Under review as a conference paper at ICLR 2026

SynAdapt: LEARNING ADAPTIVE REASONING IN
LLARGE LANGUAGE MODELS VIA SYNTHETIC CONTIN-
UOUS CHAIN-OF-THOUGHT

Anonymous authors
Paper under double-blind review

ABSTRACT

While Chain-of-Thought (CoT) reasoning improves model performance, it incurs
significant time costs due to the generation of discrete CoT tokens (DCoT). Contin-
uous CoT (CCoT) offers a more efficient alternative, but existing CCoT methods
are hindered by indirect fine-tuning, limited alignment, or inconsistent targets. To
overcome these limitations, we propose SynAdapt, an innovative efficient reasoning
framework. Specifically, SynAdapt generates the synthetic CCoT to serve as a
precise and effective alignment target for LLMs. This synthetic CCoT explicitly
guides the LLM to learn CCoT and derive accurate answers directly. Furthermore,
relying solely on CCoT is insufficient for solving hard questions. To address this,
SynAdapt integrates a difficulty classifier that leverages both question context and
CCoT to identify hard questions. CCoT can effectively help identify hard ques-
tions after some brief reasoning. We then adaptively prompt the LLM to re-think
these hard questions for improved performance. Extensive experimental results
across various benchmarks from different difficulty levels strongly demonstrate the
effectiveness of our method, achieving the best accuracy-efficiency trade-off. []_-]

1 INTRODUCTION

Chain-of-Thought (CoT) reasoning (Kojima et al., |2022; |Wei et al., [2022; Zhou et al., |2022) has
shown remarkable potential in enhancing the problem-solving capabilities of Large Language Models
(LLMs) for complex tasks (Guo et al., [2025}; |Yang et al., [2025; |(OpenAl, [2025). By decomposing
problems into sequential steps, CoT allows LLMs to derive correct answers step-by-step. However,
a major drawback of CoT is its high computational cost due to the generation of numerous tokens,
which leads to substantial time consumption (Yu et al., 2024} Yeo et al.| [2025)). While this cost is often
acceptable in accuracy-sensitive scenarios, such as Al for Science (AI4S) (Lu et al.,[2024) where
accuracy is paramount, it becomes problematic in efficiency-sensitive scenarios. For instance, in
embodied intelligence, real-time human-computer interaction necessitates highly efficient reasoning
to ensure a satisfactory user experience (Li et al.| 2024a). Consequently, a critical challenge emerges:
how to reduce the length of generated CoT while preserving its effective reasoning capabilities.

Existing efficient reasoning approaches mainly involve fine-tuning or direct prompting LLMs to
reduce the number of COT steps (Arora & Zanettel 2025; Munkhbat et al., [2025; | Xu et al.| [2025a).
However, the remaining CoT steps still involve numerous discrete natural language tokens, which we
refer to as DCoT. As noted by [Li et al.[(2024b) and |Lin et al.|(2024), most of these verbalized tokens
are mainly for communication and carry unnecessary linguistic details that do not contribute to the
core reasoning process. One promising approach is fine-tuning LLM to replace DCoT with a more
compact and continuous CoT representation, known as CCoT (Pfau et al.,[2024;|Goyal et al., 2023).
During reasoning, CCoT retains the hidden state of the LLM and skips generating the one-hot token
ID, allowing it to store more information than just a single token (Zhu et al.| [2025).

Nonetheless, fine-tuning LLM to learn CCoT reasoning effectively remains challenging. Coconut
(Hao et al.| 2024) gradually fine-tunes the LLM to replace DCoT with CCoT using a curriculum
learning strategy (Deng et al., [2024). However, as shown in Figurem it lacks explicit alignment

'We have released all our code and dataset in the supplementary materials for better review.

Under review as a conference paper at ICLR 2026

Full Alignment but
inconsistent target (-~

Full Alignment and

Indirect Training R
fine target <

Single Alignment

1 1 1
Coconut ! cobl 1 CompressCoT 1 SynAdapt(Ours)
Continuous CoT : Discrete CoT (DCoT) : Partial DCoT I Synthetic CCoT
CCoT ! ! ! —
Question (CCoT) Answer |] S 1 A ——)
— : Question it = <] Answer : Question “TTITI1T 1 Answer | Question 1 | Answer
jEEAES £ AU R R N :
J | Question |:||:||:||:||_|:|_! Answer | Question L|:||:||:||:| |:|I Answer | Question |]I [y Answer
1 L [
i i I
1 1 1
1 1 .

Figure 1: Comparisons between our SynAdapt and the other CCoT-based baselines. These baselines
either train CCoT indirectly, provide only single-position alignment, or apply full alignment with
incoherent targets.

between DCoT and CCoT, which limits its ability to effectively learn from the original DCoT. CODI
(Shen et al.| 2025b) introduces explicit alignment between the last token hidden state of DCoT and
the final hidden state of CCoT, but ignores alignment for other intermediate tokens. CompressCoT
(Cheng & Van Durme, [2024)) attempts to identify a subset of important tokens from DCoT, whose
length matches CCoT, and aligns the full CCoT with the hidden states of these tokens. However,
selecting only several isolated DCoT tokens leads to incoherence in the reasoning process. This leads
to significant performance degradation in CCoT learning.

To overcome these limitations, we propose a novel efficient reasoning framework called SynAdapt,
which helps LLM learn Adaptive reasoning through Synthetic CCoT. Our approach begins by
generating a synthetic CCoT to serve as a comprehensive alignment target. Specifically, we initialize
a random CCoT, fix the LLM, and iteratively optimize the random CCoT into a synthetic CCoT to
guide the LLM towards correct answers. The synthetic CCoT thereby serves as a better alignment
target than only using several isolated and incoherent tokens from the original DCoT. During fine-
tuning, we apply the full alignment using the synthetic CCoT, as shown by Figure[I] This strategy
helps LLM learn the full CCoT rather than only the last one. Notably, we fine-tune the LLM to
iteratively refine a meaningless draft to obtain the CCoT, rather than generating CCoT autoregressively.
This approach is more efficient (Jiang et al., |2025)) and can boost the reasoning ability of LLM by
iterative refinement (Saunshi et al., 2025} |Yu et al., 2025)).

Moreover, according to the information theory (Nalewajski, |201 1)), compressing DCoT into the dense
CCoT inevitably leads to information loss and increases the complexity of solving hard questions
(Koehn & Knowles| [2017). We provide an example in Figure 5| of the Appendix. To address this, we
train a difficulty classifier that assesses question difficulty based on both the question itself and the
CCoT. And then prompt the LLM to re-think hard questions using discrete CoT tokens for improved
accuracy. While CCoT may not be sufficient to solve these hard questions, it can help the classifier
effectively identify them. Some hard questions resemble simpler ones and can only be distinguished
through the brief reasoning captured by CCoT. We also present an illustrative example in Figure [6] of
the Appendix.

We evaluate our method across various benchmarks with different difficulty levels, including GSMS8K,
MATHS500, AMC23, AIME24, and AIME25. By dynamically adjusting the ratio of re-think hard
questions, our method demonstrates adaptability in both accuracy-sensitive and efficiency-sensitive
scenarios. Comprehensive experimental results demonstrate that our method outperforms other
baselines in both scenarios, achieving an optimal accuracy-efficiency trade-off. We further assess
identification performance of our difficulty classifier, showing its superior performance compared to
other baselines. In addition, we evaluate the generalization capacity of our method across broader
domains, such as scientific QA and coding, as well as under different LLM backbones. The main
contributions of this paper are as follows:

* We propose a novel efficient reasoning framework that generates synthetic CCoT, providing a
better full alignment target to help LLMs learn CCoT more effectively.

* We introduce a difficulty classifier that more effectively distinguishes hard questions by consid-
ering both the question and the CCoT, enabling adaptive re-thinking for improved accuracy.

» Extensive experimental results strongly demonstrate the effectiveness of our framework, achiev-
ing the best accuracy-efficiency trade-off.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

In this section, we introduce the mainstream related work on efficient reasoning in the LLMs, which
can be mainly categorized into three types: SFT-based methods, RL-based methods, Prompt-based
methods, and CCoT-based methods.

SFT-based methods either discard the CoT entirely or dynamically compress the CoT in the training
data. And then they apply supervised fine-tuning (SFT) on these compressed data to help LLM learn
to reduce generation length. While these methods are effective in shortening the generated output,
they may ignore some crucial details of the original CoT during fine-tuning, leading to significant
performance degradation (Yu et al.| |2024; Ma et al.| 2025b; Munkhbat et al.| |2025; Xia et al., 2025}
Kang et al.| 2025). RL-based methods primarily design length penalties to prevent the model
from generating excessively long CoT. While these methods can reduce reasoning length without
sacrificing LLM performance, they require substantial resources for repeated data sampling to LLM
training. Additionally, the reduction in length is limited and may not be suitable for efficiency-
sensitive scenarios, where minimizing generation length is crucial (Arora & Zanettel |2025} |Luo et al.|
20255 |Yeo et al., [2025; |/Aggarwal & Welleck, |2025; [Shen et al., [2025a)). Prompt-based methods
explicitly add length constraint instructions in the prompt for guiding LLM to reduce generation
length. Although these approaches are low-cost, their impact on length reduction is limited. LLMs
still tend to generate long, redundant reasoning CoTs, especially for those hard questions (Renze &
Guven, [2024; Xu et al., [2025a;; Lee et al.,[2025; [Han et al., [2024)).

Instead of reasoning by numerous redundant tokens, CCoT-based methods aim to compress the
reasoning steps by replacing the original discrete CoT (DCoT) with Continuous CoT (CCoT) in
the latent space. However, these methods often suffer from significant performance drops. This is
mainly because they either don’t explicitly align CCoT with DCoT or only use parts of the DCoT
to conduct alignment. These weak alignment signals can not effectively help LLM learn CCoT
reasoning, leading to the performance degradation (Hao et al., 2024; |Xu et al.,|2025bj |Shen et al.,
2025b}; |Cheng & Van Durmel 2024). Due to the limited space, a detailed introduction of the above
related works are shown in Appendix [B]

3 METHODOLOGY

In this section, we present the details of our SynAdpat framework, which consists of two stages: the
fine-tuning stage and the inference stage, as shown in Figure 2] During the fine-tuning stage, we first
generate the synthetic CCoT by optimizing a randomly initialized one. The optimization goal is to
ensure that the LLM generates the correct answer when using the synthetic CCoT. After generation,
we fine-tune the LLM to learn CCoT by utilizing the synthetic CCoT as the alignment target.
Specifically, the LLM is trained to iteratively refine a draft CCoT until it aligns with the pre-generated
synthetic CCoT Additionally, we train a difficulty classifier that assesses a question’s difficulty
based on both the question itself and its corresponding CCoT.

During the inference stage, the fine-tuned LLM generates the CCoT for the given question. This
generated CCoT, along with the original question, is then fed into the difficulty classifier to distinguish
between easy and hard questions. For easy questions, the LLM directly generates the answer based
on the CCoT, ensuring high efficiency. For hard questions, we discard the CCoT and prompt the
LLM to re-think the question step by step, ensuring higher accuracy. More details of the training
stage and the inference stage are presented in Section [3.1]and Section [3.2] respectively.

3.1 TRAINING STAGE

Synthetic CCoT Generation. To provide a more effective alignment target to learn CCoT repre-
sentation during fine-tuning LLM, we firstly generate the synthetic CCoT before fine-tuning.

As shown in the upper-left part of Figure 2] for each question (), we randomly initialize a synthetic
CCoT Zgy, with a fixed length m. We then concatenate () with Zy, and an end-of-think token to
form [Q, Zyn, eot]. Given that a well-constructed CCoT should guide the LLM to predict the correct
answer based on the question and CCoT, we make Zy, trainable and optimize it by minimizing the

Under review as a conference paper at ICLR 2026

Fine-tuning Stage

Synthetic CCoT Generation Synthetic CCoT Enhanced Fine-tuning
e e i | == Zgm T T
Question Synthetic CCoT - ¥ _Zsyn_
ey JIITREEC0Y ez { Question ofe, | Synthetic CCoT [-I (1L} Llign

+(E_._._-i e

! .----.-_-..__P.r.’_fE.CT(EQ_l.E

| .

| Full Align I
I

1 1
i 1
1 1
Trainable Zsyn AN : :
&'{:’@ Question =/ [l Ml W Y X
=Rz L

e J (T e | EN/Z S, Final CCoT§ | ans.
i & Frozen; | | Frozen LLM with 1 1
1 1 1
1 1
1 1
I 1

1

Claire will ~ :

eat7 dacen 1 Lans Ldcot rainable LoRA P Gradient ===

Rt LLM O X Blocking ===

ecks | IR N 1 Iteratively Refine
......................... Trainable
tdon - MW" c
Question (A H NG diff .

____________ Refined CCoT Difficulty (P

Classifier

Inference Stage

Question +[—____JI Adaptive Reasoning via CCoT

Draft CCoT. . ——— m———- q

Question '|'l _._._ !JI & eot] & : Answer :

FinalCCoT) = o S—=——---
&:"]: @ Easy Question LLM 6 High Efficiency
LLM with LoRA ¢ Re-think in detail but -
Iteratively/Refine Hard Question condensing each step. [rrenee)
T F=t== Difficulty o [EEmsscocossoooo0n |
riiong i Classifier & || Discrete CoT eot Answer |
—— 1

............ Refined CCoT} e

Figure 2: Our SynAdapt framework consist of two stage. (1). In Synethetic CCoT Generation, we
first generate the synthetic CCoT Zy, for each question. And then in Synethetic CCoT Enhance
Fine-tuning, Z,,, serves as the full alignment target. By using Z,, we fine-tune the LLM ¢ to
effectively learn CCoT, enabling iterative refinement of a randomly initialized draft CCoT. Addition-
ally, we train a difficulty classifier ¢ to assess question difficulty based on both the question and the
generated CCoT. (2). During the inference stage, we use the fine-tuned LLM ¢ to iteratively refine
and generate the final CCoT, while the difficulty classifier 4 determines the question difficulty. For
easy questions, the LLM directly generates the output, and for hard questions, it is prompted to
re-think in order to generate the correct answer.

following loss:
L
1 a
Lans = =7~ D _10gPy(AilQ, Zign, e0t, Aci), ey
@ =1

where L, is the length of the answer A, A; denotes the i-th token of A, and 6 represents the parameters
of the LLM.

Moreover, to prevent overfitting during CCoT optimization, we additionally align the hidden state
of the eot token when using the synthetic CCoT with that obtained when using DCoT. Assuming
hém_syn is the hidden state of the eot token at the [-th layer of the LLM when provided with synthetic

CCoT Zgy, and h! is that when provided with DCoT, the alignment loss is defined as:

eot_dcot

1 L
Licor = Z Z ||héot_syn - hiol_dcotHl ’)
=1

where L is the total number of layers in the LLM. After optimizing using both L,,s and L,
we obtain the high-quality synthetic CCoT Zy,, which serves a similar function to DCoT but is
represented in a denser, continuous format. These Zy, can serve as valuable alignment targets during
fine-tuning LLM to learn CCoT.

Synthetic CCoT Enhanced Fine-tuning. As demonstrated by |Saunshi et al.| (2025); [Yu et al.
(2025)), iteratively looping an LLM can significantly enhance its reasoning capabilities and refine
outputs. Inspired by this, we fine-tune the LLM to iteratively refine the CCoT from a draft in a
looping manner instead of generating it autoregressively.

As shown in Figure we concatenate the question) with a draft CCoT Z3 .. The Z0_. is initialized

as the embedding of a repeated meaningless token sequence (i.e., <T>..<T>), with a fixed length of

m. We input the Z{. ;, into LLM and use the corresponding output hidden state as the refined one.

Under review as a conference paper at ICLR 2026

The iterative refinement process can be formulated as:

Zéraft = f¢(Q7 Zér;f{)[Lq :]7 3)
where Z¢ . is the CCoT after refining i iterations, L, is the length of the question Q, ¢ represents
the fine-tuned LLM with a trainable LoRA module and f(-) returns the output hidden state from ¢.
After k refining iterations, we obtain the final CCoT Zg,y = Z(’fraﬂ. We explicitly align the full Zgpy
with the synthetic CCoT Zy, and compute the Lyjign loss as:

£align = HZﬁnal - ZsynHl . (4)
Moreover, Zgn, should also guide the initial LLM to generate the correct answer. Therefore, we
compute an additional losses, similar to Equationﬂ], as shown below:

L
1 a
'C’z/ms = _fa ;:1 IOgPQ (AZ‘Q’ Zﬁnala eot, A<i)7 (5)
['reﬁne = »Calign + ‘C;nsv (6)

where 6 represents the initial LLM without the LoRA module. The Ly loss fully utilizes the
alignment information from Zje,. After training using Liefine, the fine-tuned LLM @ effectively
learns to iteratively refine the draft CCoT, ultimately generating the final CCoT to replace the original
redundant DCoT.

Difficulty Classifier Training. Additionally, we train a difficulty classifier J, composed of two
MLP layers, to distinguish between hard and easy questions. It takes both the question itself and the
CCoT as input. Specifically, we construct question pairs (Q., Q);) based on existing difficulty labels
from the DeepMath dataset (He et al.,2025)). (). is a hard question and (); is an easy question. Next,
we input (). and Q); to the fine-tuned LLM ¢ to obtain the corresponding CCoT Z§ | and Zf, ;. Then
we concatenate)., Z,,, and one eot token and input to the initial LLM to obtain the output hidden

state of eot as:
hgotfﬁnal = fo (QC’ Zfinal? eOt) [_1]’ (7
where fy represents the output hidden state from the initial LLM 6 and h¢ denotes the output

eot_final
hidden state of the eot token. Considering the attention mechanism of LLM, h¢; 4., can fully capture
the information in Q. and Zg, ;. Similarly, we compute the h, for the easy question Q,.. We

_final
train the difficulty classifier § according to the following loss: i

‘Cdiff = _logo’(f5(hgot7ﬁnal) - f5 (hgotfﬁnal)% (8)

where f5(-) denotes the difficulty level predicted by d. Lgr encourages the classifier to give higher
score for hard question (). and lower scores to easy ones (). By utilizing additional information
from the CCoT, the classifier § can more effectively distinguish between hard and easy questions.

3.2 INFERENCE STAGE

Adaptive Reasoning via CCoT. During the inference stage, we concatenate the question with a
draft CCoT and utilize the fine-tuned LLM ¢ to iteratively refine the draft CCoT to obtain the final
CCoT. And then we utilized the difficulty classifier to assign the difficulty score based on both the
question and the CCoT. Questions with a difficulty score below the threshold 7 are considered easy,
while those above are regarded as hard.

For easy questions, we just append a eot token after the CCoT and prompt the base LLM @ to directly
output answer. The generated CCoT effectively replaces the original discrete CoT reasoning process,
which often contains numerous tokens and is time-consuming to generate, thereby achieving higher
efficiency. However, compressing DCoT into CCoT inevitably leads to information loss (Nalewajski,
2011). And as shown by Hao et al.|(2024), relying solely on CCoT is insufficient for hard questions
and may even lead to incorrect answer. Therefore, we discard the generated CCoT and prompt the
LLM to re-think the question via discrete CoT, using a more detailed reasoning process to generate
the correct answer. Additionally, inspired by |Xu et al.| (2025a), we explicitly prompt the LLM to
condense each reasoning step, achieving a better trade-off between accuracy and efficiency.

Moreover, we can dynamically adjust the threshold 7 to control the ratio of re-thinking. This allows
our method to simultaneously adapt to both accuracy-sensitive and efficiency-sensitive scenarios
according the specific requirements of the real application. All our used prompts are provided in

Appendix

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to demonstrate the effectiveness of our
SynAdapt and address the following four key research questions:

* RQ1: Can SynAdapt offer a better accuracy-efficiency trade-off compared to other efficient rea-
soning baselines in both accuracy-sensitive and efficiency-sensitive scenarios? (see section [.T])

* RQ2: Does our difficulty classifier, which uses both the question and CCoT, can effectively
distinguish between hard and easy questions? (see section 4.2))

* RQ3: How about the training efficiency of SynAdapt? (see section[d.3))

¢ RQ4: How well does SynAdapt generalize across more domains (Scientific QA/Coding), LLM
backbones, and hyperparameters? (see Section section {.4)

4.1 EVALUATION OF ACCURACY-EFFICIENCY TRADE-OFF

Experimental Settings We use DeepMath (He et al., 2025) as the training set and evaluate our
method and baselines on five widely adopted math-related benchmarks: AIME25, AIME24, AMC23,
MATHS00 (Lightman et al., 2023)) and GSM8K (Cobbe et al., 2021). These datasets cover a diverse
range of math questions across varying difficulty levels. As for the evaluation metrics, we report
accuracy (Acc) and generation length (Len) to assess both performance and efficiency. Additionally,
we introduce the Relative Gain metric (Rel-G) defined as:

Acc/Accray ©)
Len/Len,y, ’

where Acc,y and Len,,, denote the accuracy and generation length of the raw model, respectively.
A higher Rel-G indicates a better trade-off between accuracy and efficiency. We also further evaluate
our method on additional domains, including scientific QA and coding, in Section[4.4]

Rel-G =

We adopt DeepSeek-R1-Distill-Qwen-7B as our raw model. We set the length of the synthetic CCoT
to m = 512, and refining iterations for the draft CCoT to k = 4. The difficulty score ranges from 0 to
1. In accuracy-sensitive scenarios, we set threshold 7 = 0.5 to route difficult questions for re-thinking.
In efficiency-sensitive scenarios, we set 7 = 1.0 to prompt the LLM to directly generate answers
based on CCoT for higher efficiency. Further details on the datasets and implementation details are
provided in Appendix [C.I]and Appendix [C.3|respectively.

Compared Methods Here, we consider a broad range of existing efficient reasoning baselines, not
limited to CCoT-based methods. We categorize these baselines into two scenarios, accuracy-sensitive
scenario and efficiency-sensitive scenario, based on their different focuses.

In the accuracy-sensitive scenario, CoT-FT directly uses the full discrete CoT from the training data
to perform supervised fine-tuning (SFT) for improving performance. TokenSkip (Xia et al., 2025
compresses the discrete CoT based on token importance and then applies SFT on the compressed
CoT. NoThinking (Ma et al., 2025a) skips the SFT process and directly prompts the model to skip
reasoning and directly generate the answer. CoD (Xu et al.,[2025a)) prompts the model to condense
each reasoning step rather than skipping the reasoning process entirely. TokenBudget (Han et al.,
2024) let the LLM to predict a token budget for each question in advance and prompts the model do
not exceed the token budget during further generation.

In the efficiency-sensitive scenario, NoCoT-FT (Yu et al., [2024) discards the discrete CoT and
performs SFT using only the answer to improve efficiency. SelfTraining (Munkhbat et al., [2025))
applies best-of-n sampling to extract the shortest correct CoT from the LLM and then fine-tunes the
LLM on these CoT. Coconut (Hao et al.,2024), CompressCoT (Cheng & Van Durme, 2024), and
CODI (Shen et al., |2025b)) all belongs to CCoT-based methods, utilizing the CCoT to replace the
DCoT for better efficiency. Coconut adopts a curriculum learning strategy to gradually internalize
DCoT into CCoT. CompressCoT identifies key tokens in the DCoT and aligns the CCoT with their
hidden states. CODI employs self-distillation, aligning the last token hidden state of CCoT with that
of DCoT during training. More details of these compared method are provided in Appendix [C.2]

Main Results For the accuracy-sensitive scenario, as shown in the upper part of Table|l} our
method with 7 = 0.5 outperforms all other baselines by achieving the second-highest average

Under review as a conference paper at ICLR 2026

Methods AIME25 AIME24 AMC23 MATHS500 GSM8K Average
Acc Len | Acc Len | Acc Len | Acc Len | Acc Len Acct Len| Rel-G1t
Raw Model | 367 133486 | 53.3 140714 | 925 63157 | 932 40874 | 90.7 11108 | 733 778684 1.00
Accuracy-Sensitive Scenario

CoT-FT 400 164273 | 400 155606 | 87.5 70493 | 88.6 36940 | 83.0 7007 | 678 86864 0.83
TokenSkip 300 178113 | 367 143850 | 700 10030.8 | 78.4 165428 | 81.1 171655 | 59.2 I5187.1 0.41
NoThinking 300 10623.6 | 40.0 11099.7 | 750 41436 | 824 13554 | 857 2295 | 626 54904 121
CoD 400 104980 | 567 84885 | 80.0 28943 | 818 1591.1 | 842 2862 | 685 47516 153
TokenBudget 367 152350 | 533 14897.7 | 825 5006.5 | 90.2 31868 | 869 5730 | 69.9 77798 095

SynAdapt (r=0.5) | 40.0 101983 | 56.7 8288.1 80.0 2881.6 | 824 1547.7 | 85.7 258.6 69.0 4694.8 1.58

Efficiency-Sensitive Scenario

NoCoT-FT 13.3 637.0 10.0 1680.1 50.0 513.1 74.8 478.9 87.1 209.5 47.0 703.7 7.13
SelfTraining 10.0 671.6 10.0 7727 55.0 627.0 71.6 397.0 85.1 207.6 46.3 535.2 9.10
Coconut 6.7 647.2 133 16925 525 548.0 76.2 426.4 89.3 232.6 47.6 709.3 7.13
CompressCoT 10.0 623.1 6.7 16737 525 1356.1 | 75.0 445.8 88.2 207.7 46.5 861.3 5.73
CODI 13.3 2798.7 6.7 613.5 50.0 518.6 72.4 537.5 87.2 238.1 459 941.3 5.18

SynAdapt (7=1.0) 133 718.8 16.7 620.7 573 591.9 75.6 739.4 88.5 2535 50.3 584.9 9.14
- Synthetic CCoT 10.0 17439 16.7 475.9 52.5 510.2 732 599.8 87.8 266.7 48.0 719.3 7.10
- Iterative Refine 6.7 767.6 10.0 700.2 50.0 10739 | 76.0 993.8 85.4 728.9 45.6 852.9 5.68

Table 1: Comparison between our SynAdapt and efficient reasoning baselines for both Accuracy-
Sensitive Scenario and Efficiency-Sensitive Scenario. For the accuracy-sensitive scenario, we set
the threshold 7 = 0.5 for our method, meaning that questions with a difficulty score greater than
0.5 are routed to re-thinking, while others directly generate an answer based on the CCoT. For the
efficiency-sensitive scenario, we set 7 = 1.0, meaning all questions are answered directly using the
CCoT to achieve high efficiency. Bold and underlined numbers represent the best and second-best
average accuracy, generation length and Rel-G score for each scenario.

accuracy while maintaining the shortest average generation length. CoT-FT fine-tunes directly on the
full DCoT, improving accuracy on hard questions but also increasing generation length. TokenSkip
selects parts of DCoT for fine-tuning, resulting in inconsistent CoT and performance degradation.
NoThinking can skip CoT for reducing length, but often causes accuracy drops. CoD condenses
each CoT step but cannot skip the unnecessary CoT in simple questions, resulting in a suboptimal
accuracy-efficiency trade-off. TokenBudget dynamically allocates more tokens to harder questions,
preserving accuracy but not reducing generation length effectively. In contrast, our method identifies
hard questions and dynamically re-thinks them while directly generating answers for simple ones. It
maintains similar accuracy compared to the raw model while reducing generation length, achieving
the highest Rel-G score of 1.55 in the accuracy-sensitive scenario.

For the efficiency-sensitive scenario, our method with 7 = 1.0 significantly reduces the average
generation length to just 584.9 tokens, while maintaining competitive accuracy compared to other
baselines, as shown in the bottom part of Table E} NoCoT-FT, which fine-tunes only on answers
without CoT, leads to the accuracy drop. SelfTraining allows the LLM to search for the shortest
correct CoT via best-of-n sampling. But it struggles with harder questions and also results in a
substantial drop in accuracy.

The three CCoT-based methods, Coconut, CompressCoT, and CODI, attempt to replace DCoT with
CCoT. However, these methods only use a portion of DCoT or the last token as the alignment target
when fine-tuning the LLM to learn CCoT. Due to the limited alignment signals, especially for hard
questions, they achieve unsatisfactory accuracy. In contrast, our method introduces a more effective
alignment target, the synthetic CCoT. By fully leveraging the alignment information from it, we
enable more effective fine-tuning. Consequently, our method achieves the highest accuracy and the
second shortest generation length in average, yielding the best trade-off with a Rel-G score of 9.14.
We also present a representative case study in Figure 4 of Appendix.

Moreover, we evaluate our method under various 7 values. As shown in Figure Eka), our method con-
sistently outperforms all other baselines, achieving the best accuracy-efficiency trade-off. As shown
in the bottom of Table[I] we observe a significant performance decline when either Synthetic CCoT
or Iterative Refinement is removed, which further highlights the importance of both components.

4.2 EVALUATION OF DIFFICULTY CLASSIFIER PERFORMANCE

Experimental Settings To evaluate the performance of our difficulty classifier, we use the
MATHS00 dataset, treating questions with a difficulty level of 5 as hard and the rest as easy.

Under review as a conference paper at ICLR 2026

O Synddapt , & Raw Model : [easy AME2s [JeasyAMEE EasyAMC | I)
CoT-FT TokenSkip | ©NoCoT-FT Jk SelfTraning | EZ]uard AME2SZ A Hara ArvE24E B Hard AMCS | | Syntdapt (Ours) :
* NoThinking > CoD |+ Coconut < CompressCoT | [EEasy MATHS00 [Easy GSMSK i 1 Probe Q —f— PrompiLLM RouteLLM Seq_PPL |
TokenBudget ! CopI Y 22 Hard MATHS00) Hard GSMSK § !
High Acc/lowlen 7 = 0.5 _ - &
O et o e 1400 N ©
65 T=0. 7_){'. R & Qr
o ¥ 1000 P 2 A
F] 9 o & A
S s A o 8O A&
= 500 3¢ Wi 3 e % B
+ 200 O A2 & oo
g gg % < 0"\ = 4 < © ‘/‘
K >
nry o SE
I S SO S N o 02 04 06 08 02 04 06 08
1070970870705 Difficulty Ratio Difficulty Ratio
Avg Len
(a). Accuracy-Efficiency (b). Difficulty Ratio under (c). Accuracy on MATHS500 Dataset (d). Accuracy on MixD Dataset
Trade-off Different under Various Difficulty Ratio under Various Difficulty Ratio

Figure 3: (a) Accuracy-efficiency trade-off comparison between our method and other efficient
reasoning baselines. (b). Difficulty ratio (The ratio of hard questions) of our method under different
7 values across five benchmarks. (c/d). Accuracy under various difficulty ratios using different hard
question identification methods on the MATHS500 and MixD Datasets.

Additionally, we construct the MixD dataset by combining AIME25/AIME24/AMC23 and part of
GSMS8K. Questions from AIME25/AIME24/AMC23 are considered hard, while those from GSMSK
are regarded as easy. We report macro precision (Pre), macro recall (Rec), and macro F1 (F1) of the
hard question identification. We also report the accuracy of our method using different identification
approaches, maintaining the same ratio of hard questions.

Compared Methods To demonstrate the effectiveness of our difficulty classifier, we consider
several baselines for comparison: Seq_PPL (Mahaut et al.,2024)) computes the PPL score for each
question, treating those with high PPL as hard and others as easy. PromptLLM (Han et al.| 2024)
directly prompts the LLM to assess question difficulty. RouteLLLM (Ong et al., |2024) trains an
additional BERT model to judge question difficulty. We directly use their released weights. Probe_Q
(Azaria & Mitchelll 2023) trains a simple classifier, consisting of two MLP layers, to assess difficulty
based solely on the question. More details about the used datasets and the compared baselines are

present in Appendix and respectively.

Main Results As shown in Table[2} our method, ATHE00 D

which identifies hard questions using both the Methods Pre Rec Fl Pre Rec Fl
question and CCoT, outperforms other baselines Seq_PPL 3746 3527 3610 | 2893 2370 2551
on both MATH500 and MixD datasets. Seq_PPL PrompibiM | 4583 47,01 45,86 | 4995 4800 4847
relies solely on the PPL score, which does probe.Q | 7324 5875 5890 | 7095 7466 63.81
not strongly correlate with question difficulty. —_SyrAdpat | 7947 6242 63.11 | 6271 81.02 78.32
PromptLLM prompts the LLM to assess diffi- .

culty, but this approach is unreliable due to the Table 2: Comparison of SynAdapt and those
mode!’s limitations in identifying hard questions. Paselines for hard question identification on
RouteLLM trains an additional BERT-based clas- MATHS00 and MixD Datasets. ~ Bold and
sifier, which incurs extra costs and struggles to underlined numbers indicate the best and second-
effectively identify complex math questions re- Pest results, respectively.

quiring reasoning. Probe_Q trains a classifier based only on the question, which can identify explicit
hard questions but misses those that look simple but actually hard. In contrast, our method can
effectively identify those hard questions by using the reasoning information in corresponding CCoT.
As shown in Figure[3|(b), it accurately identifies most difficult questions, such as those in AIME25/24,
and AMC23.

Moreover, we also report the impact of different identification methods on overall performance in
Figure 3] (c/d). We evaluate the problem-solving accuracy when using these methods under different
difficulty ratios. As shown in Figure [3] (c/d), at the same difficulty ratio, our method can more
accurately identify hard questions, route them for re-thinking, and achieve the best accuracy on both
the MATHS500 and MixD datasets. However, we observe a decrease in accuracy when the difficulty
ratio exceeds 0.6. This is because easy questions are also routed for re-thinking, and excessive
reasoning for simple questions will confuse the model, leading to incorrect answers.

4.3 ANALYSIS OF TRAINING EFFICIENCY

Under review as a conference paper at ICLR 2026

To evaluate training efficiency, we report the train- “wodules | Time (min) | Percentage
ing cost of our method and other CCoT-based coconut 740

methods. As shown in Table 3| our method of- CompressCoT e -
fers comparable efficiency to the baselines. While synadapt 1021 100%
SynAdapt introduces additional synthetic CCoT gyLll:fhgfé“é“C‘v’oT SN o o
generation, this process is highly efficient, ac- = Single Synthetic CCoT Generation 10s 0.02%

counting for only 9.89% of the total training cost.
Single CCoT generation only requires 10 sec- Table 3: Training time costs for different CCoT-
onds, which is very fast. based methods. We use a batch size (bs) of 16

. . duri thetic CCoT tion.
CompressCoT and CODI require autoregressive Hring synthetic 1107 genetation

generation of CCoT during fine-tuning, leading to high training costs and low efficiency. Coconut
gradually internalizes DCoT, and since the initial CCoT length is small, the training cost is relatively
low. However, in the later stages, the cost still increases due to autoregressive generation. In contrast,
SynAdapt iteratively refines a draft CCoT rather than generating it autoregressively, effectively
improving efficiency. Therefore, our method achieves high training efficiency, demonstrating its
practicality.

4.4 GENERALIZATION EVALUATION AND HYPERPARMETER ANALYSIS

To further demonstrate the generalization ability of SynAdapt, we evaluate it on more domains,
including scientific question answering (GPQA-Diamond (Rein et al.,[2024)) and code generation
(HumanEval (Chen et al., [2021) and LiveCodeBench (Naman Jain, 2024)). As shown in Table E],
SynAdapt also exhibits superior performance in both scientific QA and coding tasks. With 7 = 0.5
for identifying hard questions requiring rethinking, our method achieves performance comparable to
the raw model while reducing generation length. And with 7 = 1.0, which means no rethinking of
any questions, SynAdapt still outperforms all other CCoT-based baselines. More results and analyses
of our method on LiveCodeBench are provided in Appendix[F} We also evaluate our method on more
LLM backbones, such as DeepSeek-R1-Distill-Llama-8B and DeepSeek-R1-Distill-Qwen-1.5B
(Guo et al,[2025). As shown in Table[5] SynAdapt consistently demonstrates superior performance
under both 7 = 0.5 and 7 = 1.0 settings.

We conduct the hyperparameter analysis about CCoT length m and refining iterations k. As
shown in Figures|/|and |8|in the Appendix, our method remains effective and robust across various
hyperparameter settings. Due to page limitations, more analyses and results are in Appendix

Methods | __ GPQA-Diamond | HumanEval Methods | RILama88 | RI-Qwen-l5B
| Acct Len| Rel-G? |Pass@lt Len| Rel-G?1 | Acct Len| Rel-GT | Acct Len| Rel-GT

Raw Model 479 7847.1 1.00 75.6 4366.5 1.00 Raw Model 672 79984 1.00 ‘ 57.6 9166.2 1.00
SynAdapt(7=0.5) | 47.5 6047.0 1.28 732 3503.6 1.21 SynAdapt(=0.5) | 66.1 6406.2 1.23 573 8836.5 1.03
Coconut 429 1406.6 4.99 70.7 750.6 5.44 Coconut 45.5 572.6 9.46 39.6 1767.1 3.57
CompressCoT 41.4 782.9 8.65 71.2 1386.5 297 CompressCoT 44.6 1834.3 2.89 382 1166.0 521
CODI 40.9 676.6 9.89 65.9 602.6 6.32 CODI 383 488.2 9.34 40.1 1566.5 4.07
SynAdapt(t=1.0) | 42.4 660.2 10.51 72.0 622.4 6.68 SynAdapt(t=1.0) | 48.0 582.7 9.80 42.1 690.8 9.70

Table 4: Evaluation of our method across more Table 5: Evaluation of our method on DeepSeek-
domains, including GPQA-Diamond (Rein et al., R1-Distill-Llama-8B and DeepSeek-R1-Distill-
2024) for scientific question answering and Hu- Qwen-1.5B backbones. We report the the aver-
manEval (Chen et al, 2021)) for code generation. age results across all five math benchmarks.

5 CONCLUSION

We propose a novel and efficient reasoning framework, SynAdapt, designed to help LLMs learn
continuous CoT (CCoT). Before fine-tuning, we generate the synthetic CCoT, which serves as a
more effective alignment target for learning CCoT. Additionally, we train a difficulty classifier
that identifies hard questions by considering both the question and its corresponding CCoT. By
dynamically prompting the LLM to re-think hard questions, our method can adapt to both accuracy-
sensitive and efficiency-sensitive scenarios. Extensive experimental results across various benchmarks,
domains and LLM backbones consistently demonstrate the effectiveness of SynAdapt for efficient
reasoning.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITV STATEMENT

We provide the processing details of our training datasets and evaluation benchmarks in Sections [C. 1
and [D.1] The statistic of these dataset are shown in Table [6|and[7] The implementation details of
SynAdapt are provided in Section [C.3]to facilitate reproducibility. We report the full settings used
during LLM training and evaluation, including all hyperparameters. In addition, we have conducted
experiment to analyze the impact of the hyperparameters in Section [G|and explain why we choose
these setting.

To further facilitate reproducibility, we release all source code and the datasets used in our experiments
in the supplementary materials. An anonymous repository containing the code and datasets is
also provided for easy access by reviewers: https://anonymous.4open.science/r/SynAdapt_Review-
E677. The repository includes a detailed user guide in the README files, covering installation,
dependencies, and usage instructions.

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics in all aspects of this work. Our research utilizes exclusively
publicly available repositories and datasets, ensuring full transparency and reproducibility. To
rigorously validate the effectiveness of our proposed method and minimize the impact of randomness,
we conduct extensive evaluations across a diverse range of domain tasks, large language model (LLM)
backbones, and hyperparameter combinations. We not only evaluate the inference performance of our
method, but also consider its training efficiency as critical factors in our analysis. To ensure a fair and
comprehensive comparison, we rigorously assess training efficiency under consistent experimental
conditions. All experiments are designed and reported in accordance with principles of responsible
research, and we have conscientiously considered potential societal impacts in our work.

10

https://anonymous.4open.science/r/SynAdapt_Review-E677
https://anonymous.4open.science/r/SynAdapt_Review-E677

Under review as a conference paper at ICLR 2026

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Daman Arora and Andrea Zanette. Training language models to reason efficiently. arXiv preprint
arXiv:2502.04463, 2025.

Amos Azaria and Tom Mitchell. The internal state of an 1lm knows when it’s lying. arXiv preprint
arXiv:2304.13734, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through
dense representations. arXiv preprint arXiv:2412.13171, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to internalize
cot step by step. arXiv preprint arXiv:2405.14838, 2024.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
memorization: Data contamination and trustworthy evaluation for large language models. arXiv
preprint arXiv:2402.15938, 2024.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens. arXiv preprint
arXiv:2310.02226, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
contaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint
arXiv:2504.11456, 2025.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

11

Under review as a conference paper at ICLR 2026

Nan Jiang, Ziming Wu, De-Chuan Zhan, Fuming Lai, and Shaobing Lian. Dart: Distilling autoregres-
sive reasoning to silent thought. arXiv preprint arXiv:2506.11752, 2025.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and Robert
McHardy. Challenges and applications of large language models. arXiv preprint arXiv:2307.10169,
2023.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought with-
out compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 24312-24320, 2025.

Philipp Koehn and Rebecca Knowles. Six challenges for neural machine translation. arXiv preprint
arXiv:1706.03872, 2017.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:

22199-22213, 2022.

Ayeong Lee, Ethan Che, and Tianyi Peng. How well do 1lms compress their own chain-of-thought? a
token complexity approach. arXiv preprint arXiv:2503.01141, 2025.

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem Gokmen,
Tony Lee, Erran Li Li, Ruohan Zhang, et al. Embodied agent interface: Benchmarking llms for
embodied decision making. Advances in Neural Information Processing Systems, 37:100428—
100534, 2024a.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 1, 2024b.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Zicheng Lin, Tian Liang, Jiahao Xu, Qiuzhi Lin, Xing Wang, Ruilin Luo, Chufan Shi, Siheng Li,
Yujiu Yang, and Zhaopeng Tu. Critical tokens matter: Token-level contrastive estimation enhances
llm’s reasoning capability. arXiv preprint arXiv:2411.19943, 2024.

Lei Liu, Xiaoyan Yang, Junchi Lei, Yue Shen, Jian Wang, Peng Wei, Zhixuan Chu, Zhan Qin, and
Kui Ren. A survey on medical large language models: Technology, application, trustworthiness,
and future directions. arXiv preprint arXiv:2406.03712, 2024.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292, 2024.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naigiang Tan, Xiaochun Cao,
and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025a.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025b.

Matéo Mahaut, Laura Aina, Paula Czarnowska, Momchil Hardalov, Thomas Miiller, and Lluis
Marquez. Factual confidence of llms: on reliability and robustness of current estimators. arXiv
preprint arXiv:2406.13415, 2024.

mathai. Aime2025 dataset. https://huggingface.co/datasets/math—ai/aime25,
2024.

Maxwell-Jia. Aime2024 dataset. https://huggingface.co/datasets/Maxwell—-Jia/
AIME_2024, 2024.

12

https://huggingface.co/datasets/math-ai/aime25
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024

Under review as a conference paper at ICLR 2026

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun.
Self-training elicits concise reasoning in large language models. arXiv preprint arXiv:2502.20122,
2025.

Roman F Nalewajski. Elements of information theory. In Perspectives in Electronic Structure Theory,
pp- 371-395. Springer, 2011.

Alex Gu Wen-Ding Li Fanjia Yan Tianjun Zhang Sida Wang Armando Solar-Lezama Koushik Sen
Ton Stoica Naman Jain, King Han. Livecodebench: Holistic and contamination free evaluation of
large language models for code. arXiv preprint, 2024.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route 1lms with preference data. arXiv
preprint arXiv:2406.18665, 2024.

OpenAl. Learning to reason with llms, 2025.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin,
Victor Riihle, Yuqging Yang, Chin-Yew Lin, et al. LImlingua-2: Data distillation for efficient and
faithful task-agnostic prompt compression. arXiv preprint arXiv:2403.12968, 2024.

Jacob Pfau, William Merrill, and Samuel R Bowman. Let’s think dot by dot: Hidden computation in
transformer language models. arXiv preprint arXiv:2404.15758, 2024.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
3505-3506, 2020.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpga: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Matthew Renze and Erhan Guven. The benefits of a concise chain of thought on problem-solving in
large language models. In 2024 2nd International Conference on Foundation and Large Language
Models (FLLM), pp. 476—483. IEEE, 2024.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning with
latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416, 2025.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, Zhaoxiang Liu, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning
models. arXiv preprint arXiv:2503.04472, 2025a.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
chain-of-thought into continuous space via self-distillation. arXiv preprint arXiv:2502.21074,
2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025a.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot: Soft chain-of-thought for efficient
reasoning with 1lms. arXiv preprint arXiv:2502.12134, 2025b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

13

Under review as a conference paper at ICLR 2026

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023, 2024.

Qifan Yu, Zhenyu He, Sijie Li, Xun Zhou, Jun Zhang, Jingjing Xu, and Di He. Enhancing auto-
regressive chain-of-thought through loop-aligned reasoning. arXiv preprint arXiv:2502.08482,
2025.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022.

Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Reasoning
by superposition: A theoretical perspective on chain of continuous thought. arXiv preprint
arXiv:2505.12514, 2025.

zwhe99. Amc23 dataset. https://huggingface.co/datasets/zwhe99/amc23) 2024.

14

https://huggingface.co/datasets/zwhe99/amc23

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS

In this paper, we strictly adhere to the usage policies of large language models (LLMs). LLMs were
employed solely to assist with language polishing and to improve the readability of the manuscript.
All generated content was carefully reviewed and verified by the authors before inclusion in the paper
to ensure accuracy and integrity. No LLM outputs were used in a manner that could compromise
reproducibility, scientific validity, or compliance with ethical standards.

A APPENDIX OVERVIEW

The appendix is organized into two main parts: Appendices provide detailed related works
and more experimental setup of our SynAdapt. Appendices present additional case studies and
experimental results, further demonstrating the effectiveness of our SynAdapt.

B DETAILS OF RELATED WORK

In this section, we provide a detailed overview of related works on LLM efficient reasoning, which
can be broadly categorized into four main types: SFT-based methods, RL-based methods,Prompt-
based methods, and CCoT-based methods.

For SFT-based methods, Yu et al.|(2024) proposes to collect CoT and answer data from reasoning
LLMs and directly discard the CoT part. And then they fine-tune the LLM using only the answers
to help the model reduce reasoning length. [Ma et al.| (2025b) fine-tunes the LLM simultaneously
on data with CoT and data without CoT, using specific instructions to distinguish between the two.
During inference, they use the instructions to prevent the model from outputting CoT. Munkhbat et al.
(2025)) applies best-of-n sampling to LLM, selecting the shortest CoT, and fine-tune the model on
these short CoTs to reduce reasoning length. |Xia et al.|(2025]) assesses the semantic importance of
tokens in the initial CoT, retaining only the most important tokens for fine-tuning the LLM. Kang
et al.| (2025)) dynamically samples simplified CoTs from the model after each fine-tuning epoch for
the next round of fine-tuning.

All of the above methods either discard the CoT or use a simplified version for fine-tuning the LLM
to reduce reasoning length. While these approaches effectively shorten the reasoning length, they
overlook important details in the original CoT, leading to significant performance degradation during
further fine-tuning.

For RL-based methods, |Arora & Zanette (2025) introduces a length-based reward, where shorter
correct answers receive higher rewards, and uses policy gradient (PG) methods to fine-tune the LLM
to reduce reasoning length. [Luo et al.|(2025) enhances this reward by comparing the generated
answer length to a reference answer and applies PPO optimization for LLM fine-tuning. [Yeo et al.
(2025) further introduces a cosine-based reward and applies a penalty for exceeding the length limit.
Aggarwal & Welleck|(2025) uses length-constrained prompts to sampling data during RL fine-tuning.
Shen et al.[(2025a) employs SimPO to fine-tune the LLM using a length-preference dataset.

Although these RL-based methods can reduce reasoning length to some extent while maintaining
LLM performance, RL fine-tuning requires significant resources. For example, they need to repeatedly
sample new data for updating the action of LLM. Moreover, the reduction in length is limited and
cannot be applied to those efficiency-sensitive scenarios. For instance, in real-life medical QA
scenarios, efficiency is critical. Diagnosis advice must be concise, enabling doctors and patients to
quickly access key details and conclusions, especially in emergencies. Previous studies (Kaddour
et al.| 2023} [Liu et al.| 2024)) have highlighted that overly long responses can lead to errors, such as
confusing similar drug names or omitting critical contraindications.

For Prompt-based methods, Renze & Guven| (2024)) proposes to prompt the LLM to perform CoT
reasoning while explicitly instructing it to be concise. Xu et al.|(2025a)) focuses on adding instructions
in the prompt to condense each reasoning step and limit verbosity. |[Lee et al.|(2025) explores various
prompt types to reduce reasoning length, such as prompting to output only numbers or only use bullet
points. Han et al|(2024) estimates a token budget for each question, allocating more tokens for harder
questions, and instructing the LLM to stay within this budget during reasoning for efficiency.

15

Under review as a conference paper at ICLR 2026

Most prompt-based methods reduce reasoning length by adding additional length constraint instruc-
tions in the prompt. While this approach is low-cost, its impact on reducing length is limited. LLMs
still tend to generate redundant reasoning CoTs, especially when faced with hard questions.

For CCoT-based methods, Hao et al.|(2024) was the first to propose to fine-tune the LLM to reason
continuously and utilize the last hidden state as the continuous CoT (CCoT) to replace traditional
discrete CoT (DCoT), which often contain redundant tokens. They introduce curriculum learning to
gradually replace DCoT with CCoT during fine-tuning, without explicit alignment with the original
DCoT. [Xu et al.| (2025b) is similar to Coconut, but it incorporates an additional assistant LLM
with a projection module to generate the CCoT. Although it provides slight improvements, it also
incurs additional resource costs. [Shen et al.| (2025b) employs self-distillation to learn CCoT by
simultaneously fine-tuning on both DCoT and CCoT and explicitly aligns the last token hidden state
between the two. |(Cheng & Van Durme|(2024) measures token importance in advance and aligns the
CCoT only with the hidden states of those important tokens in the DCoT.

Current CCoT-based methods can successfully compress reasoning steps into a latent space, replacing
the original DCoT with a more efficient CCoT and significantly reducing generation length. However,
they often suffer from unsatisfactory performance degradation. This is mainly because they either do
not apply explicit alignment between DCoT and CCoT or only use partial DCoT (e.g., the last token
or a subset of important tokens) to supervise CCoT learning. These weak supervisory signals fail to
help LLM to learn a well CCoT representation, leading to significant performance drops. Therefore,
designing stronger supervisory signals for CCoT learning is crucial for real-world applications.

C DETAILS OF ACCURACY-EFFICIENCY TRADE-OFF EVALUATION

C.1 DATASET DETAILS

For the training set, we use the DeepMath-103K dataset He et al.| (2025)), which contains numerous
math problems with three distinct reasoning paths from DeepSeek-R1|Guo et al.|(2025)), covering
various math topics and difficulty levels. For each question, we randomly select one reasoning path
as the discrete CoT and exclude samples with reasoning paths exceeding 12,000 tokens. Moreover,
as pointed out by [Dong et al.|(2024), the public datasets, containing numerous samples, suffer from a
’data contamination’ issue, where some samples may be similar to evaluation benchmark. Directly
training on this data may cause the model to memorize these samples, leading to unnaturally high
performance. Additionally, including too many training samples introduces excessive training costs,
which contradicts our goal of high efficiency. Therefore, we only sample a portion of the original
DeepMath-103K dataset for training. Specifically, we randomly sample 10% of the training samples
for each difficulty level to create the final DeepMath dataset, ensuring the distribution of question
difficulty remains consistent. The total size of the DeepMath dataset is 9,660.

For the test set, we consider several widely adopted math-related benchmarks: AIME2S5 mathai.
(2024), AIME24 Maxwell-Jia. (2024), AMC23 |zwhe99.| (2024), MATHS00 |Lightman et al.|(2023),
and GSMS8K |Cobbe et al.[(2021). The difficulty of these benchmarks gradually decreases, covering a
wide range from complex math competitions to simple grade school math. The details of both the
train and test dataset sizes are shown in Table[6l

Train Dataset | Test Dataset
DeepMath | AIME25 AIME24 AMC23 MATH500 GSMSK
9660 | 30 30 40 500 1319

Table 6: The size of our used train dataset and five math-related evaluation benchmarks, covering
various difficulty levels.

C.2 BASELINES DETAILS

Here, we provide more details about all the compared efficient reasoning baselines. We consider
not only CCoT-based baselines but also other SFT-based and prompt-based methods. We exclude

16

Under review as a conference paper at ICLR 2026

RL-based methods, as these require substantial resources to apply RL learning to LLMs, making
them inefficient and impractical for real-world applications.

We further mainly categorize these baselines into two scenarios based on their focus. Baselines for the
accuracy-sensitive scenario primarily aim to maintain performance while shortening the generation
length. Here are the details of these baselines:

CoT-FT belongs to SFT-based methods. We directly uses the CoT and answers from the training
set, to supervise fine-tune (SFT) the LLM. This method aims to maintain accuracy while slightly
reducing the generation length.

TokenSKkip (Xia et al.,[2025)) belongs to SFT-based methods. As proposed by TokenSkip, different
tokens in the CoT have varying semantic importance, and tokens with low semantic value can be
skipped during SFT of the LLM. Specifically, we use LLMLingua-2 (Pan et al., |2024) to assess the
importance of each token and obtain a compressed CoT. We set the compression ratio to 0.7 because
too low ratio will make the CoT inconsistent for fine-tuning while too low ratio only provides a slight
reduction in generation length. We utilize the compressed CoT along with corresponding answer to
fine-tune LLM to reduce generation length while maintaining performance.

NoThinking (Ma et al.} 2025a) is a prompt-based method. NoThinking proposes to directly prompt
the LLM to avoid generating a CoT, which effectively reduces the generation length with fine-tuning
process. Specifically, we append the instruction “Okay, I think I have finished thinking. </think>" to
the initial prompt, instructing the LLM to skip reasoning and directly output the answer without CoT.

CoD (Xu et al., [2025a) is another prompt-based method. Different from NoThinking directly prompts
LLM to skip reasoning and do not output CoT, Chain-of-Draft (CoD) preserves the reasoning process
but condenses each reasoning step by inserting the “only keep a minimum draft for each thinking step,
with 5 words at most.” instruction.

TokenBudget (Han et al.,|2024)) is also a prompt-based method. Following TokenBudget, we prompt
the LLM in advance to estimate the difficulty of each question and determine the essential token
budget. During inference, we incorporate the token budget into the initial prompt by adding the
instruction, “Let’s think step by step and use fewer than [[Token Budget]] tokens”, guiding the LLM
to reduce unnecessary generation.

In contrast, baselines for the efficiency-sensitive scenario prioritize improving efficiency, even at the
cost of performance. Here are the details of these baselines:

NoCoT-FT (Yu et al.| 2024) is an SFT-based method. However, unlike previous SFT-based methods,
NoCoT-FT distills the ability from the reasoning model to the model that does not output any CoT,
by fine-tuning solely on the answer part from the reasoning model. Specifically, we discard the CoT
part in our training set and fine-tune the LLM only with the answer.

SelfTraining (Munkhbat et al.| 2025) is another SFT-based method. As proposed by SelfTraining,
we apply best-of-n sampling to the LLM to generate multiple answers for each question, then select
the shortest correct answer to fine-tune the LLM and reduce generation length. During sampling, we
also provide demonstrations as few-shots to instruct the LLM to generate the answer directly without
CoT. The sampled answers are then used to fine-tune the LLM to skip the CoT.

Coconut (Hao et al., 2024) is one of CCoT-based methods. According to Coconut, we apply
curriculum learning to help the LLM gradually learn Continous CoT (CCoT). Specifically, we fine-
tune the LLM for 3 epochs, gradually reducing the initial DCoT tokens to none as the epochs progress,
and replacing them with CCoT. Finally, we can internalize the DCoT into the CCoT.

CompressCoT (Cheng & Van Durme, |2024)) belongs to CCoT-based methods Following Compress-
CoT, we first identify important tokens in the discrete CoT using LLMLingua-2 (Pan et al.|[2024) and
compute the mid-layer hidden states of these tokens as the target. We then fine-tune the LLM with the
LoRA module to generate the CCoT similar to target. Simultaneously, we fine-tune another LoRA
module to predict the correct answer based on the CCoT. During inference, we first use the prior
LoRA module to generate the CCoT and then use the other LORA module to generate the answer
based on it.

CODI (Shen et al.| [2025b) is another CCoT-based methods. As proposed by CODI, we fine-tune the
LLM with two tasks: the teacher task, which generates the discrete CoT tokens and the final correct

17

Under review as a conference paper at ICLR 2026

answer, and the student task, which generates the CCoT and the correct answer. We then explicitly
align the last token hidden states from the DCoT and CCoT to achieve self-distillation from DCoT to
CCoT.

C.3 IMPLEMENTATION DETAILS OF OUR SynAdapt

We adopt the DeepSeek-R1-Distill-Qwen-7B (Guo et al.,|2025) as the LLM backbone and we also
evaluate the our method on other backbones in Section[4.4} For the Synthetic CCoT generation, we
fix the LLM backbone and make the randomly initialized synthetic CCoT to be trainable. The length
of synthetic CCoT is set as m = 512 and the we optimize it using the learning rate at le-3 for 32
steps. During optimization, we use a batch size of 16 to ensure high efficiency.

For Synthetic CCoT Enhanced Fine-tuning, we use LoRA (Hu et al.,|2022) to fine-tune the LLM
for learning CCoT. The lora rank is set to be 8 and the alpha value at 32. We use the Deepspeed
(Rasley et al.| 2020) framework to fine-tune the LLM. We fine-tine LLM for 3 epochs with a batch
size of 1 and a gradient accumulation step of 16. We employ the AdamW optimizer with a learning
rate set to 4e-5. The refinement steps of the draft is ¥ = 4 and the length of CCoT is also m = 512.
We also analyze these hyperparameters in Section [4.4]

For Adaptive Reasoning via CCoT, we firstly generate the CCoT with the length of 512 and use
the difficulty classifier to judge the difficulty score 7 based on question and CCoT. The score ranges
from O to 1, with scores below the threshold 7 considered as simple, and those above as hard. For
the efficiency-sensitive scenario, we set 7 = 1.0, treating all questions as simple. For the accuracy-
sensitive scenario, we set 7 = 0.5 to classify some questions as hard. We also try more 7 values,
as shown in Figure [3[a). During answer generation, we use greedy decoding and set the maximum
generation length to 32,768 tokens. The generation prompt and the prompt for re-thinking hard
questions are provided in Appendix [Hl All our training and evaluation experiments are conducted on
the H20 GPU.

D DETAILS OF DIFFICULTY CLASSIFIER EVALUATION

D.1 DATASET DETAILS

Here, we will introduce the details of the two datasets used to evaluate the hard question identification
performance. For the MATHS00 dataset (Lightman et al.|[2023)), we use the original difficulty labels,
which range from 1 to 5, with higher values indicating more difficult questions. Questions with a
difficulty level of 5 are considered hard, while the others are easy. The detailed statistics are shown in
Table[7l

For the MixD dataset, we combine questions from AIME25, AIME24, and AMC23 to form the
hard question set. Questions from the GSM8K dataset are considered easy. We random select
20% questions from GSM8K randomly selected to form the easy question set to avoid severe data
imbalance problem. We then mix both the hard and easy questions to create our MixD dataset. The
detailed statistics are shown in Table

Dataset | Total Cnt Number of Hard Number of Easy

MATHS00 500 134 366
MixD 363 100 263

Table 7: The statistics for our used test dataset used to evaluate hard question identification perfor-
mance.

D.2 BASELINES DETAILS

In this section, we provide a more detailed introduction to the baselines for hard question identification
as follows:

Seq_PPL (Mahaut et al.,2024)) uses sequence probability (PPL) to reflect the confidence of the LLM.
We compute the PPL of the LLM on each question, which is equivalent to the sequence probability

18

Under review as a conference paper at ICLR 2026

Question: Find the sum of all integer bases b>9 for which 17_b is a divisor of 97_b.
Correct Answer: 70

he number 17_b in base 10 is:
The number 97_b in base We need b+7 to divide 9b+7. as: 9b+7=k(b+7) for some integer k.
, we get: 9b+7=kb+7k=>(9- c{7(k - 1)9 - k} For b to be an integer, the denominator 9-k must divide the numerator 7(k-1). Therefore, we need to
divisors of 7, which are +1and +7.
, and we can substitute into the equation for b: b=7; = . Let’s check if 49+7=56 divides 9-49+7=448: 448+56=8. Since this is a valid

, and we substitute into the equation for b: b=7(10-1)/-1=7-9/-1=-63. A negative base is invalid, so this case does not provide a valid solution.

, and we substitute into the equation for b: (2-1)/7=7-1/7=1. Base 1is invalid, so this case does not provide a valid solution.

, and we substitute into the equation for b: b=7(16-1) 5-7=-15. [JABAIN, a negative base is invalid, so this case does not provide a valid solution.
, the only valid base b greater than 9 is b=49. Therefore, the sum of all such bases is: 49.

Disadvantages:

1
1
}
1
1
L}
1
1
}
1
1
L}
1 [CompressCoT (Cheng and Van Durme 2024)]:

I Response: Convert to base 10: 17_b in base 10 is 1*b+7=b+7. 97_b in base 10 is 9*b+7=9b+7. We need b+7 to divide 9b+7. This translates to the equation: 9b+7=k(b+7). Then
| 9b+7=kb+7k, implies (9-k)b=7(k-1). Thus, b=\\frac{7(k-1){9-k}. We find that k must be a divisor of 7, leading to possible values of k as 1, 7, -1, -7. Checking these values: k=1 gives
}

1

}

L}

1

1

}

1

1

L}

L}

1

1

1

1

b=7 (invalid since b>9); k=7 gives b=14; k=-1 gives b=-1 (invalid); k=-7 gives b=-14 (invalid). The only valid solution is b=14.
Disadvantages:

[CODI (Shen et al. 2025b)]:
Response: We begin by converting the numbers from base b to base 10.

Inbase b, 17_b is equal to b+7, and 97_b is equal to 9b+7. This gives us the base-10 equivalents for both numbers. Now, the problem asks us to find when 17_b divides 97_b, which
translates to the condition: b+7|9b+7. . [fBIGBISE, subtract 9(b+7) from 9b+7. Thus, the condition simplifies to b+7|-56:
We can now focus on finding the divisors of 56 he divisors of 56 are 1,2,4,7,8,14,28,56. Next, we must satisfy the condition that b+7>9,
since the problem specifies that b>9. These are 28 and 56, which correspond to b=21 and b=49. Now,
we simply add these two values of 21+49=70.

Therefore, we can confidently say that the final sum is . , confirms that the sum of all

integer bases where divides is indeed 70.

Disadvantages:

[SynAdapr):

Response: We convert to base 10: 17_b=b+7 and 97_b=9b+7. The divisibility condition b+7|9b+7 reduces to b+7|56 by subtracting 9(b+7). Considering b>9, the valid divisors are 28
and 56, yielding b=21 and 49. Their sum is 70.

Disadvantages:

Figure 4: An representative example of the generated output from our SynAdapt and other CCoT-
based baselines is provided. We highlight the crucial wrong steps that lead to incorrect answers
in red, and the correct reasoning steps in green. Redundant parts in the answer are marked with a
gray background. We also provide short analyses explaining the disadvantages or advantages of the
generated responses.

of the question. We treat those questions with high PPL are considered hard, while those with low
PPL are categorized as simple.

PromptLLM prompts the LLM to assess the difficulty of a question and predict
the essential token budget required for solving it. We also prompt the LLM to predict the token
budget and restrict the range to 128-32,768 tokens. Questions that require a high token budget are
considered hard, while those with a low token budget are classified as simple.

RouteLLM trains a hard question classifier using a BERT backbone. The classifier
assigns high scores to hard questions and routes them to stronger LLMs, such as GPT-4 |OpenAl
(2025)), while easier questions are processed by weaker LLMs, like Mixtral-8x7B [Jiang et al.[(2024).
Therefore, we directly use their released model weights El and classify those questions with high
scores as hard.

Probe_Q (Azaria & Mitchell, [2023)) trains a classifier based on the LLM’s hidden state to assess
truthfulness. Similarly, we provide the LLM with the question and train a classifier to evaluate
difficulty based on the last token’s hidden state from LLM. This approach is similar to ours, but it
does not leverage information from the CCoT for assessing question difficulty.

E CASE STUDIES

E.1 RESPONSE EXAMPLE FROM VARIOUS BASELINES

We provide a representative example to demonstrate the effectiveness of our SynAdapt by comparing
its generated response with those from other CCoT-based baselines, including Coconut, CompressCoT,
and CODI.

As shown in Figure[d] the response from Coconut contains numerous redundant parts, which primarily
serve communication or linguistic purposes, rather than contributing to the reasoning process needed
to derive the correct answer. Moreover, the answer generated is incorrect, highlighting that indirect

Zhttps://huggingface.co/routellm/bert_gpt4_augmented

19

Under review as a conference paper at ICLR 2026

training without explicit alignment with DCoT fails to effectively learn CCoT. CompressCoT
successfully generates a concise response without redundancy but still outputs the wrong answer.
This is because it aligns only with a subset of isolated, incoherent DCoT tokens, which fail to capture
the full reasoning process, resulting in performance degradation. For CODI, the generated response
provides the correct answer but retains redundant parts. This occurs because it applies alignment only
at the final position, limiting its ability to learn CCoT and produce concise output.

In contrast, our method generates both a concise and correct answer. This is due to our use of
synthetic CCoT as the fine alignment target and applying full alignment during CCoT fine-tuning.
These results strongly demonstrate the effectiveness of our method for efficient reasoning.

E.2 CCoOT FOR HARD QUESTION EXAMPLE

We provide an illustrative example jm———— == mmmmmm—mmm—m—— - == 1
. . Hard Question: Find the largest possible real part of (75 + 117i)z +—,— wherezisa 1
demonstrating that solely relying on !) complex number with |2]=4. ‘ .
CCoT is insufficient to solve hard ques- 1 Correct Answer: 540 !
tions. As shown in Figure[6] when the : I
LLM relies only on CCoT, it generates ! |
a concise but incorrect answer. It may 1 !
be because CCoT restricts the LLM’s | Rethinking via DCoT: I
1

: i

1 1

1 1

1 1

1 1

1 }

1 1

Only Relying on CCoT:

We start by noting that z can be written as... Simplifying each term... Thus, the expression becomes...

Now, converting the complex numbers to polar form... To maximize the real part, we need to e
maximize @, which occurs when @ = 0. Therefore, the maximum real part is 526.8. Converting this to

a fraction: \frac{2814){5}.

ability to verify reasoning steps, confin- bt e me 1y resk t down e B 165 \AFEs remerber hat o any comples mmber
. . . To find the real part, | should express each term... Recall that... So, the maximum value of the real
ing it to the incorrect answer. However, partis \rac(2814)(5). \nkn

. . , but | want to make sure | didn't skip anything... But let me think again..
when prompted to re-think the question, ..o that's corect...Alternatively,perhaps | can wrtethe expression ..
the LLM can rectify the previous mis-
take and derive the right answer. This
effectively demonstrates that compress-
ing DCoT into CCoT inevitably results Figure 5: An illustrative example of solving hard question
in information loss, limiting the model’s relying solely on CCoT or rethinking via DCoT. We high-
reflective ability and leading to incorrect light the crucial wrong steps that lead to incorrect answers
answers. in red, and the correct reasoning steps in green.

... But perhaps a better approach is to write... , using the
Cauchy-Schwarz inequality... ... 50, that must be the correct answer.\n\n

, let me also try to compute it using calculus... So, the maximum is indeed 540...
Thus, the largest possible real part of the given expression is:

E.3 INDISTINGUISHABLE HARD QUESTION EXAMPLE

We provide an illustrative example T Do =TT T T T T Tmmmmmmmmmmmmmm o .

showing how some hard questions are In quaternions, let i be the standard unit. Find the value of i10. Assess only by Easy

similar to Simple ones, making them dif- 'E)‘i—gr;putei’“ in quaternions, first note that i? =-1. Since the powers

ficult to distinguish. As seen in Figure | erigresensser - v amelly me g™ e Easy

[6l both the easy and hard questions are — ' -

very similar, both focusing on the qUALET- ! i mertuest s where g e mernions. e By @
CoT:

nions topic and are short in length. If
we only assess difficulty based on the
question itself, both would be catego-
rized as easy, leading to performance
degradation.

Hmm, quaternions. | remember ... So the multiplication isn't

commutative. That might complicate things. \n\n First, what does it

mean to raise one quaternion to the power of another ... \n\n But first,

let's recall ... \n\n Wait, but actually, the logarithm definition ... \n\n Wait,

but hold on. Let me verify ... \n\n But wait, | recall that exponentiation in Hard
non-commutative algebras ... \n\n Alternatively, maybe the answer is Assess by Q + CoT
different ... \n\n Looking up some references ... \n\n Alternatively, if | -

compute ... \n\n Therefore, after a thorough examination and multiple

approaches confirming the same result, | conclude that i/ = —k. The

However, when considering the CoT | fraienswers\boed-h). (IETR®S
process, there exist significant differ-

ences. For the easy question, the CoT Figure 6: An illustrative example of an easy question and
is short and easily leads to the correct the similar hard question, with their corresponding CoT
answer. In contrast, the hard question processes. We also present the identification results using
involves more reasoning steps and a only the question or both the question and CoT. The key
longer CoT. By incorporating both the differences from the CoT of the hard question, compared
CoT and the question, we can accu- to the easy question, are highlighted in red color.

rately identify these indistinguishable

hard questions. This highlights the value of reasoning information in identifying hard questions. This
is also why our difficulty classifier is build up on both the question and CCoT, which can effectively
utilize the information in CCoT.

20

Under review as a conference paper at ICLR 2026

F MORE EVALUATION OF SynAdapt’S GENERALIZATION

To further assess the generalization ability of our

SynAdapt, we extend the evaluation beyond the math- ~ Methods ‘ LiveCodeBench
ematical domain to more various domains, includ- | Pass@l 1 Len] RelGt
ing GPQA-Diamond (Rein et all 2024) for scien- Raw Model | 464 86428 1.00
. . . SynAdapt(t=0.5) 41.1 6689.8 1.14
tific question answering, HumanEval (Chen et al.,

2021)) and LiveCodeBench (Naman Jain, [2024) for ggfﬁ;‘r‘;qcﬁ %2'3 1930203'34 ggg
code generation. The results on GPQA-Diamond and copl 254 6890 687
HumanEval are shown in Table 4} while those on SynAdapi(t=1.0) 26.7 6585 7.5

LiveCodeBench are presented in Table[§]

. . . Table 8: Evaluation results of our method
As shown in Table 8] SynAdapt remains effective for .14 those CCoT-based methods on Live-
the LiveCodeBench benchmark. Under the accuracy- g 4eBenchNaman Jain (2024) for code gen-

sensitive setting with 7 = 0.5, our method achieves
comparable performance to the raw model while sub-
stantially reducing generation length, resulting in a Rel-G score of 1.14. Under the efficiency-sensitive
setting with 7 = 1.0, it outperforms the other existing CCoT-based methods and achieves the best
Rel-G score of 7.55. These results provide additional evidence that our method generalizes well to
those coding tasks, rather than being limited to the mathematical domain.

eration task.

G HYPERPARAMETER ANALYSIS

The Length of CCoT m. We analyze the hy- —
perparameter m in our method, which controls 80 122
the length of the CCoT. As shown in Figure e

95

. . . 130%, 9 +
[/(a), increasing m leads to higher accuracy as 0 E T 00 ’\/‘/‘\
well as longer generation length. This is mainly L te70 80
. 1530
because a longer CCoT contains more reason- > i

. . . S N s PP S o
ing steps, which benefits problem solving and RS ~» M e »
. . CCoT Length m CCoT Length m
improves accuracy. At the same time, longer (a). Average Accuracy and

CCoT also boosts the likelihood of model to Average Length (®)- Rel-G score

generate redundant content, such as repeated
verification steps, which simultaneously in-
creases the generation length.

Figure 7: The performance of our methods when
using different CCoT Length m. We report the
average results across five math benchmarks.

To further measure the trade off performance

between high accuracy and low generation length, we compute the Rel-G score to capture the actual
performance gain, as shown in Equation[9] As illustrated in Figure[7[b), initially increasing the CCoT
length m improves accuracy and leads to a higher Rel-G score. However, further increasing m causes
the model to generate excessive redundant content, resulting in a decline in the Rel-G score. Overall,
setting m = 512 yields the best Rel-G score, indicating the optimal balance between accuracy and
efficiency.

The Refining Iterations of CCoT k. We also 890

analyze the hyperparameter k£ in our method, ao, 95 -

which controls the refining iterations of CCoT. o 0 o5 TR
As shown in Figure[8{a), in the initial stage, in- \ Ry s °0 ¢
creasing k allows the CCoTs to progressively [o

refine potentially incorrect reasoning steps, en- S %
abhng the LLM to produce more accurate and Refining Iterations k Refining Iterations k
concise answers. As a result, accuracy increases (2). Average Accuracy and (b). Rel-G score

. . Average Length
while the generation length decreases. However, fe s

when £ is further increased beyond 4, redun- Fjgure 8: The performance of our methods when
dant refinement steps may confuse the LLM, ysing different refining iterations k for CCoT gen-
leading to longer generation lengths and a slight eration. We report the average results across five
decrease in accuracy. math benchmarks.

21

Under review as a conference paper at ICLR 2026

To further measure the accuracy-efficiency trade-off, we compute the Rel-G score, following Equation
[As shown in Figure[§[b), initially increasing k improves accuracy and reduces generation length,
resulting in a higher Rel-G score. However, when k exceeds 4, the increase in generation length and
slight decrease in accuracy lead to a lower Rel-G score. Therefore, setting k = 4 achieves the best
Rel-G score, indicating the optimal trade-off between accuracy and efficiency.

H USED PROMPT TEMPLATES

In this section, we present the prompts used in our method. For easy questions, we directly prompt
the LLM to generate an answer based on the CCoT, as shown in Figure 0] For hard questions, we
prompt the LLM to re-think and generate discrete CoT, condensing each reasoning step, as illustrated
in Figure

rE - T =-=T-T=-=-=-=-=-=-=-"=-==== |
< | begin_of sentence | >
Please reason step by step, and put your final answer within \\boxed{{}}.

I<| User | >
| [[INSERT USER QUESTION HERE]]

I | Assistant | >
think> [[INSERT CCoT HERE]] </think>

<
G e o o o o o o o e e e e o o S

Figure 9: The prompt used for directly generating answers based on the CCoT.

I < | begin of sentence | > K
| Think step by step, but only keep minimum draft for each thinking step,
with 5 words at most.

I Return the answer at the end of the response within \\boxed{{}}.

I< | User | >

I [[INSERT USER QUESTION HERE]]

< | Assistant | >
<think>

Figure 10: The prompt used for re-thinking hard questions via discrete CoT process while condensing
each CoT step.

22

	Introduction
	Related Work
	Methodology
	Training Stage
	Inference Stage

	Experiments
	Evaluation of Accuracy-Efficiency Trade-off
	Evaluation of Difficulty Classifier Performance
	Analysis of Training Efficiency
	Generalization Evaluation and Hyperparmeter analysis

	Conclusion
	Appendix Overview
	Details of Related Work
	Details of Accuracy-Efficiency Trade-off Evaluation
	Dataset Details
	Baselines Details
	Implementation Details of our SynAdapt

	Details of Difficulty Classifier Evaluation
	Dataset Details
	Baselines Details

	Case studies
	Response Example from Various Baselines
	CCoT for Hard Question Example
	Indistinguishable Hard Question Example

	More Evaluation of SynAdapt’s Generalization
	Hyperparameter Analysis
	Used Prompt Templates

