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Abstract

Developing value-aligned agents is a complex
undertaking and an ongoing challenge in the
field of Al Specifically within the domain of
Large Language Models (LLMs), designing
models that can balance multiple possibly con-
flicting moral values based on the context is
a problem of paramount importance. In this
paper, we propose a system that does contex-
tual moral value alignment based on contextual
aggregation. Here, aggregation is defined as
the process of integrating a subset of LLM re-
sponses that are best suited to a user’s input,
taking into account features extracted about the
user’s moral preferences. The proposed system
trained using the Moral Integrity Corpus shows
better results in term of alignment to human
values compared to state-of-the-art baselines.

1 Introduction

In an increasingly interconnected world, the align-
ment of values and intentions among individuals
and groups has never been more critical (Sun et al.,
2024; Rodriguez-Soto et al., 2024). Value align-
ment refers to the process of ensuring that the goals
and behaviors of artificial intelligence (Al) systems
are consistent with human values, preferences, and
ethical principles (Ji et al., 2023; Hendrycks et al.,
2020). Achieving value alignment is crucial to
mitigating potential risks. This involves designing
Al systems that prioritize human values such as
fairness, safety and transparency (Gabriel, 2020;
Brown et al., 2021). Equitable alignment to diverse
values has been known to be challenging with cur-
rent Large Language Model (LLM) powered Al
systems (Sorensen et al., 2024). Often current LLM
systems align to the most dominant voices in the
data or can lack customization to use-case specific
context (Chakraborty et al., 2024; Bakker et al.,
2022).

This paper addresses a problem that we
term Contextual Moral-Value Alignment (CMVA)

which extends the concept of value alignment by
acknowledging the context-dependent nature of eth-
ical considerations in Al systems. CMVA recog-
nizes that ethical principles and values may vary
across different contexts and cultures; such values
are often ambiguous.

CMVA allows Al systems to resolve this am-
biguity by adapting to the context and offering
responses that respect diverse moral viewpoints.
For example, a response that is considered morally
acceptable in one culture or context might be inap-
propriate in another culture. In a practical setting,
consider a company implementing an automated
system in its manufacturing plant to increase effi-
ciency and reduce costs. Decisions made by the sys-
tem must deal with such value alignment ambiguity
because decisions must balance potentially conflict-
ing values: Efficiency versus Employee Well-being.
Implementing automation could lead to increased
efficiency and cost savings which align with the
company’s goal of maximizing profits. On the
other hand, implementing automation could lead
to fewer career opportunities or employee layoffs,
which conflicts with the company’s value of sup-
porting employees and ensuring their well-being.

A comprehensive understanding of the context
is necessary to provide a better decision regarding
whether the company should proceed with imple-
menting automation. Similar context-dependent
decisions also apply to chatbots; for example, sales
agents must balance the "customer is always right"
mantra versus the goal of profiting from the cus-
tomer. The focus of this paper is on such deci-
sions made by Large Language Models (LLMs).
To get this type of capability, we propose a Con-
textual Moral Value Alignment Generative System
(CMVA-GS) that explores how one may harness
the power of text aggregation from multiple agents
to achieve Contextual Value Alignment.

CMVA-GS is an approach where models, called
Moral Value Agents (moral agents for short), are



User Input

Query: My girlfriend threatened to kill
herself if | broke up with her this
evening. What should | do?

Morals Selected: Care and Fairness.

v

Moral Agent (aligned with fairness)

Suggest seeking guidance from a
neutral third party, such as a therapist or
mediator, who can help facilitate a fair
and balanced conversation about the
situation. This can provide both of you
with additional support and perspective.
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Moral Agent (aligned with care)

Even if you believe her threat is a
manipulation tactic, it's crucial to
approach it with care and concern for
her well-being.

Threats of self-harm should always be
taken seriously.

A

Aggregated Response

Respect your girlfriend's right to make decisions about her own life,
including expressing her feelings and concerns. Additionally, suggest
seeking guidance from a neutral third party, such as a therapist or
mediator, who can help facilitate a balanced conversation about the
situation. This approach respects individual autonomy while promoting
fairness and support in resolving the issue.

Figure 1: Demonstration of the Contextual Moral-Value Alignment Process through an example user query and two

moral agents aligned for fairness and care, respectively.

trained independently to address different contexts.
These moral agents contribute answers individually,
and these corresponding responses, along with a
user’s moral profile, are aggregated using an ag-
gregator module. This aggregator contextualizes
the answers obtained, providing a comprehensive
synthesis of moral perspectives.

In Figure 1, we provide an example where a
user enters a specific prompt with a moral profile.
We first generate answers from the moral agents,
then compile and provide them to our aggregator
module that finally displays an aggregated response
to the user, taking into account the user requested
moral profile.

2 CMVA Generative System

Given a set of LLMs, each aligned to follow dif-
ferent moral behaviors, we consider the problem
of aggregating the answers of these LLMs to a
prompt and provide an appropriate aggregated re-
sponse that follows a user defined set of moral
values. We train a specialized LLM to do this ag-
gregation given the moral agents answers and set of
moral values we call Moral Profile Vector provided
by the user.

Figure 2 presents the proposed system architec-
ture. The user request and profile are given as
input to the system, through which the request is
answered by multiple moral agents. Each agent
answers the question according to its moral value.
The individualized answers and the user’s moral
profile are then used by the Contextual Moral Value

Aggregator (CMVA), Contextual Aggregator for
short in Fig. 2, to aggregate the answers accord-
ing to the moral profile. The key components of
CMVA-GS are:

Datasets of Moral Values: Let {u), 2(0}]
be a dataset consisting of L data points, where:
u() represents a particular text (e.g., an answer to
a question), and z() represents the corresponding
moral judgments provided by an individual w.r.t.
predefined moral values.

Reward Models: We assume n individual val-
ues or principles are given, and that we can learn a
reward model r; for each value, 7 = 1,...,n. Are-
ward is a function that evaluates an LLM’s output,
i.e., a sequence of tokens generated by the LLM,
given a context, with a scalar score representing
how much the output satisfies the corresponding
value or principle. We train one classifier for each
moral value (authority, care, fairness, loyalty, and
sanctity) and use these classifiers as reward models
to measure how much the output of an LLM aligns
with a target moral value. Each classifier provides
a reward between 0 and 1. A reward of 1 indicates
that the output follows the moral value, while a
reward of O indicates that it does not follow the
moral value.

Moral Agents: Moral Agents are LLM trained
to answer questions following a specific moral
value. In order to train each Moral Agent, we use
the rewards defined above to evaluate their behav-
ior when generating answers to questions. Specifi-
cally, we can measure the LLM’s alignment to each



moral value ¢ through its corresponding expected
reward J;(0), where 6 represents the parameters
of the LLM. The expectation in J;(#) is estimated
by the average reward using a sample of prompts
and their corresponding generated responses by
the LLM. The ¢-th Moral Agent parameters are
obtained then by solving

07 = argmin J;(6), (1)

which can be done using policy-based Reinforce-
ment Learning (RL) methods such as PPO (Stien-
non et al., 2020; Ouyang et al., 2022; Schulman
etal., 2017).

Thus, given a pre-trained LLM to initialize PPO,
we find the i-th Moral Agent’s parameters ¢ by
solving Eq. (1) for each moral value i = 1,...,n,
using RL fine-tuning (RLFT). As a result, we have
n Moral Agents. To avoid reward hacking during
RLFT, a Kullback-Leibler (KL) regularization term
can be added to Eq. (1) that ensures the policy does
not drift too far from its initialization.

Next, we will show how the answers from sev-
eral Moral Agents can be aggregated according to
a moral profile.

Contextual Aggregator: We first formalize the
notions of moral vectors and a contextual aggre-
gator. We assume a prompt fed to an LLM has a
context that we define as the Moral Profile Vector
below.

Definition 1 (Moral Profile Vector c):
[c1,...,cn] where ¢; is binary, representing if we
want to adhere or not to the i*" moral value.'

CcC =

Given a moral profile vector, we can establish
a contextual aggregator that combines the moral
agents in terms of this context (i.e., moral profile
vector).

Definition 2 (Context Aggregator A): The aggre-
gator A is defined as a function that takes as input
the context of the particular moral profile vector ¢
and the set of aligned LLMs {L;}, and outputs a
text response T.

A (C, {Lz}) — T

where L; is an LLM aligned to i*" moral.

The contextual aggregator, as defined in Defini-
tion 2, is a function A that takes as input, a ques-
tion, some responses from our moral agents, and
a moral profile vector to produce the output text.

'¢; can also be relaxed to allow for any scalar in [0, 1].

The model can be decomposed into an encoder-
decoder or decoder-only architecture without loss
of generality. Let £ and D represent the encoder
and decoder functions respectively.

Each input text from the moral agents is
represented as a sequence of tokens: t; =
(tin, ti2, .-, tim,;) where m; is the length of the
i-th input text. The output text Y is generated
by applying the decoder function to the encoded
representation of the input texts and moral profile:
Y = D(S(tl,tQ, v ,tn,c)).

Lety = (y1,...,y¢) be the ground truth out-
put text, where £ is the length of the output text.
The loss function £ measures the discrepancy be-
tween the generated output Y and the ground truth
y. We use the cross-entropy loss: L(y,Y) =
— E§:1 S yixlog(Yj,) where V is the size
of the vocabulary, y; . is a one-hot encoding of the
Jj-th token in the ground truth output, and Y ;. is
the predicted probability of token & at position j in
the generated output.

The parameters of the model (i.e., encoder and
decoder) are learned by minimizing the loss func-
tion using gradient descent-based optimization al-
gorithms:

) D))

N
% . i (4)

0* = argmemiz;ﬁ(y( ),/\/l(t1 AR A
where NV is the number of training examples, 6
represents the parameters of the model, and y*)
and (tgi),tg), .. ,tgf), c(i)) are the ground truth
output and input for the i-th training example, re-
spectively. For our experimental results, we used a
decoder-only architecture.

3 Theoretical Analysis

In the following, we propose a theorem stating that
the behavior of an aggregator LLM A is at least
as good as the behavior of the /east behaved agent.
In other words, an agent would need to exploit the
vulnerabilities of multiple independently trained
models simultaneously in order to drive bad behav-
ior in the aggregated model.

The analysis requires several key notions which
we borrow from Wolf et al. (2024), beginning with
what the behavior of an LLM means. The behavior
of an LLM is how well the LLM aligns with some
desired value, e.g., one of the morals considered in
the paper. We use the notation B(s*) to denote the
behavior of an LLM on prompt s*. Denote by P*"
the distribution of an LLM’s output conditioned on
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Figure 2: An instantiation of different components in a Contextual Moral-Value Alignment Generative System.
Datasets for each moral value are used to train a reward model for each moral value that is then used to train an
agent for each moral agent. The outputs of these moral agents are then aggregated in the context of interaction with
a user that has a given moral profile vector to match the reference answers using supervised fine-tuning.

a input prompt s*, i.e., this is the distribution of
the LLM’s response to prompt s. As in Wolf et al.
(2024), we then define the expected behavior of the
LLM, conditioned on prompt s*, as the following:

Bp :=E,_ps* [B(s)]

In simple terms, the expected behavior of an
LLM is its expector behavior across all possible
responses to a given prompt. Following Wolf et al.
(2024), we also assume that the LLM’s response
distribution can also be broken into well-behaved
and ill-behaved components. Specifically, we as-
sume P = o - P¥ + (1 — «) - P, where P¢
and P°” are the well-behaved and ill-behaved com-
ponents of the distribution. In terms of morals,
responses that follow a particular moral value
are likely generated more heavily from the well-
behaved component and responses who do not (and
vice versa for responses that do not follow the
moral).

Our theoretical result will require assumptions
that distinguish between the well-behaved and ill-
behaved components (i.e., bounding the distance
between the two distributions). We borrow the
following definition from Wolf et al. (2024) for an
LLM’s behavior B(s*) being «, 3, y-negatively-
distinguishable in P*":

Definition 3 (Negatively-Distinguishable): ~ We
say that behavior B(s*) is «,[3,~y-negatively-
distinguishable in distribution P*" if the following
3 conditions hold:
)P =a- P +(1—a) Py fora>0
ii) supg«{ Bps+ } < v fory € [-1,0)
iit) Es*:s’{@...@squZHNPis [DKL (Ps_ (s;kﬁ_l) H

P (shi1))] > B Vn>0
where s* is the concatenation of n responses start-
ing from some prompt s

In the above definition, the first condition says
the conditional distribution can be broken into the
two components. The second condition says that
the expected behavior of the response to prompt
s* of the ill-behaved component is negative and
bounded from above. The third condition bounds
the distance of the of the ill-behaved distribution
from the well-behaved distribution conditioned on
n consecutive prior concatenated prior prompts;
the bound must hold for any number of prompts.

We also assume that the aggregator A has the
ability to distinguish between PiJr and P;". Where
we define 54; as the distinguishability factor of
P, so that 34 ; quantifies how well model A can
distinguish between the Pf and P;” components
for each P;.



We are now ready to state the proposed theorem:

Theorem 1 Let P = {P{ P5,....P5} be
a set of n language model distributions for
which a behavior B(s*) is «;, (3;, vi-negatively-
distinguishable in distribution ]P’f* fori=1,...,n.
Let A be an aggregator with distribution IP"Z that
selects responses from the distributions in P based
on contextual features extracted from the user in-
put. If A can distinguish between responses from
Pfi and IP’f*i with distinguishability factors 4
for each P}, then the expected behavior Bﬂ”i* of
the aggregator’s responses satisfies:

BP;Z* > min(BIP"fj_’ BP%:—’ ce ,BP;:_) — € (2)

Where ]P’f:r is the expected behavior of the well-
behaved component IP’f+ and

e=0(max(1/Ba1,...,1/Ban)) 3)

The inequality states that the aggregator A, when
selecting responses based on contextual cues from
the user input, achieves an expected behavior By
that is at least as high as the minimum expected be-
havior across all well-behaved component models,
minus an error €. This formalizes that prompting
the aggregated model to get poor expected behavior
requires circumventing the combined "wisdom" of
all component models simultaneously.

As the number of models n increases and the
aggregator’s distinguishability max(1/84,) im-
proves across all models, the error € in approxi-
mating the minimum positive behavior decreases
exponentially, making misalignment more difficult.

Proof 1 (Sketch): See the appendix for details.

* Apply Theorem 1 from Wolf et al. (2024)
to bound each component model’s deviation
from its well-behaved component Pfjr

* Take a union bound to hold simultaneously for
all n models with high probability

e Use the aggregator A over the concatenated
prompts s to lower bound its expected behav-
ior B4 in terms of the minimum well-behaved
component behavior min; {BPfJ*r}

» The error € is determined by the worst-case
distinguishability max(1/4;) of the aggre-
gator across all models.

4 Experiments

4.1 Moral Value Classifiers

We present results on the Moral Integrity Corpus
(MIC) (Ziems et al., 2022). MIC provides moral
annotations on prompt-response pairs. It also pro-
vides a human revised answer given a moral vec-
tor. MIC was built up from the Social Chem-
istry (SocialChem) dataset (Forbes et al., 2020)
and shares 5 moral foundations (or values) with
it. These 5 values are care-harm, fairness-cheating,
loyalty-betrayal, authority-subversion, and sanctity-
degradation, defined in Appendix A.4.2 of Forbes
et al. (2020). SocialChem annotates each action
with a moral judgment that can be binarized cap-
turing negative and neutral/positive judgments to
build classifiers (0 for negative and 1 otherwise).
These value classifiers can then be used as reward
models. Thus, a reward is the probability of a LLM
simulated response being in the good class of a
moral value classifier.

4.2 Learned Moral Agents

We learn a Moral Agent for each of the 5 values
under consideration. We start by choosing an initial
pre-trained (PT) LLM: Open Assistant 12B in our
case, see PT-model in 4.4. Then, we applied RL
to fine-tune this initial LLM 5 times, each time
using a different moral reward. We used the PPO
implementation from TRL (von Werra et al., 2020)
with a batch size of 256 episodes (i.e., answers
to training questions), 4 optimization epochs per
batch, and a learning rate of 2x 1079,

In Table 1, we evaluate the moral behavior of the
5 learned Moral Agents w.r.t. their optimized value
by computing the probability (expected reward)
that the Moral Agent answers follow the individual
moral value they are optimized to follow. Prob-
abilities are estimated from a dataset of 5K MIC
questions held out from training. For reference, we
provide the probabilities that the PT-model (starting
policy in the RLFT of all Moral Agents) follows
each individual value.

4.3 CMVA-GS

CMVA-GS models are trained on a dataset de-
rived from MIC. Each input sample is composed
of a question and moral profile vector from MIC,
and a context made of generated answers from
our 5 moral agents. Models are trained to match
the ground-truth answer (the human revised an-
swer) using cross-entropy given an input prompt
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moral vector = [ care: 0, fairness:1, cheating: 1]

contexty, ={ values description, moral vector,
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Figure 3: Examples of full and dynamic context generations. For simplicity, we only show 3 out of our 5 moral
values. A full context includes our values description in plain English, a moral profile vector ¢, and all moral agents
responses prefixed w/ the moral value name. A dynamic context depends on the moral vector ¢ and includes only
the moral agents responses for which the value is present in ¢. Therefore, a dynamic context is at most as long as a
full context, but often much shorter. If ¢ is only made of zeroes, the string "No context provided" is used.

Moral Value PT model Moral Agents
authority 91.58% 98.83%
fairness 85.20% 92.40%
sanctity 78.37% 93.05%
care 74.70% 96.74%
loyalty 74.38% 98.20%

Table 1: Probabilities that the Moral Agent answers
conform with its moral value.

instructing to answer a given question. The dataset
is composed of 91.0K/11.4K/11.4K samples for
train/val/test. Our CMVA-GS models start from an
OpenAssistant 12B model. We train a Low Rank
Adapter (LoRA) (Hu et al., 2021) using supervised
fine-tuning. 8 A100-80GB GPUs are used w/ a
5x 1076 learning rate, 128 adapter rank for all lin-
ear modules, and 32 per-device minibatch size (256
total). Training runs for 21.6K steps, a 60 epoch
early stopping in which we select the model with
the best validation loss, making sure to avoid any
overfitting.

We used two distinct context generation
paradigms to extend our prompt, as described in
Fig. 3. For our first approach, a full context is
composed of a description of each value in plain
English, the verbalized moral profile vector c as-
sociated to a (question, answer) pair in MIC, and
all the moral agents responses to the question. Our
CMVA-GS models are trained using our prompt ex-
tended w/ this full context and using the human re-
vised answer as label. Regardless of ¢, the context
contains all the moral agents responses, which can
be lengthy. Our second approach uses a dynamic

context composed of our plain-English value de-
scriptions extended by the moral agents responses
only for the values marked as present in ¢. This
can reduce the context size significantly, especially
since only few values are present simultaneously,
making training and inference much faster over-
all. It also forces the model to rely exclusively on
moral agents responses if they are present in c¢. Our
CMVA-GS-DYN models are using this dynamic
context.

4.4 Benchmarks

In our first evaluation, CMVA-GS is compared
against the following:

(1) PT-model: Our PT-model is the Open-Assistant
12B parameter (Kopf et al., 2023) is a decoder-only
model from the Pythia-deduped family (Biderman
et al., 2023) fine-tuned with (i) Supervised Learn-
ing on QA/dialogue demonstrations as well as (ii)
RL on human preferences.

(2) Llama-13b/Llama-7b: We prompt the Llama-
2-13b-chat-hf and Llama-2-7b-chat-hf models,
both finetuned to perform dialogue. The prompt
defines the desired morals, includes 5 pairs (i.e.,
questions and answers) of examples per desired
moral taken from the MIC (test) data, and requests
a response that follows the defined moral values.

(3) Aggl3Llama: We again prompt the Llama-2-
13b-chat-hf model but with a twist. The morals are
again defined but the examples are the results of
passing the user question through the correspond-
ing learned Moral Agents from Section 4.2. The
prompt asks the model to aggregate these answers
when responding to the question.



Model context type BERT scores
(Avg. F1)

CMVA-GS-DYN dynamic 0.8754
PT dynamic 0.8443
Mix-8x7b dynamic 0.8486
CMVA-GS full 0.8728
PT full 0.8385
Mix-8x7b full 0.8464
Moral Agents:

authority - 0.8308
care - 0.8377
fairness - 0.8432
loyalty - 0.8324
sanctity - 0.8397

Table 2: Mean F1 BERT scores over our MIC5K test
dataset. All BERT scores are computed between the
reference label (revised answer) and the specified model
response. Note that for Moral Agents, not context is
provided.

4.5 Experimental Results

We evaluate our models using ROUGE-1, ROUGE-
2, ROUGE-L, and ROUGE-Lsum (Lin, 2004) met-
rics, widely used in natural language processing to
assess the effectiveness of algorithms. From Fig-
ure 4, we see that CMVA-GS tends to have the high-
est ROUGE scores across all metrics, indicating
better alignment with human values compared to
other models. PT-model and Llama-13b have simi-
lar ROUGE scores, but generally lower than those
of CMVA-GS. Aggl3llama has the lowest ROUGE
scores among all models, suggesting relatively
poorer performance in values alignment. llama-
7b and llama-13b perform better than Aggl3llama
but still fall short compared to CMVA-GS. Overall,
CMVA-GS appears to be the most effective model
in terms of aligning with human values, while the
other models vary in their performance, with some
showing moderate alignment and others exhibiting
relatively lower alignment.

In our second evaluation, both CMVA-GS and
CMVA-GS-DYN are utilized and compared against
our PT-model and:

Mix-8x7b: This is a sparse mixture of 8 experts
(mistralai/Mixtral-8x7B-v@.1 from Hugging-
Face) for 47B parameters total (Jiang et al., 2024).

For this evaluation, we define a SK random sub-
set of the MIC test set (MIC5K) and compute the
BERT Scores (Zhang et al., 2020) between our
models responses and the reference (human re-

vised answer) for each sample in MIC5K. BERT
Scores measure the cosine similarity of the embed-
ding representations of two input sentences. The
closer to 1, the more aligned the representations
are, the more the sentences are assumed to be se-
mantically aligned. In practice, BERT Scores are
normalized to the [0, 1] interval. We also compute
BERT Scores for responses from our Moral Agents,
PT, and Mix-8x7b. Our PT-model and Mix-8x7b
models are given aggregated prompts w/ full or
dynamic contexts. This gives us a "baseline" of
zero-shot performances for these two well-known
assistants for both context types.

Table 2 presents the average F1 BERT Scores for
each model’s responses. For Moral agents, only the
regular prompt is given (no context is needed) to
generate responses on MIC5K. Clearly the CMVA-
GS models provide higher mean F1 BERT scores
than both PT and Mix-8x7b w/ aggregated prompts.
This indicates that our CMVA-GS models tend
to generate answers that are more aligned to the
revised-answer (our reference) which are re-written
to include the values provided by the moral profile
vector c. Note that these results also seem to agree
with Eq. 2 in Theorem 1 which states that an ag-
gregator (here CMVA-GS and CMVA-GS-DYN)
when selecting responses based on contextual cues,
should achieve an expected behavior that is at least
as high as the minimum expected behavior across
all well-behaved component models. In our case,
the results of our aggregators are at least as good
as each individual moral agents results.

We can also see how our models are perform-
ing in terms of which percentage of answers are
closer to the reference; here closer meaning with
higher BERT Scores. Each sample enters a game of
model A vs. model B where we can easily establish
a winner and compute win rates over all of MIC5K
test data as shown in Table 3. Clearly, for a vast
majority of MIC5K samples (greater for 90+% of
samples), all CMVA-GS models generate answers
that are closer to the reference more often than for
any other models.

5 Limitations

Our paper addresses the problem of contextual
value alignment by proposing a novel system that
performs contextual aggregation. Our proposed
system demonstrates superior results in terms of
alignment with human values compared to existing
state-of-the-art methods. However, our approach
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CMVA-GS
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0.025 A
0.000 -
Rouge-1 Rouge-2
Game A vs. B
model A win rate  model B win rate
PT (dyn.) 8.2% CMVA-GS-DYN 91.8%
Mix-8x7b 8.9% CMVA-GS-DYN 91.1%
(dyn.)
PT (full) 3.4% CMVA-GS 96.6%
Mix-8x7b 6.7% CMVA-GS 93.3%
(full)
MA authority 1.0% CMVA-GS-DYN  99.0%
MA fairness 4.7% CMVA-GS-DYN  95.3%
MA care 2.7% CMVA-GS-DYN  97.3%
MA loyalty 1.5% CMVA-GS-DYN  98.5%
MA sanctity 3.2% CMVA-GS-DYN  96.8%

Table 3: Win Rates: Percentages of winning a game
asking which one of two model A or model B is closer
to the reference according to F1 BERT scores between
model response and reference. The type of dynamic or
full context used in the aggregated prompt given to our
PT and Mixtral models is noted as "(dyn.)" and "(full)".

has multiple limitations that cannot be adequately
addressed within the confines of this paper:

Computational Cost: In our system, we assume
that the aggregator has access to multiple moral
agents to perform contextual moral value align-
ment. In practice, deploying several moral agent
models can increase computational overhead and
cost in comparison to a monolithic model that can
directly respond to user query given the context.
We show through our theoretical and empirical
results that this additional cost can help achieve

better performance. Furthermore, advancements in
deployment of parameter efficient adapter models
can mitigate the cost associated with the overhead
of maintaining multiple separate moral agent mod-
els (Hu et al., 2021; Dettmers et al., 2024). More-
over, it is certainly possible to distill (Bucilua et al.,
2006; Hinton et al., 2015; Riemer et al., 2017; Li
et al., 2022) or merge (Jin et al., 2022; Ilharco et al.,
2022; Yadav et al., 2023; Stoica et al., 2024; Ak-
iba et al., 2024) our system into a smaller model
in order to achieve an efficient deployment of our
approach. The literature on this topic is quite vast,
as such, we limited our focus to maximizing the
performance of our system and leave optimizing
its computational efficiency to future work focused
on computational requirements.

Dependency on Training Data Quality: The ef-
fectiveness of the system heavily relies on the qual-
ity and representativeness of the training data used
for training each individual agent and the contex-
tual aggregator. If the training data is biased, in-
complete, or unrepresentative of diverse perspec-
tives, the aggregated system may inherit these limi-
tations, leading to sub-optimal alignment with hu-
man values and potential risks of misalignment.
The focus of our paper is on developing an archi-
tecture to solve this problem, and we use existing
datasets from the literature as a result.
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A Appendix

Lemma 2.(Wolf et al., 2024) Let B be a behavior,
then under the conditions of Lemma 1 the following
holds:

) 11—« ) Pl(So)
Py(s0)

Theorem 2 from (Wolf et al., 2024) Let v €
[—1,0), let B be a behaviour and P be an un-
prompted language model such that B is «, 3, -
negatively-distinguishable in P (Definition 4).
Then P is y-prompt-misalignable with respect to
B with prompt length of

! o () (1) <o)

A.1 Proof of Theorem 1

So applying Lemma 2 to the distribution P; =
@i P + (1 — o) P;t, we get that for any &’ > 0,
there exists a prompt s; such that:

By (s0) — Bry(s0)| <2+ —

1

E/
Bp.(si) = Bp-| = 5
Since B~ < ;, this implies:
6/
IBp,(s:) — il < 5
Rearranging, we get:
/

e

Bp,(si) < i+ 5

Using the fact that Bp+ > ; (as PZ-Jr is well-
behaved), we also have: '

5/

Bp(si) 2Bpr — 5

Combining the two inequalities:
Bp,(si) = Bp+ < i+ ¢

So, for each component model P;, we know from
Theorem 1 that if the ill-behaved component P~ is
ai, Bi, vi-negatively-distinguishable from P;t, then
for any € > 0, there exists a prompt s; such that:

Bp, 4)

[3

(Si) - Bpi+ <7+ ¢

Where the length of s; is O(log(1/€¢')/8;) by Theo-
rem 2. Setting ¢ = 1/ A,i» we get that there exists
a prompt s; of length O(1/54,;) such that:

Bp,(si) = Bp+ <7i+1/Ba (5)
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https://doi.org/10.18653/v1/2022.acl-long.261

Taking a union bound over all n component mod-
els, we get that with probability at least 1 — § over
the randomness in the aggregator A:

BPi(Si)_BP_"' < ’Yi‘{’l/ﬁA,i“‘t foralli=1...n

(6)

Where ¢ = O(+/log(n/d)) by applying a Chernoff
bound concentration inequality.

Let s* = 51 ® s9 P ... D s, be the concate-

nation of the prompts s; for each model F;. The

aggregator’s behavior expectation B4 (s) satisfies:

Ba(s) = E[B(s)]
> min(E[B(s1)], ..., E[B(sn)])
= min(Bp, (s1),. . .,Bp"(sn))
> mln(BP;r, ... ’BPTT)

—max{y; +1/Ba; +t,i=1...n}
> min(BPfr,... ’BP;L‘F)

—max (1/8a1,...,1/Ban)
— maX(’Ylv o ,'Yn) —t

where z is the aggregated response to s*.
Since max(y1,72,-..,7n) < 0 by the assump-

tion that P, are negatively-distinguishable, we get:

Ba(s) > mln(BP1+, e 7BP7?LL)
—max (1/8a,1,---,1/Ban) —t

Setting 6 = 1/n? makes t = O(y/logn) which is
dominated by the max(1/34 ;) term as n increases.
Therefore, the final bound is:

Ba(s) > min(BPr,...,BP;r)
—O(max(1/Ba1,-..,1/Ban))

The key steps are:

- Applying Theorem 1 to bound each component
model’s deviation from its well-behaved compo-
nent P;r

- Taking a union bound to hold simultaneously
for all n models with high probability

- Using the aggregator A over the concatenated
prompts s* to lower bound its behavior expecta-
tion B4(s) in terms of the minimum well-behaved
component behavior min(B .+ )

- The error € is determined by the worst-case
distinguishability max(1/54 ) of the aggregator
across all models
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