
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REFACTORBENCH: EVALUATING STATEFUL REASON-
ING IN LANGUAGE AGENTS THROUGH CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in language model (LM) agents and function calling have en-
abled autonomous, feedback-driven systems to solve problems across various dig-
ital domains. To better understand the unique limitations of LM agents, we intro-
duce RefactorBench, a benchmark consisting of 100 large handcrafted multi-file
refactoring tasks in popular open-source repositories. Solving tasks within Refac-
torBench requires thorough exploration of dependencies across multiple files and
strong adherence to relevant instructions. Every task is defined by 3 natural lan-
guage instructions of varying specificity and is mutually exclusive, allowing for
the creation of longer combined tasks on the same repository. Baselines on Refac-
torBench reveal that current LM agents struggle with simple compositional tasks,
solving only 22% of tasks with base instructions, in contrast to a human developer
with short time constraints solving 87%. Through trajectory analysis, we identify
various unique failure modes of LM agents, and further explore the failure mode
of tracking past actions. By adapting a baseline agent to condition on representa-
tions of state, we achieve a 43.9% improvement in solving RefactorBench tasks.
We further extend our state-aware approach to encompass entire digital environ-
ments and outline potential directions for future research. RefactorBench aims to
support the study of LM agents by providing a set of real-world, multi-hop tasks
within the realm of code.1

1 INTRODUCTION

“Repetition is the root of all software evil” — Martin Fowler

Large language models (LLMs) have been quickly acquiring new capabilities (Bubeck et al., 2023),
leading towards adoption of AI-powered systems in various formats and domains. The increasing
usage of LLM powered tools like Github Copilot have greatly improved the capability of develop-
ers in software development tasks (Peng et al., 2023). More recently, an emphasis on multi-step
execution through LLM feedback loops has unlocked the ability to solve harder problems within a
variety of fields (Reed et al., 2022; Sumers et al., 2024; Yao & Narasimhan, 2023), including parts
of software engineering.

This new paradigm of solving larger software tasks has led to the construction of a variety of new
automated software engineering (ASE) systems, most being structured as LM agents (Wang et al.,
2024c; Cognition.ai, 2024; AWS Q Developer, 2024; Gauthier, 2024; Aide.dev, 2024; Örwall, 2024;
Yang et al., 2024; Tufano et al., 2024; Wang et al., 2024d; Chen et al., 2024a; Zhang et al., 2024b;
Arora et al., 2024; Xia et al., 2024; Zhang et al., 2024a). Evaluations for such systems are currently
largely comprised from real world data on Github (Jimenez et al., 2024; LaBash et al., 2024). While
being the strongest open-source signal for software engineering tasks at scale, Github is inherently
noisy through its snapshot nature, also requiring strong filtration and validation testing for reliable
evaluations (Chowdhury et al., 2024; Bowman & Dahl, 2021). We find that the filtration causes
skewed task styles, creating a necessity for new data to diversify coding benchmarks.

To address these challenges, we present RefactorBench, a benchmark designed to evaluate the
largely undocumented task of multi-file code refactoring in large codebases. Unlike isolated
function-level edits, multi-file refactoring requires comprehensive reasoning and composition of

1Code available at: https://anonymous.4open.science/r/refactor-bench-iclr-504C/

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: RefactorBench task instances are multi-file refactors verified by custom AST unit testing.

multiple smaller changes. Our benchmark, RefactorBench, also allows for controlled analysis into
instruction-following through multiple instruction sets with specified and unspecified objectives. As
LLMs have been extremely proficient in function level editing over model generations (Jiang et al.,
2024), we find it important to evaluate the abilities of general LM agents given that they can reliably
perform core subtasks, which we verify in RefactorBench’s thorough filtering process. With unique
abstract syntax tree (AST) based unit testing, the evaluation suite checks for a comprehensive variety
of subtasks necessitated by the core refactor without dependence on exact line match.

Through evaluations of a baseline agent on RefactorBench, we find overfitting and poor perfor-
mance, solving a maximum of 35% of tasks with our easiest instruction set. We also see a variety
of unique failure modes, many centering around LM agents struggling to track and reason about
previous actions. Similarly, extensive work in policy learning has commonly faced issues in long
horizon execution (Piterbarg et al., 2023; Chen et al., 2024b; Hejna et al., 2023). By editing agent
interfaces, we explore introducing conditioning over state updates, a common tactic in neural agent
design, to our real world language agents and see 71% increases in subtask completion rates.

Overall, our contributions in this work are threefold:

1. We introduce RefactorBench, a benchmark of code refactoring tasks that necessitate edits
in multiple files and reasoning based on previous actions taken.

2. We evaluate multiple open-source systems on RefactorBench and analyze three novel fail-
ure modes isolated through differing baseline runs.

3. We construct state-aware interfaces and show improvement in the reasoning capabilities of
a modified baseline agent.

2 BACKGROUND

2.1 RELATED WORK

Benchmarks SWE-bench, a benchmark consisting of GitHub issues, is the community standard
for evaluating open-ended problem-solving in code environments (Jimenez et al., 2024). Our work,
comparably, focuses on handcrafted and underrepresented multi-file refactoring tasks, isolating
unique language agent behaviors. Unlike existing function-level code benchmarks (Chen et al.,
2021; Austin et al., 2021), which also include refactors, we concentrate on the challenges posed
by multi-file edits. Through a lazy and descriptive instruction set to accompany base instructions,
we also build on previous works that scale evaluations of LLMs’ instruction-following capabili-
ties with lazier instructions (Cassano et al., 2024). Recent works have also focused on evaluating
repository-level code completion systems (Liu et al., 2024a; Agarwal et al., 2024; Bairi et al., 2023),
but our work differs by evaluating larger actions than exact line match, using generalist evaluations
through AST testing. New works have also started to benchmark LLMs across the life cycles of var-
ious engineering tasks (Li et al., 2024; Huang et al., 2024; Xie et al., 2024c), and recent LM agent
benchmarks have also started to evaluate for planning, reasoning, and decision-making abilities in

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

multi-turn generation settings (Liu et al., 2023b; Xie et al., 2024b). We combine these two threads
by evaluating on engineering tasks that necessitate multi-turn actions. Moreover, newer benchmarks
have shown that emulating differing environments can help identify unique failure modes (Ruan
et al., 2024; Yao et al., 2024). Similarly, in RefactorBench, we find that multi-file dependencies in
code provide a strong test bed for previously unseen failure modes in LM agents.

Compositional Tasks and Memory Some benchmarks have identified modeling long-term de-
pendencies as a difficult task for core LMs (Tay et al., 2021; Xie et al., 2024b; Wang et al., 2023b;
Lee et al., 2024a). To combat this issue, many works have targeted changes in model architecture and
training (Gu et al., 2022; Liu et al., 2023a; Gu & Dao, 2024; Xiong et al., 2024). Other works have
tackled this style of problem through augmenting LM agents to have external memory in order to
learn longer term skills after large sequences of actions (Sarch et al., 2023; Shinn et al., 2023; Wang
et al., 2023a; Sumers et al., 2024). Differing from long term memory in language agents, we largely
focus on enabling concurrent reasoning and state-aware behaviors in language agents. Comparable
to this focus, many works in embodied control and small neural agents have previously explored
training and conditioning over observations about current state in multi-turn situations (Chen et al.,
2024b; Wang et al., 2024a; Piterbarg et al., 2024; Li et al., 2022; Moreno et al., 2021). We explore
extending these concepts to real-world LM agents to improve their performance.

2.2 DEFINITIONS

We generalize varied perspectives in previous literature to construct our definition of a language/LM
agent and related terms: a core LM receives an user instruction u and executes actions an using a
set of tools tm, receiving partial observations ωn. This follows a structure most similar to a partially
observable Markov decision process (POMDP) (Kaelbling et al., 1998), where the trajectory is τN =
(a1, ω1, . . . , aN , ωN). This largely matches the formalization of LM agents articulated in ToolEmu
(Ruan et al., 2024). We also define and use the words state or stateful in the context of LM agents
as the nature of being dependent on the accumulation of actions a and observations ω, though not
necessarily all generated from the LM. Importantly, stateful reasoning focuses on making decisions
based on the current state, which is partially observable and can change dynamically. Previous
works in building LM agents have recognized the importance of designing interfaces that allow the
core LMs to make better decisions for a variety of tasks (Yang et al., 2024; Liu et al., 2024b; Wang
et al., 2024d; Lu et al., 2024; Shang et al., 2024). We reference the design choices behind tm and
it’s impact on ωn, an as interface design.

3 REFACTORBENCH

RefactorBench is benchmark of handcrafted multi-file refactoring tasks. The goal for each task is
to generate a patch that changes the repository to follow the rules of a specified refactor. In this
section, we describe our end-to-end process of constructing the refactoring tasks and highlight some
important features of RefactorBench.

3.1 TASK CONSTRUCTION

To design a benchmark capturing the common practice of code refactoring, we focus on including
a diversity of styles of tasks, using Fowler et al. (2018) as a reference point for different styles
of refactors. As the test beds for all tasks, we first select 9 popular Python repositories that have
differing overall file structures (Table 1). We then run the below four step process on each repository:

Step 1: Localization and Filtering. We leverage LLMs to identify potential refactoring opportuni-
ties in repositories. We iteratively prompt gpt-4o (OpenAI, 2024) with complete files from a target
repository, along with examples of various refactor types from Fowler et al. (2018), requesting line
numbers and suggestions for potential refactors. We then filter through the returned sites manually
to verify if corresponding suggestions can be made and if the changes would affect multiple files.
This process yields a list of refactoring suggestions and their corresponding edit locations in each
repository.

Step 2: Construction of Reference Solutions. To generate a prospective reference solution for
each refactor, a group of experienced Python programmers handcraft unique, related edits to the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

refactoring suggestions generated in the previous step. These edits are made based on the design
principle (Fowler et al., 2018), while concurrently using gpt-4o to verify that each core refactor is
tractable by the language model. Tractability verification is done through prompting gpt-4o with
the file to edit, the design principle, and a summary of the change needed to be made. We define this
process in depth in Section 3.2.

Step 3: Development of Testing Files. Once the tractability of the subtasks are verified, the de-
velopers then create relevant unit tests for each overarching task. At minimum, for every core edit
verified in Step 2, a new unit test is generated that parses through the respective file’s AST and
verifies that changes have the correct broad code structure and syntax necessitated by that sub-
task, removing dependence on exact-match testing (Appendix D). This iterative approach creates a
breadth of tests that comprises a necessary minimum for the total refactor. At test time, a LM agent’s
generated solution is applied to the codebase and the associated tests crafted for the task instance
are then executed. A generated patch is considered successful, if all of the relevant AST tests pass.

Step 4: Generation of Relevant Task Instructions. After reference solution and AST test creation,
the developers write a short, but comprehensive task summary to help in the instruction design
phase, what we refer to as the base instruction. In order to evaluate different degrees of instruction
following with specified and unspecified objectives, we generate two other instruction sets: lazy
instruction and descriptive instruction. These instruction sets are generated through a few-shot
learning prompt with the respective base instruction and the related unit tests (Appendix A.1).

The above four step process yielded 100 large overarching multi-file refactoring tasks and corre-
sponding tests in 9 different Python repositories. Throughout this work, we report the success on a
run based on passing all tests for a task. Table 1 and Figure 2 show a breakdown by repository and
other statistics related to the tasks.

Figure 2: Distribution of RefactorBench tasks
across 9 open source Python repositories.

Table 1: Statistics on RefactorBench tasks,
repositories, and AST-based unit tests.

Mean Max

Lazy Instruction Length (Words) 16.0 38
Base Instruction Length (Words) 20.6 44
Desc. Instruction Length (Words) 68.8 116

Codebase # Files 2327.6 6815
Lines 304K 1.8M

Reference Solution # Files edited 4.3 31

AST Tests # Length (Functions) 6.5 27
Length (Lines) 131.1 378

3.2 IMPORTANT FEATURES

Multi-File By filtering out single-file refactors as part of our task construction process, all tasks in
RefactorBench involve multi-file edits. Our tasks edit between 2 to 31 files, with 4 files edited in our
reference solutions on average. This feature, by definition, detracts the ability of single-shot LLMs
of solving the tasks, and forces feedback-based editing systems to reason over multiple files.

Varying Instruction Sets RefactorBench offers three sets of instructions with varying degree of de-
scriptiveness. With multiple instruction sets, we are able to test for a breadth of types of instruction-
following and provide a way to effectively scale the difficulty of RefactorBench. The lazy instruc-
tions match the styles of real users, where objectives are often unspecific. We also include the base
instruction which describes the task completely in a succinct manner. And through the descriptive
instruction, we are able to evaluate on an exhaustive instruction where systems are given insights on
what they will be tested on, a theoretical upper bound on performance.

Subtask AST Testing In RefactorBench, unit tests for each task are designed to cover various
subtasks the LM agent needs to accomplish. During the test construction process, we separate the
unit tests to break apart the behavior of subtasks within tasks. This makes understanding the failures
within patches an interpretable and quick process. For instance, one can evaluate which files the
agent makes edits in, giving more comprehensive understanding of the order of tasks and proximity

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

to a correct solution. RefactorBench’s unit tests comprise of 2 to 27 subtests, with an average of 6.51
tests per task. See Appendix D for an example test file and Appendix E for multiple test outputs seen
through the lens of this subtask testing format on RefactorBench.

Tractability Through verification steps during task construction, we also make sure that all the core
edits are feasible by frontier models at the time of writing. Due to this, our refactors have stronger
signal on evaluating the reasoning behaviors between function calls of LLM feedback loops rather
than the broad open-ended task of generating passing code changes. Similarly, previous work has
also recognized the importance of focusing agent benchmarks to interpretable subtasks (Côté et al.,
2019; Xie et al., 2024b; Shridhar et al., 2021; Chowdhury et al., 2024). Overall, this tractability
requirement allows for a more dedicated focus on evaluating the stateful reasoning abilities of LM
agents.

4 EXPERIMENTS

In this section, we explain our approaches to evaluate language agents on RefactorBench. All main
studies are done on SWE-agent, which is the highest performing open-source agent framework on
the full SWE-bench split at the time of writing. SWE-agent also structurally follows our earlier
definition of a POMDP-based LM agent (Yang et al., 2024; Jimenez et al., 2024), while other agents
sample from multiple agents (Wang et al., 2024d), weakening ablation studies. Often, due to costs
and rate limits on model endpoints impacting efficient ablation studies, we opt to use gpt-4 in
experiments, but find that our results scale similarly across models.

4.1 PRELIMINARIES

Current systems have overfit to solving reproducible bugs. As a prior, we observed poor per-
formance for some LM agents when running them on simpler tasks in RefactorBench. Upon inves-
tigating internal code of a few open-source LM agents, we find that their internal prompting and
in-context examples steer towards solving Github issues. This task specific prompting causes these
language agents to treat refactoring problems as bug-fixes. For instance, many systems will attempt
to create a bug reproduction script for a simple renaming task. We causate this initial finding as a
result of having a lack of benchmarks: it is hard to robustify LM agent systems without ways to eval-
uate on diverse styles of tasks (Kapoor et al., 2024; Dehghani et al., 2021). For the rest of this work,
to better understand the frontier of capabilities within current systems, we alter internal prompts to
focus on the task of refactoring. We therefore consider these baselines as an upper bound on perfor-
mance, and hope for future systems to be designed in accordance to and evaluate over diverse styles
of problems. We discuss directions for future systems and generalist performance in Section 7.

4.2 BASELINES

Figure 3: Baselines of a prompt adjusted SWE-agent
with gpt-4 and a human developer given IDE access
and a time limit of 5 minutes.

Table 2: Baseline task performance
relative to instruction type. Through
the varied categories, we find that lan-
guage agents are sensitive to unspeci-
fied objectives (Lazy) and improve in
performance greatly when given infor-
mation on which files to make edits in
(Descriptive).

Instruction Type Resolution Rate

Lazy 12.0%
Base 22.0%
Descriptive 27.0%

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Using a containerized framework that emulates a user file system with the target repository, we run
a baseline of SWE-agent on all RefactorBench tasks with a per instance cost limit of $10.002. We
report the percentage of completely successful task instances on each run. On the lazy, base, and de-
scriptive instruction sets, SWE-agent with gpt-4 solves 12%, 18%, and 27% respectively. To verify
generalization across models, we also run the descriptive baseline with claude-3.5-sonnet,
which solves 35% of the test cases completely. To contextualize this performance, we have a profi-
cient human developer attempt all the tasks within the benchmark, with a limit of 5 minutes per task
using the base instructions, and they solve 87% of the test cases. The average length of a successful
trajectory using gpt-4 is about 45.8 actions and the overall average length is about 58.5 actions.

Additionally, we sample 3 random solved RefactorBench instances in repositories that have 3 or
more solved, and combine their descriptive prompts to run as singular instances. We find that SWE-
agent, although able to solve the singular tasks, is unable to solve any of these longer pseudotasks.
We further discuss related results and tackle long horizon planning in later sections of this work.

5 ANALYSIS

From manual review of trajectories on RefactorBench, we find repeating general behaviors language
agents perform. Many prior works have outlined some strengths and failures of current LM agents
in different scenarios (Yang et al., 2024; Wang et al., 2024d; Xie et al., 2024b). As such, we focus
on three novel failure modes isolated through our baseline experiments. After large-scale human
review of trajectories and developing an understanding of failures, to confirm their prevalence on
a larger scale, we use gpt-4 with reference solution diffs to analyze unresolved trajectories and
the respective test outputs as following one of the failure modes in this section. Through this, we
classify about 58% of failed trajectories are corresponding to one of these failure modes, and in held
out validation, a human reviewer agreed with the classifications about 74% of the time.

Agents fail to find relevant locations and make applicable changes. Through our task construc-
tion, our descriptive instructions provide information on all files that need to be edited. However, we
still observe through about 44% of the tests checking for some change, agents initialized with the
descriptive instruction did not edit the target files, although being prompted to. These results differ
from previous results that firmly found that most LM agent coding systems create patches at the
correct location, and mainly fail through incorrect implementations (Chen et al., 2024a; Yang et al.,
2024). Moreover, none of the tasks that require changes in more than 6 files are solved in any of
our baselines. These results complement previous work evaluating planning capabilities of LLMs,
where increases in constraints correlate with decreases in performance (Xie et al., 2024b; Huang
et al., 2022). We hypothesize that the increase in files serves as a proxy constraint and LM agents
fail in both efficient exploration and composing previous actions. We formalize the related problems
of action tracking and stateful reasoning in-depth and tackle it through state updates in Section 6.

Agents fail due to interactions that necessitate erroneous intermediate states. Our classifica-
tions also show that 78.4% of trajectories error in a code editing step. Through analyzing these tra-
jectories, we commonly encounter cases where making a change that temporarily introduces errors
is a necessary step to solve the task. This is often because subsequent modifications, either within
the same file or across multiple files, are concurrently required to resolve these issues. Consequently,
the practice of automatically enforcing strict linting rules and rejecting edits based on errors proves
to be an impractical approach for scaling real world agents, even though most open-source systems
have previously found in-edit linting to significantly boost performance for bug fixing (Örwall, 2024;
Yang et al., 2024; Wang et al., 2024d). This identified scenario demonstrates that LM agents often
imitate human forms of interaction, and removing innate capabilities through guardrails can backfire
in unintended manners. We further discuss unobstructed LM agent interaction in Section 7.1.

Agents fail due to context flooding and losing sight of objectives. We find that agents struggle
in decision making after having commands that are rejected due to formatting issues or unexpected
output (Figure 8). In recent work defining in-context reward hacking (ICRH) (Pan et al., 2024),
LLMs, through feedback loops in small synthetic tasks, have been shown to model proxy objectives
when optimizing over some larger objective. We find, in our real world task of refactoring, that the
negative effects from ICRH are also accentuated by extensive context space being taken up by the

2This cost is due to large token counts being necessitated with multi-file reasoning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

handling of constraint violations, deprioritizing the initial objective in a form of few-shot learning
(Brown et al., 2020). Specifically, a common linting error edit in our tasks shows the model an
average of about 1,466 tokens 3: comprising of two blocks of code, error handling prompts, and
the flagged errors. We find that this lengthy repetition for error handling function calling weakens
trajectory structure. For instance, in some trajectories, we see the agent run end after an intensive
function level feedback loop is resolved, a form of prioritizing the new objective. Language mod-
els losing sight of initial goals has recently been tackled within single-shot code generation tasks
through attention dilution (Tian & Zhang, 2024), but we find this new issue is more prevalent in
LM agent trajectories, and is exacerbated through the context-expensive feedback loops. We further
discuss ways to approach robust trajectory reasoning in Section 7.1.

6 TOWARDS STATE-AWARE LANGUAGE AGENTS

In our analysis, we found a general issue with LM agents struggling to plan edits in the right lo-
cations. We hypothesize that an innate limitation of the POMDP setup of LM agents is that after
sufficiently many timesteps n, due to partial observability, the LM’s understanding of the current
state at such action an becomes weaker, through divergence from the initial state before a1. In this
section, we first explore this claim through a synthetic setup and then attempt conditioning over
state updates to improve on the failure mode. We later generalize our approach to entire digital
environments and discuss the implications of state-awareness for agent interaction.

Computation of state almost linearly decreases with respect to number of actions taken. Sim-
ilar to previous work in testing entity tracking in language models (Kim & Schuster, 2023), we
test the existence of the earlier divergence hypothesis in a synthetic setup through prompting a LM
with 15 categories of preferences, emulating a web agent. We iteratively give an increasing list of
n updates to the preferences (i.e. Dogs to Dislikes) and prompt the LM to output the updated list
of preferences. Based on 125 randomly initialized runs, we find that failures in cumulative state
construction linearly scale with the amount of actions taken (Figure 4). We show the exact setup for
reproducibility in Appendix E.

Figure 4: GPT-4 Turbo accuracy in end
state construction drops consistently over in-
creased iterations of actions. Prompts and
examples are available in Appendix E.

Figure 5: Comparison of a prompt adjusted SWE-
agent and a state-aware SWE-agent implementa-
tion, both using gpt-4. Sample implementation
code available in Appendix G.

6.1 STATE-AWARE INTERFACES

In our baseline runs, we find that agent trajectories extend long (60+), necessitating actions across
multiple files. However, real world implementations of LM agents often restrict the amount of previ-
ous information Count(ω) in τN to a controlled number of steps4 to avoid flooding context windows.
Being able to model long term changes with limited context has been a problem space in neural
policy learning (Piterbarg et al., 2023). To tackle this, a recent SOTA approach in NetHack, a long
horizon video game requiring continual learning (Hambro et al., 2022), used unix diff on previous

3Using the o200k base tokenizer on task instances within the ansible/ansible repository
4Five step observational window in the case of SWE-agent.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: Example flow of a language agent at some timestep N interacting with a state update policy
to generate the natural language state summary appended to the agent trajectory. The new updated
trajectory is passed to the core LM to generate the next function call and execute it.

observations in order to keep base models on track (Piterbarg et al., 2024). Their results confirm the
importance of continuous and efficient modeling of state changes in environments, but also demon-
strate that diff history exploits structure that is present apriori in observations. Other works using
LMs to plan for embodied systems have found computation of state observations alongside baseline
observations important for long-horizon task planning (Chen et al., 2024b). We combine the idea of
efficient modeling of state observations with previous proven results with feedback-based interface
design (Yang et al., 2024; Shang et al., 2024), to motivate our approach: state-aware interfaces.

Our implementation for a state-aware interface for interacting with code focuses on succinctly rep-
resenting the divergence from initialization state, which is represented through previous edit ac-
tions. As such, before every function call, we have a cached and updated section with informa-
tion related to all previous edits, prompting the model with an understanding of the accumula-
tion of its own changes (Appendix G). Formally, we add a recurring externally computed state
variable σ to our POMDP, where σN is the state at timestep N, and our trajectory now follows
τN = (a1, ω1, σ1, . . . , aN , ωN , σN).

Agents with state updates have stronger performance in RefactorBench tasks. We modify
SWE-agent with gpt-4o to track and display representations of state (Appendix G). This change
boosts the agent’s overall performance on RefactorBench: an average of 43.9% relative increase
over the instruction sets compared to baseline agents (Figure 5). We also find a strong upwards
trend in subtask completion: an average of 71% increase over the instruction sets. As our AST
testing isolates unique subtasks in different files and functions, we find that solving more subtasks
is correlated with stronger stateful reasoning, the intended goal of the state-aware interface.

6.2 STATE UPDATE POLICIES

Having precomputation from the state update allows the LM to ignore computing the reconstruction
subtask when generating the next function call. We extend state-updates to generalize to entire
digital environments, not just an agent, through the construction of a state update policy.

We define our state update policy πstate as a function that manages and provides the cumulative
state information to the agent within an environment. Formally, let σN represent the current state at
timestep N derived from all prior interactions. The state update policy πstate can be expressed as a
conditional function:

πstate : (τN , σN−1, ..., σ0) → σN ,

where τN = (a1, ω1, σ1, . . . , aN−1, ωN−1, σN−1, aN , ωN) is the trajectory up to the generation of
σN , including all actions ai, observations ωi, and prior states σi.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

State update policies can lead to deviations from typical sequential agent reasoning. We find
states expressed in natural language to be a natural approach to facilitate concurrent interactions
between language agents in open digital environments. Through our initial implementation of a
state update policy, we are also able to model simple external changes from a concurrent state-aware
user (Figure 6). In a simple example, we concurrently make a change with an external agent to
rename a function that the LM agent has already edited to complete it’s refactoring task. Through
the state update policy, we are able to propagate this edit information and agent is able to decide to
later view the new edit for more context (Appendix H). However, as all the tasks in RefactorBench
are mutually exclusive, we do not further evaluate on modeling conflicting objectives between agents
at a larger scale, but expand on similar directions for future work in Section 7.1.

7 DISCUSSION

We introduce RefactorBench, a benchmark that isolates unique failure modes of LM agents through
code. Through our experiments, we find that most agents struggle at composing simple actions, and
a diverse set of task evaluations is necessary for understanding and designing generalist language
agent systems. We also show improvement on baselines through natural language representations
of state and hope that further studies within stateful reasoning in differing scenarios can aid in the a
larger understanding of the limitations of language agents.

7.1 FUTURE DIRECTIONS

Although there are many avenues to take for improving LM agents, we generalize our analysis from
our evaluations on RefactorBench tasks into two main categories.

Reasoning Through the synthetic state construction experiment, we formalize that language models
innately lose state understanding with respect to actions taken. As such, alongside our introduction
of state update policies, we hypothesize that constructing smarter ways to generalize context rather
than having the LM condition over the full trajectory is an important direction for tackling this
problem. Various recent works on gist-based memory systems within agents, collaboration through
optimizable graphs, exploration methods, skill learning, and mitigating partial observability seem
promising (Zhuge et al., 2024; Nayak et al., 2024; Lee et al., 2024b; Wang et al., 2023a; Bruce et al.,
2023; Xie et al., 2024a; Allen et al., 2024), but no works have tackled concrete methods to scale
concurrent state-awareness for simple agent tasks. Many new approaches to improve agent perfor-
mance have also been shown to scale up inference compute and score higher on various agent related
benchmarks (Zhang et al., 2024a; Kapoor et al., 2024; Brown et al., 2024; Wang et al., 2024b). As
real world refactoring results are not immediately verifiable, we find this style of repeated sampling
to be insufficient without robust critic models. We encourage future works to scale inference time
compute in language agents with open-ended tasks like those in RefactorBench.

Interaction In regards to interaction with the real world, we find that LM agents edit code in
inefficient manners and have low success rates per single edit. Many agents have switched to diff-
based editing (Örwall, 2024; Gauthier, 2024), which has empirically shown to be a more scalable
solution. However, these systems do not get around the issues that come with temporary error
states (Section 5) and format restrictions. The natural approach of full-file edits has its own distinct
issues: such as generalizing for files longer than token limits, inference speed, token cost, and
context flooding. Future approaches could attempt to intertwine full-file rewrites with speculative
decoding (Cursor, 2024) and custom trajectory truncation schemes to limit context window flooding.
Overall, even outside of code generation, we predict this interaction problem for language agents
to be of importance in varying digital domains, and we expect interaction to be a large focus in
generalist agent interface constructions, especially in multi-agent scenarios. Our state update policy
demonstrates a primitive case of agents being aware of other actions, and we hope for future works
to generalize the environment-specific policy approach (Figure 6) in a variety of digital tasks.

7.2 LIMITATIONS

RefactorBench’s task instances are all in Python, and we hope to expand the benchmark to various
languages that are statically and dynamically typed, allowing for evaluations on more styles of refac-
tors. We also focus on highly used open-source Python repositories, and language models may have

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

a better understanding of the repositories due to their prevalence in training data. RefactorBench
also has a limited amount of task instances due to the intensive process to create a singular end-to-
end task and the necessity for quick evaluations (evaluations still takes hours with RefactorBench).
In our evaluations, we also raise the cost limit much past limits in previous works in software en-
gineering agents, due to the inability for agents to solve multi-file tasks quickly and cheaply. We
also find, similar to previous works, that agent runs are not deterministic and can solve differing
tasks in different runs. RefactorBench is a step forward in evaluating LM agents in robust manners
through complex task construction, but like all benchmarks, is still plagued by the possible issues
of over-fit data distributions (i.e. only refactors) (Kapoor et al., 2024). To prevent this repetitive
issue, we do not release gold reference solutions (only the testing files) and we recommend eval-
uating software engineering agents on multiple styles of tasks: function editing tasks, bug fixes in
SWE-bench, refactors in RefactorBench, etc. to truly define robustness in a general coding agent.
Creating a general multi-faceted evaluation suite for language models and agents interacting with
code is a compelling direction for future work.

REFERENCES

Anisha Agarwal, Aaron Chan, Shubham Chandel, Jinu Jang, Shaun Miller, Roshanak Zilouchian
Moghaddam, Yevhen Mohylevskyy, Neel Sundaresan, and Michele Tufano. Copilot evaluation
harness: Evaluating llm-guided software programming, 2024. URL https://arxiv.org/
abs/2402.14261.

Aide.dev. Sota on swe bench lite, 2024. URL https://aide.dev/blog/
sota-on-swe-bench-lite.

Cameron Allen, Aaron Kirtland, Ruo Yu Tao, Sam Lobel, Daniel Scott, Nicholas Petrocelli,
Omer Gottesman, Ronald Parr, Michael L. Littman, and George Konidaris. Mitigating par-
tial observability in sequential decision processes via the lambda discrepancy, 2024. URL
https://arxiv.org/abs/2407.07333.

Daman Arora, Atharv Sonwane, Nalin Wadhwa, Abhav Mehrotra, Saiteja Utpala, Ramakrishna
Bairi, Aditya Kanade, and Nagarajan Natarajan. Masai: Modular architecture for software-
engineering ai agents, 2024. URL https://arxiv.org/abs/2406.11638.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

AWS Q Developer. Aws developer center, 2024. URL https://aws.amazon.com/q/
developer/.

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Vageesh D C, Arun Iyer, Suresh Parthasarathy,
Sriram Rajamani, B. Ashok, and Shashank Shet. Codeplan: Repository-level coding using llms
and planning, 2023. URL https://arxiv.org/abs/2309.12499.

Samuel R. Bowman and George E. Dahl. What will it take to fix benchmarking in natural language
understanding?, 2021. URL https://arxiv.org/abs/2104.02145.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2024. URL https://arxiv.org/abs/2407.21787.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Jake Bruce, Ankit Anand, Bogdan Mazoure, and Rob Fergus. Learning about progress from experts.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=sKc6fgce1zs.

10

https://arxiv.org/abs/2402.14261
https://arxiv.org/abs/2402.14261
https://aide.dev/blog/sota-on-swe-bench-lite
https://aide.dev/blog/sota-on-swe-bench-lite
https://arxiv.org/abs/2407.07333
https://arxiv.org/abs/2406.11638
https://arxiv.org/abs/2108.07732
https://aws.amazon.com/q/developer/
https://aws.amazon.com/q/developer/
https://arxiv.org/abs/2309.12499
https://arxiv.org/abs/2104.02145
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=sKc6fgce1zs
https://openreview.net/forum?id=sKc6fgce1zs

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4, 2023. URL https://arxiv.org/abs/2303.12712.

Federico Cassano, Luisa Li, Akul Sethi, Noah Shinn, Abby Brennan-Jones, Anton Lozhkov, Car-
olyn Jane Anderson, and Arjun Guha. Can it edit? evaluating the ability of large language models
to follow code editing instructions. In Conference on Language Modeling (COLM), 2024.

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-Gang Wang, Anton Cheshkov, Jun Sun,
Hao Yu, Guoliang Dong, Artem Aliev, Jie Wang, Xiao Cheng, Guangtai Liang, Yuchi Ma, Pan
Bian, Tao Xie, and Qianxiang Wang. Coder: Issue resolving with multi-agent and task graphs,
2024a. URL https://arxiv.org/abs/2406.01304.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Siwei Chen, Anxing Xiao, and David Hsu. Llm-state: Open world state representation for long-
horizon task planning with large language model, 2024b. URL https://arxiv.org/abs/
2311.17406.

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, Carlos E. Jimenez, John Yang, Kevin Liu,
and Aleksander Madry. Introducing swe-bench verified. https://openai.com/blog/
introducing-swe-bench-verified, August 2024.

Cognition.ai. Introducing devin, 2024. URL https://www.cognition.ai/blog/
introducing-devin.

Cursor. Editing files at 1000 tokens per second. https://www.cursor.com/blog/
instant-apply, 2024.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Ruo Yu Tao, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay, and
Adam Trischler. Textworld: A learning environment for text-based games, 2019. URL https:
//arxiv.org/abs/1806.11532.

Mostafa Dehghani, Yi Tay, Alexey A. Gritsenko, Zhe Zhao, Neil Houlsby, Fernando Diaz, Donald
Metzler, and Oriol Vinyals. The benchmark lottery, 2021. URL https://arxiv.org/abs/
2107.07002.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring: Improving
the Design of Existing Code. Addison-Wesley Professional, 2nd edition, 2018.

Paul Gauthier. Aider: Ai-powered coding assistant, 2024. URL https://github.com/
paul-gauthier/aider.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022. URL https://arxiv.org/abs/2111.00396.

11

https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2406.01304
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2311.17406
https://arxiv.org/abs/2311.17406
https://openai.com/blog/introducing-swe-bench-verified
https://openai.com/blog/introducing-swe-bench-verified
https://www.cognition.ai/blog/introducing-devin
https://www.cognition.ai/blog/introducing-devin
https://www.cursor.com/blog/instant-apply
https://www.cursor.com/blog/instant-apply
https://arxiv.org/abs/1806.11532
https://arxiv.org/abs/1806.11532
https://arxiv.org/abs/2107.07002
https://arxiv.org/abs/2107.07002
https://github.com/paul-gauthier/aider
https://github.com/paul-gauthier/aider
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2111.00396

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Eric Hambro, Sharada Mohanty, Dmitrii Babaev, Minwoo Byeon, Dipam Chakraborty, Edward
Grefenstette, Minqi Jiang, Daejin Jo, Anssi Kanervisto, Jongmin Kim, Sungwoong Kim, Robert
Kirk, Vitaly Kurin, Heinrich Küttler, Taehwon Kwon, Donghoon Lee, Vegard Mella, Nan-
tas Nardelli, Ivan Nazarov, Nikita Ovsov, Jack Parker-Holder, Roberta Raileanu, Karolis Ra-
manauskas, Tim Rocktäschel, Danielle Rothermel, Mikayel Samvelyan, Dmitry Sorokin, Maciej
Sypetkowski, and Michał Sypetkowski. Insights from the neurips 2021 nethack challenge, 2022.
URL https://arxiv.org/abs/2203.11889.

Joey Hejna, Pieter Abbeel, and Lerrel Pinto. Improving long-horizon imitation through instruction
prediction, 2023. URL https://arxiv.org/abs/2306.12554.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language
agents on machine learning experimentation, 2024. URL https://arxiv.org/abs/
2310.03302.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. arXiv preprint
arXiv:2201.07207, 2022.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation, 2024. URL https://arxiv.org/abs/2406.00515.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.

Sayash Kapoor, Benedikt Stroebl, Zachary S. Siegel, Nitya Nadgir, and Arvind Narayanan. Ai
agents that matter, 2024. URL https://arxiv.org/abs/2407.01502.

Najoung Kim and Sebastian Schuster. Entity tracking in language models, 2023. URL https:
//arxiv.org/abs/2305.02363.

Beck LaBash, August Rosedale, Alex Reents, Lucas Negritto, and Colin Wiel. Res-q: Evaluat-
ing code-editing large language model systems at the repository scale, 2024. URL https:
//arxiv.org/abs/2406.16801.

Jinhyuk Lee, Anthony Chen, Zhuyun Dai, Dheeru Dua, Devendra Singh Sachan, Michael Boratko,
Yi Luan, Sébastien M. R. Arnold, Vincent Perot, Siddharth Dalmia, Hexiang Hu, Xudong Lin,
Panupong Pasupat, Aida Amini, Jeremy R. Cole, Sebastian Riedel, Iftekhar Naim, Ming-Wei
Chang, and Kelvin Guu. Can long-context language models subsume retrieval, rag, sql, and
more?, 2024a. URL https://arxiv.org/abs/2406.13121.

Kuang-Huei Lee, Xinyun Chen, Hiroki Furuta, John Canny, and Ian Fischer. A human-inspired
reading agent with gist memory of very long contexts, 2024b. URL https://arxiv.org/
abs/2402.09727.

Belinda Z. Li, Maxwell Nye, and Jacob Andreas. Language modeling with latent situations, 2022.
URL https://arxiv.org/abs/2212.10012.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian,
Binyuan Hui, Qicheng Zhang, Zhiyin Yu, He Du, Ping Yang, Dahua Lin, Chao Peng, and Kai
Chen. Devbench: A comprehensive benchmark for software development, 2024. URL https:
//arxiv.org/abs/2403.08604.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context, 2023a. URL https://arxiv.org/abs/2310.01889.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2024a. URL https://arxiv.org/abs/2306.03091.

12

https://arxiv.org/abs/2203.11889
https://arxiv.org/abs/2306.12554
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2406.00515
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2407.01502
https://arxiv.org/abs/2305.02363
https://arxiv.org/abs/2305.02363
https://arxiv.org/abs/2406.16801
https://arxiv.org/abs/2406.16801
https://arxiv.org/abs/2406.13121
https://arxiv.org/abs/2402.09727
https://arxiv.org/abs/2402.09727
https://arxiv.org/abs/2212.10012
https://arxiv.org/abs/2403.08604
https://arxiv.org/abs/2403.08604
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2306.03091

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xiangyan Liu, Bo Lan, Zhiyuan Hu, Yang Liu, Zhicheng Zhang, Wenmeng Zhou, Fei Wang, and
Michael Shieh. Codexgraph: Bridging large language models and code repositories via code
graph databases, 2024b. URL https://arxiv.org/abs/2408.03910.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie
Tang. Agentbench: Evaluating llms as agents, 2023b. URL https://arxiv.org/abs/
2308.03688.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent, 2024. URL https://arxiv.org/abs/2408.00203.

Pol Moreno, Edward Hughes, Kevin R. McKee, Bernardo Avila Pires, and Théophane Weber. Neural
recursive belief states in multi-agent reinforcement learning, 2021. URL https://arxiv.
org/abs/2102.02274.

Siddharth Nayak, Adelmo Morrison Orozco, Marina Ten Have, Vittal Thirumalai, Jackson Zhang,
Darren Chen, Aditya Kapoor, Eric Robinson, Karthik Gopalakrishnan, James Harrison, Brian
Ichter, Anuj Mahajan, and Hamsa Balakrishnan. Long-horizon planning for multi-agent robots in
partially observable environments, 2024. URL https://arxiv.org/abs/2407.10031.

OpenAI. Gpt-4o system card. https://openai.com/index/gpt-4o-system-card/,
2024.

Alexander Pan, Erik Jones, Meena Jagadeesan, and Jacob Steinhardt. Feedback loops drive in-
context reward hacking in llms. arXiv, 2024.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact of ai on developer
productivity: Evidence from github copilot, 2023. URL https://arxiv.org/abs/2302.
06590.

Ulyana Piterbarg, Lerrel Pinto, and Rob Fergus. Nethack is hard to hack, 2023. URL https:
//arxiv.org/abs/2305.19240.

Ulyana Piterbarg, Lerrel Pinto, and Rob Fergus. diff history for neural language agents, 2024. URL
https://arxiv.org/abs/2312.07540.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Had-
sell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent, 2022. URL
https://arxiv.org/abs/2205.06175.

Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann
Dubois, Chris J Maddison, and Tatsunori Hashimoto. Identifying the risks of lm agents with
an lm-emulated sandbox. In The Twelfth International Conference on Learning Representations,
2024.

Gabriel Sarch, Yue Wu, Michael J. Tarr, and Katerina Fragkiadaki. Open-ended instructable em-
bodied agents with memory-augmented large language models, 2023. URL https://arxiv.
org/abs/2310.15127.

Chuyi Shang, Amos You, Sanjay Subramanian, Trevor Darrell, and Roei Herzig. Traveler: A multi-
lmm agent framework for video question-answering, 2024. URL https://arxiv.org/
abs/2404.01476.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2023.

13

https://arxiv.org/abs/2408.03910
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2408.00203
https://arxiv.org/abs/2102.02274
https://arxiv.org/abs/2102.02274
https://arxiv.org/abs/2407.10031
https://openai.com/index/gpt-4o-system-card/
https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2305.19240
https://arxiv.org/abs/2305.19240
https://arxiv.org/abs/2312.07540
https://arxiv.org/abs/2205.06175
https://arxiv.org/abs/2310.15127
https://arxiv.org/abs/2310.15127
https://arxiv.org/abs/2404.01476
https://arxiv.org/abs/2404.01476

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. ALFWorld: Aligning Text and Embodied Environments for Interactive Learning. In
Proceedings of the International Conference on Learning Representations (ICLR), 2021. URL
https://arxiv.org/abs/2010.03768.

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive archi-
tectures for language agents, 2024. URL https://arxiv.org/abs/2309.02427.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=qVyeW-grC2k.

Yuan Tian and Tianyi Zhang. Selective prompt anchoring for code generation, 2024. URL https:
//arxiv.org/abs/2408.09121.

Michele Tufano, Anisha Agarwal, Jinu Jang, Roshanak Zilouchian Moghaddam, and Neel Sundare-
san. Autodev: Automated ai-driven development, 2024. URL https://arxiv.org/abs/
2403.08299.

Boyuan Wang, Yun Qu, Yuhang Jiang, Jianzhun Shao, Chang Liu, Wenming Yang, and Xiangyang
Ji. Llm-empowered state representation for reinforcement learning, 2024a. URL https://
arxiv.org/abs/2407.13237.

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen Han,
Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm search
for code generation, 2024b. URL https://arxiv.org/abs/2409.03733.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023a. URL https://arxiv.org/abs/2305.16291.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Ji-
akai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on
large language model based autonomous agents. Frontiers of Computer Science, 18(6), March
2024c. ISSN 2095-2236. doi: 10.1007/s11704-024-40231-1. URL http://dx.doi.org/
10.1007/s11704-024-40231-1.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Opendevin: An open platform for ai software
developers as generalist agents, 2024d. URL https://arxiv.org/abs/2407.16741.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-
world multi-task agents with memory-augmented multimodal language models, 2023b. URL
https://arxiv.org/abs/2311.05997.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-
based software engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

Annie Xie, Logan Mondal Bhamidipaty, Evan Zheran Liu, Joey Hong, Sergey Levine, and Chelsea
Finn. Learning to explore in POMDPs with informational rewards. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 54414–54429. PMLR, 21–27 Jul 2024a. URL
https://proceedings.mlr.press/v235/xie24a.html.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents, 2024b. URL
https://arxiv.org/abs/2402.01622.

14

https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2309.02427
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://arxiv.org/abs/2408.09121
https://arxiv.org/abs/2408.09121
https://arxiv.org/abs/2403.08299
https://arxiv.org/abs/2403.08299
https://arxiv.org/abs/2407.13237
https://arxiv.org/abs/2407.13237
https://arxiv.org/abs/2409.03733
https://arxiv.org/abs/2305.16291
http://dx.doi.org/10.1007/s11704-024-40231-1
http://dx.doi.org/10.1007/s11704-024-40231-1
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2311.05997
https://arxiv.org/abs/2407.01489
https://proceedings.mlr.press/v235/xie24a.html
https://arxiv.org/abs/2402.01622

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024c. URL https://arxiv.org/
abs/2404.07972.

Zheyang Xiong, Vasilis Papageorgiou, Kangwook Lee, and Dimitris Papailiopoulos. From artificial
needles to real haystacks: Improving retrieval capabilities in llms by finetuning on synthetic data,
2024. URL https://arxiv.org/abs/2406.19292.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024.

Shunyu Yao and Karthik Narasimhan. Language agents in the digital world: Opportunities and
risks. princeton-nlp.github.io, Jul 2023. URL https://princeton-nlp.github.io/
language-agent-impact/.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh Murthy, Tian Lan, Lei
Li, Renze Lou, Jiacheng Xu, Bo Pang, Yingbo Zhou, Shelby Heinecke, Silvio Savarese, Huan
Wang, and Caiming Xiong. Diversity empowers intelligence: Integrating expertise of software
engineering agents, 2024a. URL https://arxiv.org/abs/2408.07060.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement, 2024b. URL https://arxiv.org/abs/2404.05427.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Language agents as optimizable graphs, 2024. URL https://arxiv.org/
abs/2402.16823.

Albert Örwall. Moatless tools. https://github.com/aorwall/moatless-tools, 2024.

15

https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2406.19292
https://princeton-nlp.github.io/language-agent-impact/
https://princeton-nlp.github.io/language-agent-impact/
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2408.07060
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2402.16823
https://arxiv.org/abs/2402.16823
https://github.com/aorwall/moatless-tools

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A TASK CONSTRUCTION PROMPTS

A.1 PROMPT FOR LAZY INSTRUCTION

We prompt gpt-4-turbo with the handcrafted base instruction based on all the edits and this
prompt to get our lazy instruction.

Please convert the following instruction to be less specific. Do not
change the behavior of the task, but give a short, less descriptive
version of the task in human-like prose. Your final instruction should be
a partial sentence and should not instruct to run any tests. It should

just describe the changes to the repository. Do not output ANYTHING ELSE
BUT THE NEW INSTRUCTION. Here is the original instruction:

{base_instruction}

Here are examples of lazy instructions:

{few_shot_lazy}

Remember to only output the NEW LAZY INSTRUCTION CORRESPONDING TO THE
BASE TASK.

A.2 PROMPT FOR DESCRIPTIVE INSTRUCTION

We prompt gpt-4-turbo with the handcrafted base instruction based on all the edits, the corre-
sponding testing file, and this prompt to get our descriptive instruction.

Please convert the following instruction to be more specific and have
specific filenames for edits (not paths). Do not change the behavior of
the task, but give a longer, more descriptive version of the task in
human-like specifications. Reason over the AST tests provided to give
more information on which files could be relevant, but do not give exact
implementation details or anything related to what generalizations the
tests are looking for. Your final instruction should be around 2-3 full
sentences and should not say to run any tests or anything like that. It
should just describe the changes to the repository. Do not output
ANYTHING ELSE BUT THE NEW INSTRUCTION. Here is the original instruction
and its related test file:

{base_instruction}

Test File Starts Here:

{inst_test_file}

End of Test File.

Here are examples of descriptive instructions:

{few_shot_desc}

Remember to only output the NEW DESCRIPTIVE INSTRUCTION CORRESPONDING TO
THE BASE TASK.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B AGENT PROMPT CHANGES

B.1 UPDATED SWE-AGENT SYSTEM PROMPT

As described in Section 4, we alter the SWE-agent prompt to stop the agent from creating bug
reproduction scripts for refactors and focus on the style of task at hand.

SETTING: You are an autonomous programmer specializing in refactoring,
and you're working directly in the command line with a special interface.
The special interface consists of a file editor that shows you WINDOW
lines of a file at a time.
In addition to typical bash commands, you can also use the following
commands to help you navigate and edit files.

COMMANDS:
command_docs

Please note that THE EDIT COMMAND REQUIRES PROPER INDENTATION.
If you'd like to add the line ' print(x)' you must fully write that out,
with all those spaces before the code! Indentation is important and code
that is not indented correctly will fail and require fixing before it can
be run.

RESPONSE FORMAT:
Your shell prompt is formatted as follows:
(Open file: <path>) <cwd>

You need to format your output using two fields: discussion and command.
Your output should always include _one_ discussion and _one_ command
field EXACTLY as in the following example:

DISCUSSION
First I'll start by using ls to see what files are in the current
directory. Then maybe we can look at some relevant files to see what they
look like.

\begin{verbatim}
ls -a
\end{verbatim}

You should only include a *SINGLE* command in the command section and
then wait for a response from the shell before continuing with more
discussion and commands. Everything you include in the DISCUSSION section
will be saved for future reference.

If you'd like to issue two commands at once, PLEASE DO NOT DO THAT!
Please instead first submit just the first command, and then after
receiving a response you'll be able to issue the second command.
You're free to use any other bash commands you want (e.g. find, grep, cat
, ls, cd) in addition to the special commands listed above.
However, the environment does NOT support interactive session commands (e
.g. python, vim), so please do not invoke them.

instance_template: |-
We're currently solving the following issue within our repository. Here's
the issue text:

ISSUE:

INSTRUCTIONS:
Now, you're going to solve this refactoring issue on your own. Your
terminal session has started and you're in the repository's root
directory. You can use any bash commands or the special interface to help
you. Edit all the files you need to and run any checks or tests that you
want.

Remember, YOU CAN ONLY ENTER ONE COMMAND AT A TIME. You should always
wait for feedback after every command.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

When you're satisfied with all of the changes you've made, you can submit
your changes to the code base by simply running the submit command.

Note however that you cannot use any interactive session commands (e.g.
python, vim) in this environment, but you can write scripts and run them.
E.g. you can write a python script and then run it with `python <script\

_name>.py`.

NOTE ABOUT THE EDIT COMMAND: Indentation really matters! When editing a
file, make sure to insert appropriate indentation before each line!

IMPORTANT TIPS:
1. Always start by checking your working directory, cd'ing to the task
repo, and then trying to find where to do the refactor using the search
tools. Do not go into other directories like root or sys. Just go to the
task repo and make edits in there.

2. If you run a command and it doesn't work, try running a different
command. A command that did not work once will not work the second time
unless you modify it!

3. If you open a file and need to get to an area around a specific line
that is not in the first 100 lines, say line 583, don't just use the
scroll_down command multiple times. Instead, use the goto 583 command.
It's much quicker.

4. Always make sure to look at the currently open file and the current
working directory (which appears right after the currently open file).
The currently open file might be in a different directory than the
working directory! Note that some commands, such as 'create', open files,
so they might change the current open file.

5. When editing files, it is easy to accidentally specify a wrong line
number or to write code with incorrect indentation. Always check the code
after you issue an edit to make sure that it reflects what you wanted to
accomplish. If it didn't, issue another command to fix it.

6. It may be necessary to install the repository from source before you
can run code. Please think about how to install the environment from the
repository directory if you need to do so.

7. Do not run the repo tests, just focus on comprehensively finishing the
multi-file refactor to the best of your abilities.

8. If you make a change that could have dependencies, always reason and
search where imports need to be updated and update them accordingly.

9. Do not run huge grep commands that could print out and flood the
context with too many items. If not sure, just check how many items the
command will run to begin with.

(Open file: open_file) \\
(Current directory: working_dir) \\

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C EXAMPLE CONDENSED SUCCESSFUL TRAJECTORY

We show a portion of a successful trajectory for the refactoring task: rename-send-from-directory in
the flask repository. Full examples are available in our repository.

Base Instruction: Rename the helper function send from directory to send from directory helper
but keep the overall flask usage as send from directory.

State-aware SWE-agent Run
{
"action": "ls -F\n",
"observation": "flask_refactor/\nbin@\nboot/\ndev/\netc/\nhome/\nlib@
\nmedia/\nmnt/\nopt/\nproc/\nroot/\nrun/\nsbin@\nsrv/\nsys/\ntmp/\
nusr/\nvar/",
"response": "DISCUSSION\nFirst, I'll list the files in the current
directory to get an overview of the project structure. This will help
me locate the 'helpers' module and the 'flask' folder where the

changes need to be made.\n```\nls -F\n```",
"state": "{\"working_dir\": \"flask_refactor\", \"open_file\": \"n/a
\", \"recent_edits\": []}",
"thought": "DISCUSSION\nFirst, I'll list the files in the current
directory to get an overview of the project structure. This will help
me locate the 'helpers' module and the 'flask' folder where the

changes need to be made.\n"
},
...
... (Makes changes in multiple files)
...
{
"role": "assistant",
"content": "DISCUSSION\nWe need to update the import statement for `
send_from_directory` to import `send_from_directory_helper` as `
send_from_directory`. Let's make the necessary edit.\n```\nedit 9:9\
nfrom flask.helpers import send_from_directory_helper as
send_from_directory\nend_of_edit\n```",
"thought": "DISCUSSION\nWe need to update the import statement for `
send_from_directory` to import `send_from_directory_helper` as `
send_from_directory`. Let's make the necessary edit.\n",
"action": "edit 9:9\nfrom flask.helpers import
send_from_directory_helper as send_from_directory\nend_of_edit\n",

},
{
"role": "user",
"content": "[Truncated File Output]
(Current State: ['Edited helpers.py at lines 514:514', 'Edited
__init__.py at lines 24:24', 'Edited app.py at lines 42:42', 'Edited
blueprints.py at lines 9:9', 'Edited test_helpers.py at lines 9:9\\n
'])
(Open file: /flask_refactor/tests/test_helpers.py)
(Current directory: flask_refactor)
bash-$",

},
{
"role": "assistant",
"content": "DISCUSSION\nThe import statement in `test_helpers.py` has
been updated. We have now made all the necessary changes to the

relevant files. Let's submit the changes to the code base.\n```\
nsubmit\n```",
"thought": "DISCUSSION\nThe import statement in `test_helpers.py` has
been updated. We have now made all the necessary changes to the

relevant files. Let's submit the changes to the code base.\n",
"action": "submit\n",

}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D EXAMPLE TEST FILE

Here is the parameterize-gunzip.py test file for the parameterize-gunzip task:

Base instruction: Encapsulate the parameters in gunzip into a new class called GunzipParams
and update all references within the repository to create a GunzipParams object.

import unittest
import os
import ast

class TestScrapyMigration(unittest.TestCase):

def test_gunzipparams_class_exists(self):
Path to the file where the class should be defined
file_path = '../scrapy/utils/gz.py'

Check if the file exists
self.assertTrue(os.path.exists(file_path), f"{file_path} does not
exist")

Check if the GunzipParams class is defined in gz.py
with open(file_path, 'r') as file:

tree = ast.parse(file.read())

class_found = False
for node in ast.walk(tree):

if isinstance(node, ast.ClassDef) and node.name == 'GunzipParams
':

class_found = True
break

self.assertTrue(class_found, "Class 'GunzipParams' not found in gz.
py")

def test_gunzipparams_has_data_and_max_size(self):
Path to the file where the class should be defined
file_path = '../scrapy/utils/gz.py'

Check if the file exists
self.assertTrue(os.path.exists(file_path), f"{file_path} does not
exist")

Check if the GunzipParams class has self.data and self.max_size
attributes
with open(file_path, 'r') as file:

tree = ast.parse(file.read())

class_node = None
for node in ast.walk(tree):

if isinstance(node, ast.ClassDef) and node.name == 'GunzipParams
':

class_node = node
break

self.assertIsNotNone(class_node, "Class 'GunzipParams' not found in
gz.py")

data_found = False
max_size_found = False
for node in ast.walk(class_node):

if isinstance(node, ast.Assign):
for target in node.targets:

if isinstance(target, ast.Attribute) and target.attr == '
data':

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

data_found = True
if isinstance(target, ast.Attribute) and target.attr == '
max_size':

max_size_found = True

self.assertTrue(data_found, "Attribute 'self.data' not found in
GunzipParams class")
self.assertTrue(max_size_found, "Attribute 'self.max_size' not
found in GunzipParams class")

def test_gunzip_function_signature(self):
Path to the file where the function should be defined
file_path = '../scrapy/utils/gz.py'

Check if the file exists
self.assertTrue(os.path.exists(file_path), f"{file_path} does not
exist")

Check if the gunzip function has the correct signature
with open(file_path, 'r') as file:

tree = ast.parse(file.read())

function_found = False
for node in ast.walk(tree):

if isinstance(node, ast.FunctionDef) and node.name == 'gunzip':
Check function parameters
args = node.args
if len(args.args) == 1 and isinstance(args.args[0].annotation
, ast.Name) and args.args[0].annotation.id == 'GunzipParams':

Check return type
if isinstance(node.returns, ast.Name) and node.returns.id
== 'bytes':

function_found = True
break

self.assertTrue(function_found, "Function 'gunzip' with signature '
def gunzip(params: GunzipParams) -> bytes' not found in gz.py")

def test_gunzip_in_sitemapspider(self):
Path to the file where SitemapSpider should be defined
file_path = '../scrapy/spiders/sitemap.py'

Check if the file exists
self.assertTrue(os.path.exists(file_path), f"{file_path} does not
exist")

Check if the SitemapSpider class has a method _get_sitemap_body
that uses gunzip with GunzipParams
with open(file_path, 'r') as file:

tree = ast.parse(file.read())

sitemapspider_class = None
for node in ast.walk(tree):

if isinstance(node, ast.ClassDef) and node.name == '
SitemapSpider':

sitemapspider_class = node
break

self.assertIsNotNone(sitemapspider_class, "Class 'SitemapSpider'
not found in sitemap.py")

method_found = False
gunzip_params_used = False
for node in ast.walk(sitemapspider_class):

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

if isinstance(node, ast.FunctionDef) and node.name == '
_get_sitemap_body':

method_found = True
for inner_node in ast.walk(node):

if isinstance(inner_node, ast.Call) and isinstance(
inner_node.func, ast.Name) and inner_node.func.id == '
gunzip':

if len(inner_node.args) == 1:
arg = inner_node.args[0]
Check if the argument passed to gunzip is an
instance of GunzipParams
if isinstance(arg, ast.Name) or (isinstance(arg, ast
.Attribute) and arg.attr == 'GunzipParams'):

gunzip_params_used = True
break

self.assertTrue(method_found, "Method '_get_sitemap_body' not found
in SitemapSpider class")

self.assertTrue(gunzip_params_used, "gunzip function inside '
_get_sitemap_body' does not use a 'GunzipParams' object as a
parameter")

def test_imports_in_sitemap(self):
Path to the file where the imports should be defined
file_path = '../scrapy/spiders/sitemap.py'

Check if the file exists
self.assertTrue(os.path.exists(file_path), f"{file_path} does not
exist")

Check if the correct import statement is present
with open(file_path, 'r') as file:

tree = ast.parse(file.read())

imports_found = {
"GunzipParams": False,
"gunzip": False,
"gzip_magic_number": False

}

for node in ast.walk(tree):
if isinstance(node, ast.ImportFrom) and node.module == 'scrapy.
utils.gz':

for alias in node.names:
if alias.name in imports_found:

imports_found[alias.name] = True

for import_name, found in imports_found.items():
self.assertTrue(found, f"Import '{import_name}' not found in
sitemap.py")

def test_imports_in_test_utils_gz(self):
Path to the test file where the imports should be defined
test_file_path = '../tests/test_utils_gz.py'

Check if the test file exists
self.assertTrue(os.path.exists(test_file_path), f"{test_file_path}
does not exist")

Check if the correct import statement is present
with open(test_file_path, 'r') as file:

tree = ast.parse(file.read())

imports_found = {
"GunzipParams": False,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

"gunzip": False,
"gzip_magic_number": False

}

for node in ast.walk(tree):
if isinstance(node, ast.ImportFrom) and node.module == 'scrapy.
utils.gz':

for alias in node.names:
if alias.name in imports_found:

imports_found[alias.name] = True

for import_name, found in imports_found.items():
self.assertTrue(found, f"Import '{import_name}' not found in
test_utils_gz.py")

def test_gunzipparams_used_in_test_utils_gz(self):
Path to the test file where gunzip should be used with
GunzipParams
test_file_path = '../tests/test_utils_gz.py'

Check if the test file exists
self.assertTrue(os.path.exists(test_file_path), f"{test_file_path}
does not exist")

Check if the gunzip function is used with GunzipParams in the
test file
with open(test_file_path, 'r') as file:

tree = ast.parse(file.read())

gunzip_params_used = False
for node in ast.walk(tree):

if isinstance(node, ast.Call) and isinstance(node.func, ast.Name
) and node.func.id == 'gunzip':

if len(node.args) == 1:
arg = node.args[0]
Check if the argument passed to gunzip is an instance of
GunzipParams

if isinstance(arg, ast.Name) or (isinstance(arg, ast.
Attribute) and arg.attr == 'GunzipParams'):

gunzip_params_used = True
break

self.assertTrue(gunzip_params_used, "gunzip function in '
test_utils_gz.py' does not use a 'GunzipParams' object as a
parameter")

def test_imports_in_test_downloadermiddleware_httpcompression(self):
Path to the test file where the imports should be defined
test_file_path = '../tests/
test_downloadermiddleware_httpcompression.py'

Check if the test file exists
self.assertTrue(os.path.exists(test_file_path), f"{test_file_path}
does not exist")

Check if the correct import statement is present
with open(test_file_path, 'r') as file:

tree = ast.parse(file.read())

imports_found = {
"GunzipParams": False,
"gunzip": False

}

for node in ast.walk(tree):

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

if isinstance(node, ast.ImportFrom) and node.module == 'scrapy.
utils.gz':

for alias in node.names:
if alias.name in imports_found:

imports_found[alias.name] = True

for import_name, found in imports_found.items():
self.assertTrue(found, f"Import '{import_name}' not found in
test_downloadermiddleware_httpcompression.py")

def test_gunzipparams_used_in_httpcompression_middleware(self):
Path to the middleware file where gunzip should be used with
GunzipParams
middleware_file_path = '../scrapy/downloadermiddlewares/
httpcompression.py'

Check if the middleware file exists
self.assertTrue(os.path.exists(middleware_file_path), f"{
middleware_file_path} does not exist")

Check if the gunzip function is used with GunzipParams in the
middleware file
with open(middleware_file_path, 'r') as file:

tree = ast.parse(file.read())

gunzip_params_used = False
for node in ast.walk(tree):

if isinstance(node, ast.Call) and isinstance(node.func, ast.Name
) and node.func.id == 'gunzip':

if len(node.args) == 1:
arg = node.args[0]
Check if the argument passed to gunzip is an instance of
GunzipParams

if isinstance(arg, ast.Name) or (isinstance(arg, ast.
Attribute) and arg.attr == 'GunzipParams'):

gunzip_params_used = True
break

self.assertTrue(gunzip_params_used, "gunzip function in '
httpcompression.py' does not use a 'GunzipParams' object as a
parameter")

if __name__ == '__main__':
unittest.main()

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E EXAMPLE TEST OUTPUTS

Here are the results of running a subset of the custom AST unit tests. The outputs showcase the
subtask testing formats and the specificity in unit test function names.

Patch Evaluation Results
==

Test file: tests/django_refactor/adapt_method_mode.py
Test results: Passed
==

Test file: tests/salt_refactor/cant-create-test.py
Error: test_ex_cantcreat_isnt_used (cant-create-test.TestSaltExitCodes.
test_ex_cantcreat_isnt_used) ... FAIL
test_ex_cantcreate_in_exitcodes (cant-create-test.TestSaltExitCodes.
test_ex_cantcreate_in_exitcodes) ... ok
test_ex_cantcreate_in_ssh_py_shim (cant-create-test.TestSaltExitCodes.
test_ex_cantcreate_in_ssh_py_shim) ... FAIL
test_ex_cantcreate_is_used (cant-create-test.TestSaltExitCodes.
test_ex_cantcreate_is_used) ... FAIL
test_exitcodes_does_not_have_ex_cantcreat (cant-create-test.
TestSaltExitCodes.test_exitcodes_does_not_have_ex_cantcreat) ... ok
test_ssh_py_shim_does_not_have_ex_cantcreat (cant-create-test.
TestSaltExitCodes.test_ssh_py_shim_does_not_have_ex_cantcreat) ... FAIL
test_ssh_py_shim_does_not_import_exitcodes (cant-create-test.
TestSaltExitCodes.test_ssh_py_shim_does_not_import_exitcodes) ... ok
test_ssh_py_shim_uses_local_ex_cantcreate (cant-create-test.
TestSaltExitCodes.test_ssh_py_shim_uses_local_ex_cantcreate) ... FAIL

==
FAIL: test_ex_cantcreat_isnt_used (cant-create-test.TestSaltExitCodes.
test_ex_cantcreat_isnt_used)
--
Traceback (most recent call last):
File "/refactor_repos/salt_refactor/task_test/cant-create-test.py", line
155, in test_ex_cantcreat_isnt_used
self.assertFalse(ex_cantcreat_found, "salt.defaults.exitcodes.
EX_CANTCREAT was found in salt/client/ssh/__init__.py, but it should
not be used.")

AssertionError: True is not false : salt.defaults.exitcodes.EX_CANTCREAT
was found in salt/client/ssh/__init__.py, but it should not be used.
==
FAIL: test_ex_cantcreate_in_ssh_py_shim (cant-create-test.
TestSaltExitCodes.test_ex_cantcreate_in_ssh_py_shim)
--
Traceback (most recent call last):
File "/refactor_repos/salt_refactor/task_test/cant-create-test.py", line
39, in test_ex_cantcreate_in_ssh_py_shim
self.assertTrue(ex_cantcreate_found, f"'EX_CANTCREATE' not found in {
file_path}")

AssertionError: False is not true : 'EX_CANTCREATE' not found in ../salt/
client/ssh/ssh_py_shim.py
==
FAIL: test_ex_cantcreate_is_used (cant-create-test.TestSaltExitCodes.
test_ex_cantcreate_is_used)
--
Traceback (most recent call last):
File "/refactor_repos/salt_refactor/task_test/cant-create-test.py", line
131, in test_ex_cantcreate_is_used
self.assertTrue(ex_cantcreate_found, "salt.defaults.exitcodes.
EX_CANTCREATE was not found in salt/client/ssh/__init__.py")

AssertionError: False is not true : salt.defaults.exitcodes.EX_CANTCREATE
was not found in salt/client/ssh/__init__.py

==

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

FAIL: test_ssh_py_shim_does_not_have_ex_cantcreat (cant-create-test.
TestSaltExitCodes.test_ssh_py_shim_does_not_have_ex_cantcreat)
--
Traceback (most recent call last):
File "/refactor_repos/salt_refactor/task_test/cant-create-test.py", line
107, in test_ssh_py_shim_does_not_have_ex_cantcreat
self.assertFalse(ex_cantcreat_found, f"'EX_CANTCREAT' (misspelled)
found in {file_path}")

AssertionError: True is not false : 'EX_CANTCREAT' (misspelled) found in
../salt/client/ssh/ssh_py_shim.py
==
FAIL: test_ssh_py_shim_uses_local_ex_cantcreate (cant-create-test.
TestSaltExitCodes.test_ssh_py_shim_uses_local_ex_cantcreate)
--
Traceback (most recent call last):
File "/refactor_repos/salt_refactor/task_test/cant-create-test.py", line
55, in test_ssh_py_shim_uses_local_ex_cantcreate
self.assertTrue(ex_cantcreate_used, f"'EX_CANTCREATE' not used in {
file_path}")

AssertionError: False is not true : 'EX_CANTCREATE' not used in ../salt/
client/ssh/ssh_py_shim.py

--
Ran 8 tests in 0.046s
FAILED (failures=5)

==

Test file: tests/fastapi_refactor/value-is-a-sequence-test.py
Error: test_compat_file_exists (value-is-a-sequence-test.
TestFastAPICompatUtils.test_compat_file_exists) ... ok
test_import_value_is_a_sequence_in_utils (value-is-a-sequence-test.
TestFastAPICompatUtils.test_import_value_is_a_sequence_in_utils) ... FAIL
test_value_is_a_sequence_function_exists (value-is-a-sequence-test.
TestFastAPICompatUtils.test_value_is_a_sequence_function_exists) ... ok
test_value_is_sequence_function_does_not_exist (value-is-a-sequence-test.
TestFastAPICompatUtils.test_value_is_sequence_function_does_not_exist)
... ok
test_value_is_sequence_function_does_not_exist_in_utils (value-is-a-
sequence-test.TestFastAPICompatUtils.
test_value_is_sequence_function_does_not_exist_in_utils) ... ok

==
FAIL: test_import_value_is_a_sequence_in_utils (value-is-a-sequence-test.
TestFastAPICompatUtils.test_import_value_is_a_sequence_in_utils)
--
Traceback (most recent call last):
File "/refactor_repos/fastapi_refactor/task_test/value-is-a-sequence-
test.py", line 75, in test_import_value_is_a_sequence_in_utils
self.assertTrue(import_found, "'value_is_a_sequence' not imported from
'fastapi._compat' in dependencies/utils.py")

AssertionError: False is not true : 'value_is_a_sequence' not imported
from 'fastapi._compat' in dependencies/utils.py

--
Ran 5 tests in 0.026s
FAILED (failures=1)

==

Test file: tests/scrapy_refactor/add-log-parameter-xmliter.py
Test results: Passed
==

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F STATE RECONSTRUCTION EXPERIMENT

We prompt gpt-4-turbo with randomly initialized and randomly changed lists of preferences.
We generate preferences through this script and simply iteratively prompt with subportions of the
json.

import json
import random

def generate_random_preferences(categories, products):
return {

category: {
product: random.choice(["Likes", "Dislikes", "NA"]) for product
in products[category]

} for category in categories
}

def generate_trajectory(initial_prefs, num_actions, categories, products)
:

actions = ["SetPreference"]
trajectories = []
preferences = {cat: dict(initial_prefs[cat]) for cat in initial_prefs}
Deep copy to prevent mutation

trajectory = {"actions": [], "states": {}}
for i in range(1, num_actions + 1):

category = random.choice(categories)
product = random.choice(products[category])
action_type = random.choice(actions)
old_preference = preferences[category][product] # Track old
preference
new_preference = random.choice(["Likes", "Dislikes", "NA"])
while new_preference == old_preference: # Ensure the new preference
is different
new_preference = random.choice(["Likes", "Dislikes", "NA"])

details = {
"action": action_type,
"category": category,
"product": product,
#"old_preference": old_preference,
"new_preference": new_preference

}
preferences[category][product] = new_preference # Update to new
preference
trajectory["actions"].append(details)

Snapshot of system state after each action
trajectory["states"][f"Action{i}"] = {cat: dict(preferences[cat])
for cat in preferences}

trajectories.append(trajectory)
return trajectories

def main():
categories = ["Electronics", "Books", "Clothing", "Garden", "Games"]
products = {

"Electronics": ["Laptop", "Smartphone", "Headphones"],
"Books": ["Novel", "Biography", "Science Fiction"],
"Clothing": ["Jeans", "T-Shirt", "Jacket"],
"Garden": ["Shovel", "Lawn Mower", "Gloves"],
"Games": ["Board Game", "Video Game", "Puzzle"]

}
num_initial_states = 50
trajectories_per_state = 5

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

actions_per_trajectory = 50 # Example, number of actions per
trajectory

all_data = []

for _ in range(num_initial_states):
initial_prefs = generate_random_preferences(categories, products)
trajectories = []
for _ in range(trajectories_per_state):

trajectory = generate_trajectory(initial_prefs,
actions_per_trajectory, categories, products)
trajectories.extend(trajectory) # Add the generated trajectory
to the list

all_data.append({
"initial_preferences": initial_prefs,
"trajectories": trajectories

})

with open('complex_actions_states.json', 'w') as f:
json.dump(all_data, f, indent=4)

if __name__ == "__main__":
main()

Given these randomly generated actions in json, we prompt gpt-4-turbo for 125 random ini-
tializations iteratively over 0-50 actions of the generated actions. Figure 7 shows the prompt and
expected output. We are not strict with format rules, and allow minor mistakes, however, our parser
requires the larger category separations.

Here are your initial preferences on 5 different categories.
Preferences:
{ ’Electronics’: { ’Laptop’: ’Likes’, ’Smartphone’: ’Likes’, ’Headphones’: ’Dislikes’ }, ’Books’: { ’Novel’:
’Dislikes’, ’Biography’: ’NA’, ’Science Fiction’: ’Dislikes’ }, ’Clothing’: { ’Jeans’: ’Likes’, ’T-Shirt’:
’Likes’, ’Jacket’: ’Likes’ }, ’Garden’: { ’Shovel’: ’Likes’, ’Lawn Mower’: ’NA’, ’Gloves’: ’NA’ }, ’Games’:
{ ’Board Game’: ’Likes’, ’Video Game’: ’Likes’, ’Puzzle’: ’Likes’ } }
Here are the actions in order after that initial state:
Action 1: Electronics - Laptop to ’NA’.
...
Action N: Clothing - T-Shirt to ’NA’.
This is the end of the changes. What is the state of preferences on all categories after the actions? Format
your response EXACTLY how I formatted the input initial preferences state. Preferences:

Desired answer: { ’Electronics’: { ’Laptop’: ’NA’, ’Smartphone’: ’Likes’, ’Headphones’: ’Dislikes’ },

’Books’: { ’Novel’: ’Dislikes’, ’Biography’: ’NA’, ’Science Fiction’: ’Dislikes’ }, ’Clothing’: { ’Jeans’:

’Likes’, ’T-Shirt’: ’NA’, ’Jacket’: ’Likes’ }, ’Garden’: { ’Shovel’: ’Likes’, ’Lawn Mower’: ’Dislikes’,

’Gloves’: ’NA’ }, ’Games’: { ’Board Game’: ’Likes’, ’Video Game’: ’Dislikes’, ’Puzzle’: ’Likes’ } }

Toy Agent Reconstruction Task

Figure 7: Example of a singular instance of the synthetic state construction task.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

G SIMPLE SINGLE AGENT STATE-AWARE IMPLEMENTATION

As an self-contained example, we have a simple implementation of a state-aware interface contained
within a singular agent instance. This state command tracks all it’s previous edit commands and
concatenates them in a separate section. In practice and for results in the paper, we augment the state
cache to relay more information about related edits by integrating parts of previous observations as
well.

state_command:
name: state
code: |
state() {
local working_dir="$PWD"
local open_file_info="${CURRENT_FILE:-n/a}"
local recent_edits_json='[]'

if [-n "$RECENT_EDITS"]; then
Split $RECENT_EDITS into an array of edits
IFS=' | ' read -r -a edits_array <<< "$RECENT_EDITS"
declare -A seen_edits

Filter out duplicate filename-line_number pairs
filtered_edits=()
for edit in "${edits_array[@]}"; do

filename=$(echo "$edit" | cut -d':' -f1)
line_number=$(echo "$edit" | cut -d':' -f2)

Check if this filename:line_number pair has been seen before
if [-z "${seen_edits["$filename:$line_number"]}"]; then

filtered_edits+=("$edit")
seen_edits["$filename:$line_number"]=1

fi
done

Convert the filtered edits into a JSON array
recent_edits_json=$(printf '%s\n' "${filtered_edits[@]}" | jq -R -
s -c 'split("\n")')

fi

state_json=$(jq -n --arg wd "$working_dir" --arg of "$(realpath "
$open_file_info")" --argjson re "$recent_edits_json" \

'{"working_dir": $wd, "open_file": $of, "recent_edits": $re}')

echo "$state_json"
}

We also, to communicate all the recent edits, append the outputs of this state command in every step
template through:

next_step_template: |-
{observation}
(Current State: {recent_edits})
(Open file: {open_file})
(Current directory: {working_dir})
bash-$

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

H EXAMPLE STATE-AWARE OBJECTIVE UPDATE

In this example excerpt from a trajectory, we are able to see our state-aware agent reason about
an external edit (propogated through the state-aware policy) made to the local repository it was
generating a concurrent patch for.

{
"role": "assistant",

"thought":
"DISCUSSION\nWe have found the `get_encoding_from_headers` function
calls at lines 622 and 623 in the `test_utils.py` file. Let's
navigate to line 622 and update the function calls to pass `log=False
`.\n",
"action": "goto 622\n",
"agent": "primary"

},
{
"role": "user",
"content":

"[File Contents Printed, Truncated for Brevity]

(External Edits: [’Since your previous action, another user edited
adapters.py at lines 359:359
n’])

(Your Recent Edits: ['Edited utils.py at lines 542:542', 'Edited
adapters.py at lines 378:378', 'Edited adapters.py at lines
618:618\\n'])

(Open file: /requests_refactor/tests/test_utils.py)

(Current directory: requests_refactor)
bash-$",

"agent": "primary"
},
{
"role": "assistant",
"thought": "DISCUSSION\nLet's edit the function call at line 623 to
pass `log=False`. Then, let’s view the external edit in
adapters.py.",

"action":
"
edit 623:623
assert get_encoding_from_headers(value, log=False) == expected
end_of_edit
",

}

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

I CONTEXT FLOODING FIGURE

Figure 8: Visual example of a language agent having a failed function call loop showcasing the
context flooding and deprioritized objective failure mode.

31

	Introduction
	Background
	Related work
	Definitions

	RefactorBench
	Task construction
	Important features

	Experiments
	Preliminaries
	Baselines

	Analysis
	Towards state-aware language agents
	State-aware interfaces
	State update policies

	Discussion
	Future Directions
	Limitations

	Task Construction Prompts
	Prompt for Lazy Instruction
	Prompt for Descriptive Instruction

	Agent Prompt Changes
	Updated SWE-agent System Prompt

	Example Condensed Successful Trajectory
	Example Test File
	Example Test Outputs
	State Reconstruction Experiment
	Simple Single Agent State-Aware Implementation
	Example State-Aware Objective Update
	Context Flooding Figure

