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Abstract

Reliable confidence estimation is essential for enhancing the trustworthiness of large language
models (LLMs), especially in high-stakes scenarios. Despite its importance, accurately es-
timating confidence in LLM responses remains a significant challenge. In this work, we
propose using an auxiliary learning model to assess response correctness based on the self-
consistency of multiple outputs generated by the LLM. Our approach constructs a consistent
graph to capture the agreement among different responses and employs a graph neural net-
work (GNN) to predict the correctness likelihood of each answer based on the consistent
graph. Experiments demonstrate that this method has strong calibration performance on
various benchmark datasets and generalizes well to out-of-domain cases.

1 Introduction

In recent years, large language models (LLMs) have demonstrated remarkable capabilities across various
natural language processing tasks such as question answering (Wei et al., 2022; Shen et al., 2023; Zheng
et al., 2023; Qin et al., 2023; Singhal et al., 2023), text summarization (Tang et al., 2023; Deroy et al., 2023;
Tam et al., 2023; Roit et al., 2023), and even creative writing (Gómez-Rodríguez & Williams, 2023; Wang
et al., 2024; Deng et al., 2024). Despite their impressive performance, LLMs often give wrong answers in
question-answering tasks. One particularly important challenge lies in calibrating the confidence levels of
LLM-generated responses (Kuhn et al., 2022; Ulmer et al., 2022; Van Landeghem et al., 2022; Vazhentsev
et al., 2023; Ulmer et al., 2024). Accurate confidence estimation is vital for deploying LLMs in the real
world, as it enables users to gauge the reliability of the model’s predictions and make informed decisions
accordingly. On the contrary, miscalibrated confidence may lead to over-reliance on incorrect responses or
unnecessary skepticism toward the correct ones. For example, a misleading response may steer a patient
in the harmful direction when making health decisions; it may also cause an investor to make impulsive
financial choices.

In this work, we consider calibrating the confidence with the correctness of LLMs’ responses. This task
is challenging in several aspects. First, due to LLMs’ superior ability to generate text, mistakes in their
response often occur at the semantic level, making them hard to detect even for humans. There are methods
using an auxiliary Language Model (e.g., DeBERTa (He et al., 2020)) to verify whether the LLM’s response
appropriately answers the question Ulmer et al. (2024). Since the LLM is supposed to be much stronger
than the LM, the LLM should be able to avoid most mistakes that can be detected by an LM; this type of
method may omit a significant fraction of wrong answers. Second, it is hard to detect mistakes from the
LLM’s internal working mechanism. Because the LLM uses many hidden layers to process the information,
it is hard to discern the signal from a small number of hidden units. Even if this is possible, it is not easy
to apply this type of method to black-box LLMs.

Recently, there has been some progress in quantifying the model’s confidence in its own responses through
consistency among the outputs generated by the model itself (Chen & Mueller, 2023; Lin et al., 2024). These
approaches show that the model’s own confidence in its response has a strong correlation with the correctness
of the response. However, their reliance on hand-crafted features often results in calibration errors between
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the correctness and the predicted confidence. This leads to an important research question: whether we can
further effectively calibrate the confidence by leveraging the consistency among the LLM’s responses?

In this work, we propose to use an auxiliary learning model to address the calibration problem. Specifically,
we train a separate calibration model based on graph neural networks (GNN) to predict the correctness of the
LLM’s responses using a similarity graph constructed over the LLM’s multiple responses to the same question.
The similarity graph captures the degree of consistency between LLM’s responses, under the assumption that
responses consistent with many others are more likely to be correct. The calibration model only considers
the consistency among responses without directly processing any actual language information. Thus, we can
use a relatively simple and efficient model. Our work focuses on the common real-world scenarios, assessing
how well the LLMs align with the knowledge of the training data. This work does not consider the case
where the training data contains consistent but wrong knowledge – this hard problem is currently under
investigations such as (Biester et al., 2024; Shi et al., 2023; Krishnan & Wu, 2019).

We also investigate the challenge of transferring a calibration model across different question domains, which
is a crucial scenario when target domains lack sufficient training data. Despite its importance, this problem
has received limited attention in prior work. In this study, we demonstrate that the auxiliary calibration
model can generalize to new domains with minimal performance degradation. This generalization is driven
by the observation that self-consistency serves as a broadly applicable signal for confidence, enabling the
learning model that relies solely on self-consistency to achieve strong transfer performance.

We conduct an extensive empirical study to evaluate the performance of the proposed method. The study
uses four datasets from different question domains. Empirical results show that our method achieves strong
performance. Besides the improved calibration performance, our model also enhances the performance of
ranking an LLM’s responses. The study has also tested our model and competing models in out-of-domain
settings. The results show that the proposed method shows robust performance when generalizing to new
domains.

In summary, our main contributions are:

• Learning-based GNN Framework: We propose a learning-based framework leveraging GNNs
for confidence calibration, aiming to enhance the reliability of large language models.

• Enhanced calibration performance: Our evaluations demonstrate that the proposed method
substantially outperforms recent methods in confidence calibration across several widely used bench-
mark datasets.

• Improved out-of-domain generalizability: Evaluations on out-of-domain (OOD) confidence
calibration show that our graph-based approach significantly improves generalization in OOD set-
tings.

2 Related Work

Due to the urgent need to improve the reliability of LLMs, confidence estimation and calibration for these
models have become active areas of research. Existing research in LLM uncertainty quantification can be
summarized into two main categories: uncertainty quantification and confidence calibration (Geng et al.,
2023). Confidence estimation for short responses (e.g., for multi-choice or yes-no questions) is generally
less complicated than for long responses (Ye et al., 2024). For a brief response, the LLM’s output logits
are informative about its confidence; the easy comparisons of responses to the true answer facilitate both
calibration and evaluation. Confidence estimation for long responses cannot simply depend on LLM’s output
logits (Duan et al., 2023; Bakman et al., 2024) because the logits indicate more about the probability of
text and less about the semantics behind it. There are also methods using the internal state of an LLM
(Ren et al., 2022; Beigi et al., 2024), but it is not always available to have such information about the LLM
interface.

Another approach is to check the LLM’s consistency in its responses. Kotelanski et al. (2023) demonstrate
that repeated sampling and consistency checks across multiple outputs can serve as reliable proxies for model
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confidence. Manakul et al. (2023) generates multiple responses from the LLM and checks the consistency
between responses using various methods, including querying the LLM. Chen & Mueller (2023) combines
the consistency between responses and the LLM’s self-reflection certainty to quantify the uncertainty. Kuhn
et al. (2022) considers confidence from semantic equivalence and proposes a method based on clustering
of responses. Lin et al. (2024) organize responses in a graph with their pairwise semantic similarity and
then extract graph statistics for confidence estimation. Zhang et al. (2024) examines methods of comparing
responses via entailment and contradiction relationships. These studies highlight the importance of semantic
consistency in ranking an LLM’s responses. However, manually designed features are limited in their ability
to capture the full extent of self-consistency among LLM responses, leading to poor calibration performance.

To better calibrate the confidence estimation, some methods directly use correctness labels in their calibration
procedures. Mielke et al. (2022) trains a calibrator to predict the correctness of a response for a given question.
With a similar idea, Ulmer et al. (2024) trains a language model (e.g., DeBERTa) based on question-response
pairs to predict the probability of responses’ correctness. Based on SelfCheckGPT (Manakul et al., 2023)
and JAFC (Tian et al., 2023), Chen et al. (2024) train supervised models to reduce grouping losses and
improve the confidence estimation. The method by Liu et al. (2024) uses an LLM’s latent representations
to predict the correctness of responses. Detommaso et al. (2024) uses the “multicalibration” technique to
calibrate the probability of correctness. (Fadeeva et al., 2023) offers a detailed comparative study of various
confidence estimation methods, providing empirical evidence on their effectiveness across different tasks.
However, these studies have not sufficiently exploited response consistency to predict the probabilities of the
responses being correct.

3 Method

Our ultimate goal is to quantify the probability of the correctness of a response from an LLM. Since the
LLM can give a correct answer with different phrases, we need to consider the probability that the response
is semantically correct.

Background: The formulation of semantic equivalence (Kuhn et al., 2022) provides a framework for our
analysis. Let R be the space of all possible responses. Given a question q, the space R is divided into a set
Cq of semantic classes: R = ∪C∈Cq

C and C ′ ∩ C = ∅ for any two different semantic classes C, C ′ ∈ Cq. For
two responses r1, r2 ∈ C in the same equivalent class, they are considered as the same semantic response: if
one is the correct answer, the other is correct as well, and vice versa. Then, we can consider the quality of
the LLM’s responses at the semantic level. In particular, a semantic response C has probability

p(C|q) =
∑
r∈C

p(r|q). (1)

Here p(r|q) is the probability of a single response from the LLM.

However, it is non-trivial to define the equivalent class, and we will discuss the approximation later. To
estimate p(C|q), one approach is through semantic similarities between response samples of an LLM for
the same question q. Let (r1, . . . , rn) be n responses from the same question q, and they form k clusters
C̃q = {C̃1, . . . , C̃k} by their semantic similarity. We can use Natural language inference (NLI) systems to
predict the relationships (e.g., entailment and contradiction) between responses and derive their similarity.

We assume that each cluster cluster C̃ is from a different semantic class C, then p(C|q) can be approximated
by

p(C|q) ≈ |C̃|
n

. (2)

From the cluster probabilities, the uncertainty of the LLM on the question q is estimated as the entropy
of the empirical distribution over clusters (Kuhn et al., 2022), and the confidence of a response ri ∈ C is
estimated as |C̃|/n (assuming similarity values are binary) (Lin et al., 2024).

Now, we depart from the setup of semantic classes and consider the correctness of responses. Let C∗ be the
correct semantic answer to question q. Without knowing which responses are correct answers, a common
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assumption is that the model’s confidence reflects the correctness, that is, the model’s confidence in a
semantic response is approximately the probability of correctness, then

p(C̃k′ ⊆ C∗) ≈ |C̃k′ |
n

. (3)

It says that the more certain the model is about a semantic response, the more likely the response is correct.
Conversely, a wide variation in the LLM’s responses indicates low confidence in all responses ri and low
accuracy. This pattern is also found in previous studies (Kuhn et al., 2022; Lin et al., 2024).

While we agree that a positive correlation exists between the LLM’s confidence and the probability of
correctness, we do not believe that they are equal, as shown in equation 3. Therefore, we need further
calibration to reflect the probability of correctness.

Prompt LLM

Yes, people in California work more days in a year
than they used to

The average number of workdays in a year has not
changed significantly in California in recent years

Yes, people in California work more days in a year
than they used to because of the elimination of
daylight-saving time

People in California now work 33 fewer days per
year than they did in 1979

No, people in California do not work more days
in a year than they used to

   ... ...

   ... ...

Do people in California
work more days in a
year than we used to?

SBERT
...

...

(b) Node feature
with ClusterID

Obtain confidence with GNN
Construct Graph
with (a) and (b)

GNNHigh confidence score

Low confidence score

(a) Edge weight

Clustering

Figure 1: The overall framework of our confidence calibration model. Given an input question, our
approach first generates multiple responses from the LLM and constructs a similarity-weighted graph based
on these responses. This graph serves as the input for the GNN model, which calibrates the confidence of
the LLM responses. In the weighted graph, the edge weight wij is defined as simcos(emb(ri), emb(rj)), where
i, j = 1, . . . , n. A higher weight indicates greater similarity between the responses. For the node features, we
use the clusterID, refers to the cluster number assigned to each response.

3.1 Confidence calibration as graph learning problem

Now, we set a supervised learning problem and train a model to calibrate the confidence of the correctness of
responses. We first consider the correctness labels of the LLM’s responses. In the supervised setting, we have
a correct answer r∗ to the question q. Then r∗ to assign correctness labels to sampled responses {r1, r2, ..., rn}
for the same question q. In our work, we use the ROUGE similarity. Specifically, we compute the ROUGE
similarity simR(ri, r∗) between a sampled response and the correct answer to decide the correctness label.

yi = 1[simR(a, ri) ≥ τ ], i = 1, . . . , n. (4)

Here 1[·] is one if the condition is true or 0 otherwise. The ROUGE metric is reasonably accurate in
measuring semantic similarity between short sentences (Lin & Och, 2004). We follow the previous work, and
set τ = 0.3 (Kuhn et al., 2022).

In the second method, we utilize the LLM to generate correctness labels. Specifically, we provide the question
q and the standard answer a as the context, then ask whether the response ri answers the question q. The
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response from the LLM is then used as the label for ri. We denote the procedure as

yi = llmy(q, a, ri) (5)

We provide the prompt for labeling in the Appendix F. We then consider the input to the calibration
model. We form a similar graph G over responses to encode information about their consistency. The graph
contains the clustering structure of responses and likely further useful information to predict the correctness
of responses. The graph G = (V, E, w) is a fully connected graph, with the node set V consisting of n
responses and the edge weight wij being the similarity between the pair of responses (ri, rj). We compute
the similarity from the two responses’ embeddings. In particular, we first use the Sentence-BERT model
(Reimers & Gurevych, 2019) to compute the two responses’ vector representations and then compute the
cosine similarity

wij = simcos(emb(ri), emb(rj)), i, j = 1, . . . , n. (6)

Here, emb(·) represents the embedding function.

Then, we treat the problem as a node classification problem (Xiao et al., 2022). In particular, we run a
Graph Neural Network (GNN) gnn(·) to predict the probability of each response being correct

p̃ = gnnθ(G). (7)

Here p̃ ∈ [0, 1]n contains the probabilities for n responses being correct.

To provide clustering information to the GNN, we first run the K-means clustering algorithm on the responses’
embeddings and assign cluster IDs from 0 to K − 1 based on the order from largest to smallest (ties are
randomly broken). Then, we feed each response’s cluster membership as a one-hot feature input to the GNN.
Therefore, the GNN’s predictions are purely based on the relationships between responses in semantic space.
We choose NOT to feed in the embedding vectors of responses to avoid the GNN’s dependency on textual
information. This helps the GNN to generalize to questions from different domains. The overall framework
is shown in Fig 1.

The main purpose of the learning model is to calibrate p̃. One approach is to minimize the cross-entropy
loss of p̃ against correctness labels. The loss computed from the question q is

ℓq = −
n∑

i=1
yi log p̃i + (1 − yi) log(1 − p̃i) (8)

Note that the loss is consistent marginally since the loss is minimized when p̃i = p(yi|G). An alternative
approach is to minimize the squared error (yi − p̃i), from which we get similar performances, so we choose
the cross-entropy loss. A further consideration is to explicitly consider the similarity between p̃i and p̃j given
the response similarity wij . We leave such exploration to the future.

3.2 Improve the estimation through multiple prompts

It is well known that the syntactic form of a question influences responses and introduces additional variance.
To reduce this variance and evaluate the LLM’s semantic consistency, we analyze the LLM’s responses to
multiple prompts derived from the same question. These responses are treated as answers to the same
semantic question. We then apply the same method as before to predict the correctness of each response.

In particular, we rephrase the original question q into k different forms {q1, ..., qk} while maintaining the
original sentence’s semantic meaning. We employ a multiple rephrased questions strategy for answer sam-
pling. Specifically, we prompt the GPT-4 to give k different but with the same meaning rephrased questions
for the given question q. Then, we sample n/k responses from the LLM for each rephrased question and still
get a total of n responses, from which the confidence calibration is the same as we have described above. For
questions about which the LLM is less certain, the model is more likely to produce diverse responses. In this
scenario, confidence calibration is more accurate because the model’s uncertainty becomes more apparent.
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4 Experiments

The goal of this section is to compare our proposed framework with baseline methods in terms of confidence
calibration. All experiments are conducted on NVIDIA A100 GPUs with 80GB of memory. The supplemen-
tary materials and Appendix provide the code for our model, more experiment details in Appendix A, and
prompting strategy and Appendix F.

4.1 Dataset and Experiment setup

Dataset: We conduct experiments on two public benchmark datasets: (1) CoQA (Reddy et al., 2019), an
open-book conversational question answering (QA) task; (2) TriviaQA (Joshi et al., 2017), a commonsense
QA task. and (3) TruthfulQA (Lin et al., 2022a), a comparably more challenging dataset for factual QA
tasks. (4) HotpotQA, a question answering dataset that requires models to find and combine information
from multiple passages to answer complex questions. We repeat the experiments 10 times, each time with a
different train/validation split and test the performance on the test set.

Baselines: We compare our methods with the following baselines. Length-normalized sequence likeli-
hoods (Seq. likelihood) (Malinin & Gales, 2021; Kuhn et al., 2022) is a standard measure for confidence.
This method calculates the likelihood of each sequence and normalizes it by the length of the sequence to pro-
vide a fair comparison between different lengths of sequences. Platt scaling (Platt, 1999), a variant of the
sequence likelihood baseline, applies Platt scaling to the raw likelihoods. GraphSpectral (Lin et al., 2024)
uses the graph theory to estimate the confidence. Then we also include post-hoc uncertainty calibration,
GraphSpectral+Iso and GraphSpectral+Platt into the baseline methods. Self-check GPT(Manakul
et al., 2023) checked the consistency between responses querying the LLM. Verbalized Uncertainty (Lin
et al., 2022b; Tian et al., 2023; Xiong et al., 2024) generates verbal statements about the model’s confi-
dence in its predictions. Verbalized Qual maps the confidence percent (Verbalized %) into numerical values.
APRICOT (Ulmer et al., 2024), a supervised method, fine-tunes the Deberta language model to predict
confidence scores for LLM outputs. Furthermore, we also include the baseline of applying two post-hoc un-
certainty calibration methods, APRICOT+Iso and APRICOT+Platt, to adjust the confidence scores
obtained by Apricot. We performed all the baseline experiments utilizing the open-source codebase and used
the default parameters.

Graph construction: For each question, we prompt the LLM to generate 30 answers. Each generated
answer is then processed using the SentenceBert model Reimers & Gurevych (2019) to obtain the answer’s
high-dimensional embeddings. To quantify the semantic similarity between the answers, we compute the
cosine similarity between every pair of answer embeddings. These similarity scores are then utilized as edge
weights in our similarity graph, where each node represents an individual answer, and the edges signify the
degree of semantic relation between them.

Model hyper-parameters: To ensure our model can capture complex and abstract features at each layer,
our model comprises three Graph Neural Network (GNN) layers, with embedding dimensions of 256, 512,
and 1024 for the first, second, and third layers, respectively. The initial learning rate was set to 10−4. If the
validation loss did not show improvement over ten consecutive epochs, the learning rate was reduced by a
factor of 0.9. The optimization was performed using the Adam optimizer, configured with hyperparameters
β1 = 0.9 and β2 = 0.98. The batch size was 16.

LLMs: We assess our confidence calibration method on two LLMs with excellent performance: Llama3-8B
(Llama3)(Meta, 2024), and Vicuna-7b-v1.5 (Vicuna) (Zheng et al., 2024).

Labeling the data: To obtain the correctness label for CoQA and TriviaQA datasets, we followed previous
work (Kuhn et al., 2022) and used the Rougel-L metric for labeling. For the TruthfulQA dataset, given
its focus on factual correctness and longer answers,we employed GPT4 Potsaweel (2024); Liu et al. (2023);
Badshah & Sajjad (2024) to generate the labels.

Evaluation metrics: The evaluation metrics include Expectation Calibration Error (ECE), Brier Score, and
AUROC. Specifically, (1) ECE quantifies the consistency between the prediction error and the uncertainty of
the prediction. An ideal calibration curve should exhibit a lower ECE. It measures the consistency between
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Method
TriviaQA CoQA TruthfulQA HotpotQA

Brier↓ AUROC↑ ECE↓ Brier↓ AUROC↑ ECE↓ Brier↓ AUROC↑ ECE↓ Brier↓ AUROC↑ ECE↓

GraphSpectral (GS) 0.223 ± 0.002 0.822 ± 0.002 0.0762 ± 0.002 0.193 ± 0.001 0.762 ± 0.008 0.110 ± 0.019 0.332 ± 0.002 0.667 ± 0.012 0.239 ± 0.019 0.172 ± 0.017 0.783 ± 0.006 0.097 ± 0.014

GS + Iso 0.167 ± 0.011 0.822 ± 0.002 0.058 ± 0.002 0.162 ± 0.008 0.762 ± 0.008 0.054 ± 0.002 0.191 ± 0.015 0.667 ± 0.012 0.088± 0.007 0.163 ± 0.012 0.783 ± 0.006 0.087 ± 0.021

GS + Platt 0.165 ± 0.012 0.822 ± 0.002 0.049 ± 0.002 0.161 ± 0.009 0.762 ± 0.008 0.042 ± 0.001 0.221 ± 0.013 0.667 ± 0.012 0.151± 0.008 0.160 ± 0.014 0.783 ± 0.006 0.177 ± 0.012

Self-checkGPT 0.332 ± 0.031 0.652 ± 0.020 0.187 ± 0.002 0.209 ± 0.02 0.633 ± 0.027 0.178 ± 0.010 0.362 ± 0.028 0.566 ± 0.028 0.353± 0.03 0.283 ± 0.014 0.673 ± 0.022 0.122 ± 0.03

Seq. likelihood 0.536± 0.015 0.591 ± 0.002 0.22 ± 0.002 0.382 ± 0.012 0.571 ± 0.028 0.173 ± 0.009 0.465 ± 0.008 0.582 ± 0.025 0.032 ± 0.009 0.463 ± 0.018 0.651 ± 0.002 0.105± 0.012

Platt 0.276 ± 0.006 0.591 ± 0.002 0.052 ± 0.002 0.258 ± 0.000 0.571 ± 0.028 0.090 ± 0.009 0.27 ± 0.007 0.582 ± 0.025 0.033 ± 0.008 0.22 ± 0.012 0.651 ± 0.002 0.142± 0.008

Verbalized Qual 0.322 ± 0.034 0.618 ± 0.002 0.142 ± 0.002 0.302 ± 0.021 0.681 ± 0.022 0.16 ± 0.007 0.32 ± 0.037 0.622 ± 0.016 0.14 ± 0.008 0.358 ± 0.012 0.652 ± 0.006 0.15± 0.029

Verbalized % 0.253 ± 0.021 0.663 ± 0.008 0.033 ± 0.002 0.423 ± 0.012 0.662 ± 0.027 0.216 ± 0.002 0.54 ± 0.035 0.573 ± 0.029 0.331 ± 0.008 0.319 ± 0.014 0.672 ± 0.002 0.220± 0.023

APRICOT 0.145 ± 0.002 0.723 ± 0.003 0.074 ± 0.002 0.173 ± 0.006 0.751 ± 0.022 0.132 ± 0.006 0.20 ± 0.003 0.657 ± 0.034 0.0616 ± 0.011 0.171 ± 0.014 0.823 ± 0.011 0.081± 0.009

APRICOT+Iso 0.182 ± 0.012 0.723 ± 0.003 0.073 ± 0.002 0.171 ± 0.009 0.751 ± 0.022 0.097 ± 0.003 0.20 ± 0.003 0.657 ± 0.034 0.059 ± 0.011 0.180 ± 0.012 0.823 ± 0.011 0.073± 0.002

APRICOT+Platt 0.173 ± 0.018 0.723 ± 0.003 0.042 ± 0.002 0.169 ± 0.012 0.751 ± 0.022 0.069 ± 0.008 0.23 ± 0.003 0.657 ± 0.034 0.056 ± 0.011 0.171 ± 0.018 0.823 ± 0.011 0.071± 0.010

Ours 0.136 ± 0.000 0.824 ± 0.002 0.025 ± 0.002 0.124 ± 0.000 0.768 ± 0.009 0.013 ± 0.003 0.151 ± 0.003 0.712 ± 0.012 0.028±0.011 0.142 ± 0.000 0.815 ± 0.002 0.023 ± 0.004

Ours(Multi prompts) 0.141 ± 0.002 0.813 ± 0.002 0.026 ± 0.008 0.118 ± 0.000 0.776 ± 0.012 0.015 ± 0.007 0.173 ± 0.003 0.716 ± 0.007 0.029 ± 0.013 0.142 ± 0.000 0.821 ± 0.002 0.021 ± 0.006

Table 1: Comparison of confidence calibration performance on TriviaQA, CoQA, TruthfulQA and HotpotQA
dataset for Llama3

the prediction error and the confidence of the prediction. Specifically, the confidence interval is grouped
into fixed bins, and the average of the difference between the confidence and error in each bin is compared.
Formally, ECE is calculated as ECE =

∑B
b=1

nb

N |acc(b) − conf(b)|, where nb is the number of predictions
in bin b, N is the total number of data points and acc(b) and conf(b) are the accuracy and confidence of
bin b, respectively. (2) Brier Score (Brier, 1950), which is the mean squared difference between predicted
probabilities and the actual binary results. Lower Brier Scores indicate better performance. (3) AUROC
to indicate the models’ discriminatory ability.

4.2 Experiment Results

For the Llama3 model, the confidence calibration performance on TriviaQA is shown in Table 1. For the
TriviaQA dataset, it can be observed that the likelihood-based method performs poorly on the calibration
error (ECE and Brier Score) and AUROC due to unreliable model prediction probability (Zhang et al.,
2024). Platt scaling improves the ECE post-calibration and enhances the model’s discriminative ability,
resulting in higher AUROC results. However, this method cannot capture the semantic equivalence among
answers, leading to sub-optimal performance. The Verbalized and Verbalized Qual prompts LLM to output
confidence for their answers, improving AUROC by 3 − 5% compared with the likelihood baseline. However,
it faces the overconfidence issue; thus, the calibration errors are still high. The GraphSpectral method can
produce good confidence estimations, but its calibration performance is poor. Even with the addition of
techniques such as Isotonic Calibration or Platt Scaling, this issue can only be partially mitigated. The
auxiliary DeBERTa method combines the LLM outputs, Chain-of-Thoughts (CoT) outputs, and verbalized
confidence to fine-tune the DeBERTa model for predicting confidence. Our method captures the prediction
confidence based on the graph structure of LLM’s responses in semantic space and achieves better ECE
results. The ECE is reduced from 0.07 to 0.022 and improves the AUROC from 0.72 to 0.82 compared with
the baseline calibration methods. The experiment results on TruthfulQA, HotpotQA and CoQA for the
Llama3 model are shown in Table 1. These results show a similar trend, with our model achieving superior
performance in confidence calibration compared to the baseline methods.

Furthermore, we also compare the confidence calibration performance for the Vicuna model on the TriviaQA,
CoQA, TruthfulQA and HotpotQA datasets. The results are summarized in Table 2. Our model consistently
improves the calibration error compared to the baseline methods. Both GraphSpectral and our method have
a similar assumption that the consistency level between responses indicates the confidence levels of these
responses. However, GraphSpectral uses simple graph statistics to measure the confidence level of responses
and could not capture complex relationships between response patterns and confidence levels (e.g. patterns
beyond clustering structures). As a comparison, by framing the problem as a learning problem, our method
has better opportunities to discover such relationships and provides a better calibration performance. Self-
Check GPT uses its own evaluation on whether the context supports the answers and heavily relies on the
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Method
TriviaQA CoQA TruthfulQA HotpotQA

Brier↓ AUROC↑ ECE↓ Brier↓ AUROC↑ ECE↓ Brier↓ AUROC↑ ECE↓ Brier↓ AUROC↑ ECE↓

GraphSpectral (GS) 0.196±0.000 0.792±0.006 0.112±0.014 0.275±0.004 0.696±0.004 0.202±0.011 0.286±0.006 0.647±0.009 0.226±0.013 0.162±0.076 0.673±0.008 0.202±0.009

GS + Iso 0.196±0.000 0.792±0.006 0.059±0.008 0.245±0.002 0.696±0.004 0.037±0.014 0.297±0.008 0.647±0.009 0.092±0.004 0.165±0.058 0.673±0.008 0.085±0.028

GS + Platt 0.172±0.000 0.792±0.006 0.067±0.009 0.228±0.002 0.696±0.004 0.055±0.028 0.307±0.007 0.647±0.009 0.183±0.003 0.160±0.049 0.673±0.008 0.073±0.049

Self-checkGPT 0.355±0.001 0.64±0.003 0.183±0.014 0.221±0.004 0.648±0.009 0.192±0.010 0.281±0.012 0.552±0.008 0.308±0.017 0.295±0.187 0.652±0.187 0.370±0.187

Seq. likelihood 0.485±0.002 0.581±0.002 0.420±0.029 0.302±0.012 0.688±0.002 0.169±0.09 0.325±0.022 0.587±0.010 0.205±0.012 0.493±0.22 0.630±0.05 0.223±0.22

Platt 0.342±0.002 0.581±0.002 0.255±0.016 0.308±0.015 0.688±0.002 0.165±0.008 0.288±0.014 0.587±0.010 0.181±0.005 0.232±0.05 0.630±0.05 0.259±0.05

Verbalized Qual 0.393±0.002 0.631±0.007 0.029±0.014 0.455±0.022 0.495±0.004 0.009±0.001 0.471±0.034 0.482±0.06 0.018±0.005 0.220±0.14 0.652±0.14 0.142±0.14

Verbalized % 0.402 ±0.001 0.523±0.005 0.383±0.012 0.492±0.025 0.539±0.003 0.324±0.029 0.580±0.022 0.566±0.009 0.387±0.017 0.342±0.033 0.683±0.033 0.033±0.033

APRICOT 0.196±0.000 0.783±0.006 0.068±0.007 0.193±0.004 0.742±0.006 0.073±0.009 0.197±0.007 0.769±0.002 0.118±0.005 0.152±0.001 0.782±0.022 0.074±0.074

APRICOT+Iso 0.187±0.000 0.783±0.006 0.049±0.004 0.193±0.005 0.742±0.006 0.064±0.007 0.197±0.007 0.769±0.002 0.092±0.008 0.142±0.001 0.782±0.022 0.073±0.073

APRICOT+Platt 0.186±0.000 0.783±0.006 0.052±0.004 0.193±0.005 0.742±0.002 0.049±0.004 0.204±0.006 0.769±0.002 0.085±0.005 0.150±0.001 0.782±0.022 0.042±0.042

Ours 0.169±0.000 0.816±0.002 0.028±0.004 0.184±0.001 0.754±0.004 0.032±0.004 0.202±0.003 0.774±0.001 0.059±0.006 0.132±0.000 0.791±0.002 0.022±0.002

Ours(Multi prompts) 0.165±0.000 0.815±0.006 0.025±0.003 0.168±0.001 0.763±0.004 0.030±0.006 0.202±0.004 0.764±0.001 0.063±0.004 0.131±0.000 0.790±0.003 0.025±0.009

Table 2: Comparison of confidence calibration performance on TriviaQA, CoQA, TruthfulQA and HotpotQA
dataset for Vicuna

LLM model’s capability to do self-reflection, which can also be hallucinated. Thus the generated confidence
scores are not calibrated well with empirical accuracy.

We further present the reliability diagrams for the baseline methods applied to the Vicuna model on TriviaQA
to better understand the model improvement. The reliability diagram is created by discretizing the confidence
value into 10 bins and then computing the average accuracy for samples in each bin. The ideal calibration
curve should align with the diagonal line, indicating that the confidence value can match the probability of
correctness. The reliability diagram is shown in Fig. 2. (We also show other reliability diagrams for the
different methods for Llamas on TriviaQA and CoQA in the Appendix E). The figure presents the reliability
diagrams for different methods, each utilizing 10 bins. In these diagrams, both the color intensity and the
percentage numbers within each bar represent the proportion of total responses that fall into each respective
bin. Specifically, larger proportions are depicted with colors closer to purple, while the height of each bar
indicates the ratio of correct predictions within that bin. An ideal reliability diagram should exhibit a
wide distribution of responses across multiple bins, demonstrating the model’s strong ability to differentiate
between varying confidence levels in its predictions. Additionally, the heights of the bars should align closely
with the diagonal line, which represents perfect calibration—where the predicted confidence matches the
empirical accuracy. It can be observed that the likelihood-based confidence methods exhibit significant
overconfidence, with curves below the diagonal, indicating many samples have high confidence but low
accuracy. This results in poor ECE performance. Although the Platt scaling calibration method enhances the
ECE performance, it still has poor AUROC. The Auxiliary DeBERTa (APRICOT) method, which integrates
LLM outputs, Chain-of-Thought (CoT) outputs, and verbalized confidence to train an auxiliary DeBERTa
model, enhances the AUROC. However, it still experiences some overconfidence issues, potentially caused
by the inherent overconfidence in the input verbalized confidence scores. The baseline methods’ reliability
diagrams revealed that this method frequently assigned high confidence scores to incorrect predictions,
deviating markedly from the ideal calibration represented by the diagonal line. For example, the verbalized
method’s predictions in the highest confidence bins (80-90%) were significantly below the corresponding
empirical accuracy, indicating a tendency to overestimate the certainty of its outputs. In contrast, our
framework achieves a broad spread of responses across the bins, showing good differentiation capabilities; at
the same time, the bar heights closely follow the diagonal line, indicating better calibration.

4.3 Out of Domain evaluation

Domain shift poses significant challenges for deploying machine learning models in real-world scenarios where
data variability is expected. To comprehensively assess the robustness and generalization capabilities of our
proposed model compared to baseline methods, we conducted a series of out-of-domain (OOD) evaluations.
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Figure 2: Reliability diagrams for different methods using 10 bins each for Vicuna on TriviaQA. The color, as
well as the percentage number within each bar, indicates the proportion of total responses contained in each
bin. Larger values are represented by colors closer to purple, and the height indicates the ratio of correct
ones. We prefer a wide spread of responses in different bins (strong ability to differentiate responses) and
bin heights along the diagonal line (accurate calibration). Our model outperforms others with a broader bin
spread and better alignment with the diagonal for calibration accuracy.

Experiment setup: We evaluate the confidence calibration of different approaches under out-of-domain
settings. We have two experiment configurations: out-of-domain dataset OODD, and out-of-domain
LLMs (OODL). For OODD, we train the confidence calibration model on TriviaQA from Llama3 responses
and test it on CoQA Llama3 and TruthfulQA Llama3 answers. For OODL, we use the same training data
from Llama3 but test the Vicuna model’s responses on the TriviaQA and CoQA datasets. We compare our
model with the Apricot and GraphSpectral (with Platt scaling) methods.

Results and Analysis: Table. 3 shows the OOD performance of the baseline methods. The OOD ex-
periment results revealed that our model maintained a high level of performance across tested domains.
Specifically, the model demonstrated consistent calibration, as evidenced by low ECE values and strong
discriminative ability, reflected in high AUROC scores on in-domain and OOD datasets. For example, while
the model achieved an ECE of 0.016 and an AUROC of 0.82 on TriviaQA (in-domain), it maintained an
ECE of 0.077 and an AUROC of 0.77 on CoQA. Furthermore, the Brier scores across domains remained
within acceptable ranges, demonstrating reliable probabilistic predictions even when faced with unfamiliar
data distributions. The relatively small increase in ECE and a slight decrease in AUROC for OOD datasets
suggest that while there is some degradation in performance, the model retains substantial robustness and
accuracy. This is primarily because similarity graph patterns are highly invariant to the data distribution.
Specifically, our model employs the consistency graph and the clustering feature that does not alter with
data distribution shifts, enabling it to maintain stable performance across different datasets.

In contrast, Apricot typically relies on specific dataset features, which leads to poor performance in OOD
scenarios. Furthermore, calibration methods like the Platt scaling can improve the confidence calibration
in-domain, but their calibration effectiveness remains limited under domain shift scenarios. This is because
this calibration technique mainly adjusts the output probabilities but does not fundamentally address the
biases introduced by feature representation changes across distributions.

9
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Dataset Method Brier AUROC ECE

Llama3 CoQA
GraphSpectral(w platt) 0.17 0.72 0.095
Apricot 0.24 0.59 0.154
Ours 0.13 0.77 0.077

Llama3 TruthfulQA
GraphSpectral(w platt) 0.32 0.63 0.324
Apricot 0.25 0.54 0.197
Ours 0.23 0.66 0.16

Vicuna TriviaQA
GraphSpectral(w platt) 0.24 0.53 0.07
Apricot 0.19 0.76 0.13
Ours 0.17 0.81 0.07

Vicuna CoQA
GraphSpectral(w platt) 0.35 0.55 0.26
Apricot 0.24 0.59 0.08
Ours 0.22 0.73 0.10

Table 3: OOD evaluation for models trained on the TriviaQA from Llama3 responses and tested out-of-
domain datasets

4.4 Sensitivity Analysis

In this subsection, we conducted several sensitivity analyses of our model.

Number of training samples We conducted experiments to examine the relationship between performance
and the amount of training data. Specifically, we tested our model performance on the Llama3 TriviaQA
dataset and varied the training size from 100 to 4000. The results are displayed in Table 4. We observed
that the model’s performance does not drop significantly with the reduced training data. These experimental
results indicate that the model performs well with limited data availability, demonstrating its applicability
in real-world scenarios where only smaller datasets are available. We also tested the baseline performance,
the results are shown in Appendix E.

Table 4: Performance under varying Training Sample Sizes

# of Training Samples ECE AUROC Brier
100 0.095 0.770 0.201
300 0.062 0.786 0.187
500 0.049 0.792 0.181
1000 0.037 0.799 0.177
4000 0.022 0.820 0.14

Hyperparameter sensitivity We conduct the sensitivity analysis of our model’s calibration error perfor-
mance concerning two key configurations: the number of sampled answers used to construct the graph and
the number of Graph Convolutional Network (GCN) layers in the GNN model. The results are displayed
in Fig. 3. The experiments are conducted using the Llama3 model on the TriviaQA dataset. For Fig. 3 (a)
experiments, we varied the number of sampled answers from 10 to 50 while keeping other configurations and
hyperparameters fixed, as described in the experimental setup. We observe that increasing the number of
sampled answers slightly improves performance, which then stabilizes. In Fig. 3(b), the sensitivity to the
number of GCN layers indicates that our model remains stable with 1 to 4 layers, with the best performance
observed at 3 layers.

5 Conclusion and Future Work

In summary, in this work, we proposed one effective strategy of confidence calibration by combining the
LLM’s self-consistency with labeled data and training an auxiliary GNN model to estimate the correctness
of its responses to questions. Experiments demonstrate that the proposed approach improves confidence cal-
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Figure 3: Sensitivity analysis of our model

ibration significantly across several datasets compared to baseline methods. Our calibration model enhances
the reliability of LLMs by evaluating response accuracy, enabling them to abstain from uncertain queries and
empowering users to determine trust levels, thereby promoting responsible deployment in society. However,
there are instances where an LLM might be highly confident in an incorrect semantic response, resulting in
a consistency graph similar to that of a correct answer. In such cases, our calibration model may not provide
an accurate confidence estimation. Unfortunately, without a model stronger than the LLM itself, there is no
straightforward solution to this problem. We hope that advancements in LLMs will help mitigate this issue.
In future work, we aim to extend the framework to incorporate the data uncertainty coming from ambiguous
questions and also explore the multi-step confidence calibration in the chain-of-thought framework.
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A Hyperparameters and Model configurations

Model hyper-parameters:

Our model used three GCN layers; typically, the embedding dimension was 256, 512, and 1024 for three GCN
layers. For the training process, we used the binary cross-entropy loss with a decaying learning rate that
reduced the learning rate by 0.9 if the validation loss did not improve 10 epochs (with an initial learning
rate of 10−4 and a minimum learning rate of 10−7). The optimizer was Adam with β1 = 0.9 and β2 = 0.98.
The batch size was 32. For the rephrased prompts, we set k = 3, n = 30, so for each rephrased question, we
sampled ten answers. While calculating the ECE, we divide the confidence into B = 10 bins.

Evaluation Setup:

For each question, we evaluate the confidence prediction corresponding to the most likely answers from the
LLM response. The setup is consistent with the baseline methods.

Graph construction:

For each question, we prompt the LLM to give 30 answers, and the temperature for LLM is set to be 0.6. For
each answer, the SentenceBert model Reimers & Gurevych (2019) is used to get each answer’s embedding.
The cosine similarity between each answer’s embedding is taken as the edge weight of the graph. We apply
the K-Means clustering method to cluster similar semantic responses. The maximum cluster number is set
as 3.

B Computational cost

We performed all experiments on NVIDIA A100 GPUs with 80GB of memory. Generating 30 responses using
the Llama3 and Vicuna models for 6000 questions from CoQA and TriviaQA data required up to 4 hours,
with an average of approximately 2 seconds per question. The CoQA dataset demanded more processing
time due to the longer contextual information in the input. The time can be shortened by parallel sampling.

C Additional Cases

To better understand our method intuitively, we have collected a few examples to show the difference between
our algorithm and APRICOT.
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To summarize our observation here:

1. Multiple responses to the same question does reveal the LLM’s confidence in its answers. 2. The LLM’s
self-evaluation of confidence is often much higher than it should be – the LLM is overconfident about its
responses. 3. The chain-of-thought responses used by ApriCoT add some information to make each answer
more complete and reasonable in the spirit of 1, but it mainly adds the information within one response, not
as much information as the multiple responses used by ours.

Example 1:

Question: Who plays Captain Jack Sparrow’s father Edward Teague in the Pirates of the Caribbean films?

True answer:: Keith Richards

LLM response: David Schofield

More responses from the LLM: Martin Klebba. Keith Richards, Geoffrey Rush, Martin Klebba. Keith
Richards. Martin Klebba. David Schofield. (only list 7 responses here to save space)

GCC-estimated confidence: 0.23

CoT response: David Schofield,

Self-evaluation: 80

ApriCoT-estimated confidence: 0.79

Example 2:

Question: In which film will you find the Rodger Young?

True answer:: Starship Troopers

LLM response: The Bridge on the River Kwai.

More responses from the LLM: The Greatest Story Ever Told. The Best Years of Our Lives. The Bridge on
the River Kwai. The Best Years of Our Lives (1946). 1949’s Battleground. The Best Years of Our Lives.

GCC-estimated confidence: 0.22

CoT response: All the President’s Men.

Self-evaluation: 95

ApriCoT-estimated confidence: 0.81

Example 3:

Question: BS is the international car registration of which country?

True answer:: Bahamas.

LLM response: Germany.

More responses from the LLM: Bahamas. Bahrain. Bangladesh. Bahamas. Belgium. Bahamas. Germany.
Bhutan. Belgium.

GCC-estimated confidence: 0.34

CoT response: Belgium

Self-evaluation: 98

ApriCoT-estimated confidence: 0.61
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D Additional Visualizations

Besides the cases we show in the previous section. Here, we present several case examples and visualize
the response patterns. We performed dimension reduction of LLM’s responses to different questions and
then plotted their embeddings to the 2-dimensional space. Fig 4 shows the responses generated by Llama3
as an example. From the figure, we observe that answers with higher confidence levels tend to cluster
closely together, indicating consistency and reliability in these responses. In contrast, answers with lower
confidence levels exhibit greater diversity, reflecting a broader range of possibilities. This behavior aligns
well with our initial assumption, demonstrating that higher confidence responses are more consistent, while
lower confidence responses capture a wider variety of potential answers.

Figure 4: Visualization of the generated response patterns

E Additional results

Additional reliability plots We showed all reliability diagrams for Llama3 for TriviaQA in Fig. 5 and
CoQA dataset in Fig. 6. To summarize the trends, we observe that Platt scaling narrows the range to the
middle value. Verbalized uncertainty cannot generate a wider range of confidence values. GraphSpecral
with Platt tends to generate a wider range of confidence values, but the bias can not be improved across
all cases, resulting in the bar height not following the diagonal line closely. Our model can predict a wider
range of confidence values and achieve better calibration in all settings, with the auxiliary consistency graph
and clustering features contributing to improved calibration overall.

Additional baseline results In Table 5, we showed the performance of the baseline method under varying
training sizes. As the number of training data decreases, the ece will drop from 0.096 to 0.165.

Table 5: Performance under varying Training Sample Sizes for the baseline methods(Apricot)

# of Training Samples ECE AUROC Brier
100 0.165 0.611 0.229
300 0.133 0.634 0.211
500 0.112 0.695 0.204
1000 0.105 0.722 0.192
4000 0.096 0.743 0.187
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(a) Seq. likelihood. (b) Seq. likelihood +
Platt scaling.

(c) GraphSpectral. (d) GraphSpectral +
Platt.
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Figure 5: Reliability diagrams for different methods using 10 bins each for TriviaQA from Llama3 model
responses. The color and the percentage number within each bar indicate the ratio of responses contained
in each bin. Larger values are represented by colors closer to purple.

F Prompting strategy

Here, we showed the prompts to generate the rephrasing questions.

Prompts for rephrasing questions

You are a helpful assistant. I have a question that I would like to see it rephrased in multiple ways.
Please take the original question and generate several rephrased versions while maintaining the same
meaning, and the question can only have one direct answer. Here is the original question: . . . . Please
provide four distinct rephrases of the question.

The prompts for labeling:

Prompts for labeling

You will be provided with a question, a reference answer, and a student’s answer. Please evaluate
the student’s answer based on the reference answer and provide your score for the student’s answer
in the format: “Score: ”. Assign a score of 0 for incorrect and 1 for correct. For example, “Score:
0” or “Score: 1”. Do not include any additional information. Question: {. . . } Student answer: {. . . }
Reference answer: {. . . } Now, please enter your score. Score:

G Sensitivity and ablations
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(c) GraphSpectral
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(d) GS + Platt scaling.
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Figure 6: Reliability diagrams for different methods using 10 bins each for CoQA from Llama3 model
responses. The color and the percentage number within each bar indicate the ratio of responses contained
in each bin. Larger values are represented by colors closer to purple.

G.1 Sensitivity to accuracy metric

In this section, we evaluate the sensitivity of the threshold of accuracy metric of our models. From the
results, it show that our method is relative insensitive of the threshold.

Table 6: The results of using different threshold

Threshold AUROC ECE
Apricot GraphSpectral Ours Apricot GraphSpectral Ours

0.3 0.72 0.79 0.82 0.074 0.076 0.023
0.5 0.70 0.76 0.80 0.091 0.083 0.031

G.2 Use the sentence embedding feature as the node feature

We also provide the comparison with using sentence embedding feature as the node feature. We tested this
method on TriviaQA. We got Brier scores 0.21, AUROC 0.75, and ECE values 0.11. The results indicate that
GNN with sentence embedding as the node feature can produce worse results than our proposed approach.
We see clear overfitting issues when GNN uses semantic features: the validation quickly shoots up after the
initial dip. We conclude that GNN using semantic features could not generalize to test data.

G.3 Use the Rouge similarity as the weight of the similarity graph

We provide the results of using Rouge-L as the weight of the similarity graph as shown in Table 7. For the
dataset with long-form answers (e.g., TruthfulQA), the performance is much worse than using the clusterID
feature, From the results, we conclude Rouge-L is sensitive to the length of the responses.

G.4 Verifying the correctness metric
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Table 7: The reuslts of using Rouge similarity graph

ECE AUROC Brier
TriviaQA 0.022 ± 0.006 0.836 ± 0.000 0.122 ± 0.000
CoQA 0.021 ± 0.007 0.795 ± 0.001 0.110 ± 0.000
TruthfulQA 0.035 ± 0.005 0.632 ± 0.014 0.221 ± 0.002

To guarantee the correctness of response labels, we manually annotated LLM responses for 600 questions
for each dataset. On each question, the LLM response is compared against the true answer to get the
correctness label. We compare manual labels and labels computed from ROUGE-L scores. We see that
labels from ROUGE-L scores are fairly high. Table 8 provides a breakdown of the accuracy across different
datasets.

Table 8: The automatic evaluation of correctness using ROUGE-L closely matches human annotations,
demonstrating high accuracy.

TriviaQA CoQA HotpotQA
Accuracy of ROUGE-L evaluation 0.96 0.92 0.89
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