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Abstract

In this paper, we introduce a subspace-inspired001
Low-Rank Adaptation (LoRA) method, which002
is computationally efficient, easy to implement,003
and readily applicable to large language, mul-004
timodal, and diffusion models. Initially, we005
equivalently decompose the weights of LoRA006
into two subspaces, and find that simply mix-007
ing them can enhance performance. To study008
such a phenomenon, we revisit it through a009
fine-grained subspace lens, showing that such010
modification is equivalent to employing a fixed011
mixer to fuse the subspaces. To be more flexi-012
ble, we jointly learn the mixer with the original013
LoRA weights, and term the method as Mixture-014
of-Subspaces LoRA (MoSLoRA). MoSLoRA015
consistently outperforms LoRA on tasks in dif-016
ferent modalities, including commonsense rea-017
soning, visual instruction tuning, and subject-018
driven text-to-image generation, demonstrating019
its effectiveness and robustness.020

1 Introduction021

Large Language Models (LLMs), such as GPT-4022

(OpenAI, 2023), LLaMA 3 (AI@Meta, 2024), and023

InternLM2 (Cai et al., 2024), have demonstrated024

remarkable performance across diverse disciplines025

(Rozière et al., 2023; Thirunavukarasu et al., 2023).026

Such strong capability is often attributed to the027

increased scale of training data and model parame-028

ters. However, it also brings increasing challenges029

to adapting these LLMs for downstream tasks via030

fully fine-tuning all the parameters.031

To tackle this issue, parameter-efficient fine-032

tuning (PEFT) has been developed (Hu et al., 2022;033

Lester et al., 2021; He et al., 2022) to minimize034

the number of optimized parameters while achiev-035

ing comparable performance as much as possible.036

Among these methods, LoRA (Hu et al., 2022)037

has gained increasing popularity due to its sim-038

plicity and efficacy, which proposes to update the039

extra low-rank branch exclusively and merge it into040
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Figure 1: Comparison between vanilla LoRA and pro-
posed MoSLoRA. In MoSLoRA, we employ learnable
weights to mix more subspaces with negligible parame-
ters (i.e. (d1+ d2+ r)r vs (d1+ d2)r and d1+ d2 ≫ r
typically).

the frozen original weight during inference. As 041

shown in Figure 1, for the original weight matrix 042

W0 ∈ Rd1×d2 , the additional low-rank branch con- 043

sists of a down projection A ∈ Rd1×r and an up 044

projection B ∈ Rr×d2 , where r ≪ min(d1, d2). 045

Hence, the number of updated parameters is re- 046

duced from d1 × d2 to (d1 + d2)r. 047

In this paper, we first define subspaces in LoRA 048

as the parallel components with smaller rank val- 049

ues, similar to the subspace in multi-head atten- 050

tion (MHA) design (Vaswani et al., 2017). After 051

that, we can decompose the vanilla LoRA into sev- 052

eral subspaces via structural re-parameterization 053

(Wu et al., 2023; Ding et al., 2021). Figure 2 in- 054

dicates the process of decomposing into two sub- 055

spaces. Interestingly, we find that simply mixing 056

these two subspaces performs better in the com- 057

monsense reasoning tasks. 058
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Motivated by the observation, we further revisit059

the two-subspaces-mixing strategy in a more fine-060

grained (rank=1) view and composed view. In061

short, such a strategy equals inserting a mixer ma-062

trix between A and B, which is a fixed butter-063

fly factor (Dao et al., 2019). Meanwhile, vanilla064

LoRA can be considered as a special case with065

a fixed identity matrix being the mixer. There-066

fore, we propose MoSLoRA, a simple yet effective067

method, which employs a learnable mixer to fuse068

more subspaces and more flexibly. As shown in069

Figure 1, we adapt the mixer W to fuse all the pos-070

sible subspaces (i.e. AiBj). Compared to LoRA,071

MoSLoRA requires negligible extra parameters072

since d1 + d2 ≫ r. Similarly to LoRA, MoSLoRA073

can also be merged into the original weights, and074

thus introduce no latency during inference.075

We perform experiments on various downstream076

tasks, including commonsense reasoning tasks fine-077

tuning LLaMA 3 (AI@Meta, 2024), visual instruc-078

tion tuning on LLaVA-1.5 (Liu et al., 2023a) series079

models, and subject-driven text-to-image genera-080

tion on Stable Diffusion XL (SDXL) model (Podell081

et al., 2023). Experimental results indicate that082

the proposed MoSLoRA consistently outperforms083

LoRA and other baselines, demonstrating its effec-084

tiveness and robustness. Our contributions can be085

concluded as follows:086

• We decompose LoRA into subspaces via struc-087

tural re-parameterization, revealing a new088

pathway to investigate LoRA.089

• We propose a simple yet effective MoSLoRA090

method, employing a learnable mixer to fuse091

more subspaces and more flexibly.092

• We conduct extensive experiments on vari-093

ous downstream tasks, demonstrating the ef-094

fectiveness and robustness of the proposed095

MoSLoRA.096

2 Preliminaries and Motivation097

2.1 LoRA and Subspace View098

Based on the hypothesis that the update in weights099

during model adaptation exhibits low intrinsic rank,100

LoRA (Hu et al., 2022) aims to model the weight101

update via two low-rank matrices. For a pre-trained102

weight matrix W0 ∈ Rd1×d2 and arbitrary input x,103

they modify the forward pass as follows 1:104

xW0 + x∆W = xW0 + xAB, (1)105

1In this paper, we use the post-multiplication for simplicity.
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a) vanilla LoRA and two-subspaces view

b) two-subspaces-mixing LoRA

Figure 2: Overview of decomposing vanilla LoRA into
two subspaces and mixing them. Compared to vanilla
LoRA, two-subspaces-mixing LoRA contains two extra
entries.

where A ∈ Rd1×r, B ∈ Rr×d2 and r ≪ 106

min(d1, d2). Typically, A is initialized as a Gaus- 107

sian matrix and B as a zero matrix, so that ∆W is 108

zero at the beginning. During training, the original 109

weight W0 is frozen, while A and B contain train- 110

able parameters. After that, the A and B can be 111

merged into W0 during inference, thus not intro- 112

ducing any latency. 113

In this paper, we decompose LoRA into sub- 114

spaces via structural re-parameterization, where 115

the subspaces are defined as parallel components 116

with smaller rank values. Figure 2 part a shows 117

the procedure for two subspaces. Specifically, we 118

decompose the A into two parts (i.e. A1 and A2) 119

by column, and B by row to get B1 and B2. There- 120

fore, we can easily get that: 121

xAB = x
[
A1 A2

] [B1

B2

]
= x(A1B1 +A2B2),

(2) 122

where the A1B1 and A2B2 are the two subspaces. 123

In the two-subspace view, vanilla LoRA equals the 124

sum of two subspaces. Moreover, we can get a 125

more fine-grained view if we split A and B for 126

more parts, respectively. 127

2.2 Mixing Two Subspaces 128

As shown in Figure 2b, we can simply mix two 129

subspaces by adding up the outputs of A1 and A2. 130
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Method ARC-e OBQA SIQA ARC-c WinoG. PIQA BoolQ HellaS. Avg.

LoRA (r=16) 87.7 82.8 79.3 75.7 84.8 86.7 72.3 93.5 82.8
+ TS-Mixing 88.3 83.0 80.3 78.1 84.8 87.5 73.8 94.3 83.8

LoRA (r=32) 83.5 82.6 80.3 70.3 82.6 85.7 71.3 91.4 81.0
+ TS-Mixing 87.9 84.2 79.9 75.1 84.8 86.9 72.1 93.3 83.0

Table 1: Comparison of vanilla LoRA and two-subspaces-mixing LoRA (denoted as TS-Mixing) on 8 benchmarks.
Simply mixing these two subspaces leads to better performance.

Hence, the output of the whole module for input x131

would be:132

x(A1 +A2)(B1 +B2)

=x(A1B1 +A2B2 +A1B2 +A2B1).
(3)133

Compared to Equation 2, Equation 3 contains two134

extra entries and can model more information intu-135

itively.136

To compare these two strategies, we conduct ex-137

periments on the commonsense reasoning tasks138

following Hu et al. (2023). We first fine-tune139

LLaMA-3 8B model (AI@Meta, 2024) on 170k140

training samples (Hu et al., 2023), and then report141

the performance on 8 benchmarks, including ARC-142

c/e (Clark et al., 2018), OBQA (Mihaylov et al.,143

2018), SIQA (Sap et al., 2019), WinoG. (Wino-144

Grande) (Sakaguchi et al., 2020), PIQA (Bisk et al.,145

2020), BoolQ (Clark et al., 2019), and HellaS. (Hel-146

laSwag) (Zellers et al., 2019). Please refer to Ap-147

pendix A.1 for details of these benchmarks. All hy-148

perparameters are the same and listed in Appendix149

B.1.150

Table 1 shows the results on 8 benchmarks151

for these two methods. Mixing two subspaces152

would lead to better performance under different153

settings (r=8/16), such as 93.3 compared to 91.4154

of LoRA on the HellaSwag benchmark, showing155

the effectiveness and robustness of two-subspaces-156

mixing LoRA than vanilla LoRA.157

3 Methodology158

3.1 More Fine-grained Subspace159

Motivated by the observation that mixing two sub-160

spaces would lead to better performance, we revisit161

the two-subspaces-mixing LoRA in view of more162

fine-grained subspace (i.e. rank=1). Specifically,163

we decompose the A ∈ Rd1×r and B ∈ Rr×d2 into164

r subspaces (rank=1), which can be formulated as:165

A =
[
A1 A2 · · · Ar

]
BT =

[
BT

1 BT
2 · · · BT

r

]
,

(4)166

Method #N of subspaces (rank=1) Trainable

LoRA r ✗

TS-Mixing 2r ✗

MoSLoRA r2 ✓

Table 2: Comparison of LoRA, two-subspaces-
mixing LoRA (denoted as TS-Mixing), and proposed
MoSLoRA. #N denotes the number of mixed subspaces.

where Ai ∈ Rd1×1 and Bi ∈ R1×d2 for 1 ≤ i ≤ r. 167

As shown in Figure 3, we can thus view vanilla 168

LoRA as: 169

xAB = x
r∑

i=1

AiBi = xAIr×rB. (5) 170

The Ir×r ∈ Rr×r denotes the identity ma- 171

trix. Meanwhile, the two-subspaces-mixing LoRA 172

equals to: 173

x

r/2∑
i=1

(Ai +Ai+r/2)(Bi +Bi+r/2)

=xA

[
Ir/2×r/2 Ir/2×r/2

Ir/2×r/2 Ir/2×r/2

]
B.

(6) 174

Interestingly, we can find that Equation 5 and 175

Equation 6 share the same paradigm: 176

AWB, (7) 177

where W ∈ Rr×r and we define W as the weight 178

of mixer to fuse the subspaces. For vanilla LoRA, 179

the mixer is the fixed identity matrix fusing r sub- 180

spaces. For the two-subspaces-mixing LoRA, the 181

mixer is a fixed butterfly factor fusing 2r sub- 182

spaces, which is more than LoRA. Therefore, we 183

propose MoSLoRA, adapting a trainable mixer to 184

fuse all the possible subspaces. As shown in Ta- 185

ble 2, MoSLoRA mixes the information of r2 sub- 186

spaces (rank=1) employing trainable weights, mod- 187

eling the information of more subspaces and more 188

flexible than LoRA. 189
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Figure 3: The subspace view (rank=1) and composed view for vanilla LoRA, two-subspaces-mixing LoRA, and
proposed MoSLORA. In MoSLoRA, we employ a learnable mixer to fuse more information and more flexibly.

Initialization Strategy Average Score

Zero Matrix not converge
Identity Matrix 82.6
Normal Distribution 80.7
Orthogonal Matrix 84.4
Kaiming Uniform Distribution 85.6

Table 3: Comparison of various initialization strategies
for the trainable mixer in MoSLoRA. We report the
average score on the commonsense reasoning tasks.

3.2 Initialization Strategies for Mixer190

In the proposed MoSLoRA, we employ a trainable191

mixer to fuse all possible subspaces. However, the192

system of MoSLoRA is linear, and thus a bad ini-193

tialization can still hamper the learning (He et al.,194

2015). In MoSLoRA, we follow the setting in195

LoRA and initialize A using a Kaiming uniform196

distribution 2 and B as a zero matrix. For the mixer197

weight W, we compare various initialization strate-198

gies, including zero matrix, identity matrix, normal199

distribution, orthogonal matrix (Saxe et al., 2014),200

and Kaiming uniform distribution (He et al., 2015).201

Hyperparameters for finetuning can be found at202

Appendix B.1.203

Table 3 reports the results of the commonsense204

reasoning tasks. If we initialize the mixer as the205

zero matrix, then the model would not converge206

since all of the A, B, and W get zero gradients (cf.207

Appendix C for proof). When initializing the mixer208

2In the code of LoRA, they use Kaiming uniform initial-
ization rather than Gaussian distribution claimed in the paper.

as an identity matrix and updating it during training, 209

the performance is similar to the vanilla LoRA with 210

a fixed identity (82.6 vs. 82.8). Moreover, Kaim- 211

ing uniform distribution and orthogonal matrix get 212

strong performance, and thus we adapt them for 213

the initialization of the mixer in MoSLoRA. 214

3.3 Relation with Mixture-of-Experts 215

Mixture-of-Experts (MoE) methods aim to parti- 216

tion a set of parameters into experts and route in- 217

put samples to specific experts during training and 218

inference (Fedus et al., 2022a). Typically, they 219

employ a router to generate scores for each ex- 220

pert based on the input, and then select top-k ex- 221

perts (Fedus et al., 2022b; Lepikhin et al., 2021; 222

DeepSeek-AI, 2024). In this paper, we propose 223

MoSLoRA to mix the subspaces in LoRA, where 224

the wij in the mixer can be considered as the weight 225

to compose subspace AiBj . However, the differ- 226

ences between MoSLoRA and MoE methods are 227

as follows: 228

• In MoSLoRA, the weights to mix subspaces 229

are input agnostic, while weights from gates 230

in MoE methods are input specific. 231

• In MoSLoRA, we adapt all the subspaces si- 232

multaneously, while MoE methods select top- 233

k from all the experts. 234
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Method Param Time Mem ARC-e OBQA SIQA ARC-c WinoG. PIQA BoolQ HellaS. Avg.

LoRA 28.3M 8.0h 29G 87.7 82.8 79.3 75.7 84.8 86.7 72.3 93.5 82.8
LoKr 0.9M 26.3h 66G 89.2 81.8 78.7 76.7 82.1 81.6 65.1 92.0 80.9
LoHa 28.3M 25.5h 68G 91.2 85.8 81.1 80.5 83.3 89.7 75.0 95.0 85.2
FLoRA 28.4M 8.2h 31G 90.2 84.2 79.9 79.3 85.1 86.7 74.8 93.9 84.2
AdaLoRA 28.3M 12.5h 58G 90.4 85.0 76.7 79.1 83.3 86.4 75.1 75.4 81.4
DoRA 29.1M 14.5h 33G 90.1 87.2 80.3 79.1 84.7 88.8 74.5 95.5 85.0
DoRA∗ 57.4M 14.8h 33G 90.5 85.8 79.9 80.4 85.6 89.3 74.6 95.5 85.2
MoSLoRA 28.4M 8.2h 31G 90.5 86.8 81.0 81.5 85.8 89.7 74.6 95.0 85.6

Table 4: Accuracy comparison of various methods fine-tuning LLaMA-3 8B on the commonsense reasoning tasks.
Param denotes the number of trained parameters, Time for the training time on A100 GPU, and Mem for the GPU
Memory usage. ∗ denotes a larger rank in DoRA. We can find that the proposed MoSLoRA outperforms all the
baselines with a slightly extra training cost than LoRA.

4 Experiments and Analysis235

4.1 Commonsense Reasoning236

We fine-tune LLaMA-3 8B instruction version237

model (AI@Meta, 2024) for the commonsense rea-238

soning question answering tasks. We first train239

the model using 170k training samples (Hu et al.,240

2023), and then test the fine-tuned model on 8241

commonsense reasoning question answering bench-242

marks (refer to Appendix A.1 for details). The 170k243

training set is the mixture of the training sets of244

these benchmarks. Besides LoRA (Hu et al., 2022),245

we also compare MoSLoRA with various base-246

lines, including: 1) LoKr (Yeh et al., 2023) which247

employs Kronecker products for matrix decompo-248

sition of AB; 2) LoHa (Yeh et al., 2023) which249

decomposes the vanilla LoRA into the Hadamard250

product of two LoRA branches; 3) FLoRA (Si251

et al., 2024) which introduces an extra core based252

on Tucker decomposition to maintain the consis-253

tent topological structure with the original space 3;254

4) AdaLoRA (Zhang et al., 2023) which parame-255

terizes the incremental updates of the pre-trained256

weight matrices in the form of singular value de-257

composition; and 5) DoRA (Liu et al., 2024) which258

decomposes the pretrained weight into its mag-259

nitude and directional components and fine-tunes260

both of them.261

All the experiments are conducted using 1262

Nvidia 80G A100 GPU. The hyperparameters are263

listed in Appendix B.1. Based on the analysis in264

Table 3, we initialize the mixer following the Kaim-265

ing uniform distribution. Besides the accuracy, we266

also report the number of trained parameters and267

training overhead including time and peak GPU268

memory.269

3Please refer to Appendix D for the discussion of differ-
ences.

20 40 60 80 100
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91

92

93

94

95
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ra
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MoSLoRA
LoRA

Figure 4: Comparison of MoSLoRA and LoRA on the
HellaSwag benchmark with fewer training samples.

Table 4 shows the results on 8 benchmarks. 270

Some findings can be summarized as follows: 271

• MoSLoRA outperforms all the baselines, 272

demonstrating the effectiveness of mixing the 273

subspaces. Specifically, MoSLoRA gets an 274

average of 85.6, which is 2.8 higher than the 275

82.8 of LoRA. Moreover, MoSLoRA outper- 276

forms DoRA with a higher rank. 277

• Compared to LoRA, MoSLoRA requires neg- 278

ligible extra parameters (less than 0.1M) and 279

computing cost (less than 0.2h). Meanwhile, 280

MoSLoRA can save 44% training time than 281

DoRA and 68% than LoHa. 282

• Though LoKr reduces the training parameters 283

via Kronecher products, it requires more than 284

3x training time and 2x GPU memory than 285

MoSLoRA. Also, LoKr gets an average score 286

of 80.9, which is 4.7 lower than MoSLoRA. 287

Fewer training samples To compare the perfor- 288

mance under fewer sample settings, we randomly 289
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Model Method Init. MMBench SEED- AI2D SciQA Text Math MM- MME Avg.
EN CN Bench image VQA Vista Vet

LLaMA-3
LoRA - 72.0 67.8 68.8 61.4 74.8 47.1 27.7 33.1 58.4 56.8

+ViT MoSLoRA
Orth 73.0 68.2 69.0 61.2 75.7 47.2 27.6 33.4 60.6 57.3
Kai 72.5 67.5 68.9 60.6 76.0 47.1 27.5 33.8 60.5 57.1

InternLM2
QLoRA - 70.8 68.9 70.4 62.2 72.5 49.8 30.2 33.9 61.6 57.8

+ViT QMoSLoRA
Orth 73.5 71.2 71.1 64.8 71.8 49.8 30.2 35.0 62.0 58.8
Kai 73.8 72.6 70.3 66.1 72.2 50.2 30.6 35.2 64.1 59.5

Table 5: Results on 9 benchmarks for vanilla LoRA and proposed MoSLoRA. In MoSLoRA, we try both orthogo-
nal (denoted as Orth) and Kaiming uniform initialization (denoted as Kai). For InternLM2, we employ the 4-bit
QLoRA on LoRA and MoSLoRA. MoSLoRA consistently outperforms LoRA on various backbones for both
initialization strategies.

select 12.5%/25%/50%/75% training samples from290

the original 170k training set and repeat the ex-291

periments. As shown in Figure 4, more train-292

ing samples would lead to better performance and293

MoSLoRA outperforms LoRA under all the set-294

tings. Particularly, MoSLoRA trained via 50%295

samples gets a score of 83.6, which is 1.8 higher296

than LoRA using 100% samples. Moreover, the297

performance gap between MoSLoRA and LoRA298

becomes larger as the training samples increase,299

showing the superiority of MoSLoRA to modeling300

more complex information due to the mixture of301

subspaces.302

4.2 Visual Instruction Tuning303

To evaluate performance on multimodal tasks, we304

fine-tune the LLaVA-1.5 (Liu et al., 2023a) series305

models for visual instruction tuning, and then test306

the model for various visual QA benchmarks.307

There are two stages in training LLaVA: 1) pre-308

train a two-layer MLP to project visual features309

to language space, and 2) optimize LLM and vi-310

sual encoder (optional) for visual instruction tun-311

ing. In this paper, we employ the pretrained projec-312

tor provided in XTuner (Contributors, 2023b), and313

then conduct visual instruction tuning on the LLM314

backbone and visual encoder, simultaneously. For315

the LLM backbones, we adapt the LLaMA3 8B316

(AI@Meta, 2024) and InternLM2 7B (Cai et al.,317

2024) using the off-the-shelf projecters 4. For318

the visual encoder, we employ the ViT 5 (Doso-319

vitskiy et al., 2021) large version. Due to lim-320

ited resources, we fintune both the LLM back-321

bone and visual encoder via LoRA/MoSLoRA on322

the 665K instruction-following data (Liu et al.,323

4pretrained projecters
5openai/clip-vit-large-patch14-336
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Figure 5: Normalized performance on 6 ability di-
mensions in MMBench EN/CN for QLoRA and
QMoSLoRA when fintuning InternLM2. MoSLoRA
significantly improves the reasoning ability over LoRA.

2023a), rather than optimize all the parameters 324

in LLMs. For InternLM2, we employ the 4-bit 325

QLoRA (Dettmers et al., 2023) and corresponding 326

QMoSLoRA (QLoRA+MoSLoRA). Based on the 327

results in Table 3, we initialize the mixer as the or- 328

thogonal matrix and Kaiming uniform distribution, 329

separately. For specific hyperparameters, please 330

refer to the Appendix B.2. It takes around 20 hours 331

to fine-tune using 4 Nvidia A100 80G GPUs. 332

After visual instruction tuning, we evaluate the 333

trained model on 9 popular benchmarks, includ- 334

ing MMBench EN/CN (Liu et al., 2023b), SEED 335

Bench (Li et al., 2023), AI2D (Kembhavi et al., 336

2016), SciQA (Lu et al., 2022), TextVQA (Singh 337

et al., 2019), MathVista testmini (Lu et al., 2023), 338

6
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Input images [V] cat on the beach

LoRA

MoSLoRA

[V] cat floating on waterwet [V] cat

Figure 6: Comparison of generated images from LoRA and MoSLoRA on the subject-driven generation task.
MoSLoRA is more consistent with the subject in the input images (e.g. the color of the hairs around the neck) and
conforms to the given prompts (e.g. the wet hair and floating gesture) better.

MM-Vet (Yu et al., 2023), and MME (Fu et al.,339

2023). All the evaluations are done using the340

VLMEvalKit (Contributors, 2023a). Please refer to341

Appendix A.2 for the details of the dataset and the342

reported metrics. Specifically, we scale the MME343

scores to 100 to calculate the average score.344

Table 5 shows the results on 9 benchmarks.345

For both orthogonal and Kaiming initialization,346

MoSLoRA consistently outperforms LoRA on var-347

ious benchmarks. Specifically, MoSLoRA gets an348

average score of 59.5 on InternnLM2+ViT, which349

is 1.7 higher than LoRA. Moreover, MoSLoRA350

also outperforms LoRA when combined with the351

4-bit QLoRA. It effectively showcases the com-352

patibility of MoSLoRA with QLoRA. Therefore,353

MoSLoRA can be applied in low-resource fine-354

tuning scenarios combined with the quantization355

methods. In summary, the proposed MoSLoRA356

consistently outperforms LoRA in various settings,357

demonstrating its effectiveness and robustness.358

More finegrained ability Moreover, we also vi-359

sualize the normalized scores on 6 ability dimen-360

sions in the MMbench EN/CN test set. As shown in361

Figure 5, we can observe that MoSLoRA performs362

better than LoRA on all abilities for both English363

and Chinese scenarios, especially the reasoning364

ability. Reasoning tasks are typically considered365

to be more complex and difficult. Compared to366

LoRA, MoSLoRA mixes more subspaces and is367

thus better at more difficult tasks such as logical368

reasoning.369

4.3 Subject-driven Generation 370

We further perform the experiments fine-tuning 371

the text-to-image diffusion models for the subject- 372

driven generation task (Ruiz et al., 2023). The 373

goal is to generate the images following the given 374

prompts of one specific subject, which is defined 375

in a few given images. We first fine-tune a text- 376

to-image model with the input images paired with 377

a text prompt containing a unique identifier (e.g., 378

A photo of a [V] cat). After that, we can employ 379

other prompts containing the unique identifier to 380

generate the corresponding images. 381

Figure 6 shows one case of a dog from the 382

DreamBooth dataset (Ruiz et al., 2023). We fine- 383

tune the SDXL6 model (Podell et al., 2023) via 384

LoRA and MoSLoRA. In MoSLoRA, the mixer is 385

initialized as an orthogonal matrix. During finetun- 386

ing, the learning rate is 1e-4, and the batch size is 387

4. We train the model for 500 steps, which costs 388

around 16 minutes using 1 80G A100 GPU. During 389

generation, we infer 50 steps for the given prompts. 390

Compared to vanilla LoRA, we can find that our 391

proposed MoSLoRA captures more details of the 392

subject and better conforms to the given prompt. 393

Specifically, MoSLoRA learns more details about 394

the given cat, including the color of the hairs around 395

the neck and the shape of the paw. Meanwhile, the 396

images from MoSLoRA are more consistent with 397

the given prompts, such as the wet (thus clumped) 398

hair and the floating gesture (spread hands). 399

6stable-diffusion-xl-base-1.0
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Metric Win Tie Loss ∆

Sub-simi 23.1% 60.4% 16.5% +6.6%
Pro-cons 45.1% 44.2% 10.7% +34.3%

Table 6: Human evaluation results on the generated im-
ages comparing MoSLoRA against LoRA. Sub-simi de-
notes for the subject similarity and Pro-cons for prompt
consistency.

Human evaluation We also perform human eval-400

uation on the generated images. First, we choose401

four subjects (i.e. cat, dog, grey sloth plushie, and402

can) from the DreamBooth dataset (Ruiz et al.,403

2023) and fine-tune the SDXL model, respectively.404

Then, we randomly select 8 prompts to generate405

the corresponding images. After that, 15 human ex-406

perts are asked to independently score win/tie/loss407

for the paired images from LoRA and MoSLoRA.408

During evaluation, we shuffle these pairs and keep409

that these experts do not know the source model410

of each image. We employ two metrics, including411

1) subject similarity defined as the similarity be-412

tween subjects from generated images and given413

images, and 2) prompt consistency defined as the414

consistency among prompts and generated images.415

Table 6 reports the average score for all the im-416

ages. We can find that MoSLoRA outperforms417

LoRA on both metrics. In particular, MoSLoRA418

gets an average winning ratio of 45.1% on prompt419

consistency, which is 34.3% than LoRA. Please420

refer to Appendix E for the detailed prompts and421

corresponding generated images from LoRA and422

MoSLoRA.423

5 Related Work424

5.1 Parameter-Efficient Fine-tuning425

Parameter-efficient fine-tuning (PEFT), aiming to426

update a small proportion of parameters to adapt427

Large Language Models (LLMs), has become in-428

creasingly important. The mainstreaming PEFT429

methods can be categorized into: 1) adapter based430

methods (Houlsby et al., 2019; Lei et al., 2023),431

which inserts modules between transformer layers;432

2) prefix tuning methods (Li and Liang, 2021; Liu433

et al., 2021), which prepends tunable prefix vectors434

into the hidden states; 3) selective methods (Zaken435

et al., 2022), which select part of the parameters436

to update; and 4) low-rank adapting (LoRA) se-437

ries (Hu et al., 2022; Yeh et al., 2023), which in-438

jects trainable low-rank branches to approximate439

the weight updates. In LoRA, low-rank branches 440

can be merged into the original weights during in- 441

ference, thus bringing no latency. We refer the 442

reader to Han et al. (2024) for a more compre- 443

hensive survey. In this paper, we focus on LoRA 444

methods. 445

5.2 LoRA and its Variants 446

The core of LoRA is to update the mergeable and 447

low-rank branches to model the weight updates. Hu 448

et al. (2022) initialize the branch as a product of 449

two low-rank matrices. The following variants can 450

be categorized into: 1) introducing training skills, 451

such as setting different learning rates (Hayou et al., 452

2024) and adding random noise (Lin et al., 2024); 453

2) searching ranks, such as DyLoRA (Valipour 454

et al., 2023) and AdaLoRA (Zhang et al., 2023); 455

and 3) new designs for the branch, such as LoKr 456

(Yeh et al., 2023), LoHa (Yeh et al., 2023), VeRA 457

(Kopiczko et al., 2023) and (Liu et al., 2024). LoKr 458

and LoHa employ Kronecker and Hadamard prod- 459

ucts to replace the vanilla matrix product, respec- 460

tively. DoRA decomposes the pretrained weight 461

into its magnitude and directional components and 462

fine-tunes them separately. 463

In this paper, we decompose LoRA into sub- 464

spaces via structural re-parameterization and de- 465

sign a learnable mixer to fuse information from 466

more subspaces and more flexibly. 467

6 Conclusion 468

This work proposes a novel MoSLoRA method for 469

parameter-efficient fine-tuning. We first decom- 470

pose the LoRA into subspaces and find that simply 471

mixing the half-rank subspaces would lead to better 472

performance. After that, we revisit vanilla LoRA 473

and two-subspaces-mixing strategy in a more fine- 474

grained view (i.e. rank=1), thus unifying both meth- 475

ods as employing an extra fixed mixer. Therefore, 476

we propose MoSLoRA, which employs a learnable 477

mixer to fuse more information and more flexi- 478

bly. The mixer requires negligible extra parame- 479

ters and computing costs. Experimental results on 480

commonsense reasoning tasks, visual instruction 481

tuning tasks, and subject-driven generation tasks 482

demonstrate the effectiveness and robustness of the 483

proposed MoSLoRA. For future work, we would 484

consider applying MoSLoRA for more tasks. Find- 485

ing a task-specific way to initialize the mixer for 486

faster convergence would be another interesting 487

topic. 488
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Limitations489

In this paper, we conduct experiments on com-490

monsense reasoning tasks, visual instruction tuning491

tasks, and subject-driven generation tasks. LoRA492

can be applied in more scenarios, such as mixing493

styles in image generation tasks when fine-tuning494

stable diffusion models. We leave these tasks for495

future work.496

Ethics Statement497

This project aims to improve the LoRA methods498

and can be employed for subject-driven text-to-499

image generation tasks, where the users can fine-500

tune the stable diffusion models to generate images501

of a specific subject defined by the input images.502

In some cases, such malicious parties might use503

the generated images to mislead viewers. This is a504

common issue in generative model approaches or505

content manipulation techniques.506
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A Details of Benchmarks848

A.1 Commonsene Reasoning849

The details of the benchmarks are as follows:850

• ARC-c/e (Clark et al., 2018): the Challenge851

Set and Easy Set of ARC dataset of gen-852

uine grade-school level, containing 2376/1172853

multiple-choice science questions in the test854

set, respectively.855

• OBQA (Mihaylov et al., 2018): questions re-856

quiring multi-step reasoning, use of additional857

commonsense knowledge, and rich text com-858

prehension. There are 500 questions in the859

test set.860

• SIQA (Sap et al., 2019): reasoning questions861

about people’s actions and their social impli-862

cations. There are 1954 questions in the test863

set.864

• WinoG. (WinoGrande) (Sakaguchi et al.,865

2020): fill-in-a-blank task with binary options866

to choose the right option for a given sen-867

tence which requires commonsense reasoning.868

There are 1267 questions in the test set.869

• PIQA (Bisk et al., 2020): questions with two870

solutions requiring physical commonsense.871

There are 1830 questions in the test set.872

• BoolQ (Clark et al., 2019): yes/no questions873

which are naturally occurring and generated874

in unprompted and unconstrained settings.875

There are 3270 questions in the test set.876

• HellaS. (HellaSwag) (Zellers et al., 2019):877

commonsense NLI questions including a con-878

text and several endings which complete the879

context. There are 10042 questions in the test880

set.881

For all the benchmarks, we report the accuracy882

following Hu et al. (2023).883

A.2 Visual Instruction Tuning884

The details of benchmarks and reported metrics are885

as follows:886

• MMBench EN/CN (Liu et al., 2023b): the En-887

glish and Chinese version of MMBench. MM-888

Bench contains over 3000 multiple-choice889

questions covering 20 different ability dimen-890

sions. Each ability dimension encompasses891

over 125 questions. We report the accuracy of 892

the test set 7. 893

• SEED Bench (Li et al., 2023): 19K multiple 894

choice questions with accurate human annota- 895

tions, which spans 12 evaluation dimensions 896

including the comprehension of both the im- 897

age and video modality. In this paper, we 898

use the image modality only and report the 899

accuracy. 900

• AI2D (Kembhavi et al., 2016): AI2 Dia- 901

grams (AI2D) of over 5000 grade school sci- 902

ence diagrams and more than 15000 corre- 903

sponding multiple choice questions. We re- 904

port the accuracy of the test set. 905

• SciQA (ScienceQA) (Lu et al., 2022): 21k 906

multimodal multiple choice questions with di- 907

verse science topics and annotations of their 908

answers with corresponding lectures and ex- 909

planations. We report the accuracy of the test 910

set. 911

• TextVQA (Singh et al., 2019): 45,336 ques- 912

tions on 28,408 images that require reasoning 913

about text to answer. We report the accuracy 914

of the validation set. 915

• MathVista testmini (Lu et al., 2023): a bench- 916

mark designed to combine challenges from 917

diverse mathematical and visual tasks. It con- 918

sists of 6,141 examples, derived from 28 exist- 919

ing multimodal datasets involving mathemat- 920

ics and 3 newly created datasets. We report 921

the accuracy scores on the testmini subset of 922

1,000 examples using GPT-4-turbo. 923

• MM-Vet (Yu et al., 2023): 200 images and 218 924

questions (samples), including 187 images 925

from various online sources with 205 ques- 926

tions, 10 images from VCR with 10 paired 927

questions, and 3 paired questions and images 928

for medical expert knowledge. We report the 929

average scores from the GPT-4-turbo. 930

• MME (Fu et al., 2023): 14 subtasks aiming to 931

measure both perception and cognition abil- 932

ities and the answer is yes or no. For the 933

metrics, original scores include accuracy and 934

accuracy+ for each task, and the total score is 935

2800. In this paper, we scale the scores to 100 936

for average. 937

7Online submission for results
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Hyperparameter LoRA LoKr LoHa FLoRA AdaLoRA MoSLoRA DoRA DoRA∗

Rank r 16 32

α 32 64

Dropout 0.05

Batch size 16

Epochs 3

Learning rate 3e-5 1e-5

Target module q, k, v, up, down

Table 7: The hyperparameters for various methods on the commonsense reasoning tasks.

Hyperparameter LLaMA-3+ViT InternLM2+ViT

Batch size 8 16

Accumulative 2 1

Learning rate 2e-5

Epoch 1

Rank r 64/64 512/64

α 128/16 256/16

Target module q, k, v, o, up, down, gate

Table 8: The hyperparameters for various methods for
visual instruction tuning. For rank and alpha, we report
in the format of LLM/Visual Encoder.

B Experimental Setup938

B.1 Commonsene Reasoning939

Table 7 shows the detailed hyper-parameters940

for commonsense reasoning tasking when fine-941

tuning the LLaMA3-8B instruction version. For942

AdaLoRA, we set both the initial rank and target943

rank to be 16.944

B.2 Visual Instruction Tuning945

Table 8 reports the detailed hyper-parameters for946

visual instruction tuning when fine-tuning the947

LLaMA3-8B+ViT and InternLM2+ViT. Moreover,948

we employ the 4-bit QLoRA when finetuning the949

InternLM2, where the quantization type is NF4950

with double quantization skills.951

C Initialize Mixer as Zero Matrix952

In MoSLoRA, we model the forward process as:953

y = xWmerge

Wmerge = W0 +AWB,
(8)954

where the W0 is frozen during training. Then we 955

have: 956
∂y

∂A
=

∂y

∂Wmerge
BTWT

∂y

∂W
= AT ∂y

∂Wmerge
BT

∂y

∂B
= WTAT ∂y

∂Wmerge

(9) 957

If we initialize W and B as zero matrices simul- 958

taneously, all the gradients in Equation 9 would be 959

zero, and neither would be updated. 960

D Differences with FLoRA 961

FLoRA (Si et al., 2024) introduces an extra core 962

based on Tucker decomposition to maintain the 963

consistent topological structure with the original 964

space. The core is quite similar to our mixer. The 965

differences are: 966

• motivation: FLoRA aims to maintain the 967

structural integrity of the involved high- 968

dimensional spaces, while we try to analyze 969

LoRA and two-subspaces-mixing LoRA in 970

the view of subspace. 971

• initialization: FLoRA initializes the core as 972

the zero matrix, while MoSLoRA employs 973

the Kaiming uniform distribution and orthog- 974

onal matrix. As shown in Table 4, MoSLoRA 975

outperforms FLoRA on the commonsense rea- 976

soning tasks. 977

E Cases of Generated Images 978

Figure 7, 8, 9, and 10 show the specific generated 979

images and paired prompts. For the definition im- 980

ages of these subjects, please refer to the official 981

data8 of DreamBooth. 982

8DreamBooth dataset
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A [V] cat on the top of a white rug A cube shaped [V] cat

A [V] cat floating on water A [V] cat on the beach

A [V] cat on the top of green grass
with sunflowers around it

A [V] cat with a blue house in the
background

A [V] cat with a wheat field in the
background

A wet [V] cat

MoSLoRA LoRA MoSLoRA LoRA
Figure 7: Cases of generated images and paired prompts for the subject cat.
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A [V] dog on top of a dirty road A [V] dog on top of a white rug

A purple [V] dog A [V] dog on a cobble stone street

A [V] dog floating in an ocean of milk A [V] dog on the top of green grass
with sunflowers around it

A [V] dog on the top of the
sidewalk in a crowded street

A [V] dog with a mountain in the
background

MoSLoRA LoRA MoSLoRA LoRA
Figure 8: Cases of generated images and paired prompts for the subject dog.
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A red [V] can A purple [V] can

A shiny [V] can A cube shaped [V] can

A [V] can on the top of a wooden floor A [V] can on the top of green grass
with sunflowers around it

A [V] can with the Eiffel Tower in
the background

A [V] can with a wheat field in
the background

MoSLoRA LoRA MoSLoRA LoRA
Figure 9: Cases of generated images and paired prompts for the subject can.
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A [V] grey sloth plushie in the snow A [V] grey sloth plushie on the beach

A [V] grey sloth plushie on the
top of a dirt road

A [V] grey sloth plushie
floating on water

A [V] grey sloth plushie with a city in
the background

A [V] grey sloth plushie on the top of
a purple rug in a forest

A [V] grey sloth plushie with a tree
and autumn leaves in the background

A [V] grey sloth plushie with a
blue house in the background

MoSLoRA LoRA MoSLoRA LoRA
Figure 10: Cases of generated images and paired prompts for the subject grey sloth plushie.
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