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Abstract

We present three novel graph representations of planning tasks suitable for learning
domain-independent heuristics using Graph Neural Networks (GNNs) to guide
search. In particular, to mitigate the issues caused by large grounded GNNs we
present the first method for learning domain-independent heuristics with only the
lifted representation of a planning task. We also provide a theoretical analysis
of the expressiveness of our models, showing that some are more powerful than
STRIPS-HGN, the only other existing model for learning domain-independent
heuristics. Our experiments show that our heuristics generalise to much larger
problems than those in the training set, vastly surpassing STRIPS-HGN heuristics.

1 Introduction

Graph Neural Networks (GNNs) have recently attracted the interest of the planning community, for
learning heuristic cost estimators, task orderings, value functions, action policies, and portfolios,
to name a few Shen et al. [2020], Garg et al. [2020], Karia and Srivastava [2021], Ståhlberg et al.
[2022a], Ma et al. [2020], Sharma et al. [2022], Teichteil-Königsbuch et al. [2023]. GNNs exhibit
great generalisation potential, since once trained, they offer outputs for any graph, regardless of size
or structure. Representing the structure of planning domains as graphs, GNNs can train on a set of
small problems to learn generalised policies and heuristics that apply to all problems in a domain. As
noted by Shen et al. [2020], this also allows for learning heuristics applicable to multiple domains, or
even domain-independent heuristics that apply to domains unseen during training.

In this paper, we explore the use of GNNs for learning both domain-dependent and domain-
independent heuristics for classical planning, with an emphasis on the latter. To the best of our
knowledge, STRIPS-HGN Shen et al. [2020] is the only existing model designed to learn domain-
independent heuristic functions from scratch. The models in Ståhlberg et al. [2022a] are inherently
domain-dependent, given that they use different update functions for predicates of the planning
problems, and hence cannot generalise to unseen problems with a different number of predicates.
Neural Logic Machines Dong et al. [2019], Gehring et al. [2022] are also domain-dependent models
as they assume a maximum arity of input predicates.

STRIPS-HGN has several drawbacks when learning domain-independent heuristics: (1) its hyper-
graph representation of planning tasks ignores delete lists and thus cannot theoretically learn h∗, (2)
its aggregation function is not permutation invariant due to ordering the neighbours of each node
which may prevent it from generalising effectively, (3) it assumes a bound on the sizes of action
preconditions and effects, meaning that it also has to discard certain edges in its hypergraph in its
message updating step, and (4) it requires constructing the whole grounded hypergraph, so that its
size becomes impractical for large problems.

Our contributions remedy these issues and make the following advances to the state of the art. Building
on well-known planning formalisms, namely propositional STRIPS, FDR, and lifted STRIPS, we
define novel grounded and lifted graph representations of planning tasks suitable for learning domain-
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independent heuristics. In particular, this results in the first domain-independent GNN heuristic
based on a lifted graph representation. We also establish the theoretical expressiveness of Message-
Passing Neural Networks (MPNN) acting upon our graphs in terms of the known domain-independent
heuristics they are able to learn, and suggest further research directions for learning h∗.

We then conduct two sets of experiments to complement our theory and evaluate the effectiveness of
learned heuristics. The first set aims to measure the informativeness of learned heuristics on unseen
tasks, while the second set evaluates the effectiveness of such learned heuristics for heuristic search.
Planners guided by heuristics learnt using our new graphs solve significantly larger problems than
those considered by Shen et al. [2020], Karia and Srivastava [2021] and Ståhlberg et al. [2022b]. In
the domain-dependent setting, planners guided by our lifted heuristics achieves greater coverage than
using hFF in several domains and returns lower cost plans overall.

2 Background and Notation

2.1 Planning

A classical planning task Geffner and Bonet [2013] is a state transition model Π = ⟨S,A, s0, G⟩
consisting of a set S of states, a set A of actions, an initial state s0, and a set G of goal states. Each
action a ∈ A is a function a : S → S ∪ ⊥ mapping a state s in which the action is applicable to its
successor a(s), and states in which it is not applicable to ⊥. The cost of the action is c(a) ∈ N. A
solution or a plan in this model is a sequence of actions π = a1, . . . , an such that si = ai(si−1) ̸= ⊥
for all i ∈ {1, . . . , n} and sn ∈ G. In other words, a plan is a sequence of applicable actions which
when executed, progresses our initial state to a goal state. The cost of π is c(π) =

∑n
i=1 c(ai). A

planning task is solvable if there exists at least one plan. We now describe three ways to represent
planning tasks.

A STRIPS planning task is a tuple Π = ⟨P,A, s0, G⟩ with P a set of propositions (or facts), A a set of
actions, s0 ⊆ P an initial state, and G ⊆ P the goal condition. A state s is a subset of P and is a goal
state if G ⊆ s. An action a ∈ A is a tuple ⟨pre(a), add(a),del(a)⟩ with pre(a), add(a),del(a) ⊆ P
and add(a) ∩ del(a) = ∅, and has an associated cost c(a) ∈ N. The action is applicable in a state s
if pre(a) ⊆ s, and leads to the successor state s′ = (s \ del(a)) ∪ add(a).

An FDR planning task [Helmert, 2009] is a tuple Π = ⟨V, A, s0, s⋆⟩ where V is a finite set of
state variables v, each with a finite domain Dv. A fact is a pair ⟨v, d⟩ where v ∈ V, d ∈ Dv.
A partial variable assignment is a set of facts where each variable appears at most once. A total
variable assignment is a partial variable assignment where each variable appears once. The initial
state s0 is a total variable assignment and the goal condition s⋆ is a partial variable assignment.
Again, A is a set of actions of the form a = ⟨pre(a), eff(a)⟩ where pre(a) and eff(a) are partial
variable assignments. An action a is applicable in s if pre(a) ⊆ s, and leads to the successor state
s′ = (s ∪ eff(a)) \ {⟨v, d⟩ ∈ s | ∃d′ ∈ Dv, ⟨v, d′⟩ ∈ eff(a) ∧ d ̸= d′}.
A lifted planning task Lauer et al. [2021] is a tuple Π = ⟨P,O,A, s0, G⟩ where P is a set of
first-order predicates, A is a set of action schema, O is a set of objects, s0 is the initial state and
G is the goal condition. A predicate P ∈ P has parameters x1, . . . , xnP

for nP ∈ N, noting that
nP depends on P and it is possible for a predicate to have no parameters. A predicate with n
parameters is an n-ary predicate. A predicate can be instantiated by assigning some of the xi with
objects from O or other defined variables. A predicate where all variables are assigned with objects
is grounded, and is known as a ground proposition. The initial state and goal condition are sets
of ground propositions. An action schema a ∈ A is a tuple ⟨∆(a),pre(a), add(a),del(a)⟩ where
∆(a) is a set of parameter variables and pre(a), add(a) and del(a) are sets of predicates from P
instantiated with either parameter variables or objects in ∆(a) ∪O. Similarly to predicates, an action
schema with n = |∆(a)| parameter variables is an n-ary action schema. An action schema where
each variable is instantiated with an object is an action. Action application and successor states are
defined in the same way for both STRIPS and lifted planning.

2.2 Graph neural networks

The introduction of graph neural networks (GNN) requires additional terminology. In the context of
learning tasks, we define a graph with edge labels to be a tuple ⟨V,E,X⟩where V is a set of nodes, E a
set of undirected edges with labels where ⟨v, u⟩ι = ⟨u, v⟩ι ∈ E denotes an undirected edge with label
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ι between nodes u, v ∈ V , and X : V → Rd a function representing the node features of the graph.
The edge neighbourhood of a node u in a graph under edge label ι isNι(u) = {⟨u, v⟩κ ∈ E | κ = ι}.
The edge neighbourhood of a node u in a graph is N (u) =

⋃
ι∈RNι(u) whereR is the set of edge

labels for the graph.

A Message-Passing Neural Network (MPNN) is a type of GNN which iteratively updates node
embeddings of a graph with edge labels locally in one-hop neighbourhoods with the general message
passing equation

h(t+1)
u = cmb(t)

(
h
(t)
u , agg

(t)
⟨u,v⟩ι∈N (u) f

(t)
(
h
(t)
u ,h

(t)
v , ι

))
where in the t-th iteration or layer of the network, h(t)

u ∈ RF (t)

is the embedding of node u of
dimension F (t), and h

(0)
u is given by the node feature corresponding to u in X. We have that cmb(t)

and f (t) are arbitrary almost everywhere differentiable functions and agg(t) is usually a differentiable
permutation invariant function acting on sets of vectors such as sum, mean or component-wise max.

In order for an MPNN to produce a graph representation for an input, it is then common to pool all
the node embeddings after a number of message passing updates with a graph readout function Φ
which is again usually given by a differentiable permutation invariant function.

3 Representation

In this section, we introduce three novel graph representations designed for learning heuristic functions
for planning tasks. Each graph is tailored to a specific task representation and all of them allow
us to learn domain-independent heuristic functions. In particular, our graph for lifted tasks avoids
grounding and allows us to learn a lifted heuristic.

3.1 Grounded Graphs

A graph representation for grounded STRIPS problems already exists, namely the STRIPS problem
description graph (PDG) [Pochter et al., 2011]. It was originally used to study which classical
heuristics were invariant under symmetries in the planning task. In order to learn heuristics, we
provide an alternative graph representation for STRIPS problems which includes node features and
edge labels.
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Figure 1: (a) SLG subgraph of an action a with pre(a) = {p0, p1, p2}, add(a) = {p3, p4} and
del(a) = {p0, p2}, indicated by black, blue and red edges respectively. (b) FLG subgraph of an
action a with pre(a) = {⟨v2, d2,1⟩ , ⟨v3, d3,2⟩} and eff(a) = {⟨v1, d1,1⟩, ⟨v2, d2,2⟩, ⟨v3, d3,1⟩},
indicated by black and blue edges respectively. Asparagus edges link variables and values. (c-d):
LLG instance subgraph and schema subgraphs, with layer descriptions of a Blocksworld instance.
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Definition 3.1. The STRIPS learning graph (SLG) of a STRIPS problem ⟨P,A, s0, G⟩ is the graph
⟨V,E,X⟩ with

• V = A ∪ P ,

• E = Epre ∪ Eadd ∪ Edel where for ι ∈ {pre, add,del},
Eι = {⟨a, p⟩ι | p ∈ ι(a), a ∈ A} ,

• X : V → R3 defined by
u 7→ [u ∈ P ;u ∈ s0;u ∈ G].

By allowing for edge labels, we only require one node for each proposition to encode the semantics
of action effects in contrast to STRIPS PDG which requires three nodes for each proposition. Thus
SLG is smaller while not losing any information. Three dimensional node features are sufficient for
encoding whether a node corresponds to an action or proposition, and in the latter case, whether it is
true in the initial state and present in the goal. Fig. 1(a) illustrates an example SLG subgraph.

The FDR problem description graph (PDG) [Shleyfman et al., 2015] is an existing graph representation
designed to identify symmetrical states during search for FDR problems. Since PDG is not designed
for learning, it lacks vector node features and edge labels. Def. 3.2 extends FDR PDG with learning
in mind by retaining its graph structure and adding node features and edge labels. Fig. 1(b) illustrates
an example of an FLG subgraph.
Definition 3.2. The FDR learning graph (FLG) of an FDR problem ⟨V, A, s0, s⋆⟩ is the graph
⟨V,E,X⟩ with

• V = V ∪
⋃

v∈V Dv ∪A,

• E = Evar:val ∪ Epre ∪ Eeff with

Evar:val =
⋃

v∈V{⟨v, d⟩var:val | d ∈ Dv}
Epre =

⋃
a∈A{⟨d, a⟩pre | (v, d) ∈ pre(a)}

Eeff =
⋃

a∈A{⟨d, a⟩eff | (v, d) ∈ eff(a)},

• X : V → R5 defined by

u 7→ [u ∈ V;u ∈ A; val(u); true(u); goal(u)]

where val(u) = ∃v ∈ V , u ∈ Dv, true(u) = ∃v ∈ V , ⟨v, u⟩ ∈ s0 and goal(u) = ∃v ∈ V ,
⟨v, u⟩ ∈ s⋆.

3.2 Lifted Graphs

Lifted algorithms for planning offer an advantage by avoiding the need for grounding thus saving
both time and memory. To leverage these benefits for heuristic learning, a lifted graph representation
that is amenable to learning is needed. However, designing such graphs is non-trivial due to the extra
relations to encode, namely the interactions between predicates, action schema, propositions true
in the current state, the goal condition and objects. The only graph representation encoding all the
information of a lifted planning task is the abstract structure graph (ASG) [Sievers et al., 2019].
Similarly to PDG, ASG was designed to compute symmetries but it has also been used for learning
planning portfolios [Katz et al., 2018].

An ASG is constructed by first defining a coloured graph on abstract structures, a recursive structure
defined with sets, tuples, and the input objects, and then defining a lifted planning task as an abstract
structure. ASGs have several limitations when used with MPNNs for making predictions. Their
encoding of predicate and action schema arguments is done via a sequence or directed path, where
the graph uses a directed path of length n to encode n arguments. There are also many more auxiliary
nodes to encode the abstract structures. Both these issues cause problems as a larger receptive field is
required for MPNNs to learn the structure and semantics of the planning problem, and directed edges
limit information flow and expressivity when used with MPNNs.

To overcome the issues with ASGs, we introduce a new graph representation for lifted planning
tasks designed to be used with MPNNs. Our new representation in Def. 3.3 consists of two main
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components: the schema subgraph which encodes the action schemas of the domain, and the instance
subgraph which encodes the instance specific information containing the current state and the goal
condition. In the following definition, will assume that there are no partially instantiated action
schema as is generally the case for most PDDL files.
Definition 3.3. Let T ∈ N. The lifted learning graph (LLG) of a lifted problem Π = ⟨P,O,A, s0, G⟩
is the graph G = ⟨V,E,X⟩ with

• V = P ∪ O ∪N(A) ∪N(s0 ∪G) with
N(s0 ∪G) =

⋃
p=P (o1,...,onP

)∈s0∪G {p, p1, . . . , pnP
}

N(A) =
⋃

a∈A
(
{a} ∪ {aδ | δ ∈ ∆(a)} ∪

⋃
f∈{pre,add,del}

p=P (δ1,...,δnP
)∈f(a)

{
pa,f , pa,f,1, . . . , pa,f,nP

})
N(s0 ∪ G) contains nodes corresponding to the state and goal, and ground arguments layer as in
Fig. 1(c), while N(A) provides all the nodes corresponding to the action schema, schema argument,
predicate argument and schema predicate layers in Fig. 1(d).

• E = Eν ∪ Eγ ∪
⋃

f∈{pre,add,del} Ef where

Eν =
{
⟨o, P ⟩ν | o ∈ O, P ∈ P

}
∪

{
⟨a, aδ⟩ν | δ ∈ ∆(a), a ∈ A

}
Eγ =

⋃
p=P (o1,...,onP

)∈s0∪G

({
⟨p, pi⟩γ | i∈ [nP ]

}
∪

{
⟨pi, oi⟩γ | i∈ [nP ]

}
∪
{
⟨p, P ⟩γ

})
Ef =

⋃
p=P ()∈f(a)

{
⟨P, pa,f ⟩f , ⟨pa,f , a⟩f

}
∪⋃

p=P (δ1,...,δnP
)∈f(a),nP≥1

({
⟨P, pa,f ⟩f

}
∪

{
⟨pa,f , pa,f,i⟩f , ⟨pa,f,i, aδi⟩f | i∈ [nP ]

})
for f ∈ {pre, add,del}. Eν connects objects to predicates and schemas to their arguments, as
indicated by gray edges in Fig. 1, Eγ connects nodes in P , O, and N(s0 ∪G) in order to represent
propositions in the goal and true in the state as instantiated predicates with objects in the correct
arguments, and

⋃
f∈{pre,add,del} Ef provides edges connecting nodes in P and N(A) to encode the

semantics of action schema in the graph.

•X : V → R5+T defined by u 7→ [u ∈ P;u ∈ O;u ∈ A;u ∈ s0;u ∈ G] ∥ IF(u) where ∥ denotes
vector concatenation, IF(u) = IF(i) for u of the form pi or pa,f,i with f ∈ {pre, add,del} and
IF(u) = 0⃗ otherwise, and IF : N→ RT is defined by a fixed randomly chosen injective map from N
to the sphere

{
x ∈ RT | ∥x∥ = 1

}
.

We use the index function IF to encode the index at which an object instantiates the argument of a
predicate or action schemas. This usage of IF lets us address STRIPS-HGN’s limitation of having
a fixed maximum number of parameters for predicates and action schemas that is chosen before
training. Specifically, IF provides a numerically stable representation of an unbounded range of
indexes that is agnostic to the maximum arity of the problem. Moreover, IF improves generalisation
to large and unseen indexes as they are mapped to normalised vectors already seen by the model.

IF draws inspiration from positional encoding functions used in Transformers Vaswani et al. [2017]
and GNNs Li et al. [2020], Dwivedi et al. [2022], Wang et al. [2022] for encoding positions as vectors.
However, while Transformers and GNNs use positional encodings to encode all input tokens and
graph nodes respectively, we use IF features only in the subset of nodes required to encode argument
indexes in the lifted planning task. Furthermore, positional encodings aim to correlate positions
and their corresponding features, such that objects close to each other are given similar features.
In contrast, IF generates features for each index that are independent of one another. Hence, IF
features are randomly generated i.i.d. for each index and also a priori such that they can be used for
domain-independent learning.

4 Expressiveness

We have defined three novel graph representations of planning tasks for the goal of learning domain-
independent heuristics. In this section we will categorise the expressiveness of such graph representa-
tions when used with MPNNs by identifying which domain-independent heuristics they are able to
learn. Our study also includes characterising the expressiveness of STRIPS-HGN Shen et al. [2020],
the previous work on learning domain-independent heuristics. Fig. 2 summarises the main theorems
of this section via an expressiveness hierarchy. Proofs of theorems are attached in the appendix.
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hmax/add
STRIPS-HGN

h+
h∗

LLG

SLG
FLG

Figure 2: Expressiveness hierarchy of
MPNNs on graph representations with re-
spect to STRIPS-HGN and the heuristics
hmax, hadd, h+ and h∗. Bold outlines rep-
resent new graphs.

We begin with a lower bound on what MPNNs can
learn by showing that they can theoretically learn to
imitate algorithms for computing hmax and hadd on
our grounded graphs with the use of the approximation
theorem for neural networks Cybenko [1989], Hornik
et al. [1989].
Theorem 4.1 (MPNNs can learn hadd and hmax on
grounded graphs). Let L,B ∈ N, G ∈ {SLG,FLG},
ε > 0 and h ∈ {hadd, hmax}. Then there exists a set
of parameters Θ for an MPNN FΘ such that for all
planning tasks Π, if naive dynamic programming for
computing h converges within L iterations for Π, and
h(s0) ≤ B, then we have |h(s0)−FΘ(G(Π))| < ε.

MPNNs acting on SLG and FLG are strictly more expressive than STRIPS-HGN. The idea of the
theorem is that STRIPS-HGN discards delete effects which prohibits it from learning h∗. Furthermore,
it is possible to imitate STRIPS-HGN with minor assumptions on MPNN architectures acting on
either of our grounded graphs.
Theorem 4.2 (MPNNs on grounded graphs are strictly more expressive than STRIPS-HGN). Let G ∈
{SLG,FLG}. Given any set of parameters Θ for a STRIPS-HGN model SΘ, there exists parameters
Φ for an MPNN FΦ such that for any pair of planning tasks Π1 and Π2 where SΘ(Π1) ̸= SΘ(Π2),
we have FΦ(G(Π1)) ̸= FΦ(G(Π2)). Furthermore, there exists a pair of planning problems Π1 and
Π2 such that there exists Φ where FΦ(G(Π1)) ̸= FΦ(G(Π2)) but SΘ(Π1) = SΘ(Π2) for all Θ.

The first of our negative results is that MPNNs cannot learn hadd or hmax on the lifted LLG graph.
This is due to the graph being too condensed in the lifted version so that MPNNs cannot extract
certain information for computing these heuristics. The proof idea is to find a pair of planning tasks
which appear symmetric to MPNNs in the LLG representation but have different hmax and hadd

values.
Theorem 4.3 (MPNNs cannot learn hadd and hmax on lifted graphs). Let h ∈

{
hadd, hmax

}
. There

exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that for any set of parameters Θ
for an MPNN we have FΘ(LLG(Π1)) = FΘ(LLG(Π2)).

Next, we have that MPNNs cannot learn h+ and thus h∗ on any of our graphs. This result is not
unexpected given that the expressiveness of MPNNs is bounded by the graph isomorphism class
GI whose hardness is known to be in the low hierarchy of NP, unlike h+ which is NP-complete.
Similarly to the previous theorem, the proof follows the technique of finding a pair of planning tasks
with different h+ values that are indistinguishable by MPNNs on any of our graphs.
Theorem 4.4 (MPNNs cannot learn h+ or h∗ with our graphs). Let h ∈ {h+, h∗} and G ∈
{SLG,FLG,LLG}. There exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that
for any set of parameters Θ for an MPNN we have FΘ(G(Π1)) = FΘ(G(Π2)).

One may ask if it is possible to learn any approximation of h+ or h∗ on all planning problems.
Unfortunately, it is not possible to learn either absolute or relative approximations. We formalise this
in the following theorem, where the proof consists of a class of planning task pairs generalising the
previous example.
Theorem 4.5 (MPNNs cannot learn any approximation of h+ or h∗). Let h ∈ {h+, h∗}, G ∈
{SLG,FLG,LLG} and c > 0. There exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2)
such that for any set of parameters Θ for an MPNN we do not have

∧
i=1,2 |FΘ(G(Πi))− h(Πi)| ≤ c.

Also, for any set of parameters we do not have
∧

i=1,2 |1−FΘ(G(Πi))/h(Πi)| ≤ c.

One may also ask about the expressiveness of learning a policy. A policy can be learned in one of
several ways. A policy can be induced from a learned heuristic where given a state s we take the
action a whose successor s′ has the lowest heuristic value over all successors from s. To learn a
policy directly on grounded graphs, we can take inspiration from ASNets Toyer et al. [2020] and
predict confidence values in the range from 0 to 1 on grounded action nodes. To learn a policy directly
on lifted graphs, one may take inspiration from the architecture by Karia and Srivastava [2021] which
predicts the schema and the corresponding arguments of an action.
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We note that our theorems provide extreme upper and lower bounds on what MPNNs can learn with
some of our graphs. Although in the general case we have the negative result that we cannot learn
h+ or h∗, it is still possible to learn h∗ on subclasses of planning tasks. For example, Ståhlberg et al.
[2022a] identify domains for which they can formulate the optimal policy with 2-variable counting
logics Cai et al. [1992], Barceló et al. [2020]. Furthermore, the results in this study concern MPNNs
but there exist more expressive graph representation learning methods. For example, under additional
assumptions, the universal approximation theorem with random node initialisation by Abboud et al.
[2021] can be applied to learn h∗. Lastly, we note that neither our results nor previous works examine
the generalisability of learned heuristic functions.

5 Experiments

We provide experiments in order to evaluate the effectiveness of our graph representations for use
with both domain-dependent and domain-independent learning of heuristic functions, as well as
to answer some open questions left behind in our theoretical discussion. In order to do so, we
introduce our GOOSE planner which combines graph generation, graph representation learning and
domain-independent planning.

The Graphs Optimised fOr Search Evaluation (GOOSE) architecture represents planning tasks with
one of the three graphs described previously (SLG, FLG, LLG) and uses MPNNs to learn heuristic
functions for search. During heuristic evaluation, GOOSE treats each state s of a planning task
⟨S,A, s0, G⟩ as a new planning subtask ⟨S,A, s,G⟩ which is then transformed into the chosen graph
and fed into an MPNN. We use a modified RGCN Schlichtkrull et al. [2018] message passing step
where we replace the mean with max aggregator over neighbours under different edge labels:

h(t+1)
u =σ

(
W

(t)
0 h(t)

u +
∑
ι∈R

max
⟨u,v⟩ι∈Nι(u)

W(t)
ι h(t)

v

)
.

GOOSE uses the eager GBFS component of Fast Downward Helmert [2006] for search which calls
the trained models for heuristic evaluation and the evaluation of successor states is parallelised on
GPUs for each opened node. The learning and evaluation module is built on pytorch-geometric Fey
and Lenssen [2019], while the search component is implemented in C++.

5.1 Setup and Baselines

domain train validate test best

blocks b ∈ [3, 10] 40 b ∈ [11] 3 b ∈ [15, 100] 90 b=60∗

ferry l, c ∈ [2, 10] 125 l, c ∈ [11] 3 l, c ∈ [15, 100] 90 l, c=90
gripper b ∈ [1, 10] 10 b ∈ [11] 1 b ∈ [15, 100] 18 b=100

n-puzzle n ∈ [2, 4] 100 n ∈ [5] 3 n ∈ [5, 9] 50 n=5∗

sokoban n ∈ [5, 7] 60 n ∈ [8] 3 n ∈ [8, 12] 90 n=12∗

spanner s, n ∈ [2, 10] 75 s, n ∈ [11] 3 s, n ∈ [15, 100] 90 s, n=65
visitall n ∈ [3, 10] 24 n ∈ [11] 3 n ∈ [15, 100] 90 n=65

visitsome n ∈ [3, 10] 24 n ∈ [11] 3 n ∈ [15, 100] 90 n=90

Figure 3: Problem splits with sizes and number of tasks per
domain. Right most column indicates largest size problem
solved with GOOSE. An asterisk (∗) marks whether the prob-
lem size is not directly correlated with problem difficulty.

For domain-dependent heuristic learn-
ing, we train 5 models for each do-
main on optimal plans with prob-
lems specified in Fig. 3. Each
plan of length h∗ contributes states
s0, s1, . . . , sg with corresponding la-
bels h∗, h∗ − 1, . . . , 0. For domain-
independent heuristic learning, we
train 5 models on optimal plans in the
1998 to 2018 IPC dataset with unit
costs. We remove any training data as-
sociated with the domains in the test
set in Fig. 3. In both settings only
optimal plans from training problems
for which scorpion Seipp et al. [2020]
solves within 30 minutes are kept. A model is trained with the Adam optimiser Kingma and Ba
[2015], batch size 16, initial learning rate of 0.001 and MSE loss. We schedule our learning rate by
extracting 25% of the training data and reducing the learning rate by a factor of 10 if the loss on this
data subset did not decrease in the last 10 epochs. Training is stopped when the learning rate becomes
less than 10−5 on this subset, which often occurs within a few minutes. In both settings, following a
similar method to Ferber et al. [2020] we then select the best model using the validation set in Fig. 3
by choosing the model which solves the most problems, and breaking ties with the sum of number of
expanded nodes, and the training loss. For all models, we choose hidden dimensionality 64 with 4
message passing layers. GOOSE is run with a single NVIDIA GeForce RTX 3090 GPU.
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Figure 4: (a) GOOSE learned heuristics (y-axis) vs. h∗ (x-axis). (b) hFF (y-axis) vs. GOOSE
(x-axis) on number of expanded nodes (left) and plan cost (right). Points on the bottom right triangles
favour hFF and on the top left triangles favour GOOSE. Problems unsolved by a configuration get
value set to the maximum of the plot’s axis.

We evaluate against blind search, Fast Downward’s implementation of eager GBFS with hFF, and
domain-dependent STRIPS-HGN. STRIPS-HGN was trained using the parameters described in
the original paper but with the same dataset as GOOSE and is called from Fast Downward’s eager
GBFS for heuristic evaluation. We also consider an additional baseline, the delete learning graph
(DLG), defined as the SLG graph without delete effect edges. DLG is an alternative to STRIPS-HGN
implemented in GOOSE with similar expressivity (Thm. 4.2). The DLG configuration consists of both
domain-dependent and domain-independent training and also employs GPUs. The other baselines
are run on CPUs only. All GOOSE configurations and baselines are run with a 600 second timeout.
We also evaluated Powerlifted’s Corrêa et al. [2020] implementation of lifted eager GBFS with both
hFF and its extension with GOOSE but they do not offer any advantage over Fast Downward on the
chosen problems. LAMA Richter and Westphal [2010] is able to solve almost all problems on every
domain except Spanner which it solves none. To focus on the effectiveness of learned heuristics, we
left out results for stronger satisficing planners which use techniques beyond heuristic search.

5.2 Results

We recall from our theoretical study that it is not possible to learn any approximation of h∗ over
all planning tasks, although it may still be possible for certain planning subclasses or domains.
Furthermore, we can learn domain-dependent h∗ heuristics for certain domains similarly to Ståhlberg
et al. [2022a]. Thus, we propose and answer the following question empirically.

How close to the optimal heuristic are our learned heuristics? To answer this question, we report
the heuristic of the initial state h(s0) computed by our models on all planning problems for which we
can compute the optimal heuristic either by a hard coded solver or an optimal planner in Fig. 4(a).
In the domain-dependent training setting, GOOSE with LLG provides the best predictions over
most domains except for Sokoban. GOOSE achieves perfect heuristic estimates even as problems
scale in size. This can be explained by LLG encoding predicate information which the other graph
representations do not have access to and for some domains, it suffices to count the predicates of
true propositions to compute h∗. Meanwhile, MPNNs are not expressive enough to decode predicate
information from the grounded graphs. In the domain-independent training setting, GOOSE heuristics
tend to overestimate h∗ on VisitAll, whose perfect heuristic can often be computed by counting
unreached goals, and underestimate on Sokoban. The grounded graphs which consider delete effects
(SLG and FLG) underestimate on Spanner and in the case of FLG provides lower estimates on larger
problems. This suggests GOOSE is overfitting on the training set on the more expressive grounded
graphs since it is not possible to compute h∗, and is most true in the case of FLG which encodes
additional planning task structure in the conversion of STRIPS to FDR.

How useful are learned domain-dependent heuristics for search? To answer this question, we
refer to Tab. 1 for a coverage table over all domains with various planners. We notice that GOOSE
with LLG trained in a domain-dependent fashion provides the best coverage on Blocksworld and
Spanner, and is tied with Fast Downward’s eager GBFS with hFF on Gripper. GOOSE with SLG
performs best on the grid based path finding domains VisitAll and VisitSome. Meanwhile, hFF

performs best on the remaining Ferry, n-puzzle and Sokoban domains. We note that several different
configurations of MPNN parameters allow LLG to match hFF on coverage in Ferry. However, all
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Table 1: Left: coverage of planners and GOOSE over various domains. Cell intensities indicate
rank of planner per domain. Right: total coverage normalised per domain of GOOSE over various
parameters and training paradigms, and normalised again by the coverage of the best performing
configuration. Higher scores are better and the maximum score is 1. The best scores column-wise are
highlighted in bold.
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blocks (90) - 19 - 15 6 10 11 29 14 14 16
ferry (90) - 90 - 4 3 33 33 78 15 6 12
gripper (18) 1 18 - 3 6 5 9 18 4 5 9
n-puzzle (50) - 36 - 4 1 10 10 1 3 3 -
sokoban (90) 74 90 - 12 37 52 56 34 48 42 39
spanner (90) - - - - - - - 55 - - 10
visitall (90) - 6 - 41 15 52 35 39 44 24 38
visitsome (90) 3 26 - 73 25 78 23 3 37 14 -

domain-dep. domain-ind.

ag
gr

.

L SL
G

FL
G

L
L

G

SL
G

FL
G

L
L

G

m
ea

n

4 0.70 0.71 0.90 0.39 0.24 0.40
8 0.71 0.60 1.00 0.60 0.57 0.12
12 0.62 0.52 0.93 0.64 0.56 0.19
16 0.49 0.42 0.83 0.56 0.46 0.13

m
ax

4 0.78 0.64 0.94 0.53 0.38 0.46
8 0.67 0.53 0.72 0.55 0.41 0.37
12 0.61 0.53 0.76 0.17 0.33 0.31
16 0.66 0.49 0.77 0.13 0.33 0.34

GOOSE configurations perform worse than blind search on Sokoban. Even though it expands fewer
nodes, the runtime cost of computing GOOSE heuristics is too high. This may be due to the difficulty
of the domain (PSPACE-complete) as size increases, given that in problems with similar size to the
training set GOOSE outperforms the other baselines.

STRIPS-HGN solves no problems due to its slow evaluation on CPUs. Our simplified STRIPS-HGN
variant using GNNs, GOOSE with DLG, solves some problems but is not competitive with hFF

except on VisitAll and VisitSome. Lastly, we mention that LAMA Richter and Westphal [2010]
solves almost all of the test problems except Spanner where it solves none. It remains as future work
to extend GOOSE in the planning algorithm side beyond learning heuristics to match the performance
of stronger satisficing planners.

Fig. 4(b) shows the number of node expansions and returned plan quality of the best performing
domain-dependent GOOSE graph, LLG, against hFF. In domains where one planner solves signifi-
cantly more problems than the other, it also has fewer node expansions in several orders of magnitude.
On Gripper, GOOSE has marginally fewer node expansions than hFF until the largest problem with
100 balls, and similarly on Ferry except the size in which GOOSE begins to perform worse is smaller.
We also note that GOOSE generally has higher plan quality than hFF over all problems which both
planners were able to solve.

How useful are learned domain-independent heuristics for search? We again refer to Tab. 1
for the coverage of GOOSE trained with domain-independent heuristics. With the exception of
Sokoban, domain-independent GOOSE outperforms blind search which suggests that the learned
domain-independent heuristics have some informativeness. This is again supported by Fig. 4(a)
which shows that in most domains domain-independent heuristics provide an approximation of h∗

which generally scales linearly with h∗. Most notably, domain-independent SLG outperforms hFF on
VisitAll and VisitSome, and domain-independent LLG is also able to solve some Spanner problems.

The best performing domain-independent GOOSE configuration is the grounded graph SLG. It
provides enough information to learn domain-independent heuristics with MPNNs in comparison to
LLG, but also does not provide too much information to prevent overfitting in comparison to FLG
which computes additional structure. With the exception of n-puzzle, domain-independent GOOSE
with SLG generally returns better quality plans than hFF, and expands fewer nodes on VisitAll,
VisitSome, and more than half the Blocksworld instances which both planners were able to solve. In
terms of overall coverage, domain-independent SLG also outperforms domain-dependent DLG, the
delete free version of SLG and optimised version of STRIPS-HGN. However, domain-independent
GOOSE generally expands more nodes and returns lower quality plans than their domain-dependent
trained variants with the same graph.

How important is finding the right graph neural network parameters? We report the normalised
coverage of GOOSE with number of message passing layers in {4, 8, 12, 16} and both the mean and
max aggregator in Tab. 1. We omitted results with the sum aggregator as it yields unstable training and
poor predictions. Increasing the number of layers theoretically improves informativeness and accuracy
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of predictions but requires longer evaluation time and is more difficult to train. There is no single set
of parameters that performs well over all graphs and training settings. Generally 4 or 8 layers result
in similar coverages while increasing the number of layers beyond this results in worse performance
due to the aforementioned reasons. We note that the effectiveness of max and mean aggregations
vary with the graph representation and domain as both aggregators lose information in different ways.
However, in the domain-dependent setting, LLG with the mean aggregator generally outperforms the
max aggregator given that the model can recover the information lost during normalisation through
the grouping of edge labels and node types.

6 Conclusion

We have constructed various novel graph representations of planning problems for the task of
learning domain-independent heuristics. In particular we provide the first domain-independent graph
representation of lifted planning. All our new models are also complemented by a theoretical analysis
of their expressive power in relation to domain-independent heuristics and the previous work on
learning domain-independent heuristics, STRIPS-HGN. We also construct the GOOSE planner using
heuristic search with heuristics learned from our new graph representations. GOOSE has also been
optimised for runtime with the use of GPU batch evaluation and is able to solve significantly larger
problems than those seen in the training set, vastly surpassing STRIPS-HGN learned heuristics, and
outperforming the hFF heuristic on several domains. It remains for future work to implement search
algorithms used by stronger satisficing planners in GOOSE, and to optimise GPU utilisation when
computing heuristics. Furthermore, it is also possible to improve the expressivity of learned heuristics
by leveraging stronger graph representation learning techniques.
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A Proofs of Theorems

This appendix includes the proofs of all theorems. For ease of reference, theorem statements are also
repeated here.
Theorem 4.1 (MPNNs can learn hadd and hmax on grounded graphs). Let L,B ∈ N, G ∈
{SLG,FLG}, ε > 0 and h ∈ {hadd, hmax}. Then there exists a set of parameters Θ for an MPNN
FΘ such that for all planning tasks Π, if naive dynamic programming for computing h (Alg. 1)
converges within L iterations for Π, and h(s0) ≤ B, then we have |h(s0)−FΘ(G(Π))| < ε.

Proof. The main idea of the proof is that we can encode Alg. 1 for computing h into an MPNN
using a correct choice of continuous bounded functions and aggregation operators and using the
approximation theorem to find parameters in order to achieve the desired function. We will assume
unitary cost actions and note that the below proof can be generalised to account for general cost
actions. We first deal with the case where h = hmax and G = DLG, where DLG is the graph SLG
but without delete edges. The proof generalises to SLG as an MPNN can learn to ignore delete edges.

Let x(u) ∈ R3 be the feature of node u. By definition of DLG as the graph SLG (Def. 3.1) with no
delete edges, it is defined by x

(u)
0 = 1 if u corresponds to a proposition node, else x

(u)
0 = 0 when u

12



Algorithm 1: Naive dynamic programming for computing hadd and hmax

Data: Propositional STRIPS planning task Π = ⟨P,A, s0, G⟩, desired heuristic
h ∈

{
hadd, hmax

}
Result: h(s) ∈ N

1 if h = hadd then ⊕ ←
∑

;
2 else if h = max then ⊕ ← max;
3 h(0)[p]← 0, ∀p ∈ s0
4 h(0)[p]←∞, ∀p ∈ P \ s0
5 for i = 1, . . . do
6 for a ∈ A do
7 h(i)[a]← ⊕p∈pre(a)h

(i−1)[p]

8 for p ∈ P do
9 h(i)[p]← min

(
h(i−1)[p],mina∈A,p∈add(a) h

(i)[a] + c(a)
)

10 if h(i) = h(i−1) then
11 return ⊕p∈gh

(i)[p]

corresponds to an action node a. Furthermore, x(u)
1 = 1 if u is a proposition in the initial state and

x
(u)
2 = 1 if u is a goal proposition. Note that it is possible that x(u)

1 = x
(u)
2 = 1 when a proposition

is both a goal condition and in the initial state. If not mentioned, we have that x(u)
i = 0 everywhere

else.

Then we will construct a MPNN with 2L+ 2 layers. For the first layer we have an embedding layer
which ignores neighbourhood nodes with agg(0) = 0⃗ and φ(0)(hu,hN ) = femb(hu). Let K be the
finite set of possible node features in a DLG representation of a planning task. Then femb : K → R3

is defined by

femb([0, 0, 0]
⊤) = [0, 0, 0]⊤ (1)

femb([1, 0, 0]
⊤) = [B, 0, 1]⊤ (2)

femb([1, 0, 1]
⊤) = [B, 1, 1]⊤ (3)

femb([1, 1, 0]
⊤) = [0, 0, 1]⊤ (4)

femb([1, 1, 1]
⊤) = [0, 1, 1]⊤. (5)

This first round of message passing updates corresponds to the initialisation step of the heuristic
algorithm with B representing infinity values. We also note that after applying agg(0) and φ(0)

and throughout the remaining forward pass of the MPNN, node embeddings will have the form
[x0, x1, x2] which encode information about their corresponding proposition or action during the
execution of the hmax algorithm where

• x0 corresponds to the intermediate h values computed in the hmax algorithm,

• x1 signifies whether the node corresponds to a goal node, and

• x2 determines if the node is a proposition or action node.

The next 2L layers use the component wise max aggregation function agg = max and alternates
between setting φ(l)(hu,hN ) = fa([hu

∥∥hN ]) and φ(l+1)(hu,hN ) = fp([hu

∥∥hN ]) where fa :
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R6 → R3 and fp : R6 → R3 are defined by

fa




x0

x1

x2

y0
y1
y2



 =

x0x2 − (1− x2)y0
x1x2

x2
2

 , (6)

fp




x0

x1

x2

y0
y1
y2



 =

min(x0,−y0 + 1)x2

x1x2

x2
2

 . (7)

These functions correspond to the iterative updates of h(l)[a] and h(l)[p] in Alg. 1, recalling that
L is the number of iterations it takes for the algorithm converges. More specifically, suppose we
have a node u with embedding hu = [x0, x1, x2] and aggregated embedding from its neighbours
hN = [y0, y1, y2]. Then we have two cases.

• If x2 = 0, indicating that the node u corresponds to a n action, then we get

fa([hu

∥∥∥hN ]) = [−y0, 0, 0] (8)

fp([hu

∥∥∥hN ]) = [0, 0, 0]. (9)

Eq. 8 corresponds to Line 7 in Alg. 1 where −y0 contains the negative of h[a]. We take the
negative since we are restricted to using max aggregators only1 which in turn means we
require taking maximums of negatives in order to mimic the minimum aggregator later in
Line 9 of the same algorithm. Eq. 9 corresponds to Line 9 but since this line only affects
propositions and h[a] values do not need to be stored after execution of this line, we set hu

to zero.

• If x2 = 1, indicating that the node u corresponds to a proposition, then we get

fa([hu

∥∥∥hN ]) = [x0, x1, x2] (10)

fp([hu

∥∥∥hN ]) = [min(x0,−y0 + 1), x1, x2]. (11)

We recall fa corresponds to Line 7 which only affects h[a] values. Given that we require
storing h[p] values throughout the whole algorithm, fa acts as the identity function on hu

for proposition nodes as seen in Eq. 10. This is in contrast to fp which acts as the zero
function on hu for action nodes. Eq. 11 corresponds to Line 9 where −y0 is equivalent to
the mina∈A,p∈add(a) h[a] = maxa∈A,p∈add(a)−h[a] term by definition of DLG, agg and
fa acting on action node embeddings.

We append a final layer to the network where we ignore neighbourhood nodes with agg(2L+1) = 0⃗
and φ(2L+1)([x0, x1, x2]

⊤,hN ) = x0x1. In combination with a max readout function Φ, this
corresponds to computing the final heuristic value. The above encoding of Alg. 1 has also been
experimentally verified to be correct.

In order to satisfy the neural network component of the MPNN, we replace the φ(i) for i = 0, . . . , 2L+
1 with feedforward networks. Noting that we have finitely many layers we can choose small enough
fractions of ε for the universal approximation theorem for neural networks [Hornik et al., 1989,
Cybenko, 1989] to approximate the continuous functions φ(i) whose domain is bounded in the ball
of radius B in order to achieve our result.

The encoding for hadd is the same except we use a sum aggregator agg =
∑

and readout.

1As min aggregators conflict with ReLU activation functions commonly seen in neural networks.
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For the case of the other FLG, we note that the hmax and hadd algorithm for FDR problems and
hence FLG graph representations work in the obvious way by compiling FDR planning tasks into
propositional STRIPS planning task by treating variable-value pairs in FDR problems as propositional
facts.

Theorem 4.2 (MPNNs on grounded graphs are strictly more expressive than STRIPS-HGN). Let
G ∈ {SLG,FLG}. Given any set of parameters Θ for a STRIPS-HGN model SΘ, there is a set of
parameters Φ for an MPNN FΦ such that for any pair of planning tasks Π1 and Π2 where SΘ(Π1) ̸=
SΘ(Π2), we have FΦ(G(Π1)) ̸= FΦ(G(Π2)). Furthermore, there exists a pair of planning problems
Π1 and Π2 such that there exists Φ where FΦ(G(Π1)) ̸= FΦ(G(Π2)) but SΘ(Π1) = SΘ(Π2) for all
Θ.

Proof sketch. To show the first part of the theorem, we describe how to construct an MPNN FΦ

acting on SLG and FLG corresponding to a given STRIPS-HGN Shen et al. [2020] model SΘ such
that for any pair of planning tasks Π1 and Π2 where SΘ(Π1) ̸= SΘ(Π2), we have FΦ(G(Π1)) ̸=
FΦ(G(Π2)). First we note that each STRIPS-HGN hypergraph message passing layer can be emulated
by two MPNN message passing layers. We note that the STRIPS-HGN aggregation function is not
permutation invariant as it requires ordering the messages it receives before concatenating them and
updating the aggregated feature. This can similarly be done for a MPNN. Another difference with
STRIPS-HGN and MPNNs is the usage of global features that are updated with each message passing
layers. The MPNN framework can also be extended to make use of global features, for example
by appending a virtual node to the whole input graph, and using different weights for the message
passing functions associated with the virtual node. Lastly, STRIPS-HGN uses the same weights for
each message passing layer and this may also be done for an MPNN.

For the second part of the theorem, we note that for any planning problem Π by definition of STRIPS-
HGN, SΘ(Π) = SΘ(Π+) for all parameters Θ where Π+ is the delete relaxation of Π. Now consider
the STRIPS problem Π = ⟨P,A, s0, G⟩ with P = G = {p0, p1}, s0 = {p0}, and A = {a0, a1}
where both a0 and a1 have empty precondition and

add(a0) = {p1} , del(a0) = {a0}
add(a1) = {a1} , del(a1) = ∅.

Then the optimal plan for Π has cost 2, while the optimal plan cost of its delete relaxation Π+

is 1. There exists a set of parameters for an MPNN FΦ acting on G ∈ {SLG,FLG} such that
FΦ(G(Π)) = 2 ̸= 1 = FΦ(G(Π+)).

Theorem 4.3 (MPNNs cannot learn hadd and hmax on lifted graphs). Let h ∈
{
hadd, hmax

}
. There

exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that for any set of parameters Θ
for an MPNN we have FΘ(LLG(Π1)) = FΘ(LLG(Π2)).

Proof. Consider the two (delete free) lifted problems P1 = ⟨P,O,A, s(1)0 , G⟩ and
P2 = ⟨P,O,A, s(2)0 , G⟩ with P = {Q(x1, x2),W (x1, x2)}, O = {o1, o2}, s

(1)
0 =

{Q(o1, o2), Q(o2, o1)}, s(2)0 = {Q(o1, o1), Q(o2, o2)}, G = {W (o1, o2),W (o2, o1)} and one ac-
tion schema A = {a} with ∆(a) = {δ1, δ2}, pre(a) = {Q(δ1, δ2)}, add(a) = {W (δ1, δ2)} and
del(a) = ∅.
By definition P1 can be solved with a plan consisting of a(o1, o2) and a(o2, o1) in either order and the
corresponding heuristic values are hmax(s

(1)
0 ) = hadd(s

(1)
0 ) = 1. On the other hand P2 is unsolvable

in which case we have hmax(s
(2)
0 ) = hadd(s

(2)
0 ) =∞.

The graphs are indistinguishable by the WL algorithm where we colour nodes by mapping their
features to the set of natural numbers for the LLG graphs, given that the set of possible node features
is countable. Note that it is possible to extend the WL algorithm to deal with edge labelled graphs by
replacing each labelled edge with a coloured node connected to the edge’s endpoints. Fig. 5 illustrates
the graph representations for LLG. Then the result follows by the contrapositive of [Xu et al., 2019,
Lem. 2] as WL assigns the same output for both graphs, and hence any MPNN also assigns the same
output.
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Q W
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1 2

a

(a) LLG of P1.

o1 o2

1 2 1 2 1 2 1 2

Q(o1, o2) Q(o2, o1) W (o1, o2) W (o2, o1)

Q W

pre add

1 2 1 2

1 2

a

(b) LLG of P2.

Figure 5: LLG of problems used in Thm. 4.3 (edges between objects and predicates omitted). Only
colours are known to the WL algorithm, not the node descriptions in the figure. The only difference
between the two graphs lies in the different edges between the top two layers of the graph as
highlighted by the dashed regions. However, they are indistinguishable by the WL algorithm.
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(a) SLG of P1.
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(b) SLG of P2.

Figure 6: SLG of problems used in the proof of Thm. 4.4. Black edges indicate preconditions and
blue edges indicate add effects.

Theorem 4.4 (MPNNs cannot learn h+ or h∗ with our graphs). Let h ∈ {h+, h∗} and G ∈
{SLG,FLG,LLG}. There exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that
for any set of parameters Θ for an MPNN we have FΘ(G(Π1)) = FΘ(G(Π2)).

Proof. Consider the two (delete free) planning problems P1 = ⟨P,A1, s0, G⟩ and P2 =

⟨P,A2, s0, G⟩ with P = {p1, p2, g3, g4}, G = {g3, g4}, s0 = ∅ and action sets A1 = {a(1)i |
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i = 1, . . . , 6}, A2 = {a(2)i | i = 1, . . . , 6} where actions have no delete effects and are defined by

pre(a
(1)
1 ) = ∅, add(a

(1)
1 ) = {p1},

pre(a
(2)
1 ) = ∅, add(a

(2)
1 ) = {p1},

pre(a
(1)
2 ) = ∅, add(a

(1)
2 ) = {p2},

pre(a
(2)
2 ) = ∅, add(a

(2)
2 ) = {p2},

pre(a
(1)
3 ) = {p1}, add(a

(1)
3 ) = {g3},

pre(a
(2)
3 ) = {p1}, add(a

(2)
3 ) = {g3},

pre(a
(1)
4 ) = {p1}, add(a

(1)
4 ) = {g3},

pre(a
(2)
4 ) = {p1}, add(a

(2)
4 ) = {g4},

pre(a
(1)
5 ) = {p2}, add(a

(1)
5 ) = {g4},

pre(a
(2)
5 ) = {p2}, add(a

(2)
5 ) = {g3},

pre(a
(1)
6 ) = {p2}, add(a

(1)
6 ) = {g4},

pre(a
(2)
6 ) = {p2}, add(a

(2)
6 ) = {g4}.

We have that the minimum plan cost for P1 is 4 by applying actions a(1)1 , a
(1)
2 , a

(1)
3 , a

(1)
5 whereas the

minimum plan cost for P2 is 3 with actions a(1)1 , a
(1)
3 , a

(1)
5 , as seen in Fig. 6. Both h+ and h∗ return

4 for P1 and 3 for P2.

Colour refinement assigns the same invariant to the graph representations of P1 and P2 and thus
by the contrapositive of [Xu et al., 2019, Lem. 2], any MPNN assigns the same embedding to both
graphs.

Theorem 4.5 (MPNNs cannot learn any approximation of h∗). Let G ∈ {SLG,FLG,LLG} and
c > 0. There exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that for any set of
parameters Θ for an MPNN we do not have |FΘ(G(Π1))− h(Π1)| ≤ c∧|FΘ(G(Π2))− h(Π2)| ≤ c.
Furthermore, for any set of parameters we do not have

∣∣∣1− FΘ(G(Π1))
h(Π1)

∣∣∣ ≤ c ∧
∣∣∣1− FΘ(G(Π2))

h(Π2)

∣∣∣ ≤ c.

Proof. Let us fix n ∈ N with n > 2. Then we will construct a pair of planning problems whose
optimal plan costs are 2n− 1 and n2 respectively but are indistinguishable by MPNNs by any graph
representations G ∈ {SLG,FLG,LLG} of the problems. Thus, we can make our absolute and relative
errors, given by n2 − 2n+ 1 and n2

2n−1 respectively, arbitrary large.

Consider the two (delete free) planning problems given by P1 = ⟨P,A1, s0, G⟩ and P2 =
⟨O,A2, s0, G⟩ with P = {p(x, y) | x, y ∈ [n]}, G = {p(n, y) | y ∈ [n]} ⊂ P , s0 = ∅ and
actions A1 = {a1(y, z) | y, z ∈ [n]} ∪ A and A2 = {a2(y, z) | y, z ∈ [n]} ∪ A where A =
{a(x, y) | x ∈ [n− 1], y ∈ [n]}. All actions have no delete effects and their preconditions and
add effects are given as follows

pre(a(1, y)) = ∅, add(a(1, y)) = {p(1, y)} , ∀y ∈ [n]

pre(a(x, y)) = {p(x− 1, y)} , add(a(x, y)) = {p(x, y)} , ∀x ∈ [2..n− 1], y ∈ [n]

pre(a1(y, z)) = {p(n− 1, y)} , add(a1(y, z)) = {p(n, y)} , ∀y, z ∈ [n]

pre(a2(y, z)) = {p(n− 1, z)} , add(a2(y, z)) = {p(n, y)} , ∀y, z ∈ [n]

where we note that the case n = 2 is given in the proof of Thm. 4.4. We refer to Fig. 7 for the case of
n = 3. An optimal plan for P1 consists of executing all actions a ∈ A and a1(y, 1) for y ∈ [n]. On
the other hand, an optimal plan for P2 consists only of executing a(x, 1) for x ∈ [n− 1] followed by
a2(y, 1) for all y ∈ [n]. Thus, the optimal plan costs for P1 and P2 are n2 and 2n− 1 respectively.

As in the previous proof, any graph representations of the pair of problems for any n are indistin-
guishable by colour refinement and hence by MPNNs [Xu et al., 2019, Lem. 2].
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(a) SLG of P1 for n = 3.

a(1,1) p(1,1) a(2,1) p(2,1) a2(1,2)

a2(1,1)

a2(1,3)

p(3,1)

a(1,2) p(1,2) a(2,2) p(2,2) a2(2,2)

a2(2,1)

a2(2,3)

p(3,2)

a(1,3) p(1,3) a(2,3) p(2,3) a2(3,2)

a2(3,1)

a2(3,3)

p(3,3)

(b) SLG of P2 for n = 3.

Figure 7: SLGs of problems used in the proof of Thm. 4.5 where black edges indicate preconditions
and blue edges indicate add effects.
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