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ABSTRACT

Machine translation in a multi-language scenario requires large-scale parallel cor-
pora for every language pair. Unsupervised translation is challenging because
there is no explicit connection between languages, and the existing methods have
to rely on topological properties of the language representations. We introduce a
framework that leverages visual similarity to align multiple languages, using im-
ages as the bridge between them. We estimate the cross-modal alignment between
language and images, and use this estimate to guide the learning of cross-lingual
representations. Our language representations are trained jointly in one model
with a single stage. Experiments with fifty-two languages show that our method
outperforms prior work on unsupervised word-level and sentence-level translation
using retrieval.

1 INTRODUCTION

自転車
साइ�कल

bicycle

Figure 1: While each language repre-
sents a bicycle with a different word,
the underlying visual representations re-
mains consistent. A bicycle has simi-
lar appearance in the UK, France, Japan
and India. We leverage this natural
property to learn models of machine
translation across multiple languages
without paired training corpora.

Machine translation aims to learn a mapping between sen-
tences of different languages while also maintaining the
underlying semantics. In the last few years, sequence-
to-sequence models have emerged as remarkably power-
ful methods for this task, leading to widespread applica-
tions in robust language translation. However, sequence-
to-sequence models also require large data sets of parallel
corpora for learning, which is expensive to collect and of-
ten impractical for rare language pairs.

We propose to leverage the synchronization between lan-
guage and vision in order to learn models for machine
translation without parallel training corpora. Instead of
learning a direct mapping between languages, we present
a model that aligns them by first mapping through a vi-
sual representation. We show how vision creates a transi-
tive closure across modalities, which we use to establish
positive and negative pairs of sentences without supervi-
sion. Since the visual appearance of scenes and objects
will remain relatively stable between different spoken languages, vision acts as a “bridge” between
them. Our approach integrates these transitive relations into multi-modal contrastive learning.

In our experiments and visualizations we show that the transitive relations through vision provide
excellent self-supervision for learning neural machine translation. Although we train our approach
without paired language data, our approach is able to translate between 52 different languages better
than several baselines. While vision is necessary for our approach during learning, there is no
dependence on vision during inference. After learning the language representation, our approach
can translate both individual words and full sentences using retrieval.

The contributions of this paper are three-fold. First, we propose a method that leverages cross-
modal alignment between language and vision to train a multilingual translation system without
any parallel corpora. Second, we show that our method outperforms previous work by a significant
margin on both sentence and word translation, where we use retrieval to test translation. Finally, to
evaluate and analyze our approach, we release a federated multi-modal dataset spanning 52 different
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languages. Overall, our work shows that grounding language in vision helps developing language
processing tools that are robust across languages, even in cases where ground truth alignment across
languages is not available. Code, data, and pre-trained models will be released.

2 RELATED WORK

Our unsupervised joint visual and multilingual model builds on recent progress in both the natural
language processing and computer vision communities. We briefly summarize the prior work.

Unsupervised language translation has been studied as a word representation alignment problem
in Lample et al. (2018b), where the distribution of word embeddings for two unpaired languages is
aligned to minimize a statistical distance between them. Lample et al. (2018a); Artetxe et al. (2018);
Lample et al. (2018c); Lample & Conneau (2019) build on top of this idea, and train an encoder-
decoder structure to enforce cycle-consistency when translating from one language to another and
back to the first one. This method achieves strong unsupervised word translation results, but does
not scale beyond two languages. It also does not leverage visual information in learning.

Multi-language models are general language models that develop language-independent architec-
tures that work equally well for any language (Gerz et al., 2018). Lample & Conneau (2019); Con-
neau et al. (2020); Artetxe & Schwenk (2019); Devlin et al. (2019); Liu et al. (2020); Phang et al.
(2020) share the same token embeddings across different languages, showing that this improves lan-
guage modeling both for general downstream single-language NLP tasks and also for supervised
language translation across multiple languages. Lample & Conneau (2019); Conneau et al. (2020);
Artetxe & Schwenk (2019) use a shared Byte Pair Encoding (BPE), which we use in our work.
We loosely follow the architecture of Conneau et al. (2020) in that we train a transformer-based
(Vaswani et al., 2017) masked language model with BPE.

Vision as multi-modal bridge implies using vision as an interlingua between all languages. Using
a third language as a pivot to translate between pairs of languages without source-target paired cor-
pora has been studied for the past few years (e.g. Firat et al., 2016; Johnson et al., 2017; Garcia et al.,
2020). Harwath et al. (2018); Azuh et al. (2019) use vision for the same purpose, and they work
directly on the speech signal instead of text. Chen et al. (2018) use images to help translate between
languages in the text modality. Their model involves both generation and reinforcement learning,
which makes optimization difficult, and they do not generalize to more than two languages. Sig-
urdsson et al. (2020) also use vision as a pivot for unsupervised translation. However, our approach
works for multiple languages at once (instead of just two) and also obtains an explicit cross-lingual
alignment. We share a single word embedding and language model for all languages, and use dif-
ferent training strategies. Our experiments quantitatively compare the two approaches, showing that
our approach performs better both in word and sentence translation.

Other work views the input image as extra information for translation (e.g. Calixto & Liu, 2017; Su
et al., 2019), and we refer readers to Specia et al. (2016) for an extensive overview on this topic.
Instead of using images as a bridge, paired data between languages is used. There has also been
research on training multilingual language representations for downstream vision tasks, in general
leveraging visual-language correspondence, but without translation as a goal. Unlike this paper, they
make use of ground truth language pairs (Wehrmann et al., 2019; Gella et al., 2017; Kim et al., 2020;
Burns et al., 2020).

Translation by retrieval. We evaluate the representations using retrieval-based machine translation
(Baldwin & Tanaka, 2000; Liu et al., 2012), which is often used in the context of example-based ma-
chine translation (e.g. Brown, 1996; 2001; 1997; Cranias et al., 1994; El-Shishtawy & El-Sammak,
2014), analogy-based translation (e.g. Nagao, 1984; Kimura et al., 2014), or translation memories
(e.g. Chatzitheodorou, 2015; Dong et al., 2014; Wäschle & Riezler, 2015; Baldwin, 2001). While
there are also generative-based translation approaches, they are difficult to automatically evalu-
ate. There is generally no well-defined metric for what consists of a good generative translation
(Callison-Burch et al., 2006). Instead, we evaluate our approach using translation-by-retrieval, al-
lowing for rigorous experimental validation of the cross-lingual alignment in the representation.

State-of-the-art cross-lingual retrieval approaches rely on supervised language pairs, and range from
training the models in a standard contrastive learning setting (Chi et al., 2020) to more complex
combinations of the language pairs such as using cross-attention (Anonymous, 2021) or introducing
custom fusion layers (Fang et al., 2020). Our approach does not require supervised language pairs.
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Mees prillid
es ja must särk jõuab 

kaussi, vaadates kahte animeeritu
d 

tähemärki, m
is tantsivad televisioonis.

دلايملا ديع ةرجش ىلع ءاوضأ

Image Network

Text Network

Figure 2: Our model learns an aligned embedding space for language translation by leveraging a
transitive relation through vision. Cross-sentence similarity βij is estimated by the path through an
image collection. See Section 3 for details.

3 METHOD

We present an approach that learns to map words and sentences from one language to semantically
similar words and sentences from different languages, for a large number of languages simultane-
ously. Our approach does not require any paired data between languages, and instead only depends
on image-language pairs. Fig. 2 provides an overview of our framework.

3.1 SENTENCE EMBEDDING

Our approach learns an aligned embedding space for sentences across languages. Let zli ∈ RD be
the learned embedding of sentence i, obtained by processing the text through a language network
Θl. Moreover, let βij be the similarity between sentences zli and zlj , for example through the cosine
similarity. Our goal is to learn the parameters of the embedding z such that sentences with the same
meaning are mapped to similar positions in the embedding space despite coming from different
languages. After learning, we will have a sentence embedding zli that we can use for a variety of
tasks, such as retrieving or generating sentences in different languages.

We learn the parameters of the embedding space z by optimizing the contrastive learning problem:

Lt = −
∑
i

∑
j 6=i

αij log
exp(βij/τ)∑

k 6=i exp (βik/τ)
with βij = sim

(
zli, z

l
j

)
(1)

In contrastive learning, we need to define which pairs of examples should be close in the learned
embedding space (the positives), and which pairs of examples should not (the negatives). In the
above formulation, the scalar αij ∈ [0, 1] indicates this assignment. However, since we are in
an unsupervised translation setting, we do not have ground truth pairs. Our main idea, which we
introduce in the next section, is that we can use the visual modality to discover these pairs.

3.2 TRANSITIVE RELATIONS

Estimating the similarity for sentences of different languages is challenging without labels. Unsuper-
vised machine translation approaches typically rely on topological properties, such as distributional
alignment or back-translation (Lample et al., 2018b; Lample & Conneau, 2019). However, these
constraints provide a noisy gradient for learning, which makes large-scale optimization difficult.

We propose to take advantage of a transitive relation through the visual modality in order to estimate
the similarity in language space αij . Given a dataset of images and their corresponding captions,
we estimate both a cross-modal (sentence-image) similarity as well as a cross-image (image-image)
similarity. Let αx

ii be the cross-modal similarity, which indicates the alignment between image i and
its corresponding caption i. We also let αv

ij be the cross-image similarity, indicating the perceptual
similarity between image i and another image j. This provides the transitive relation as the product
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of similarities:

αij = f(αx
ii · αv

ij · αx
jj), where f(x) = max(0, x−m)/(1−m), (2)

and m is a margin that we set to m = 0.4, which prevents pairs with low similarity from being
used as positives. Note that αij = αji. The transitive similarity causes two sentences from different
languages to be similar if they appear in similar visual contexts.

Since both αx
ii ∈ [0, 1] and αv

ij ∈ [0, 1], the final similarity is in the same range, αij ∈ [0, 1].
Only when there is a strong alignment between an image and its caption, and there is also another
image with close perceptual similarity, will a transitive relation be formed. In realistic scenes, the
correspondence for some image and caption pairs may be difficult to establish in the presence of
noise, which our formulation handles by breaking the transitive relation. In other words, we only
consider paths with high total similarity as positives for the contrastive objective, and discard those
paths with low total similarity, since their sentences likely do not match.

3.3 LEARNING

In order to optimize Equation 1, we need to estimate αx
ii and αv

ij . We parameterize both with a
neural network, and we train them to directly estimate the similarity also with contrastive learning.

Visual Similarity: We jointly learn a visual feature space using contrastive learning (Chen et al.,
2020) in order to estimate αv

ij . For every image, we perform two random augmentations, resulting in
two different versions of the same image. These two transformed images are run through the image
network, along with the other N − 1 pairs (in a batch of N samples). This results in 2N feature
maps. For every pair (i, j) of images with representations zvi and zvj , we compute a contrastive loss,
where all the other 2(N − 1) images are the negatives. We use the loss function:

Lv = −
∑
ij

log
exp (αv

ij/τ)∑
k 6=i exp (αv

ik/τ)
where αv

ij = sim(zvi , z
v
j ). (3)

zvi represents the learned features for image i, obtained by processing the images through an image
network Θv . We augment images using random image cropping, random Gaussian blurring, and
random color distortions, following Chen et al. (2020).

Cross-Modal Similarity: We also need to estimate the similarity between images and their corre-
sponding captions αx

ii. The visual representation anchors inter-language alignment, and this sim-
ilarity constrains the sentence embedding for each language to share the same space as the image
embedding. We learn this similarity metric through the contrastive objective:

Lx = −
∑
i

(
log

exp (αx
ii/τ)∑

j exp (αx
ij/τ)

+ log
exp (αx

ii/τ)∑
j exp (αx

ji/τ)

)
with αx

ij = sim(zvi , z
l
j). (4)

Token Cloze: We finally also train the model with a token cloze task in order to make the language
representation contextual. We follow the same loss and objective as BERT (Devlin et al., 2019) over
the sentence input. We label this loss Lc.

Full Objective: The final objective we optimize is the combination of all four losses defined above:

min
Θ
Lt + λ1Lv + λ2Lx + λ3Lc (5)

where Θ are the neural network parameters, and λ are scalar hyper-parameters to the balance the
terms. Over the course of optimization, the model will be estimating an aligned multi-lingual repre-
sentation β jointly with the transitive similarity α. As learning progresses, αij will form soft positive
and negative pairs, which the model will use to learn the aligned multi-language representation. The
quality of the multi-language representation will depend on the quality of transitive alignments αij

our model discovers. However, since the contrastive objective relies on statistical patterns over a
large dataset, our approach is fairly robust to noise, which our experiments support.

3.4 REFINING WORD-LEVEL ALIGNMENT

Our approach learns a common embedding space between vision and sentences in multiple lan-
guages, which our experiments will show provides a robust representation for unsupervised ma-
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chine translation. This representation is aligned well at the sentence level. We can further refine the
representation by aligning them along words as well.

To obtain word-level alignment, we use the Procrustes algorithm (Schönemann, 1966) on the learned
word embeddings. We find a linear transformation from the word embeddings of one language to
the word embeddings of another language. To estimate the linear transformation, we follow standard
practice and identify the anchor points by finding the k = 5 mutual nearest neighbors between the
word embeddings across languages. We then proceed with the Procrustes approach from Taitelbaum
et al. (2019), which extends the original algorithm to more than two distributions. To translate words,
we then directly use the transformed word embeddings.

3.5 ARCHITECTURE

Our method uses a two-branch architecture, which extracts text and image features that share the
same semantic embedding space. We briefly describe the network architecture choices below. We
refer readers to the supplemental material for complete details.

Image network: To extract visual features, we apply a convolutional network over the images,
which we label Θv . We use a ResNet-18, initialized with ImageNet features (He et al., 2016; Deng
et al., 2009), and we add a prediction head after the last hidden layer of the ResNet.

Text network: We use a neural network to embed a sentence, which we label Θl. We use a single
encoder with shared word embeddings across all languages, which has been shown to scale well
to the multilingual setting (Artetxe & Schwenk, 2019; Conneau et al., 2020). All languages share
the same vocabulary created using Byte Pair Encoding (Sennrich et al., 2016), which improves
the alignment of embedding spaces across languages that share the same alphabet (Lample et al.,
2018a). We then use a transformer from Vaswani et al. (2017), shared by all the languages. To
produce outputs, we add a prediction head, and normalize the outputs so that ||z||2 = 1.

4 THE GLOBETROTTER DATASET

In order to train and evaluate our approach, we have collected a federated dataset of images and
captions that span 52 different languages. The full list of languages is in the footnote.1 We combined
three captioning datasets and translated them using Amazon Translate from Amazon Web Services.
We use captions and images from the Flickr30k (Young et al., 2014), MSCOCO (Lin et al., 2014)
and Conceptual Captions (Sharma et al., 2018) datasets. The language in the federated dataset is
diverse, covering both captions from human annotators and captions harvested from the web. The
dataset contains a total of 4.1M image-caption pairs, with an English sentence mean length of 10.4
words. We will publicly release this dataset.

We split our dataset into a train, validation, and testing set. We make the partition ensuring that
they each contain a disjoint set of images and sentences. We use 3.15M unique text-image pairs
for training, 787k for validation, and 78.7k for testing. The training and validation splits contain
samples corresponding to all languages, and each image only has one language associated with it.
The testing set is translated to all languages (the same samples), to have ground truth alignment.

5 EXPERIMENTAL EVALUATION

Our experiments analyze the language translation capabilities of our model, and quantify the impact
of vision on the learning process. We call our model Globetrotter.

1Afrikaans, Albanian, Amharic, Arabic, Azerbaijani, Bengali, Bosnian, Bulgarian, Chinese, Croatian,
Czech, Danish, Dari, Dutch, English, Estonian, Finnish, French, Georgian, German, Greek, Hausa, Hebrew,
Hindi, Hungarian, Indoniesian, Italian, Japanese, Korean, Latvian, Malay, Norwegian, Persian, Pashto, Pol-
ish, Portuguese, Romanian, Russian, Serbian, Slovak, Slovenian, Somali, Spanish, Swahili, Swedish, Tagalog,
Tamil, Thai, Turkish, Ukrainian, Urdu, Vietnamese.
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Table 1

Supervised

Chance

Text Only

Lample & 
Conneau (2019)

Sigurdsson et al. 
(2019)

without Lx

without Lv

without Lt

without Lc

Full Model

Supervised
Chance

Text Only
Lample & Conneau (2019)

Sigurdsson et al. (2019)
without Lx
without Lv
without Lt
without Lc
Full Model

Percentage of Retrieved Positives

0% 20% 40% 60% 80% 100%

68.4%
63.3%

9.5%
9.0%

92.5%

72.3%

56.7%
15.6%
8.9%
0.5%

Globetrotter

(ours)

1

Figure 3: We evaluate our transla-
tions at the sentence-level. Our ap-
proach outperforms several unsuper-
vised translation baselines. While
unsupervised approaches are still no
match for fully supervised methods,
our approach uses significantly less
supervision.

Table 1

Human 
translations

Machine 
translations

Chance 0.0045 0

Text Only 0.119 0.0061

Lample & 
Conneau (2019)

0.152 0.01

Sigurdsson et al. 
(2019)

0.51 0.04

Globetrotter 
(Ours)

0.708 0.026

Sentence-level 
Supervision

0.031 0.911

Chance
Text Only

Lample & Conneau (2019)
Sigurdsson et al. (2019)

Globetrotter (Ours)
Sentence-level Supervision

Percentage of Retrieved Positives

0% 20% 40% 60% 80% 100%

+3.1%91.1%
+2.6%

+4.0%
+1.0%

+0.6%

70.8%
51%
15.2%
11.9%
0.45%0.5%

+3.1%
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Lample & Conneau (2019)

Sigurdsson et al. (2019)
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+4.0%
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+0.6%
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15.2%
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0.45%
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Machine-generated test set
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Text Only

Lample & Conneau (2019)
Sigurdsson et al. (2019)

Globetrotter (Ours)
Sentence-level Supervision

Percentage of Retrieved Positives

0% 100% 200% 300% 400% 500%

1

Figure 4: We evaluate our transla-
tions at the sentence-level with a
human-generated test set. Fluent
speakers for 11 of the languages
manually annotated translations in
the test set. Our approach outper-
forms several unsupervised transla-
tion baselines on this test set as well.

5.1 BASELINES

Sigurdsson et al. (2020): The closest approach to ours is Sigurdsson et al. (2020), which is a
state-of-the-art approach for unsupervised word translation using cross-modal information. Their
original model is trained to translate between just two languages, and our experiments work with
fifty languages. We therefore extended their method to multiple languages by creating a different
word embedding and adapting layer for each language, which we use as the baseline. We use the
same vocabulary as in our method, but train separate word embeddings for different languages.

Lample & Conneau (2019): We also compare to the state-of-the-art unsupervised translation ap-
proach that does not use visual information. We experimented with several baselines, and chose the
one that performs the best. This baseline uses a cycle-consistency (or back-translation) loss between
pairs of languages. We train their method on our dataset, for all M languages simultaneously. We
originally experimented with adding cycle-consistency constraints for all M2 language pairs, but
this resulted in poor performance. We randomly select a total of 5M pairs, where each language
appears five times as the source and five times as the target. We also experimented with Lample
et al. (2018b), but this performed worse than Lample & Conneau (2019).

Text-only model: To quantify the impact of vision, we also train a version of our model where all
images and image-related losses are removed, as in Devlin et al. (2019). This model is capable of
learning some basic cross-lingual concepts by having different languages using the same tokens.

Source: Spanish Target: Russian Target: Hebrew

Una vista aérea durante su remodelación Вид на город с бара на крыше גג ממרפסת Pנו
An aerial view during its redevelopment View of the city from rooftop bar View from a roof terrace

Actor asiste al estreno de los angeles celebrado Актер посещает премьеру сезона לבכורה מגיע Mאד
Actor attends the los angeles premiere held Actor attends the season premiere Person arrives at the premiere

Ilustración de la niña de dibujos animados en
color negro sobre el fondo blanco

Hарисованный эскиз с мягким классиче-
ским диваном и подушками на белом фоне

נערות של קבוצה של קריקטורה

Illustration of cartoon girl in black color on the
white background

Hand drawn sketch with soft classic couch and pil-
lows on the white background

Cartoon of a group of teenage girls

Table 1: We show some examples of sentence-level translations obtained by our approach. English
is only shown for visualization purposes.
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Table 1

All Vocab with P Disjoint Vocab with P

Chance 0.27 0 0.27 0

Text Only 25.46 2 11.1 2.56

Lample & 
Conneau (2019)

27.67 0.47 13.5 2.32

Sigurdsson et al. 
(2019)

14.77 11.38 17.15 10.19

Globetrotter 
(Ours)

44.05 2.84 26.20 6.87

Supervised 39.57 1.98 18.24 8.71

All Vocabulary
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Text Only

Lample & Conneau (2019)
Sigurdsson et al. (2019)

Globetrotter (Ours)
Sentence-level Supervision
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Figure 5: We also evaluate word-level translation. Although our approach is trained on sentence-
level similarity, the word embeddings also learn to provide strong word-level translation. The results
can be further refined with Procrustes.

Source: Spanish (English trans.) Target: Russian (English trans.) Target: Hebrew (English trans.)

chica (girl) девушка (girl) אישה (wife)
tenis (tennis) тенни (prefix for tennis) טניס (tennis)
personas (people) людей (people) Mאנשי (people)
aire (air) воздух (air) רקע (background)
campo (field) поле (field) בשדה (in the field)
béisbol (baseball) бейсбол (baseball) בייסבול (baseball)
espect (prefix for show) шоу (show) אירוע (event)
motocic (prefix for motorcycle) мотоцик (мотоцик is motorcycle) Nאופ אופנוע) is motorcycle)
camion (truck) автобус (bus) ברחוב (in the street)
sombrero (hat) костюм (suit) ולצה חולצה) is shirt)
hombre (man) жчина (мужчина is man) Mאד (man)
mientras (while) когда (when) לאחר (after the)
par (two, or prefix for couple) пара (couple) השני (the second)
calle (street) улица (the outside) ברחוב (in the street)
camino (path) пляже (beach) Kדר (path)

Table 2: We show examples of Spanish-Russian and Spanish-Hebrew word-level translations.

Fully Supervised: To understand the gap between unsupervised and supervised approaches, we
train our method with paired language corpora. We use our same framework, except we set the
values of α to 1 for paired sentences, and 0 for unpaired sentences.

Common Evaluation Setup: Throughout our experiments, we adopt a common evaluation setup to
evaluate all models. We train all models for 200 epochs and select the best model on the held-out
validation set. In all cases, vision is not used during testing.

5.2 SENTENCE-LEVEL TRANSLATION

We evaluate sentence translation using held-out data that contains a set of sentences translated to all
languages. We produce translations by retrieving the nearest examples given a query. From the test
set, we randomly select 200 captions, for all M languages, with a total of 200M sentences. Each
one of these sentences is used as a query during test, and it has M − 1 positives (same sentence in
different languages). The metric we report is the percentage of positives the model ranks in the top
M − 1, among all the 200M − 1 possible options. In order to rank target sentences, we compute the
similarity between them and the query sentence, and rank them according to this value. We show
results in Fig. 3. Our method outperforms all baselines by a significant margin, underscoring the
utility of transitive relations across modalities.

Fig. 3 also reports ablations of our framework when not training with each one of the four losses
in Eq. 5. Training without losses Lv (Eq. 3) or Lx (Eq. 4) implies breaking the transitive closure
represented in Fig. 2, which results in a drastic decrease in performance. Lt (Eq. 1) is the loss that
makes the cross-lingual alignment explicit, but importantly it is not required to close the transitive
relation through the visual modality. Training without it represents a considerable drop in accuracy,
but the results are still better than baselines. Finally, Lc also contributes to the final performance,
consistently with prior work (Lample & Conneau, 2019; Liu et al., 2020).
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ชายคนหนึ�งในชดุวา่ยนํ�าขี�
คลื�นกบักระดานโตค้ลื�น. 

(a man in a wetsuit 
riding a wave with 
a surfboard )

바다에서 파도의 상
단에 서핑 보드를 타
고 남자.. 

(A man riding a 
surfboard on top of 
a wave in the ocean)

0.67 0.760.70

0.94

a)

ةبرع عم بوكر راطق كرحم
راسملا لفسأ ةيفاضإ  .. 

(A train engine riding 
with an extra cart 
down a track)

एक �ेन एक पुल के नीचे जा 
रहा �ैक पर एक �ेन.. 

(A train on a train track 
going under a bridge)

0.81 0.640.72
b)

je polnjeni medved, 
ki ima z drevesa 
(there is a stuffed 
bear that is coming 
from a tree )

Grupa ljudi leti zmajeve na 
pješčanoj plaži. 

(A group of people flying 
kites on a sandy beach)

0.05 0.910.85

0.19

d)

an dawo da babur din da 
aka sace daga gidan mutum, 
in ji 'yan sanda. 

(a stolen motorcycle was 
recovered from the home 
of person, police said)

(signs indicate where 
runners should position
 themselves at the start)

0.78 0.770.06

0.22

c)

םיכירצ םיצר ןכיה םיעיבצמ םינמיס
תליחתב םמצע תא םקמל   

0.91

Figure 6: Qualitative results. We show two examples of positive matches (top) and two examples of
negative matches (bottom). We refer the reader to Section 5.4 for further analysis.

We show some examples of our sentence translations in Tab. 1. Our approach works on all language
pairs and we simply select a few for visualization purposes. These examples show how our method
aligns languages following their visual semantics.

Our method does not rely on artifacts from machine-generated translations and generalizes to
human-translated data. In order to prove it, we additionally collect a test set of 200 English captions
translated by fluent speakers to 11 different languages, for a total of 2200 human-generated trans-
lations.2 We report results in Fig. 4, where we show the accuracy values both for human-translated
and machine-translated texts. We use the same metric as before, now for M = 11. Our approach
outperforms the unsupervised baselines on the human-generated test as well. While all methods ex-
perience a small decrease in performance when tested in human-translated data, the small difference
between the results in the two test sets validates the quality of the evaluation.

5.3 WORD-LEVEL TRANSLATION

Following the evaluation in Sigurdsson et al. (2020), we also evaluate the word-level translation.
Since we lack ground truth translation at this level, we obtain ground truth for evaluation by auto-
matically matching words across languages. For every language pair, we find which words co-occur
frequently in a sentence between the two languages. See Appendix B.2. Then we test each pair of
languages separately. For every translation, we evaluate retrieval in both directions. Fig. 5 reports
the average Recall@10 for all pairs of translations and all pairs of languages. In the right column,
we exclude from the list of pairs those where the token is the same in the two languages. Even the
model trained with text only – which performs poorly on sentence-level translation – obtains strong
results, highlighting the importance of using a shared vocabulary. We show some examples of word
translation in Tab. 2.

5.4 ANALYSIS

Visualizing transitive matches: Fig. 6 shows examples of estimated transitive similarity values.
We show predicted αv (inter-image similarity), αx (cross-modal similarity), and β (inter-sentence
similarity). Fig. 6a and 6b show examples where both the similarity between images and the cross-
modal similarity are high, resulting in a large α. If these pairs were to be used for training, they
would be positives. The model correctly predicts a high β value between the two texts. Fig. 6c
demonstrates the importance of using αx in addition to αv to create language pairs. In this case, the
visual content between the two images corresponds, and the model detects that correctly with a high
αv value. However, because web data is not always clean, the caption in the left does not correspond
to the visual content. This is correctly captured in the small αx value. If we were using this pair for

2The 11 languages with ground-truth human translations are: Dutch, French, Hebrew, Hindi, Italian, Ko-
rean, Polish, Portuguese, Russian, Spanish, Turkish.
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Source: Spanish Target: Russian Target: Hebrew

Si escuchas, el silencio de una persona te ayu-
dará a entender de maneras que las palabras
simplemente no pueden

Праздник, написанный на листе бумаги,
на деревянном фоне

Mהמספדיי אח לי שנלל בגתת זה Kאות Kאחתו Mא

If you listen, a person’s silence will help you to
understand in ways that words simply can not

Holiday written on piece of paper, on a wood
background

If I cut you off it’s because you gave me the
scissors

Un vistazo a un nuevo concepto Заднее изображение модели автомобиля
в пальто

לחפש טכנולוגיות כמה הנה חדשה? מכונית רכישת

A glimpse at new concept Rear image of automobile model in coat Purchasing a new car? here are some tech-
nologies to look out for

Un tabby gris manchado se encuentra entre
plantas verdes.

Кролик ждет на переднем плане для
обычной проверки

בשדה Mאדו שועל

A spotted gray tabby sits among green plants A rabbit waits in the foreground for a routine
check

Red fox in a field

Table 3: We illustrate some failure cases. Please see the end of Section 5.4 for discussion.
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Target language

Hungarian
Finnish

Estonian
Latvian
Arabic

Amharic
Hebrew
Persian

Dari
Pashto

Spanish
Portuguese

French
Italian

Romanian
Dutch

Afrikaans
German
Danish

Swedish
Norwegian

Polish
Czech
Slovak

Slovenian
Bulgarian

Serbian
Bosnian
Croatian

Ukrainian
Russian

Albanian
Greek

Georgian
Azerbaijani

Turkish
Hausa
Somali
Swahili

Vietnamese
Thai

Hindi
Urdu

Bengali
Tamil

Malay
Indonesian

Tagalog
Korean

Japanese

Qu
er

y 
la

ng
ua

ge

Figure 7: We show sentence-level
translation accuracy by query-target
language pair. In the figure, the
languages are sorted by family (Ro-
mance, Baltic, etc.). The block-
diagonal structure shows that lan-
guages from the same family are
easier to translate between. We also
find that language isolates in our
dataset perform worse overall (e.g.
Tamil, the only Dravidian language).

training, it would be considered a negative example despite significant visual similarity. Thus, the
misalignment noise is not propagated to the cross-lingual loss. Finally, Fig. 6d shows an example
where both sentences accurately describe their corresponding image, but the images do not match.
As expected, this would result in a negative pair.

Failure cases: We show three prototypical examples of failure cases in Tab. 3. In the first example,
the caption is not related to any visual concept, causing our model to translate it incorrectly. The
second example shows how some words are related to incorrect concepts due to spurious correlations
in the training set. In this specific case, the phrase “new concept” is strongly associated to cars, since
it appears in training in the context of “concept cars”, i.e. vehicles from car companies to explore
new designs. Therefore, the model retrieves sentences referring to cars, even though they do not
have any relation to the phrase “new concept”. Finally, the third failure case shows a sentence with
a new word (“tabby”), where the model is overreliant on context to translate instead.

Translation difficulty by language: We itemize the performance of sentence-level translation by
language in Fig. 7. Languages from the same family are often easier to translate between. The most
difficult language is Tamil, the only Dravidian language in our dataset.

6 CONCLUSION

Leveraging a transitive relation between language and vision, our experiments show our framework
learns a strong representation for both sentence-level and word-level machine translation without
parallel corpora. We believe vision will continue to be valuable for learning robust language models.
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APPENDIX

We divide the appendix in two sections. In Section A we show more results, and in Section B we
provide more information about the implementation of our method.

A ADDITIONAL RESULTS

A.1 FEATURE GENERALIZATION

Training a language model, as opposed to a text representation only designed for image retrieval,
has the crucial advantage that it can be finetuned to perform downstream NLP tasks. In this work we
are interested in evaluating how well the representations generalize across languages, after training
on a downstream task. We evaluate our model on sentence correspondence: we split sentences in
two, and half of the times we swap the second half of the sentences with other sentences of the same
language. The model has to determine whether or not a sentence is coherent and the beginning of the
sentence corresponds to the end of the sentence. We control for uppercase, word breaks, length of
sentences etc. so that the model cannot find an easy shortcut (cheat), and has to rely on the semantic
and syntactic structure of the sentence. We show examples of the test in Tab. 4 for English.

We train all the models for one epoch on half of the languages in the testing split (first half in
alphabetical order), and test on both held-out samples from that half, and on the languages from
the other half (new languages the sentence correspondence downstream task has not seen). We
train a single transformer layer on top of our representation, with one head. For Sigurdsson et al.
(2020), we do not apply the max-pooling over words in order to have a representation for each word.
We show results on Tab. 5. The results show that methods trained with language models are much
better at performing language tasks. It also shows that our method, trained with alignment, not only
performs better on the languages the downstream task has been trained on, but it also generalizes
better to other languages the sentence correspondence task has never seen, indicating that the model
has a very aligned representation across languages. The relative decrease in accuracy is computed
as the percentage decrease of the difference between the accuracy and the chance accuracy.

A.2 ADAPTATION TO A NEW LANGUAGE

We test how well our framework can adapt to incoming languages. For this purpose, we test on
English and Chinese (separately), which were held out during training. To do so, we precompute
features for images and texts from the languages we used during training, and finetune the model
for the new language using the same losses as before. We train for one epoch.

After finetuning for English and Chinese, we repeat the same experiments performed for the other
languages, showing that our system is able to adapt to new languages without losing the multilingual
alignment. See Tab. 6 for translation results, and Tab. 7 for sentence correspondence results. For
the sentence correspondence test, we use the head we trained before (without finetuning on the new
languages).

A.3 MORE RESULTS ON TRANSLATION DIFFICULTY PER LANGUAGE

Similarly to Fig. 7, we show in Fig. 8 the word translation accuracy matrix for every pair of lan-
guages. As expected, languages that share an important part of their vocabulary are the ones with
highest similarity scores. Specifically, there is a very high similarity between Bosnian, Croatian and

Sentence Corresponds
A piece of cake sitting next to pastries on a white plate with red and yellow sauce Yes
Seamless pattern with white bugs on a black background Yes
A big tower with a big tv genre and a common language No
A hand holding a smartphone with of a picnic by a lake No

Table 4: Sentence correspondence task examples. See Appendix A.1.
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Serbian, since the three of them are standardized varieties of the Serbo-Croatian language. Also, In-
donesian is very close to Malay, as the former is a standardized variety of the latter. A final example
is the Czech and Slovak pair: the two of them are languages from the Czech–Slovak group. This
shows the importance of cognates across languages. We can find similar patterns for languages that
are not as close, but that share the same family or alphabet.
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Figure 8: Word-level similarity across languages. See Appendix A.3 for more information.

We also show in Fig. 9 the sentence-level translation values from Fig. 7, but now we plot A − AT .
Instead of illustrating which language pairs are close, or are easier to work with, it shows which
language pairs are asymmetric in the difficulty of the translation. Rarer languages —e.g. languages
that are far from the others in the linguistic tree such as Somali, Tamil or Hindi— are easier to
translate from than to translate to.

Seen accuracy (%) Unseen accuracy (%) Relative decrease (%)
Chance 50 50 -
Text only 71.54 64.94 30.64
Lample & Conneau (2019) 72.41 68.22 18.70
Sigurdsson et al. (2020) 53.25 52.89 11.07
Globetrotter (Ours) 75.95 74.54 5.43
Supervised 75.64 68.73 26.95

Table 5: Sentence correspondence results. See Appendix A.1.
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English retrieved positives (%) Chinese retrieved positives (%)
Chance 0.48 0.48
Text only 19.27 12.98
Sigurdsson et al. (2020) 59.18 37.96
Globetrotter (Ours) 75.67 62.81
Supervised 94.87 92.77

Table 6: Sentence translation results for finetuning. See Appendix A.2.

English accuracy (%) Chinese accuracy (%)
Chance 50 50
Text only 65.97 55.75
Sigurdsson et al. (2020) 50.2 50.5
Globetrotter (Ours) 73.27 67.17
Supervised 69.17 62.14

Table 7: Sentence correspondence results for finetuning. See Appendix A.2.

A.4 CLUSTERING IN THE REPRESENTATION SPACE

In this experiment, we show how differently the representation space is clustered when we train
with and without visual alignment. We extract features for the test set examples both for the full
model and the text-only model, and cluster these features using k-means, with k = 50 clusters. In
Fig. 10 we show three sentences belonging to each one of the first three clusters (the selection of
both the sentences and the clusters is arbitrary). When training with visual alignment the clusters
have a semantic meaning, and when training without it the clusters are language-specific, proving
that cross-modal alignment is necessary to obtain good semantic representations.

A.5 GENERATED TRANSLATIONS

The learned representations are not only good to do translation by retrieval, but also to generate
translations. In order to do so, we use a GPT-2 decoder (small version) from Radford et al. (2019),
pretrained on English. Next, we finetune it on English sentences from our dataset, and after that we
finetune it yet again but conditioning it on feature vectors from the English finetuned model from
Appendix A.2. To do this we use an extra linear layer at the input, and we concatenate the results
with the input word embeddings. After that, we obtain a GPT-2 model that generates sentences in
English based on the input representation. We then test it for translation by inputting representations
obtained from other languages, and generating English translations for them. The sentences we
used in the test were not used for any of the GPT-2 finetuning stages. We show results in Fig. 11.
We selected the first 10 translations that were generated, without any cherry-picking. Interestingly,
while our framework is not able to do an accurate literal translation, it does base the translation on
the contextual knowledge provided by vision.

B IMPLEMENTATION DETAILS

B.1 TRAINING AND ARCHITECTURE DETAILS

We train a transformer network with 4 attention heads and M = 4 hidden layers, with a hidden size
of d = 512. The size of the embeddings at the output of the heads (where the contrastive losses are
computed) is D = 128. We use a batch size of 800. We set all the λ values in Eq 5 to λ = 0.2. We
train with an Adam optimizer and a learning rate of 1e− 4.

As mentioned in Section 3.5, we normalize the feature values z so that ||z||2 = 1. Then the similarity
value is computed with a dot product, resulting in the cosine similarity. After that, we scale the value
so that the range of the similarity is in [0, 1], instead of [−1, 1].
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Figure 9: Asymmetry in the direction of the sentence-level translation. See Appendix A.3.

Cluster 1: Savannah animals
(Arabic): يکاخ ريسم هي نيياپ هنکيم هاگن هگيد رخروگ هي هب هراد هک رخروگ هي
(Croatian): popodne provedeno igrajući se sa slonovima
(Georgian): ფართო გასროლა, ჟირაფები სავანას გავლით

Cluster 2: Wedding
(Bengali):উইন্েডােত নববধূ এবং বর
(Slovenian): nevesta v meri obleko, ki ima roza šopek
(Urdu): ود ےنانب وہ چس باوخ ند ےک یداش یک پآ صخش !

Cluster 3: Bicycle/Motorcycle
(Swedish): en cykel kastad ner i sanden på en strand.
(Japanese): 砂地の隣にモーターバイクが駐車しています。
(Tamil): உட�பயி�சி ைப� மீ� ெப�.
.

Cluster 1: French
un grand éléphant se tient près d'une clôture
motif circulaire sur fond rouge
homme silhouette à la plage

Cluster 3: Greek
ποταμός είναι ένα δημοφιλές σημείο για κανό.
παλιά πόρτα σε ένα ξεχασμένο κήπο
πράσινα ψάρια στο γύρο ενυδρείο.

Cluster 2: Hindi
 हाथ का एक सेट - िडजाइन के िलए �यारा फल ख�चा.
 एक मॉडल घटना के दौरान फैशन शो म� रनवे चलता 
 एक पतली परत िप�ा ितमाही टुकड़� म� िवभािजत।

Clusters in full model Clusters in text-only model

Figure 10: Clustering in the representation space. When trained without visual alignment the clusters
are language-specific, and when trained with visual correspondence the clusters have a semantic
meaning.

B.2 GROUND TRUTH FOR WORD TRANSLATION

In order to generate the ground truth translations at the token level, we use the split of the dataset that
is translated to all the languages. We then create ground truth token translations for every language
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(Russian) кошка отдыхает на обочине в солнечный летний день
(cat resting on the curb in sunny summer day)

(German) Hardrock-Künstler treten während des Musikfestivals auf
(hard rock artists perform during music festival)

(Croatian) Nekoliko snowboardera koji su poletjeli niz snijeg prekriveno brdo. 
(A few snowboarders taking off down a snow covered hill.)

(Arabic)   ءادوس ةيفلخ ىلع ةيدقنلا قارولأا
(banknotes on a black background)

(German) Porträt auf dem blauen Himmel Hintergrund
(portrait on the blue sky background)

(Georgian) დამატებითი ფოტო ქონების ჩამონათვალი	
(additional photo for property listing)

(Swedish) utsikt över sjön från rutten
(view over lake from the route)

(Hungarian) légi kilátás a strand a legtöbb fehér és tiszta homok
(aerial view of the beach with the most white and clean sand)

(Croatian) šetnja po kiši.
(a walk in the rain .)

(Afrikaans) akteur woon die spesiale geleentheid by
(actor attends the special event)

cat lying on the grass

artist performs on stage at festival.

some people skiing in the snow

silver coin on the black background

bald eagle on the green background

photo of the front porch

picture of the beach on a sunny day

photo of the mountain lake in winter

photo of the rain : walking along the streets

some person attends los angeles premiere

Original sentence Generated English translation

Figure 11: Translation by generation. See Appendix A.5 for more information.

pair separately. In order to do that, we follow the tf-idf algorithm. We exploit the fact that we
have alignments of languages at the group-of-words (sentence) level. The idea is that if the word
“car” appears in an English sentence every time that the word “voiture” (car in French) appears in
its French translation, they probably mean the same. In the following explanation, assume we are
looking for the translation of a specific token tAi from language A into some token tBj from language
B. We just redefine the concept of “document” in the classical tf-idf algorithm to be the collection
of all the words (with repetition) in language B that appear in the same (translated) sentence as tAi .
We call this collection (document) d.

First, we create a count of tokens in language B that appear in the document d, and compute the
term frequency (tf) using this count:

tfj,d =
fj,d∑

j′∈d fj′,d
, (6)

where fj,d is the count of the token tBj in a document d. Second, we compute the inverse document
frequency, that takes into account how usual a token is in general, for all D documents:

idfj = log
|D|

|d ∈ D : tBj ∈ d|
. (7)

Multiplying the tf and idf terms we get a value for each (i, j) pairs of tokens (the value is not
symmetric). We store tokens tAi and tBj as ground truth translation if and only if tBj is in the top 5
for the tf-idf value of (i, j), for all j, and tAi is in the top 5 for the tf-idf value of (j, i), for all i.

The following are some examples of translations we obtain between Spanish and English: (electr,
electr), (fotograf, ograph), (ción, ction), (grande, lar), (atas, jam), (pare, couple), (decor, decor),
(ventana, window), (deportivo, team), (1950, 1950), (form, form), (30, 30), (casa, hom), (lave, key),
(1960, 1960), (del, the), (libro, ok), (kara, kara), (ola, surfer), (fan, fan), (viol, viol), (%, %), (dar,
standard), (segundo, sec), (equipo, sports), (rojo, red), (árbol, tree), (hierba, gras), (durante, dur),
(bron, ze), (mani, demonstr), (pequeño, sm), (tı́, typ), (turı́stica, attra), (corre, run), (mus, muse),
(atrac, tour), (baño, bat), (mam, mom), (una, on), (element, element), (ijo, son), (ant, ol), (mural,
mural), (chocola, chocola), (iste, sad), (cinta, bon), (carro, cart), (edif, bu), (planta, plant), (óc,
broccoli), (prim, st), (camina, runway), (cerca, close), (pop, artist), (nacional, nation), (ustr, alian),
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(vest, dress), (motocic, motorc), (perro, dog), (largo, ong), (+, +), (ates, tom), (fram, rasp), (camina,
wal), (inta, inta).

B.3 TEXT NETWORK DETAILS

The input to the text network is a sequence of tokens {[SEQ], w1, . . . , wi} that represent a sentence
in any language (Devlin et al., 2019). Before inputting tokens to the transformer, we encode them
with a fixed-length vector representation. To embed input tokens, we use a V × d word embedding
matrix φw, where V is the size of the vocabulary considered by the tokenizer. We use V = 30, 000.
We augment the input encoding with positional information (word index), translating the encoding
by a learned vector: φtxt(wi) = φTwwi + φpos(wi) where φpos encodes the word position of wi.

We then input the augmented tokens to the transformer. A transformer block (Vaswani et al., 2017)
consists of a multi-headed self-attention layer followed by a linear layer, that outputs a hidden repre-
sentation for every token in the input sequence. These transformer blocks are concatenated in series
to get deeper representations. Let Hm ∈ Rd×j be the d dimensional hidden vectors at layer m.
The transformer first computes vectors for queries Q = Wm

q H
m, keys K = Wm

k H
m, and values

V = W t
vH

m where each W∗ ∈ Rd×d is a matrix of learned parameters. Using these queries, keys,
and values, the transformer computes the next layer representation by attending to all elements in
the previous layer:

Hm+1 = SV where S = softmax
(
QKT

√
d

)
. (8)

In practice, the transformer uses multi-head attention, which repeats Equation 8 once for each head,
and concatenates the results. The network produces a final representation {hM[SEQ], h

M
1 . . . , hMi } for

a stack of M transformer blocks.

As mentioned in Section 3.5, we also add a prediction head. This head takes as input the final hidden
representation for the [SEQ] token, hM[SEQ].

B.4 DATASET DETAILS

To collect the dataset, we used captions from the Flickr30k (Young et al., 2014), MSCOCO (Lin
et al., 2014) and Conceptual Captions (Sharma et al., 2018) datasets. Flickr30k and MSCOCO are
image captioning datasets that have been carefully curated and annotated in a controlled setting,
so the text descriptions are accurate and thorough. However, most of the images in our datasets
come from Conceptual Captions, which consists of captions harvested from the web, so the visual-
language alignment is more noisy.

We randomly split each dataset into 52 equally sized parts, one for each language supported by the
machine translation service we use. Each split is assigned a unique language, and splits with the
same language across datasets are combined. The split which is assigned the English language is
set aside and translated into all 51 other languages, and only used in testing. We also set aside
the split translated into Chinese for fine tuning experiments. The remaining 50 splits have their
original English captions discarded, and are then split 80%-20% into training and validation data.
All experiments shown in Section 5 are run on the reserved test data.

Note that there is no overlap at all (visual or linguistic) between the different splits, except for the
test split. Please see Table 8 for more details about the dataset.

Flickr30k MSCOCO Conceptual
Captions Total

Image/language pairs per language 3.1k 11.9k 63.8k 78.7k
Total image/language pairs 159k 616k 3.3M 4.1M

Table 8: Dataset statistics. There are a total of 52 languages.
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