, With
channel mixing and channel independence, dropout = 0.1, and downsampling (Ndownsampling layers = 3 and
Ndownsampling_window = 2). This mirrors the authors’ small /efficient setting adapted for masked reconstruction.

TSLANet. A lightweight convolutional model replacing self-attention with an Adaptive Spectral Block
(Fourier-domain features with adaptive thresholding) and an Interactive Convolution Block for local-global
mixing; trained for single-pass reconstruction of masked entries (Eldele et al., |2024]).

Hyperparameters. Three layers (n_layers = 3) with patch_size = 16, embedding dimension dempbedding = 256,
mask_ratio = 0.4, and dropout = 0.1 ; matching the default hyperparameters of the official codebase.

A.3 Time-Index Foundation models

In this section, we provide further architectural and implementation details for the two time-index foundation
models evaluated in our experiments: MoTM and TabPFN-TS.

A.3.1 MoTM.

MoTM (Mixture of TimeFlow Models) extends the continuous-time modeling paradigm by leveraging a so-
phisticated feature extraction mechanism inherited from the TimeFlow architecture (Le Naour et al.| [2024).
Its core principle is to represent any time series through a pre-trained basis of modulated Implicit Neural
Representations (INRs).

Representation Learning via Modulated INR Basis. Specifically, MoTM does not learn a single function
for the time series but rather a basis of K distinct INRs. Each INR is a small neural network, parameterized
by a hypernetwork (Dupont et all |2022), that maps a continuous time coordinate t to a feature vector.
These basis functions are "modulated" in the sense that their parameters are dynamically generated for
each new segment, allowing them to capture a wide range of temporal patterns (e.g., trends, seasonalities,
high-frequency oscillations) without being restricted to predefined frequencies like Fourier features. For any
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given timestamp ¢, the rich contextual representation H (t) is formed by concatenating the outputs of all K
basis INRs evaluated at that time.

In-Context Imputation via Local Regression. The key mechanism of MoTM for imputation lies in its
local, in-context fitting procedure. Given a time series with missing values, MoTM considers a context window
of observed points. It then fits a simple ridge regressor to learn the linear mapping from the high-dimensional
representations H (t) of these observed points to their actual values 2:(¢). This local regressor, fitted specifically
on the available context, is then used to predict the values at any missing timestamp t,;ss by applying it to
the corresponding representation H (tmiss)-

This framework naturally extends to:

1. Integrate covariates with no retraining. Assuming full observation, additional contextual information
available at timestamp ¢ are simply stacked to the target contextual representation H(t). Ridge
adaptation proceeds then in the same way as in the univariate setting.

2. Uncertainty quantification. By replacing the ridge regressor with a quantile regressor, MoTM can
generate quantile predictions to construct confidence intervals around the imputed values.

In essence, MoTM decouples the problem: (i) a powerful, pre-trained feature extractor (the INR basis) captures
complex temporal dynamics, (ii) while a simple, locally-fitted linear model performs the final task-specific
regression. This design allows the model to adapt to the specific structure of each new time series without
requiring any fine-tuning of its core components.

Implementation Details. Our implementation strictly adheres to the architecture and methodology
described in the original paper (Le Naour et al 2025)). We utilize the three publicly available pre-trained
TimeFlow (modulated INRs), which were respectively trained on the FElectricity, Solar10T, and Spanish
Temperatures datasets (further details on these datasets are available in Section [B.1f). For full reproducibility,
both the source code and the pre-trained INR weights were obtained from the official repository: https:
//github.com/EtiennelLnr/MoTM.

A.3.2 TabPFN-TS.

TabPFN-TS Hoo et al.| (2025) applies the continuous-time modeling philosophy by reframing the time series
imputation task as a standard tabular regression problem. This allows the direct application of the powerful,
pre-trained TabPFN model (Hollmann et al., |2025) for zero-shot time series analysis. The model’s design
philosophy is conceptually inverse to that of MoTM: it pairs a simple, handcrafted feature representation with
a highly expressive regression model.

Handcrafted Temporal Representations. Unlike MoTM’s learned representations, TabPFN-TS employs a
straightforward feature engineering approach. The contextual representation H (t) for each timestamp ¢ is
constructed by combining the normalized time index itself with a set of pre-defined Fourier basis functions
(i.e., sine and cosine pairs). These Fourier features are chosen to capture key seasonalities expected in the
data (e.g., daily, weekly). This method results in a simple, fixed feature set that explicitly encodes temporal
position and periodicity, serving as the input for the regression model.

Imputation via In-Context Learning with TabPFN. The core expressive power of TabPFN-TS resides in
its regressor, the TabPFN model. TabPFN is a large transformer-based architecture pre-trained on hundreds of
millions of synthetically generated tabular regression tasks. Its defining characteristic is in-context learning:
at inference time, it ingests a set of observed data points—pairs of temporal features and their corresponding
values, (H (tops), Z(tops)) as a single "prompt." The model processes this entire context within its attention
layers to infer the underlying functional relationship between the features and the series values. It then applies
this inferred function to predict the values x(tmiss) for the query features H (tiss) of missing timestamps, all
within a single forward pass and without any gradient-based fine-tuning.
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This framework naturally supports: (i) Integratation of covariates with no retraining. Covariates available
at a timestamp t are simply concatenated to the temporal representation H (t), expanding the feature set
that TabPFN uses for its in-context learning. (ii) Uncertainty quantification. TabPFN inherently supports
probabilistic predictions. By configuring it to predict specific quantiles instead of the mean, we can generate
confidence intervals for the imputed values, as demonstrated in Figure [§]

In essence, TabPFN-TS also decouples the problem, but with an inverted philosophy compared to MoTM: (1) a
simple, handcrafted feature extractor creates temporal features, (2) while a highly expressive, pre-trained
transformer model performs the complex in-context regression. This design leverages the generalization
capability of a large pre-trained model to solve the imputation task.

Implementation Details. For our experiments, we utilize the official TabPFNv2 implementation from the
tabpfn Python package, which includes the pre-trained TabPFNv2 model described in (Hollmann et al., 2025)).
We employ a consistent feature representation, H(t), across all datasets, defined as:

Ht) (t . < 2t > ( 2mt ) . < 2t ) ( 2mt >)
= | ¢,sin ,cos | — | ,sin , COS
Pday Pday Pweek Pweek

In this formulation, ¢ is the normalized time index, Pyay represents the number of timesteps (normalized) in
a 24-hour period (e.g., 24 for hourly data, 48 for 30-minute data, 96 for 15-minute data etc.), and Pyecx is set
to 7 X Pgay to capture weekly seasonality. For full reproducibility, the source code and pre-trained regressor
are publicly available at https://github.com/PriorLabs/TabPFN/.

A.4 Excluded baselines

MOMENT. We considered including MOMENT (Goswami et al., |2024)), a large Transformer-based foundation
model pre-trained on patched time series via a masked modeling objective. Initially, our intent was to
evaluate it as a zero-shot imputation baseline alongside TabPFN-TS and MoTM. However, its performance in our
benchmark was found to be substantially lower than that of the other methods. A closer review of the original
paper clarifies this result: the authors primarily advocate for fine-tuning the model on specific downstream
tasks to achieve optimal performance. Moreover, their reported imputation experiments are limited to very
short missing segments, a scenario that differs significantly from those addressed in our work. Given its
unsuitability for zero-shot time series imputation, we excluded it from our final comparative analysis.

Other deep learning supervised imputers. The field of deep learning for supervised time series
imputation is a rapidly evolving area of research. Our selection of baseline models aims to provide a
representative sample of this landscape, including both supervised methods that have become standard
benchmarks and more recent, state-of-the-art architectures. To ensure fair and reproducible comparisons, all
selected deep learning supervised models are part of the PyPOTS library (Du et al., 2023b). This framework
was essential for conducting our extensive benchmark.

B Datasets details

B.1 Univariate datasets

The complete list of datasets used in our univariate experiments is shown in Table [3] 36 datasets were used
in total: 3 for the pretraining of MoTM and the remaining 33 for the zero-shot evaluation of both TabPFN-TS
and MoTM. Each dataset is split chronologically intro train, validation and test. Unless otherwise stated, the
respective fractions are 0.7, 0.1 and 0.2. The test segments were then generated by applying a four-week
sliding window, where at every step a random stride is drawn uniformly between 0.5 and 2 days. This
procedure ensures that the inference samples are not aligned on any specific calendar information. A short
description of each dataset is provided below. Those datasets marked with an "*" were curated to remove flat
segments at inference to avoid biasing the evaluation towards trivial scenarios. Flat segments are caused e.g.
by heterogeneous sensor operating dates within datasets or by filling long missing blocks with zeros (Emami
et al., 2023).
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Table 3: All datasets used in our univariate experiments and their key properties.

Dataset Release Domain MoTM Freq Num. Series Num. Test
Platform Use Series Length  Segments
Electricity Zenodo Energy Train 1H 370 35064 122623
Solar-10T Zenodo Energy Train  10min 137 52560 9179
Spanish Temperatures Kaggle Climate  Train 1H 5 35000 1090
BDG2-Bear LOTSA Energy Test 1H 91 17544 7522
BDG2-Rat LOTSA Energy Test 1H 280 17544 24915
Borealis LOTSA Energy Test, 1H 15 7447 7
Covid19 Energy LOTSA Energy Test 1H 1 31912 195
GFC12 Load LOTSA Energy Test 1H 20 39414 4960
Hog LOTSA Energy Test, 1H 24 17544 2310
Ideal LOTSA Energy Test, 1H 217 16167 156
PDB LOTSA Energy Test, 1H 1 17520 96
KDD Cup2022 LOTSA Energy Test  10min 134 35279 2546
ERAS5 geopotential LOTSA Climate Test, 1H 500 8736 19000
ERA5 humidity LOTSA Climate Test, 1H 500 8736 19000
ERAS5 temperature LOTSA Climate Test 1H 500 8736 19000
ERAS5 wind speed LOTSA Climate Test, 1H 500 8736 19000
Oikolab Weather LOTSA Climate Test 1H 8 100057 5288
Pedestrian Counts LOTSA|  Transport Test 1H 66 96400 7733
Traffic LOTSA Transport  Test 1H 861 17544 83479
PEMS BAY LOTSA Transport  Test  5min 325 52128 2275
PEMS 03 LOTSA Transport Test  5min 358 26208 358
SHMETRO LOTSA|  Transport Test 15min 576 8809 576
ETT1-15T GIFT-eval Energy Test  15min 7 69680 1050
ETTI1-1H GIFT-eval|  Energy Test 1H 7 17420 1092
ETT2-15T GIFT-eval Energy Test  15min 7 69680 1050
ETT2-1H GIFT-eval,  Energy Test 1H 7 17420 1092
Solar-1H GIFT-eval Energy Test 1H 137 8760 8768
Jena Weather 10T GIFT-eval,  Climate Test  10min 21 52704 1428
Jena Weather 1H GIFT-eval,  Climate Test, 1H 21 8784 1344
Loop Seattle 5T GIFT-eval Transport Test  5min 323 105120 21964
Loop Seattle 1H GIFT-eval Transport  Test 1H 323 8760 20672
MDense GIFT-eval Transport  Test 1H 30 17520 4710
Enedis LDM Small Zenodo Energy Test  30min 500 17424 20500
London Smart Meters Small ~ |Chronos Energy Test  30min 500 22000 25779
Spanish Energy Kaggle Energy Test 1H 9 35064 1962
Weather Informer Climate Test, 1H 11 35064 2398

Energy domain

BDG2-Bear*, BDG2-Rat* and Hog* are the energy demands of commercial buildings in the US in 2016 -
2017. Sourced by the BuildingsBench library (Emami et al.,|2023) from the Building Data Genome 2 (BDG2)
project (Miller et al., |2020).

Borealis* and Ideal* contain the total electricity consumption of, respectively, 15 homes in Waterloo,
Ontario, in 2011-2012 and 217 homes in Edinburgh, UK, between 2016-2018. Both datasets were released
as part of the BuildingsBench dataset, and include a marginal amount of data preprocessing (including
interpolation of missing values and outlier removal) (Emami et al., [2023)).

Covid19 Energy is the aggregated electricity demand of an entire metropolitan area, from 2017 to 2021
(Farrokhabadi et al., 2022).
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GFC12 Load is sourced from the Global Energy Forecasting Competition 2012 and contains a total of 20
aggregated load series (Wang et al., 2023)).

PDB is a Kaggle dataset containing electricity demand and outdoor temperature data in 2013-2014. We
omitted the temperature and kept only the electricity demand (Wang et al.| [2023)).

Electricity contains the hourly-aggregated electricity consumption of 370 households in Portugal in 2011-2014
(Trindadel |2015)).

KDD Cup 2022 is a dataset for the Spatial Dynamic Wind Power Forecasting Challenge hosted at KDD in
2022 (Zhou et all [2022). It contains the wind power data of 134 wind turbines from a wind farm over half a
year. We kept the wind power generation variable as the target variable and omitted extra covariates (wind
speed and direction, temperature, etc.). The train / validation / test split is 0.65 / 0.15 / 0.2.

Solar contains the synthetic power production of 137 photovoltaic power plants in Alabama in 2006. Dataset
sourced by |Lai et al.| (2018]) using simulations from INREL’s Solar Power Data for Integration Studies.

ETT1 and ETT2 respectively contain measurements of oil temperature of two electrical transformers in
China, as well as six additional covariates. We used these 7 variables in our experiments, handling them with
channel independence. The datasets were collected and published by [Zhou et al.| (2021)).

London Smart Meters Small is the half-hourly energy consumption of 5561 households in the UK between
2011 and 2014. Data sourced by |Godahewa et al. (2020) from https://data.london.gov.uk/dataset/
smartmeter-energy-use-data-in-london-households. We kept a random subset of 500 samples in our
experiments.

Enedis LDM Small is a dataset of 10k one-year individual electricity consumptions generated by a latent
diffusion model at a 30-min sampling rate and representative of thermo-sensitive French households (Nabil
et al.l [2025)). We kept a random subset of 500 samples in our experiments.

Spanish Energy is a Kaggle dataset containing the electricity (i) consumption and (ii) production for Spain
from 2015 to 2018. We used the total load demand as well as electricity generation of eight energy sources
(biomass, fossil gas, fossil hard coal, solar, onshore wind and three technologies of hydropower). We kept these
nine variables in our experiments, handling them with channel independence. Data were obtained from https:
//www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather,

Climate domain

Spanish Temperatures contains the hourly temperature measurements for the five largest cities in
Spain, from 2015 to 2018. Data were obtained from https://www.kaggle.com/datasets/nicholasjhana/
energy-consumption-generation-prices-and-weather.

ERAS is part of the ClimateLearn library, which provides historical worldwide time series of various climate
(atmosphere and land-surface) variables, including geopotential, humidity, temperature, and wind speed
(Nguyen et al., |2023)). The dataset extracted by LOTSA is based on a 64 x 128 grid structure (Woo et al.,
2024). In our experiments, we used data for year 2000 and kept a random subset of 500 samples out of the
8192 available grid points.

Oikolab Weather contains hourly measurements of eight meteorological variables from a weather station
located near Monash University, Australia (Godahewa et al., |2021)). All eight channels are kept in our
experiments, treating them as univariate samples (channel independence).

Jena Weather contains 21 meteorological indicators, such as air temperature, humidity, etc. collected in
2020 at a 10-minute sampling rate from a weather station in Germany. Sourced by [Wu et al.| (2021) from
https://www.bgc-jena.mpg.de/wetter/. All 21 variables are kept in our experiments, treating them as
univariate samples (channel independence).

Weather contains hourly measurements of 11 meteorological variables (including temperatures, wind speed
and direction, humidity, altimeter) in the US, during the period 2010-2013. We used the 11 variables in
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our experiments, handling them with channel independence. Sourced by |[Zhou et al.| (2021)) from https:
//www.ncei.noaa.gov/data/local-climatological-data/.

Transport domain

Pedestrian Counts* contains hourly pedestrian counts captured from 66 sensors in Melbourne city starting
from May 2009 and up to 2020. It is part of the Monash Time Series Forecasting Library (Godahewa et al.,
2021) and is sourced from the City of Melbourne.

Traffic is a collection of 48 months (2015-2016) road occupancy data from the California Department of
Transportation (Lai et all 2018). The road occupancy rates (between 0 and 1) are measured by different
sensors on San Francisco Bay area freeways.

Loop Seattle contains one-year traffic state data from 323 sensor stations in the Greater Seattle Area, in
2015. Data were collected from inductive loop detectors deployed on four connected freeways (Cui et al.l
2019]).

PEMSO03 is a highway traffic dataset collected by [Song et al.| (2020]) from the California Department of
Transportation Performance Measurement System (PeMS). PEMSO03 contains 358 sensors with measurements
from January to November 2018. We used four weeks of data for validation, four weeks for testing and the
first 35 days for training.

PEMS BAY contains six months of measurements of traffic speed from 325 sensors in the Bay Area,
California, in 2017 (Li et al.| [2018). The train / validation / test split is 0.65 / 0.155 (28 days) / 0.195.

SHMETRO contains the passengers inflow and outflow measurements of 288 subway stations in Shanghai
for three months in 2016 (Liu et al. 2020). We kept four weeks of data for validation, four weeks for testing
and the first 35 days for training.

M Dense contains measurements of traffic intensity (number of cars per hour) from 30 sensors located in
the city of Madrid, Spain, in 2018-2019. The dataset was sourced by the LibCity library through the open
data portal of the Municipality of Madrid (de Medrano & Aznartel |2020; [Jiang et al., [2023]).

B.2 Datasets with covariates

Table [4] shows the key properties of the three datasets used for the evaluation of imputation with additional
covariates. Each dataset is split chronologically intro train, validation and test splits with respective fractions
0.7, 0.1 and 0.2. Four-week segments are generated in the same manner as in Section for the univariate
experiments.

Table 4: All datasets with covariates used in our experiments and their key properties.

Release Target . Series Num. Test
Dataset Platform Freq Series Covariate Length  Segments
RTE
PV-France Motoo France 1H 1 1 8760 38
. RTE
Wind-France Motoo France 1H 1 1 8760 38
Load-France RTE. 30min 1 1 17520 41
Enedis

PV-France contains the aggregated photovoltaic (PV) power production (target variable) and
the average solar irradiance (covariate) in the southern French region Occitanie in 2021.
This dataset was obtained by aggregating two sources of data. (i) The target PV
power production is provided by France’s Transmission System Operator (RTE) and ex-
tracted through their data portal https://www.rte-france.com/en/eco2mix/download-indicators.
(ii) The global solar irradiance is obtained from the French weather institute Meteo France
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https://meteo.data.gouv.fr/datasets/donnees-climatologiques-de-base-horaires/. We aggre-
gated the in-situ observations at the department level into a region-level irradiance.

Wind-France contains the aggregated wind power production (target variable) and the wind speed (covariate)
in the northern French region Hauts-de-France in 2021. Similarly to PV-France, this dataset is obtained
respectively via RTE’s data portal| for the wind power production and via [Meteo France| for the wind speed.

Load-France contains the total French electricity demand (target variable) and the average
temperature (covariate) in 2022.  Similarly to PV-France and Wind-France, the total electric-
ity demand is obtained from |[RTE’s data portal The national temperature is provided by
Enedis, the French distribution grid operator, from https://data.enedis.fr/explore/dataset/
donnees-de-temperature-et-de-pseudo-rayonnement/information/|

C Univariate benchmark: extensive results

C.1 Full results

Table [5] reports the complete univariate imputation benchmark across all datasets and missingness settings.
These detailed results complement the main text by providing per-dataset performance for every method,
allowing a finer comparison of their robustness and consistency across different missingness patterns and time
series domain. For more details about the datasets please refer to Section All experiments were carried
out on single NVIDIA A100-40G or H100-80G GPUs.

Table 5: Complete univariate benchmark results for all datasets and missingness settings. Best in bold,
second-best underlined. Settings Pointwise I and Pointwise 2: respectively 50% and 70% of observations
removed at random. Settings Blocks 1 and Blocks 2: respectively two and four entire days removed at
random.

Foundation models Task Specific Models Local Models
Dataset Setting TabPEN  yorm SATTS BRITS cspr ime Times TSla ., Seasomal,,qp
-TS mixerpp net net Naive
Pointwise 1 0.171 0.202 0.241 0.309 0.234 0.827 0.829 0.833 0.229 0.532 0.391
BDG2-Bear Pointwise 2 0.223  0.240 0.309 0.432 0.284 0.825 0.830 0.833 0.330 0.587 0.545
Blocks 1 0.272 0.332 0.399 0.445 0.387 0.829 0.817 0.831 0.857 0.478 0.904
Blocks 2 0.280 0.336 0.405 0.471 0.395 0.829 0.819 0.832 0.861 0.473 0.904
Pointwise 1 0.196  0.231 0.266 0.279 0.251 0.813 0.812 0.818 0.247 0.587 0.380
BDG2-Rat Pointwise 2 0.256 0.273 0.339 0.338 0.314 0.813 0.814 0.818 0.334  0.646 0.507
Blocks 1 0.349 0.400 0.495 0.503 0.494 0.813 0.808 0.816 0.743 0.536 0.811
Blocks 2 0.355 0.402 0.497 0.508 0.498 0.813 0.808 0.816 0.744 0.536 0.814
Pointwise 1 0.417 0.519 0.403 0.407 0.687 0.598 0.535 0.596 0.442 0.647 0.543
Borealis Pointwise 2 0.488  0.583 0.468 0.442 0.672 0.594 0.545 0.597 0.505 0.674 0.601
Blocks 1 0.536  0.646 0.518 0.508 0.685 0.627 0.540 0.612 0.633 0.662 0.718
Blocks 2 0.522  0.629 0.519 0.504 0.658 0.612 0.537 0.602 0.658 0.612 0.638
Pointwise 1 0.075 0.099 0.399 0.307 1.113 0.405 0.414 0.852 0.163 0.438 0.387
Covid19 Ener Pointwise 2 0.132  0.127 0.417 0436 1.118 0.486 0.417 0.854 0.292 0.483 0.570
8y Blocks 1 0.202 0.222 0.432 0.629 1.117 0.604 0.440 0.858 0.949 0.399 0.975
Blocks 2 0.201 0.232 0.436 0.638 1.114 0.599 0.461 0.842 0.928 0.392 0.939
Pointwise 1 0.143 0.189 0.188 0.263 0.174 0.789 0.776 0.803 0.232 0.603  0.448
GFC12 Load Pointwise 2 0.237 0.231 0.280 0.457 0.248 0.789 0.787 0.804 0.370 0.670 0.600
Blocks 1 0.353 0.382 0.417 0.524 0.428 0.793 0.788 0.797 0.810 0.546 0.868
Blocks 2 0.363 0.387 0.425 0.541 0.436 0.799 0.796 0.803 0.814 0.546 0.871
Pointwise 1 0.196 0.240 0.245 0.244 0.279 0.585 0.785 0.802 0.216 0.701 0.322
Ho Pointwise 2 0.260 0.286 0.320 0.326 0.350 0.593 0.795 0.801 0.280 0.759 0.418
g Blocks 1 0.396 0.458 0.518 0.562 0.569 0.651 0.766 0.799 0.555 0.640 0.668
Blocks 2 0.406 0.464 0.528 0.568 0.580 0.655 0.766 0.795 0.564 0.649 0.673
Pointwise 1 0.501  0.570 0.443 0.464 0.603 0.531 0.702 0.691 0.526 0.678 0.620
Ideal Pointwise 2 0.571  0.644 0.473 0.504 0.638 0.572 0.706 0.692 0.592 0.701 0.683
Blocks 1 0.558  0.667 0.498 0.543 0.655 0.531 0.706 0.696 0.730 0.650 0.724
Blocks 2 0.564  0.658 0.485 0.522 0.648 0.497 0.688 0.676 0.699 0.657 0.744
Pointwise 1  0.062 0.094 0.337 0.408 1.122 0.449 0.395 0.864 0.191 0.375 0.435
PDB Pointwise 2 0.119 0.121 0.373 0.556 1.128 0.550 0.599 0.858 0.338 0.413 0.631

Continued on next page
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Table 5 — Continued from previous page

Foundation models Task Specific Models

Local Models

Dataset Setting TabPEN  yyomm SATTS BRITS cspr _ lime Times TSla ., ., Seasonal ,qp
-TS mixerpp net net Naive

Blocks 1 0.171 0.197 0.353 0.637 1.108 0.726 0.265 0.832 0.982 0.331 1.004

Blocks 2 0.177 0.201 0.356 0.653 1.113 0.740 0.291 0.847 1.006 0.336 1.010

Pointwise 1 0.099  0.237 0.115 0.764 0.171 0.764 0.758 0.775 0.092 0.955 0.139

KDD Cup2022 Pointwise 2 0.120  0.255 0.161 0.768 0.217 0.767 0.766 0.776 0.115 0.971 0.176

P Blocks 1 0.571  0.636 0.628 0.763 0.914 0.763 0.764 0.769 0.467 0.939 0.654

Blocks 2 0.566 0.634 0.624 0.758 0.912 0.758 0.761 0.765 0.464 0.927 0.660

Pointwise 1 0.091 0.168 0.149 0.161 0.163 0.251 0.813 0.815 0.104 0.728 0.224

ERAS5 geo Pointwise 2 0.146 0.208 0.219 0.275 0.253 0.427 0.814 0.815 0.162 0.791 0.322

geo- Blocks 1 0.333 0.452 0.525 0.905 0.680 0.709 0.806 0.808 0.473 0.681 0.627

Blocks 2 0.336 0.449 0.524 0.908 0.680 0.710 0.807 0.809 0.475 0.681 0.629

Pointwise 1 0.129 0.212 0.169 0.177 0.216 0.413 0.788 1.670 0.131 0.664 0.240

ERAS5 humidit Pointwise 2 0.200 0.254 0.233 0.270 0.315 0.544 0.792 1.320 0.191 0.748 0.314

" Y Blocks 1 0.336 0.434 0.415 0.501 0.608 0.558 0.787 2.059 0.372 0.603 0.500

Blocks 2 0.337 0.431 0.417 0.503 0.608 0.559 0.784 1.989 0.373 0.606 0.506

Pointwise 1 0.094 0.168 0.158 0.157 0.177 0.481 0.817 1.084 0.112 0.700 0.237

ERAS5 tem Pointwise 2 0.150 0.208 0.231 0.250 0.261 0.603 0.815 0.947 0.174 0.765 0.340

p- Blocks 1 0.327 0.438 0.520 0.534 0.677 0.725 0.810 1.292 0.504 0.651 0.647

Blocks 2 0.331 0.436 0.521 0.539 0.681 0.725 0.808 1.258 0.503 0.653 0.647

Pointwise 1 0.124 0.225 0.176  0.182 0.195 0.797 0.790 3.795 0.127 0.945 0.252

ERAS5 wind Pointwise 2 0.201  0.281 0.248 0.298 0.285 0.793 0.795 2.637 0.187 0.994 0.346

Blocks 1 0.461 0.604 0.552 0.706 0.722 0.802 0.800 5.137 0.465 0.902 0.685

Blocks 2 0.464 0.604 0.553 0.713 0.720 0.799 0.797 4.954 0.467 0.910 0.687

Pointwise 1 0.150 0.227 0.207 0.207 0.226 0.802 0.824 0.827 0.164 0.811 0.313

Oikolab Weather Pointwise 2 0.228 0.278 0.294 0.327 0.321 0.805 0.826 0.828 0.248 0.857 0.436

Blocks 1 0.449 0.529 0.581 0.669 0.739 0.820 0.815 0.823 0.638 0.766 0.786

Blocks 2 0.454 0.534 0.584 0.674 0.735 0.821 0.818 0.826 0.636 0.770 0.787

Pointwise 1 0.150 0.196 0.240 0.268 0.176 0.786 0.804 0.812 0.329 0.347 0.526

Pedestrian Counts Pointwise 2 0.200 0.239 0.289 0.387 0.213 0.793 0.806 0.812 0.447 0.383 0.684

Blocks 1 0.172 0.254 0.243 0.619 0.210 0.797 0.795 0.810 1.001 0.307 1.002

Blocks 2 0.178 0.260 0.252 0.632 0.214 0.797 0.797 0.811 1.000 0.310 0.997

Pointwise 1 0.172 0.237 0.174 0.208 0.208 0.735 0.735 0.744 0.288 0.380 0.498

Traffic Pointwise 2 0.216 0.285 0.228 0.242 0.242 0.738 0.738 0.744 0.421 0.416 0.670

Blocks 1 0.204 0.301 0.235 0.252 0.252 0.731 0.731 0.744 0.985 0.340 0.985

Blocks 2 0.210 0.307 0.242 0.256 0.256 0.732 0.732 0.744 0.986 0.341 0.985

Pointwise 1 0.123 0.297 0.530 0.299 1.413 0.642 0.314 0.675 0.168 0.254 0.275

SHMETRO Pointwise 2 0.143 0.325 0.537 0.376 1.493 0.641 0.450 0.673 0.219 0.280 0.363

Blocks 1 0.190 0.407 0.538 0.632 1.283 0.642 0.277 0.671 0.963 0.217 0.970

Blocks 2 0.197 0.409 0.546 0.632 1.441 0.642 0.289 0.670 0.917 0.220 0.910

Pointwise 1 0.133 0.189 0.353 0.360 1.300 0.862 0.439 0.883 0.148 0.349 0.183

PEMSO03 Pointwise 2 0.148 0.197 0.351 0.496 1.440 0.862 0.605 0.881 0.156 0.377 0.206

Blocks 1 0.233 0.333 0.376  0.862 1.150 0.867 0.323 0.879 1.098 0.330 1.109

Blocks 2 0.229 0.332 0.367 0.855 1.176 0.861 0.312 0.872 1.083 0.315 1.097

Pointwise 1 0.127  0.306 0.188 0.195 0.863 0.558 0.595 0.642 0.121 0.458 0.170

PEMS BAY Pointwise 2 0.146  0.322 0.197 0.203 0.851 0.558 0.615 0.642 0.145 0.490 0.207

Blocks 1 0.324 0.513 0.423 0.435 0.865 0.555 0.638 0.641 0.775 0.422 0.800

Blocks 2 0.329 0.521 0.423 0.436 0.875 0.560 0.639 0.643 0.776 0.427 0.795

Pointwise 1 0.180 0.288 0.227 0.260 0.267 0.535 0.500 0.793 0.183 0.610 0.256

ETT1-15T Pointwise 2 0.208 0.311 0.262 0.357 0.322 0.585 0.619 0.793 0.213 0.648 0.316

Blocks 1 0.445 0.504 0.662 0.760 0.688 0.783 0.626 0.791 0.821 0.584 0.890

Blocks 2 0.452 0.513 0.660 0.759 0.698 0.780 0.648 0.790 0.814 0.581 0.883

Pointwise 1 0.230 0.279 0.314 0.309 0.380 0.787 0.596 0.797 0.279 0.588  0.446

ETTI1-1H Pointwise 2 0.306 0.326 0.404 0.399 0.482 0.784 0.692 0.797 0.381 0.630 0.582

Blocks 1 0.412 0.465 0.577 0.603 0.683 0.793 0.610 0.796 0.820 0.562 0.882

Blocks 2 0.419 0.473 0.583 0.617 0.690 0.793 0.617 0.796 0.828 0.557 0.891

Pointwise 1 0.281 0.321 0.333 0.341 0.450 0.778 0.758 0.801 0.293 0.698 0.426

ETT2-1H Pointwise 2 0.350 0.371 0.395 0.420 0.514 0.780 0.761 0.801 0.365 0.750 0.525

Blocks 1 0.480 0.526 0.568 0.635 0.697 0.790 0.781 0.798 0.686 0.674 0.784

Blocks 2 0.490 0.527 0.575 0.642 0.692 0.788 0.783 0.797 0.689 0.663 0.785

Pointwise 1 0.215 0.332 0.312 0.275 0.308 0.768 0.717 0.801 0.216 0.716 0.280

ETT2-15T Pointwise 2 0.247 0.356 0.339 0.351 0.368 0.768 0.781 0.801 0.249 0.764 0.334

Blocks 1 0.543 0.554 0.592 0.756 0.713 0.792 0.777 0.799 0.675 0.688 0.765

Blocks 2 0.547 0.553 0.594 0.759 0.718 0.797 0.783 0.805 0.697 0.691 0.785

Pointwise 1 0.132 0.131 0.141  0.297 0.140 0.304 0.632 0.828 0.216 0.260 0.407

Solar-1H Pointwise 2 0.176 0.168 0.213 0.415 0.187 0.310 0.685 0.828 0.365 0.277 0.589
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Table 5 — Continued from previous page

Foundation models Task Specific Models Local Models

Dataset Setting TabPEN ot SAITS BRITS cspr |1me Times  TSla . o Seasonal .
-TS mixerpp net net Naive

Blocks 1 0.219 0.228 0.237 0.347 0.264 0.299 0.534 0.829 0.930 0.239 0.921
Blocks 2 0.219 0.229 0.236  0.357 0.265 0.298 0.550 0.830 0.932 0.239 0.924
Pointwise 1 0.086  0.190 0.177 0.132 0.174 0.724 0.339 0.748 0.080 0.635 0.123
Jena Weather 10T Pointwise 2 0.101  0.207 0.196 0.188 0.201 0.725 0.490 0.748 0.096 0.688 0.157
Blocks 1 0.378 0.453 0.557 0.681 0.685 0.739 0.699 0.746 0.527 0.591 0.640
Blocks 2 0.384 0.459 0.561 0.681 0.712 0.736 0.700 0.743 0.544  0.598 0.644
Pointwise 1 0.156 0.224 0.346  0.223 0.323 0.738 0.675 0.754 0.170 0.638 0.293
Jena Weather 1H Pointwise 2 0.214 0.272 0.394 0.316 0.418 0.741 0.725 0.754 0.243 0.700 0.394
Blocks 1 0.366 0.463 0.532 0.583 0.674 0.736 0.703 0.744 0.552 0.608 0.662
Blocks 2 0.370 0.464 0.532 0.591 0.679 0.744 0.711 0.750 0.555 0.606 0.653
Pointwise 1 0.233 0.371 0.326  0.345 0.309 0.661 0.708 0.721 0.246 0.644 0.300
Loop Seattle 5T Pointwise 2 0.261 0.387 0.345 0.368 0.334 0.661 0.708 0.721 0.266 0.672 0.331
P Blocks 1 0.469 0.590 0.596 0.665 0.573 0.662 0.709 0.722 0.842 0.611 0.895
Blocks 2 0.474 0.597 0.600 0.675 0.574 0.662 0.710 0.722 0.842 0.612 0.898
Pointwise 1  0.279 0.337 0.321 0.402 0.325 0.505 0.715 0.721 0.379 0.576 0.530
Loop Seattle 1EH Pointwise 2 0.350 0.394 0.376 0.502 0.373 0.524 0.713 0.721 0.486 0.615 0.653
P Blocks 1 0.345 0.417 0.367 0.511 0.394 0.505 0.715 0.720 0.845 0.532 0.884
Blocks 2 0.354 0.425 0.376  0.523 0.400 0.511 0.717 0.721 0.851 0.533 0.890
Pointwise 1 0.209 0.233 0.274 0.422 0.276 0.851 0.456 0.855 0.341 0.447 0.552
M Dense Pointwise 2 0.252 0.276 0.315 0.604 0.316 0.854 0.634 0.855 0.473 0.484 0.722
Blocks 1 0.225 0.284 0.288 0.415 0.302 0.849 0.433 0.856 1.039 0.405 1.060
Blocks 2 0.228 0.288 0.291 0.433 0.305 0.847 0.455 0.854 1.041 0.407 1.061
Pointwise 1 0.340  0.480 0.299 0.317 0.356 0.499 0.584 0.603 0.340 0.373 0.439
Enedis LDM Small Pointwise 2 0.440 0.534 0.338 0.358 0.415 0.499 0.589 0.594 0.419 0.396 0.524
Blocks 1 0.358 0.748 0.337 0.358 0.451 0.496 0.581 0.637 0.647 0.351 0.719
Blocks 2 0.366  0.515 0.341 0.362 0.456 0.498 0.581 0.633 0.707 0.345 0.722
Pointwise 1 0.439 0.573 0.432 0.434 0.837 0.596 0.650 0.965 0.480 0.666 0.573
London Small Pointwise 2 0.490 0.632 0.465 0.483 0.843 0.596 0.651 0.760 0.534 0.679 0.638
Blocks 1 0.521 0.622 0.537 0.571 0.822 0.595 0.650 1.631 0.794 0.656 0.836
Blocks 2 0.528  0.628 0.512 0.576 0.825 0.595 0.650 1.570 0.798 0.656 0.836
Pointwise 1 0.131 0.200 0.200 0.235 1.716 0.782 0.812 0.802 0.164 0.680 0.298
Spanish Ener Pointwise 2 0.207 0.246 0.290 0.346 1.905 0.783 0.810 0.802 0.253 0.735 0.413
L 8y Blocks 1 0.400 0.472 0.559 0.633 1.367 0.787 0.788 0.801 0.614 0.642 0.719
Blocks 2 0.399 0.469 0.559 0.637 1.384 0.784 0.788 0.800 0.609 0.635 0.715
Pointwise 1 0.257 0.298 0.290 0.360 3.369 0.801 0.804 0.804 0.259 0.739 0.373
Weather Pointwise 2 0.311 0.342 0.364  0.458 3.928 0.792 0.803 0.804 0.322 0.803 0.472
Blocks 1 0.456 0.494 0.592 0.689 1.680 0.803 0.797 0.800 0.620 0.686 0.736
Blocks 2 0.455 0.488 0.590 0.691 1.909 0.806 0.799 0.801 0.618 0.682 0.735

C.2 Performance breakdown by missingness pattern

Figure [7] provides a detailed breakdown of the univariate benchmark results presented in the main paper,
focusing on the four distinct missingness settings introduced in Section [3:1} Specifically, we report aggregated
z-normalized MAE scores for (a) 50% and (b) 70% pointwise missingness, as well as for (c¢) two-day and (d)
four-day block missingness. These complementary analyses aim to highlight the robustness and consistency
of model performance across different temporal corruption patterns.

Results. The per-setting breakdown shows a consistent advantage of TabPFN-TS across all four settings.
However, the relative ranking of other methods varies with the missingness pattern: in the first pointwise
setting (50%) Linear is actually stronger than MoTM and remains roughly tied with MoTM at 70% pointwise,
indicating that simple local interpolation can excel when gaps are sparse. By contrast, in block-missing
scenarios (two and four days) MoTM substantially outperforms Linear, showing superior robustness to
structured, long gaps. SAITS is the best supervised baseline but is generally behind the foundation models;
its relative position is closer to MoTM in some settings (e.g. pointwise). Overall, these results emphasize
(i) the stability of TabPFN-TS across patterns, (ii) that local methods can be competitive for sparse pointwise
missingness, and (iii) that foundation/zero-shot models better handle large or by-block gaps.
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Figure 7: Normalized MAEs results for each distinct setting of missingness patterns.
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C.3 Quantile predictions

In addition to pointwise imputations, we evaluate the probabilistic capabilities of the time-indexed foundation
models by assessing the quality of their predicted quantiles. This analysis complements the deterministic
metrics by measuring how well models can represent uncertainty around missing points. Accurate quantile
estimation is particularly important for time-series imputation under distributional shifts or irregular sampling,
as it reflects the model’s ability to produce calibrated and reliable uncertainty quantification.

C.3.1 Implementation details

Weighted Quantile Loss (WQL) definition. We evaluate probabilistic imputations using the Weighted
Quantile Loss (WQL), introduced by Koenker & Hallock| (2001) and adopted in probabilistic forecasting
benchmarks such as |Gneiting et al.| (2007)); |Gasthaus et al.| (2019). Given a predicted a-quantile g of an
observation x, the quantile loss is defined as:

_ alz —q), if x > q,
QL,(q,7) = {(1 —a)(q—x), otherwise. W

To aggregate this quantity across all series and time steps, we compute a weighted average normalized by the
absolute scale of targets:

25, QLo (Y i)

R S 2
We then average over a finite set of quantile levels {a1, ..., ax}:
| X
WQL = ;WQL%. (3)

Quantiles are evaluated at a € {0.1,0.2,...,0.9} (K = 9). Being a weighted average of quantile losses
across levels, WQL approximates the Continuous Ranked Probability Score (CRPS), a standard metric for
probabilistic accuracy.

CSDI and SAITS for quantile evaluation. For CSDI (a stochastic diffusion imputer), we estimate
quantiles post hoc by Monte Carlo sampling at test time. Conditioned on the observed context and the
evaluation mask, we draw .S imputations {5:5?2 9, from the model’s posterior and compute empirical quantiles

s S
o

5 71> . We use S = 50 across all datasets. For SAITS, we train one

per index (i,t): qi’t) = Quantile, ({ig
independent model per quantile level o € {0.1,...,0.9}. Each model uses the standard pinball (quantile)
loss computed only on the evaluation mask, with the same masking patterns as in the pointwise setting. At
inference, we obtain the full set of quantiles by stacking the predictions from the K independently trained
models. Both models are evaluated on identical imputation splits and masking ratios; WQL is computed only

on masked targets and normalized by the absolute scale as described in Eq. .

C.3.2 Quantitative results

Setting. We evaluate the models for uncertainty quantification on 11 univariate datasets, namely: BDG2-
Bear & Rat, Covid19 Energy, GFC12 Load, Hog, Jena Weather 10T, Jena Weather 1H, Oikolab Weather,
PDB, Pedestrian Counts and Weather, described in Section [B] All models are trained with the same masking
ratios and evaluated on the same imputation splits to ensure comparability.

Results. Table[f]reports the WQL scores across all eleven datasets and four missingness settings. TabPFN-TS
achieves the lowest WQL across most datasets, showing its ability to produce both accurate and well-calibrated
uncertainty estimates. MoTM follows with higher WQL but consistent behavior across datasets and settings.
CSDI ranks third overall, with performances illustrating its limited generalization abilities: (i) consistently
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Table 6: Complete WQL results on 11 datasets. For each setting, the best score (lowest) is in bold and the
second best is underlined.

Dataset Setting TabPFN-TS MoTM CSDI  SAITS-adapted
Pointwise 1 0.165  0.208 0.183 0.294
Pointwise 2 0.208 0.256  0.223 0.373
BDG2-Bear Blocks 1 0.253 0354 0.336 0.493
Blocks 2 0.257 0355 0.338 0.493
Pointwise 1 0.191 0.239 0.194 0.321
Pointwise 2 0.203  0.256  0.242 0.412
BDG2-Rat Blocks 1 0.338 0436 0.387 0.617
Blocks 2 0.334 0431 0.382 0.612
Pointwise 1 0.071 0.097 0.758 0.353
. Pointwise 2 0.124  0.130  0.757 0.418
Covid19 Energy Blocks 1 0.187 0236 0.767 0.522
Blocks 2 0.187  0.246 0.759 0.521
Pointwise 1 0.142  0.192 0.148 0.258
Pointwise 2 0.212 0.249 0.233 0.371
GFC12 Load Blocks 1 0.349 0427 (0.383 0.528
Blocks 2 0.349 0423 0.381 0.523
Pointwise 1 0.196  0.249 0.230 0.322
H Pointwise 2 0.254 0.311  0.289 0.410
°g Blocks 1 0.395 0513  0.505 0.698
Blocks 2 0.392 0507 0.504 0.695
Pointwise 1 0.113 0225 0.141 0.418
Pointwise 2 0.134 0.235 0.164 0.445
Jena Weather 10T ) 0 0.397 0508 0.706 0.791
Blocks 2 0.394 0500 0.712 0.781
Pointwise 1 0.181 0254 0.246 0.354
Pointwise 2 0.234  0.313  0.317 0.437
Jena Weather 1H )\ ) 0.384  0.548 0.619 0.697
Blocks 2 0.382  0.528 0.605 0.693
Pointwise 1 0.145 0225 0.157 0.248
. Pointwise 2 0.212  0.291  0.234 0.358
Oikolab Weather — p, ) 0.431 0581 0.578 0.761
Blocks 2 0.420 0572  0.568 0.748
Pointwise 1 0.057 0.084 0.766 0.272
PDB Pointwise 2 0.111 0.118 0.764 0.347
Blocks 1 0.170 0209 0.774 0.301
Blocks 2 0.171 0205 0.773 0.406
Pointwise 1 0.147 0201 0.471 0.228
Pedostrian Counts  Foimtwise 2 0189 0253  0.221 0.300
Blocks 1 0.170 0260 0.199 0.277
Blocks 2 0.173 0264 0.203 0.279
Pointwise 1 0.252 0301 0.263 0.378
Weath Pointwise 2 0.303  0.356  0.322 0.456
eather Blocks 1 0.448  0.528 0.601 0.734
Blocks 2 0.431 0510 0.582 0.716

with its training procedure, good scores are obtained in the pointwise settings; (ii) except on small-size
training sets, such as Covid19 Energy or PDB; (iii) CSDI generally suffers from significantly higher losses on
the unseen Block settings. Finally, the SAITS variant adapted for quantile prediction yields the highest WQL
in most settings, highlighting the shortcomings of this straightforward per-quantile adaptation compared
with models expressly designed for probabilistic imputation.
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C.3.3 Qualitative results

In Figure [§] and Figure [0} we present qualitative examples of quantile-based imputations for both TabPFN-TS
and MoTM on segments where 70% of the values were removed in a pointwise manner.

For each plot, we display the median prediction together with the inter-quantile ranges [5,95] and [25, 75],
which highlight different levels of predictive uncertainty.

Results. The visualizations in Figure[8land Figure[d|confirm that both TabPFN-TS and MoTM provide effective
quantile-based imputations, successfully reconstructing the signal while providing meaningful uncertainty
estimates. TabPFN-TS particularly excels at generating high-fidelity reconstructions that closely follow the
ground truth, capturing fine-grained temporal details and high-frequency oscillations. Its strength lies in its
highly adaptive uncertainty quantification; on the volatile Borealis dataset, the quantile ranges adeptly widen
to reflect increased predictive uncertainty around sharp peaks, demonstrating a sophisticated understanding of
local signal dynamics. MoTW, for its part, also delivers strong performance by producing robust, albeit smoother,
imputations that effectively capture the main trends and cyclical patterns in datasets like Hog and Erad. Its
more regular uncertainty bands provide a consistent and reliable confidence envelope around the reconstructed
signal. In summary, while both models prove highly competent for this task, they exhibit different strengths:
TabPFN-TS favors a detailed, high-fidelity reconstruction, whereas MoTM prioritizes capturing the underlying
trend with stable uncertainty.

:A mAi\Uﬂ AV/MV A A
NILTLAL /) W

0.0 0.2 0.4 0.6 0.8 1.0

—— Ground Truth +  Context TabPFN IQR 5-95 TabPFN IQR 25-75 —— TabPFN Quantile 0.50 I

(a) Jena Weather dataset

0.0 0.2 0.4 0.6 0.8 1.0

—— Ground Truth +  Context TabPFN IQR 5-95 [0 TabPFN IQR 25-75 —— TabPFN Quantile 0.50 l

(b) Borealis dataset

Figure 8: TabPFN-TS qualitative quantile results in the 70% missing values scenario (Pointwise 2).
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(b) ERAS geopotential dataset

Figure 9: MoTM qualitative quantile results in the 70% missing values scenario (Pointwise 2).

C.4 Experiments on lower sampling rates datasets

The experiments presented in Section focus on datasets with relatively high temporal resolutions (5min,
10min, 15min, 30min, 1h). In this section, we investigate whether time-index foundation models can generalize
to significantly lower sampling rates, such as daily or weekly observations. This setup evaluates their
robustness to long-term dependencies and coarser temporal granularity, which are common in macroeconomic,
energy, or demographic data.

Datasets. We consider four publicly available low-frequency datasets: Births Daily, M4 Daily, Births
Weekly, and M/ Weekly, with statistics summarized in Table[7] They are part of the Monash Time Series
Forecasting archive (Godahewa et al., 2021)), and were downloaded from the GIFT-eval repository
. Each dataset exhibits distinct temporal behaviors—seasonality and periodicity are typically
weaker at weekly scales, while daily data contain more regular cycles and higher variance. For each dataset,
we apply the same four missingness regimes as in the main benchmark (two pointwise and two block-based
scenarios), allowing a consistent comparison across frequencies.

Births Daily contains the daily number of births in the US between 1969 and 1988, as extracted from the R
package mosaicData (Pruim et al) 2020). Births Weekly aggregates these statistics at a weekly frequency.

The M4 Forecasting Competition dataset contains a total of 100k time series, with six different frequencies
and from diverse domains such as demography, macroeconomic, etc. (Makridakis et al.,|2018;2020]). We used
the subsets of, respectively, daily (M4 Daily) and weekly (M4 Weekly) time series.
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Table 7: All datasets at lower sampling rates used in our experiments and their key properties.

Dataset Release Domain Freq Num. Series Num. Test
Platform Series Length  Segments

Births Daily GIFT-eval Demo. 1D 1 3652 104

Births Weekly |GIFT-eval Demo. 1w 1 1043 7

M4 Daily GIFT-eval| Econ./Demo. 1D 2112 2954 80256

M4 Weekly GIFT-eval| Econ./Demo  1W 172 947 860

Baselines and settings. We evaluate a representative subset of imputation methods present in the main
benchmark: local heuristics (Linear, Seasonal Naive), supervised models SAITS, CSDI, BRITS, and the two
foundation models TabPFN-TS and MoTM. As before, TabPFN-TS and MoTM operate in a fully zero-shot setting,
while SAITS is retrained for each dataset. All metrics are aggregated using the z-normalized Mean Absolute
Error (MAE), and results are reported per dataset and missingness pattern in Table

Table 8: Complete MAE results on datasets with low sampling rates (daily or weekly). Best results are in
bold, second-best are underlined.

Dataset Setting TabPFN-TS MoTM SAITS BRITS CSDI Linear Seasonnal Naive
Pointwise 1 0.281 0.359 0.804 0.324  1.049 0.880 0.286
Births Dail Pointwise 2 0.340 0.409 0.814 0.454 1.095 0.941 0.318
Y Blocks 1 0.243 0.361 0.770  0.430 1.052 0.995 0.300
Blocks 2 0.272 0.361 0.783  0.447  1.064 0.988 0.291
Pointwise 1 0.182 0.248 0.185 0.211  0.223 0.159 0.507
M4 Dail Pointwise 2 0.246 0.304 0.234 0.288  0.273 0.195 0.606
Y Blocks 1 0.442 0.531 0430 0.576  0.638 0.381 0.547
Blocks 2 0.454 0.534 0441 0.591 0.614 0.385 0.559
Pointwise 1 0.293 0.337 0.896 0.748 11.999  0.332 0.492
Births Weekl Pointwise 2 0.335 0.358 0917 0.778 14.635  0.385 0.602
Y Blocks 1 0.301 0.320 1.036 0.840  4.008 0.723 0.481
Blocks 2 0.324 0.338 0.802 0.713  5.458 0.762 0.502
Pointwise 1 0.160 0.226 0.191 0.310  0.307 0.175 0.761
M4 Weekl Pointwise 2 0.188 0.254 0.226 0.415 0.344 0.198 0.836
Y Blocks 1 0.244 0.326 0430 0.635 0.435 0.318 0.643
Blocks 2 0.256 0.345 0444 0.643  0.459 0.340 0.650
Average score 0.285 0.351 0.525 0.525  2.791 0.510 0.524

Results. As shown in Table [§] our foundation models demonstrate robust performance on low-frequency
data. TabPFN-TS achieves the best average score (0.285), followed by MoTM (0.351), confirming their ability to
generalize to coarser temporal structures without retraining. Other baselines, including specialized models
like SAITS and BRITS, are significantly outperformed and show no clear advantage over simpler methods,
while CSDI struggles notably. Overall, these results highlight the superior generalization of our zero-shot
models in low-frequency regimes compared to both classic baselines and other deep learning architectures.
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D Experiments with covariates: extensive qualitative results

To better visualize the impact of incorporating covariates, we present qualitative results for both TabPFN-TS
and MoTM. Figure and Figure show examples from three datasets (PV-France, Wind-France, and
Load-France), illustrating how the inclusion of covariate information helps each model reconstruct the four
one-day missing blocks more accurately.

3
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—— Ground Truth . Context —— TabPFN (no covar) —— TabPFN (with covar) —— Covariate

(a) Wind-France

Ty

0.0 0.2 0.4 0.6 0.8 1.0

—— Ground Truth +  Context —— TabPFN (no covar) —— TabPFN (with covar) —— Covariate

(b) PV-France

Zﬁ w \
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0.0 0.2 0.4 0.6 0.8 1.0

—— Ground Truth . Context —— TabPFN (no covar) —— TabPFN (with covar) —— Covariate
(¢) Load-France

Figure 10: TabPFN-TS qualitative results with and without covariates in the four one-day missing blocks
scenario (Blocks 2).

Results. As illustrated in Figure [10] and incorporating covariates visually improves the reconstructions
for both TabPFN-TS and MoTM. The covariate-enhanced versions capture missing intervals more smoothly and
better follow short-term temporal variations within the four one-day gaps. We observe that the interpolations
of TabPFN-TS align more closely with the ground truth and preserve sharper transitions across missing regions.
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Figure 11: MoTM qualitative results with and without covariates in the four one-day missing blocks scenario
(Blocks 2).

In contrast, if MoTM consistently benefits from covariate information, its reconstructions sometimes struggle to
capture sudden changes with great accuracy. Overall, the qualitative plots confirm that the most visible gains
are observed on the Wind-France and PV-France datasets, while the impact remains limited for Load-France.
One might note that quantile predictions can also be generated in this covariate setting, in a similar fashion
to the univariate examples presented in Figure

30



	Introduction
	Considered imputation baselines for the benchmark
	Local imputers and supervised models
	Time-Indexed Foundation Models for Imputation

	Experiments
	Univariate Benchmark: Out-of-Domain Zero-Shot Imputation
	Main results
	Uncertainty quantification results

	Integration of Covariates in Zero-Shot OoD Imputation
	Qualitative covariates results


	Practical considerations
	Computational cost
	Breakdown by missing patterns

	Conclusion and Discussion
	Baselines details and implementation
	Local imputers
	Supervised imputers
	Time-Index Foundation models
	MoTM.
	TabPFN-TS.

	Excluded baselines

	Datasets details
	Univariate datasets
	Datasets with covariates

	Univariate benchmark: extensive results
	Full results
	Performance breakdown by missingness pattern
	Quantile predictions
	Implementation details
	Quantitative results
	Qualitative results

	Experiments on lower sampling rates datasets

	Experiments with covariates: extensive qualitative results

