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Abstract001

Developing value-aligned agents is a complex002
undertaking and an ongoing challenge in the003
field of AI. Specifically within the domain of004
Large Language Models (LLMs), designing005
models that can balance multiple possibly con-006
flicting moral values based on the context is007
a problem of paramount importance. In this008
paper, we propose a system that does contex-009
tual moral value alignment based on contextual010
aggregation. Here, aggregation is defined as011
the process of integrating a subset of LLM re-012
sponses that are best suited to a user’s input,013
taking into account features extracted about the014
user’s moral preferences. The proposed system015
trained using the Moral Integrity Corpus shows016
better results in term of alignment to human017
values compared to state-of-the-art baselines.018

1 Introduction019

In an increasingly interconnected world, the align-020

ment of values and intentions among individuals021

and groups has never been more critical (Sun et al.,022

2024; Rodriguez-Soto et al., 2024). Value align-023

ment refers to the process of ensuring that the goals024

and behaviors of artificial intelligence (AI) systems025

are consistent with human values, preferences, and026

ethical principles (Ji et al., 2023; Hendrycks et al.,027

2020). Achieving value alignment is crucial to028

mitigating potential risks. This involves designing029

AI systems that prioritize human values such as030

fairness, safety and transparency (Gabriel, 2020;031

Brown et al., 2021). Equitable alignment to diverse032

values has been known to be challenging with cur-033

rent Large Language Model (LLM) powered AI034

systems (Sorensen et al., 2024). Often current LLM035

systems align to the most dominant voices in the036

data or can lack customization to use-case specific037

context (Chakraborty et al., 2024; Bakker et al.,038

2022).039

This paper addresses a problem that we040

term Contextual Moral-Value Alignment (CMVA)041

which extends the concept of value alignment by 042

acknowledging the context-dependent nature of eth- 043

ical considerations in AI systems. CMVA recog- 044

nizes that ethical principles and values may vary 045

across different contexts and cultures; such values 046

are often ambiguous. 047

CMVA allows AI systems to resolve this am- 048

biguity by adapting to the context and offering 049

responses that respect diverse moral viewpoints. 050

For example, a response that is considered morally 051

acceptable in one culture or context might be inap- 052

propriate in another culture. In a practical setting, 053

consider a company implementing an automated 054

system in its manufacturing plant to increase effi- 055

ciency and reduce costs. Decisions made by the sys- 056

tem must deal with such value alignment ambiguity 057

because decisions must balance potentially conflict- 058

ing values: Efficiency versus Employee Well-being. 059

Implementing automation could lead to increased 060

efficiency and cost savings which align with the 061

company’s goal of maximizing profits. On the 062

other hand, implementing automation could lead 063

to fewer career opportunities or employee layoffs, 064

which conflicts with the company’s value of sup- 065

porting employees and ensuring their well-being. 066

A comprehensive understanding of the context 067

is necessary to provide a better decision regarding 068

whether the company should proceed with imple- 069

menting automation. Similar context-dependent 070

decisions also apply to chatbots; for example, sales 071

agents must balance the "customer is always right" 072

mantra versus the goal of profiting from the cus- 073

tomer. The focus of this paper is on such deci- 074

sions made by Large Language Models (LLMs). 075

To get this type of capability, we propose a Con- 076

textual Moral Value Alignment Generative System 077

(CMVA-GS) that explores how one may harness 078

the power of text aggregation from multiple agents 079

to achieve Contextual Value Alignment. 080

CMVA-GS is an approach where models, called 081

Moral Value Agents (moral agents for short), are 082
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Figure 1: Demonstration of the Contextual Moral-Value Alignment Process through an example user query and two
moral agents aligned for fairness and care, respectively.

trained independently to address different contexts.083

These moral agents contribute answers individually,084

and these corresponding responses, along with a085

user’s moral profile, are aggregated using an ag-086

gregator module. This aggregator contextualizes087

the answers obtained, providing a comprehensive088

synthesis of moral perspectives.089

In Figure 1, we provide an example where a090

user enters a specific prompt with a moral profile.091

We first generate answers from the moral agents,092

then compile and provide them to our aggregator093

module that finally displays an aggregated response094

to the user, taking into account the user requested095

moral profile.096

2 CMVA Generative System097

Given a set of LLMs, each aligned to follow dif-098

ferent moral behaviors, we consider the problem099

of aggregating the answers of these LLMs to a100

prompt and provide an appropriate aggregated re-101

sponse that follows a user defined set of moral102

values. We train a specialized LLM to do this ag-103

gregation given the moral agents answers and set of104

moral values we call Moral Profile Vector provided105

by the user.106

Figure 2 presents the proposed system architec-107

ture. The user request and profile are given as108

input to the system, through which the request is109

answered by multiple moral agents. Each agent110

answers the question according to its moral value.111

The individualized answers and the user’s moral112

profile are then used by the Contextual Moral Value113

Aggregator (CMVA), Contextual Aggregator for 114

short in Fig. 2, to aggregate the answers accord- 115

ing to the moral profile. The key components of 116

CMVA-GS are: 117

Datasets of Moral Values: Let {u(l), z(l)}Ll=1 118

be a dataset consisting of L data points, where: 119

u(l) represents a particular text (e.g., an answer to 120

a question), and z(l) represents the corresponding 121

moral judgments provided by an individual w.r.t. 122

predefined moral values. 123

Reward Models: We assume n individual val- 124

ues or principles are given, and that we can learn a 125

reward model ri for each value, i = 1, . . . , n. A re- 126

ward is a function that evaluates an LLM’s output, 127

i.e., a sequence of tokens generated by the LLM, 128

given a context, with a scalar score representing 129

how much the output satisfies the corresponding 130

value or principle. We train one classifier for each 131

moral value (authority, care, fairness, loyalty, and 132

sanctity) and use these classifiers as reward models 133

to measure how much the output of an LLM aligns 134

with a target moral value. Each classifier provides 135

a reward between 0 and 1. A reward of 1 indicates 136

that the output follows the moral value, while a 137

reward of 0 indicates that it does not follow the 138

moral value. 139

Moral Agents: Moral Agents are LLM trained 140

to answer questions following a specific moral 141

value. In order to train each Moral Agent, we use 142

the rewards defined above to evaluate their behav- 143

ior when generating answers to questions. Specifi- 144

cally, we can measure the LLM’s alignment to each 145
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moral value i through its corresponding expected146

reward Ji(θ), where θ represents the parameters147

of the LLM. The expectation in Ji(θ) is estimated148

by the average reward using a sample of prompts149

and their corresponding generated responses by150

the LLM. The i-th Moral Agent parameters are151

obtained then by solving152

θ∗i = argmin
θ

Ji(θ), (1)153

which can be done using policy-based Reinforce-154

ment Learning (RL) methods such as PPO (Stien-155

non et al., 2020; Ouyang et al., 2022; Schulman156

et al., 2017).157

Thus, given a pre-trained LLM to initialize PPO,158

we find the i-th Moral Agent’s parameters θ∗i by159

solving Eq. (1) for each moral value i = 1, . . . , n,160

using RL fine-tuning (RLFT). As a result, we have161

n Moral Agents. To avoid reward hacking during162

RLFT, a Kullback-Leibler (KL) regularization term163

can be added to Eq. (1) that ensures the policy does164

not drift too far from its initialization.165

Next, we will show how the answers from sev-166

eral Moral Agents can be aggregated according to167

a moral profile.168

Contextual Aggregator: We first formalize the169

notions of moral vectors and a contextual aggre-170

gator. We assume a prompt fed to an LLM has a171

context that we define as the Moral Profile Vector172

below.173

Definition 1 (Moral Profile Vector c): c =174

[c1, . . . , cn] where ci is binary, representing if we175

want to adhere or not to the ith moral value.1176

Given a moral profile vector, we can establish177

a contextual aggregator that combines the moral178

agents in terms of this context (i.e., moral profile179

vector).180

Definition 2 (Context Aggregator A): The aggre-181

gator A is defined as a function that takes as input182

the context of the particular moral profile vector c183

and the set of aligned LLMs {Li}, and outputs a184

text response T .185

A : (c, {Li}) → T186

where Li is an LLM aligned to ith moral.187

The contextual aggregator, as defined in Defini-188

tion 2, is a function A that takes as input, a ques-189

tion, some responses from our moral agents, and190

a moral profile vector to produce the output text.191

1ci can also be relaxed to allow for any scalar in [0, 1].

The model can be decomposed into an encoder- 192

decoder or decoder-only architecture without loss 193

of generality. Let E and D represent the encoder 194

and decoder functions respectively. 195

Each input text from the moral agents is 196

represented as a sequence of tokens: ti = 197

(ti,1, ti,2, . . . , ti,mi) where mi is the length of the 198

i-th input text. The output text Y is generated 199

by applying the decoder function to the encoded 200

representation of the input texts and moral profile: 201

Y = D(E(t1, t2, . . . , tn, c)). 202

Let y = (y1, . . . , yℓ) be the ground truth out- 203

put text, where ℓ is the length of the output text. 204

The loss function L measures the discrepancy be- 205

tween the generated output Y and the ground truth 206

y. We use the cross-entropy loss: L(y, Y ) = 207

−
∑ℓ

j=1

∑V
k=1 yj,k log(Yj,k) where V is the size 208

of the vocabulary, yj,k is a one-hot encoding of the 209

j-th token in the ground truth output, and Yj,k is 210

the predicted probability of token k at position j in 211

the generated output. 212

The parameters of the model (i.e., encoder and 213

decoder) are learned by minimizing the loss func- 214

tion using gradient descent-based optimization al- 215

gorithms: 216

θ∗ = argmin
θ

N∑
i=1

L(y(i),M(t
(i)
1 , . . . , t(i)n , c(i))) 217

where N is the number of training examples, θ 218

represents the parameters of the model, and y(i) 219

and (t
(i)
1 , t

(i)
2 , . . . , t

(i)
n , c(i)) are the ground truth 220

output and input for the i-th training example, re- 221

spectively. For our experimental results, we used a 222

decoder-only architecture. 223

3 Theoretical Analysis 224

In the following, we propose a theorem stating that 225

the behavior of an aggregator LLM A is at least 226

as good as the behavior of the least behaved agent. 227

In other words, an agent would need to exploit the 228

vulnerabilities of multiple independently trained 229

models simultaneously in order to drive bad behav- 230

ior in the aggregated model. 231

The analysis requires several key notions which 232

we borrow from Wolf et al. (2024), beginning with 233

what the behavior of an LLM means. The behavior 234

of an LLM is how well the LLM aligns with some 235

desired value, e.g., one of the morals considered in 236

the paper. We use the notation B(s∗) to denote the 237

behavior of an LLM on prompt s∗. Denote by Ps∗ 238

the distribution of an LLM’s output conditioned on 239
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Figure 2: An instantiation of different components in a Contextual Moral-Value Alignment Generative System.
Datasets for each moral value are used to train a reward model for each moral value that is then used to train an
agent for each moral agent. The outputs of these moral agents are then aggregated in the context of interaction with
a user that has a given moral profile vector to match the reference answers using supervised fine-tuning.

a input prompt s∗, i.e., this is the distribution of240

the LLM’s response to prompt s. As in Wolf et al.241

(2024), we then define the expected behavior of the242

LLM, conditioned on prompt s∗, as the following:243

BPs∗ := Es∼Ps∗ [B(s)]244

In simple terms, the expected behavior of an245

LLM is its expector behavior across all possible246

responses to a given prompt. Following Wolf et al.247

(2024), we also assume that the LLM’s response248

distribution can also be broken into well-behaved249

and ill-behaved components. Specifically, we as-250

sume Ps∗ = α · Ps∗
− + (1 − α) · Ps∗

+ , where Ps∗
+251

and Ps∗
− are the well-behaved and ill-behaved com-252

ponents of the distribution. In terms of morals,253

responses that follow a particular moral value254

are likely generated more heavily from the well-255

behaved component and responses who do not (and256

vice versa for responses that do not follow the257

moral).258

Our theoretical result will require assumptions259

that distinguish between the well-behaved and ill-260

behaved components (i.e., bounding the distance261

between the two distributions). We borrow the262

following definition from Wolf et al. (2024) for an263

LLM’s behavior B(s∗) being α, β, γ-negatively-264

distinguishable in Ps∗ :265

Definition 3 (Negatively-Distinguishable): We 266

say that behavior B(s∗) is α, β, γ-negatively- 267

distinguishable in distribution Ps∗ if the following 268

3 conditions hold: 269

i) Ps∗ = α · Ps∗
− + (1− α) · Ps∗

+ for α > 0 270

ii) sups∗{BPs∗
−
} ≤ γ for γ ∈ [−1, 0) 271

iii) E
s∗=s∗1⊕···⊕s∗n,s

∗
n+1∼P

s∗0
−

[
DKL

(
Ps∗
− (s∗n+1) ∥ 272

Ps∗
+ (s∗n+1)

)]
> β ∀n ≥ 0 273

where s∗ is the concatenation of n responses start- 274

ing from some prompt s∗0. 275

In the above definition, the first condition says 276

the conditional distribution can be broken into the 277

two components. The second condition says that 278

the expected behavior of the response to prompt 279

s∗ of the ill-behaved component is negative and 280

bounded from above. The third condition bounds 281

the distance of the of the ill-behaved distribution 282

from the well-behaved distribution conditioned on 283

n consecutive prior concatenated prior prompts; 284

the bound must hold for any number of prompts. 285

We also assume that the aggregator A has the 286

ability to distinguish between P+
i and P−

i . Where 287

we define βA,i as the distinguishability factor of 288

Pi, so that βA,i quantifies how well model A can 289

distinguish between the P+
i and P−

i components 290

for each Pi. 291
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We are now ready to state the proposed theorem:292

Theorem 1 Let P = {Ps∗
1 ,Ps∗

2 , . . . ,Ps∗
n } be293

a set of n language model distributions for294

which a behavior B(s∗) is αi, βi, γi-negatively-295

distinguishable in distribution Ps∗
i for i = 1, . . . , n.296

Let A be an aggregator with distribution Ps∗
A that297

selects responses from the distributions in P based298

on contextual features extracted from the user in-299

put. If A can distinguish between responses from300

Ps∗
i+ and Ps∗

i− with distinguishability factors βA,i301

for each Ps∗
i , then the expected behavior BPs∗

A
of302

the aggregator’s responses satisfies:303

BPs∗
A

≥ min(BPs∗
1+
, BPs∗

2+
, . . . , BPs∗

n+
)− ϵ (2)304

Where Ps∗
i+ is the expected behavior of the well-305

behaved component Ps∗
i+, and306

ϵ = O (max (1/βA,1, . . . , 1/βA,n)) (3)307

The inequality states that the aggregator A, when308

selecting responses based on contextual cues from309

the user input, achieves an expected behavior BA310

that is at least as high as the minimum expected be-311

havior across all well-behaved component models,312

minus an error ϵ. This formalizes that prompting313

the aggregated model to get poor expected behavior314

requires circumventing the combined "wisdom" of315

all component models simultaneously.316

As the number of models n increases and the317

aggregator’s distinguishability max(1/βA,i) im-318

proves across all models, the error ϵ in approxi-319

mating the minimum positive behavior decreases320

exponentially, making misalignment more difficult.321

Proof 1 (Sketch): See the appendix for details.322

• Apply Theorem 1 from Wolf et al. (2024)323

to bound each component model’s deviation324

from its well-behaved component Ps∗
i+325

• Take a union bound to hold simultaneously for326

all n models with high probability327

• Use the aggregator A over the concatenated328

prompts s to lower bound its expected behav-329

ior BA in terms of the minimum well-behaved330

component behavior mini{BPs∗
i+
}331

• The error ϵ is determined by the worst-case332

distinguishability max(1/βA,i) of the aggre-333

gator across all models.334

4 Experiments 335

4.1 Moral Value Classifiers 336

We present results on the Moral Integrity Corpus 337

(MIC) (Ziems et al., 2022). MIC provides moral 338

annotations on prompt-response pairs. It also pro- 339

vides a human revised answer given a moral vec- 340

tor. MIC was built up from the Social Chem- 341

istry (SocialChem) dataset (Forbes et al., 2020) 342

and shares 5 moral foundations (or values) with 343

it. These 5 values are care-harm, fairness-cheating, 344

loyalty-betrayal, authority-subversion, and sanctity- 345

degradation, defined in Appendix A.4.2 of Forbes 346

et al. (2020). SocialChem annotates each action 347

with a moral judgment that can be binarized cap- 348

turing negative and neutral/positive judgments to 349

build classifiers (0 for negative and 1 otherwise). 350

These value classifiers can then be used as reward 351

models. Thus, a reward is the probability of a LLM 352

simulated response being in the good class of a 353

moral value classifier. 354

4.2 Learned Moral Agents 355

We learn a Moral Agent for each of the 5 values 356

under consideration. We start by choosing an initial 357

pre-trained (PT) LLM: Open Assistant 12B in our 358

case, see PT-model in 4.4. Then, we applied RL 359

to fine-tune this initial LLM 5 times, each time 360

using a different moral reward. We used the PPO 361

implementation from TRL (von Werra et al., 2020) 362

with a batch size of 256 episodes (i.e., answers 363

to training questions), 4 optimization epochs per 364

batch, and a learning rate of 2×10−9. 365

In Table 1, we evaluate the moral behavior of the 366

5 learned Moral Agents w.r.t. their optimized value 367

by computing the probability (expected reward) 368

that the Moral Agent answers follow the individual 369

moral value they are optimized to follow. Prob- 370

abilities are estimated from a dataset of 5K MIC 371

questions held out from training. For reference, we 372

provide the probabilities that the PT-model (starting 373

policy in the RLFT of all Moral Agents) follows 374

each individual value. 375

4.3 CMVA-GS 376

CMVA-GS models are trained on a dataset de- 377

rived from MIC. Each input sample is composed 378

of a question and moral profile vector from MIC, 379

and a context made of generated answers from 380

our 5 moral agents. Models are trained to match 381

the ground-truth answer (the human revised an- 382

swer) using cross-entropy given an input prompt 383
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prompt

Moral
Agent

output
Moral
Agent

output
Moral
Agent

output
output output output

 contextfull = { values description, moral vector,
                            [                    ,                    ,                     ] }

 moral vector = [ care: 0, fairness:1, cheating: 1] 

output output contextdyn = { values description, [                     ,                     ] }

prompt + context Aggregate
LLM

response

Figure 3: Examples of full and dynamic context generations. For simplicity, we only show 3 out of our 5 moral
values. A full context includes our values description in plain English, a moral profile vector c, and all moral agents
responses prefixed w/ the moral value name. A dynamic context depends on the moral vector c and includes only
the moral agents responses for which the value is present in c. Therefore, a dynamic context is at most as long as a
full context, but often much shorter. If c is only made of zeroes, the string "No context provided" is used.

Moral Value PT model Moral Agents

authority 91.58% 98.83%
fairness 85.20% 92.40%
sanctity 78.37% 93.05%

care 74.70% 96.74%
loyalty 74.38% 98.20%

Table 1: Probabilities that the Moral Agent answers
conform with its moral value.

instructing to answer a given question. The dataset384

is composed of 91.0K/11.4K/11.4K samples for385

train/val/test. Our CMVA-GS models start from an386

OpenAssistant 12B model. We train a Low Rank387

Adapter (LoRA) (Hu et al., 2021) using supervised388

fine-tuning. 8 A100-80GB GPUs are used w/ a389

5×10−6 learning rate, 128 adapter rank for all lin-390

ear modules, and 32 per-device minibatch size (256391

total). Training runs for 21.6K steps, a 60 epoch392

early stopping in which we select the model with393

the best validation loss, making sure to avoid any394

overfitting.395

We used two distinct context generation396

paradigms to extend our prompt, as described in397

Fig. 3. For our first approach, a full context is398

composed of a description of each value in plain399

English, the verbalized moral profile vector c as-400

sociated to a (question, answer) pair in MIC, and401

all the moral agents responses to the question. Our402

CMVA-GS models are trained using our prompt ex-403

tended w/ this full context and using the human re-404

vised answer as label. Regardless of c, the context405

contains all the moral agents responses, which can406

be lengthy. Our second approach uses a dynamic407

context composed of our plain-English value de- 408

scriptions extended by the moral agents responses 409

only for the values marked as present in c. This 410

can reduce the context size significantly, especially 411

since only few values are present simultaneously, 412

making training and inference much faster over- 413

all. It also forces the model to rely exclusively on 414

moral agents responses if they are present in c. Our 415

CMVA-GS-DYN models are using this dynamic 416

context. 417

4.4 Benchmarks 418

In our first evaluation, CMVA-GS is compared 419

against the following: 420

(1) PT-model: Our PT-model is the Open-Assistant 421

12B parameter (Köpf et al., 2023) is a decoder-only 422

model from the Pythia-deduped family (Biderman 423

et al., 2023) fine-tuned with (i) Supervised Learn- 424

ing on QA/dialogue demonstrations as well as (ii) 425

RL on human preferences. 426

(2) Llama-13b/Llama-7b: We prompt the Llama- 427

2-13b-chat-hf and Llama-2-7b-chat-hf models, 428

both finetuned to perform dialogue. The prompt 429

defines the desired morals, includes 5 pairs (i.e., 430

questions and answers) of examples per desired 431

moral taken from the MIC (test) data, and requests 432

a response that follows the defined moral values. 433

(3) Agg13Llama: We again prompt the Llama-2- 434

13b-chat-hf model but with a twist. The morals are 435

again defined but the examples are the results of 436

passing the user question through the correspond- 437

ing learned Moral Agents from Section 4.2. The 438

prompt asks the model to aggregate these answers 439

when responding to the question. 440
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Model context type BERT scores
(Avg. F1)

CMVA-GS-DYN dynamic 0.8754
PT dynamic 0.8443
Mix-8x7b dynamic 0.8486

CMVA-GS full 0.8728
PT full 0.8385
Mix-8x7b full 0.8464

Moral Agents:
authority – 0.8308
care – 0.8377
fairness – 0.8432
loyalty – 0.8324
sanctity – 0.8397

Table 2: Mean F1 BERT scores over our MIC5K test
dataset. All BERT scores are computed between the
reference label (revised answer) and the specified model
response. Note that for Moral Agents, not context is
provided.

4.5 Experimental Results441

We evaluate our models using ROUGE-1, ROUGE-442

2, ROUGE-L, and ROUGE-Lsum (Lin, 2004) met-443

rics, widely used in natural language processing to444

assess the effectiveness of algorithms. From Fig-445

ure 4, we see that CMVA-GS tends to have the high-446

est ROUGE scores across all metrics, indicating447

better alignment with human values compared to448

other models. PT-model and Llama-13b have simi-449

lar ROUGE scores, but generally lower than those450

of CMVA-GS. Agg13llama has the lowest ROUGE451

scores among all models, suggesting relatively452

poorer performance in values alignment. llama-453

7b and llama-13b perform better than Agg13llama454

but still fall short compared to CMVA-GS. Overall,455

CMVA-GS appears to be the most effective model456

in terms of aligning with human values, while the457

other models vary in their performance, with some458

showing moderate alignment and others exhibiting459

relatively lower alignment.460

In our second evaluation, both CMVA-GS and461

CMVA-GS-DYN are utilized and compared against462

our PT-model and:463

Mix-8x7b: This is a sparse mixture of 8 experts464

(mistralai/Mixtral-8x7B-v0.1 from Hugging-465

Face) for 47B parameters total (Jiang et al., 2024).466

For this evaluation, we define a 5K random sub-467

set of the MIC test set (MIC5K) and compute the468

BERT Scores (Zhang et al., 2020) between our469

models responses and the reference (human re-470

vised answer) for each sample in MIC5K. BERT 471

Scores measure the cosine similarity of the embed- 472

ding representations of two input sentences. The 473

closer to 1, the more aligned the representations 474

are, the more the sentences are assumed to be se- 475

mantically aligned. In practice, BERT Scores are 476

normalized to the [0, 1] interval. We also compute 477

BERT Scores for responses from our Moral Agents, 478

PT, and Mix-8x7b. Our PT-model and Mix-8x7b 479

models are given aggregated prompts w/ full or 480

dynamic contexts. This gives us a "baseline" of 481

zero-shot performances for these two well-known 482

assistants for both context types. 483

Table 2 presents the average F1 BERT Scores for 484

each model’s responses. For Moral agents, only the 485

regular prompt is given (no context is needed) to 486

generate responses on MIC5K. Clearly the CMVA- 487

GS models provide higher mean F1 BERT scores 488

than both PT and Mix-8x7b w/ aggregated prompts. 489

This indicates that our CMVA-GS models tend 490

to generate answers that are more aligned to the 491

revised-answer (our reference) which are re-written 492

to include the values provided by the moral profile 493

vector c. Note that these results also seem to agree 494

with Eq. 2 in Theorem 1 which states that an ag- 495

gregator (here CMVA-GS and CMVA-GS-DYN) 496

when selecting responses based on contextual cues, 497

should achieve an expected behavior that is at least 498

as high as the minimum expected behavior across 499

all well-behaved component models. In our case, 500

the results of our aggregators are at least as good 501

as each individual moral agents results. 502

We can also see how our models are perform- 503

ing in terms of which percentage of answers are 504

closer to the reference; here closer meaning with 505

higher BERT Scores. Each sample enters a game of 506

model A vs. model B where we can easily establish 507

a winner and compute win rates over all of MIC5K 508

test data as shown in Table 3. Clearly, for a vast 509

majority of MIC5K samples (greater for 90+% of 510

samples), all CMVA-GS models generate answers 511

that are closer to the reference more often than for 512

any other models. 513

5 Limitations 514

Our paper addresses the problem of contextual 515

value alignment by proposing a novel system that 516

performs contextual aggregation. Our proposed 517

system demonstrates superior results in terms of 518

alignment with human values compared to existing 519

state-of-the-art methods. However, our approach 520
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Figure 4: Evaluation using ROUGE on MIC.

Game A vs. B
model A win rate model B win rate

PT (dyn.) 8.2% CMVA-GS-DYN 91.8%
Mix-8x7b 8.9% CMVA-GS-DYN 91.1%

(dyn.)

PT (full) 3.4% CMVA-GS 96.6%
Mix-8x7b 6.7% CMVA-GS 93.3%

(full)

MA authority 1.0% CMVA-GS-DYN 99.0%
MA fairness 4.7% CMVA-GS-DYN 95.3%
MA care 2.7% CMVA-GS-DYN 97.3%
MA loyalty 1.5% CMVA-GS-DYN 98.5%
MA sanctity 3.2% CMVA-GS-DYN 96.8%

Table 3: Win Rates: Percentages of winning a game
asking which one of two model A or model B is closer
to the reference according to F1 BERT scores between
model response and reference. The type of dynamic or
full context used in the aggregated prompt given to our
PT and Mixtral models is noted as "(dyn.)" and "(full)".

has multiple limitations that cannot be adequately521

addressed within the confines of this paper:522

Computational Cost: In our system, we assume523

that the aggregator has access to multiple moral524

agents to perform contextual moral value align-525

ment. In practice, deploying several moral agent526

models can increase computational overhead and527

cost in comparison to a monolithic model that can528

directly respond to user query given the context.529

We show through our theoretical and empirical530

results that this additional cost can help achieve531

better performance. Furthermore, advancements in 532

deployment of parameter efficient adapter models 533

can mitigate the cost associated with the overhead 534

of maintaining multiple separate moral agent mod- 535

els (Hu et al., 2021; Dettmers et al., 2024). More- 536

over, it is certainly possible to distill (Buciluǎ et al., 537

2006; Hinton et al., 2015; Riemer et al., 2017; Li 538

et al., 2022) or merge (Jin et al., 2022; Ilharco et al., 539

2022; Yadav et al., 2023; Stoica et al., 2024; Ak- 540

iba et al., 2024) our system into a smaller model 541

in order to achieve an efficient deployment of our 542

approach. The literature on this topic is quite vast, 543

as such, we limited our focus to maximizing the 544

performance of our system and leave optimizing 545

its computational efficiency to future work focused 546

on computational requirements. 547

Dependency on Training Data Quality: The ef- 548

fectiveness of the system heavily relies on the qual- 549

ity and representativeness of the training data used 550

for training each individual agent and the contex- 551

tual aggregator. If the training data is biased, in- 552

complete, or unrepresentative of diverse perspec- 553

tives, the aggregated system may inherit these limi- 554

tations, leading to sub-optimal alignment with hu- 555

man values and potential risks of misalignment. 556

The focus of our paper is on developing an archi- 557

tecture to solve this problem, and we use existing 558

datasets from the literature as a result. 559
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A Appendix 726

Lemma 2.(Wolf et al., 2024) Let B be a behavior, 727

then under the conditions of Lemma 1 the following 728

holds: 729

|BP1(s0)− BP0(s0)| ≤ 2 · 1− α

α
· P1(s0)

P0(s0)
730

Theorem 2 from (Wolf et al., 2024) Let γ ∈ 731

[−1, 0), let B be a behaviour and P be an un- 732

prompted language model such that B is α, β, γ- 733

negatively-distinguishable in P (Definition 4). 734

Then P is γ-prompt-misalignable with respect to 735

B with prompt length of 736

1

β

(
log

(
1

α

)
+ log

(
1

ε

)
+ log(4)

)
. 737

A.1 Proof of Theorem 1 738

So applying Lemma 2 to the distribution Pi = 739

αiP
−
i + (1 − αi)P

+
i , we get that for any ε′ > 0, 740

there exists a prompt si such that: 741

|BPi(si)− BP−
i
| ≤ ε′

2
742

Since BP−
i

≤ γi, this implies: 743

|BPi(si)− γi| ≤
ε′

2
744

Rearranging, we get: 745

BPi(si) ≤ γi +
ε′

2
746

Using the fact that BP+
i

≥ γi (as P+
i is well- 747

behaved), we also have: 748

BPi(si) ≥ BP+
i
− ε′

2
749

Combining the two inequalities: 750

BPi(si)− BP+
i
≤ γi + ε′ 751

So, for each component model Pi, we know from 752

Theorem 1 that if the ill-behaved component P−
i is 753

αi, βi, γi-negatively-distinguishable from P+
i , then 754

for any ϵ′ > 0, there exists a prompt si such that: 755

BPi(si)−BP+
i
≤ γi + ϵ′ (4) 756

Where the length of si is O(log(1/ϵ′)/βi) by Theo- 757

rem 2. Setting ϵ′ = 1/βA,i, we get that there exists 758

a prompt si of length O(1/βA,i) such that: 759

BPi(si)−BP+
i
≤ γi + 1/βA,i (5) 760
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Taking a union bound over all n component mod-761

els, we get that with probability at least 1− δ over762

the randomness in the aggregator A:763

BPi(si)−BP+
i
≤ γi+1/βA,i+t for all i = 1 . . . n

(6)764

Where t = O(
√

log(n/δ)) by applying a Chernoff765

bound concentration inequality.766

Let s∗ = s1 ⊕ s2 ⊕ . . . ⊕ sn be the concate-767

nation of the prompts si for each model Pi. The768

aggregator’s behavior expectation BA(s) satisfies:769

BA(s) = E[B(s)]770

≥ min(E[B(s1)], . . . ,E[B(sn)])771

= min(BP1(s1), . . . , BPn(sn))772

≥ min(BP+
1
, . . . , BP+

n
)773

−max{γi + 1/βA,i + t, i = 1 . . . n}774

≥ min(BP+
1
, . . . , BP+

n
)775

−max (1/βA,1, . . . , 1/βA,n)776

−max(γ1, . . . , γn)− t777

where x is the aggregated response to s∗.778

Since max(γ1, γ2, . . . , γn) ≤ 0 by the assump-779

tion that P−
i are negatively-distinguishable, we get:780

BA(s) ≥ min(BP+
1
, . . . , BP+

n
)

−max (1/βA,1, . . . , 1/βA,n)− t
781

Setting δ = 1/n2 makes t = O(
√
log n) which is782

dominated by the max(1/βA,i) term as n increases.783

Therefore, the final bound is:784

BA(s) ≥ min(BP+
1
, . . . , BP+

n
)

− O (max (1/βA,1, . . . , 1/βA,n))
785

The key steps are:786

- Applying Theorem 1 to bound each component787

model’s deviation from its well-behaved compo-788

nent P+
i789

- Taking a union bound to hold simultaneously790

for all n models with high probability791

- Using the aggregator A over the concatenated792

prompts s∗ to lower bound its behavior expecta-793

tion BA(s) in terms of the minimum well-behaved794

component behavior min(BP+
i
)795

- The error ϵ is determined by the worst-case796

distinguishability max(1/βA,i) of the aggregator797

across all models798
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