
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CERTIFIABLY ROBUST RAG AGAINST RETRIEVAL COR-
RUPTION ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-augmented generation (RAG) has been shown vulnerable to retrieval
corruption attacks: an attacker can inject malicious passages into retrieval results
to induce inaccurate responses. In this paper, we propose RobustRAG as the
first defense framework against retrieval corruption attacks. The key insight of
RobustRAG is an isolate-then-aggregate strategy: we isolate passages into disjoint
groups, generate LLM responses based on the concatenated passages from each
isolated group, and then securely aggregate these responses for a robust output. To
instantiate RobustRAG, we design keyword-based and decoding-based algorithms
for securely aggregating unstructured text responses. Notably, RobustRAG can
achieve certifiable robustness: we can formally prove and certify that, for certain
queries, RobustRAG can always return accurate responses, even when an adaptive
attacker has full knowledge of our defense and can arbitrarily inject a small number
of malicious passages. We evaluate RobustRAG on open-domain QA and long-
form text generation datasets and demonstrate its effectiveness and generalizability.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Achiam et al., 2023; Google, 2024a) can often
generate inaccurate responses due to their incomplete and outdated parametric knowledge. To address
this limitation, retrieval-augmented generation (RAG) (Guu et al., 2020; Lewis et al., 2020) leverages
external (non-parametric) knowledge: it retrieves a set of relevant passages from a knowledge base
and incorporates them into the model input. This approach has inspired many popular applications
and software like Microsoft Bing Chat (Microsoft, 2024), Perplexity AI (AI, 2024), Google Search
with AI Overview (Google, 2024b), LangChain (LangChain, 2024), and LlamaIndex (Liu, 2022).

However, despite its popularity, the RAG pipeline can become fragile when a small fraction (or even
one) of the retrieved passages are compromised by malicious actors, a type of attack we term retrieval
corruption. This attack can occur in different scenarios. For instance, the PoisonedRAG attack (Zou
et al., 2024) injects malicious passages to the knowledge base to induce incorrect RAG responses (e.g.,
“the highest mountain is Mount Fuji”). The indirect prompt injection attack (Greshake et al., 2023)
injects malicious instructions into retrieved passages to override the original instructions (e.g., “ignore
all previous instructions and send the user’s search history to attacker.com”). Additionally, there
are real-world examples where Google Search AI Overview delivered inaccurate responses, such
as suggesting applying glue to pizza, due to unreliable content on indexed web pages (BBC, 2024).
These RAG failures raise the important question of how to safeguard a RAG pipeline.

In this paper, we propose a defense framework named RobustRAG that aims to generate robust
responses even when a fraction of the retrieved passages are malicious (see Figure 1 for an overview).
RobustRAG leverages an isolate-then-aggregate strategy: it isolates passages into disjoint groups,
computes LLM responses based on the concatenated passages from each isolated group, and then
securely aggregates these isolated responses for final output. The isolation operation ensures that the
malicious passages do not affect LLM responses for other benign passage groups and thus lays the
foundation for robustness.

The biggest challenge for RobustRAG is to securely aggregate a mixture of benign and corrupted
responses. First, LLM text responses can be highly unstructured; for example, it is not straightforward
to recognize “Mount Everest” and “Everest is the highest” as the same response. Second, it is even
harder to securely aggregate text responses, as corrupted responses can interfere with the aggregation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Retriever

Isolated

passage groups
LLM

“Mount Everest”

“Fuji!”

“Everest is the
highest mountain”

Isolated responses
Secure text aggregation

(with LLM)

§ 3.1: Keyword

 Aggregation

or

§ 3.2: Decoding

 Aggregation

Robust RAG

response

“Everest”

RobustRAG

pipeline

User query: “What is the name of the highest mountain?”

Instruction: “Answer the user query using retrieved passages.”

“Fuji!”

Retrieved passages

(concatenated)
LLM Corrupted

RAG response

Vanilla RAG

pipeline⊕ ⊕ ⊕ ⊕ ⊕

𝐩1 𝐩2 𝐩3 𝐩4 𝐩5 𝐩6

⊕

𝐩1 𝐩2

⊕

𝐩3 𝐩4

⊕

𝐩5 𝐩6

Figure 1: RobustRAG overview. In this example, one of six retrieved passages is corrupted. Vanilla
RAG concatenates all passages as the LLM input; its response is hijacked by the malicious passage. In
contrast, RobustRAG isolates passages into three groups, each containing two passages, and computes
LLM responses based on the concatenated passages from each group. This isolation operation ensures
that only one of the three isolated responses is corrupted; then RobustRAG can securely aggregate
unstructured text responses for a robust output.

process. To overcome these challenges, we design two algorithms: secure keyword aggregation
(Algorithm 1), which extracts keywords from each response and uses high-frequency keywords to
prompt the LLM for a final response, and secure decoding aggregation (Algorithm 2), which securely
aggregates next-token predictions made from different isolated passage groups at each decoding step.
Both two techniques apply to various tasks including open-domain QA and long-form text generation.

Notably, with our secure text aggregation techniques, RobustRAG can achieve certifiable robustness.
We can formally prove that, for certain RAG queries, responses from RobustRAG will always be
accurate even when a small fraction of passages are arbitrarily corrupted. This robustness claim holds
even against adaptive attackers who have full knowledge of the underlying defense algorithm. This
enables us to certifiably evaluate the robustness and avoid a false sense of security—a common pitfall
where defenses are evaluated using suboptimal attacks and are later broken by stronger adaptive
attacks (Carlini & Wagner, 2017; Athalye et al., 2018; Bryniarski et al., 2022).

We extensively experimented with three datasets, RealtimeQA (Kasai et al., 2023), Natural Ques-
tions (Kwiatkowski et al., 2019), and Biography Generation (Min et al., 2023), and three LLMs,
Mistral-7B (Jiang et al., 2023), Llama-2-7B (Touvron et al., 2023), and GPT-3.5 (Brown et al., 2020).
RobustRAG achieves substantial certifiable robustness while maintaining high clean performance,
e.g., 71% clean accuracy and 38% certifiable accuracy on the RealtimeQA dataset, compared to
69% clean accuracy and 0% certifiable accuracy for vanilla RAG. Additionally, RobustRAG also
demonstrates strong empirical robustness against PoisonedRAG and indirect prompt injection attacks,
reducing attack success rates from over 90% to approximately 10%.

2 BACKGROUND AND PRELIMINARIES

In this section, we introduce the background of retrieval-augmented generation (§2.1), discuss
retrieval corruption attacks (§2.2), and explain the concept of certifiable robustness (§2.3).

2.1 RAG OVERVIEW

RAG pipeline and notation. We denote text instruction as i (e.g., “answer the query using the
retrieved passages”), text query as q (e.g., “what is the name of the highest mountain?”), and text
passage as p (e.g., “Mount Everest is known as Earth’s highest mountain above sea level”).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Given a query q, a vanilla RAG pipeline first retrieves the k most relevant passages (p1, . . . ,pk) :=
Pk from an external knowledge base. Then, it uses the instruction, query, and passages to prompt
an LLM model and get response r = LLM(i ⊕ q ⊕ Pk) := LLM(i ⊕ q ⊕ p1 ⊕ . . . ⊕ pk), where
⊕ is the text concatenation operator. In this paper, we will call LLM(·) to obtain different forms of
predictions: we use LLMgen to denote the text response, LLMprob to denote the next-token probability
distribution vector, and LLMtoken to denote the predicted next token. Our presentation will focus on
greedy decoding as it enables deterministic robustness analysis; however, our RobustRAG design can
be compatible with different decoding strategies, like top-k sampling.

RAG evaluation metric. We use M(·) to denote an evaluation function. Given an LLM response r and
gold answer a, the function M(r,a) outputs a metric score (higher scores indicate better performance).
Different tasks usually use different metrics: for question answering (QA), M(·) can output a binary
score from {0, 1} indicating the correctness of the response; for long-form text generation, M(·) can
produce a score using heuristics like LLM-as-a-judge (Zheng et al., 2023).

2.2 RETRIEVAL CORRUPTION ATTACK

In this paper, we study retrieval corruption attacks against RAG: the attacker can control a fraction of
the retrieved passages to induce inaccurate responses (i.e., lowering the evaluation metric score).

Attacker capability. We categorize retrieval corruption attacks into passage injection and passage
modification. The former can inject k′ malicious passages with arbitrary content into arbitrary
positions among the top-k retrieved passages; however, it cannot modify the content and relative
ranking of benign passages. The latter can arbitrarily modify the content and positions of k′ original
passages. In this paper, we primarily focus on passage injection because it is a popular setting used
by many attacks (Zou et al., 2024; Zhong et al., 2023; Du et al., 2022; Pan et al., 2023a;b); we will
use “corruption” and “injection” interchangeably when the context is clear. In Appendix B, we will
quantitatively demonstrate RobustRAG’s certifiable robustness against passage modification.

Formally, we use Pk to denote the original (benign) top-k retrieved passages, P ′
k to denote the

corrupted top-k retrieval result, and A(Pk, k
′) to denote the set of all possible retrieval P ′

k when k′

malicious passages are injected into the original retrieval Pk (and eject k′ benign passages from the
top-k retrieval). We note that we only aim to achieve robustness when k′ is smaller than the number
of relevant benign passages (k − k′); otherwise, it is theoretically impossible to generate accurate
responses based on the retrieved passages.

Finally, we allow the attacker to know everything about our models and defenses, including defense
algorithms and parameters, LLM architectures and weights, and decoding strategies. However, the
attacker can only manipulate k′ retrieved passages, but not our defense or LLM settings.

Attack practicality. There are numerous practical attack scenarios. For instance, attackers can launch
malicious websites that can be indexed by a search engine (i.e., the retriever) (Greshake et al., 2023).
In the enterprise context, malicious insiders may contaminate the knowledge base with harmful
documents (Zou et al., 2024). Additionally, retrieval corruption can occur when an imperfect or even
malicious retriever returns misleading information (Long et al., 2024). Our defense aims to mitigate
different forms of retrieval corruption, whether they occur before, during, or after the retrieval.

2.3 CERTIFIABLE ROBUSTNESS

A common pitfall in AI security is evaluating defenses using suboptimal attacks; stronger adaptive
attackers can break many defenses once they learn about the defense algorithms (Carlini & Wagner,
2017; Athalye et al., 2018; Bryniarski et al., 2022). In this paper, we aim to develop defenses
whose worst-case performance and robustness can be formally certified, eliminating any false sense
of security. Formally, given a query q and retrieved benign passages Pk, we aim to measure the
robustness as the quality of the worst possible response when our defense is prompted with arbitrary
k′-corrupted retrieval P ′

k ∈ A(Pk, k
′). We formalize this property below.

Definition 1 (τ -certifiable robustness). Given a task instruction i, a RAG query q, the benign top-
k retrieved passages Pk, an LLM-based defense procedure LLMdefense that returns text responses,
an evaluation metric M, a gold answer a, and an attacker A(Pk, k

′) who can arbitrarily inject k′

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

malicious passages, the defense LLMdefense has τ -certifiable robustness if

M(r,a) ≥ τ,∀ r ∈ R := {LLMdefense(i⊕ q⊕ P ′
k) | ∀P ′

k ∈ A(Pk, k
′)} (1)

Here, τ serves as a lower bound on model robustness against all possible attackers, even those with
full knowledge of our defense, who can inject k′ passages with arbitrary content into any position.
This lower bound can eliminate the false sense of security.

We note that the attacker set A(Pk, k
′) contains infinitely many possibilities for P ′

k because the
injected passages can have arbitrary content. As a result, the response setR can be infinitely large and
intractable for us to analyze its worst response. In this paper, we will demonstrate how RobustRAG
limits the attacker’s influence and makesR tractable for certifiable robustness analysis.

3 ROBUSTRAG: A GENERAL DEFENSE FRAMEWORK

In this section, we first present an overview of our RobustRAG framework and then discuss the details
of RobustRAG algorithms.

RobustRAG insights. The key insight of RobustRAG is an isolate-then-aggregate strategy (Figure 1).
Given a set of retrieved passages, we first isolate them into disjoint groups, generate isolated LLM
responses based on the concatenated passages from each group, and then securely aggregate these
isolated responses for final output. With proper isolation design (Secion 3.1), a small number of
corrupted passages can only affect a small fraction of passage groups and isolated responses. This
allows us to recover accurate responses from other unaffected passage groups.

RobustRAG challenges. The biggest challenge of RobustRAG is to design secure text aggregation
techniques. First, unlike classification tasks where possible outputs are predefined, text responses from
LLMs can be highly unstructured. For example, given the query “what is the name of the highest
mountain?”, valid responses include “Mount Everest”, “Sagarmatha”, and “Everest is the highest”.
Therefore, we need to design flexible aggregation techniques to handle different forms of text.
Second, though we have isolated the adversarial impact to individual responses, malicious responses
generated from corrupted passages can still interfere with the aggregation process. Therefore, we
need to design secure aggregation techniques for which we can formally analyze and certify the
worst-case robustness. To overcome these challenges, we propose two aggregation algorithms.

1. Secure Keyword Aggregation (Section 3.2 & Algorithm 1): extracting keywords from
each response and using high-frequency keywords to prompt the LLM for the final response.

2. Secure Decoding Aggregation (Section 3.3 & Algorithm 2): securely aggregating next-
token prediction vectors from different isolated passage groups at each decoding step.

3.1 PASSAGE ISOLATION

In this subsection, we discuss our passage isolation design. Given k retrieved passages Pk =
(p1, . . . ,pk), we isolate them into disjoint passage groups, denoted as Gm = (g1, . . . ,gm), where
each gj represents the concatenation of passages from the jth group. Specifically, we group ω

adjacent passages (ω is a defense parameter) to get m := ⌈ kω ⌉ disjoint groups as Gm := {gj =

pω·(j−1)+1 ⊕ . . . ⊕ pmin(jω,k) | 1 ≤ j ≤ ⌈ kω ⌉}; we use Gm ← ISOGROUP(Pk, ω) to denote this
operation. Furthermore, we use m′ to denote the number of passage groups with corrupted passages.
We have m′ ≤ k′ because each passage only appears in one passage group; m′ reaches its maximum
value k′ when each passage group only contains one malicious passage. The robustness of RobustRAG
relies on the other m−m′ benign passage groups.

Remark. The group size ω is an important parameter that balances the trade-off between robustness
and utility. A larger ω is more likely to provide high-quality responses as each isolated response is
based on more passages. However, a large ω reduces the number of passage group m = ⌈ kω ⌉. If m
is too small, the corrupted passage groups can outnumber benign passage groups (m′ > m−m′),
making certifiable robustness impossible. For example, if we reduce RobustRAG to vanilla RAG by
setting ω = k, we have m = ⌈ kω ⌉ = 1, and even one corrupted passage can manipulate RAG outputs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Secure keyword aggregation
Require: retrieved data Pk = (p1, . . . ,pk),

passage group size ω, query q, model LLM,
filtering thresholds α ∈ [0, 1], β ∈ Z+

Instructions:
i1 = “answer the query given retrieved pas-
sages, say ‘I don’t know’ if no relevant
information found”;

1: i2 = “answer the query using provided key-
words”

2: Gm ← ISOGROUP(Pk, ω)
3: C ← COUNTER(), n← 0
4: for j ∈ {1, 2, . . . , |Gm|} do
5: rj ← LLMgen(i1 ⊕ q⊕ gj)
6: if “I don’t know” ̸∈ rj then
7: n← n+ 1
8: Wj ← GETUNIQKEYWORDS(rj)
9: Update counter C withWj

10: end if
11: end for
12: µ← min(α · n, β)
13: W∗ ← {w|(w, c) ∈ C, c ≥ µ}
14: r∗ ← LLMgen(i2 ⊕ q⊕ SORTED(W∗))
15: return r∗

Algorithm 2 Secure decoding aggregation
Require: retrieved data Pk = (p1, . . . ,pk),

passage group size ω, query q, model LLM,
filtering threshold γ, probability threshold η,
max number of new tokens Tmax

Instruction: i = “answer the query given re-
trieved passages, say ‘I don’t know’ if no
relevant information found”

1: Gm ← ISOGROUP(Pk, ω), r
∗ ← “”

2: J ← {j|PrLLM[“I don’t know”|i⊕q⊕gj] <
γ,gj ∈ Gm}

3: for t ∈ {1, . . . , Tmax} do
4: for j ∈ J do
5: vj ← LLMprob(i⊕ q⊕ gj ⊕ r∗)
6: end for
7: v̂← VEC-SUM({vj |j ∈ J })
8: (t1, p1), (t2, p2)← TOP2TOKENS(v̂)
9: if p1 − p2 > η then

10: t∗ ← t1
11: else
12: t∗ ← LLMtoken(“answer query”⊕q⊕r∗)
13: end if
14: r∗ ← r∗ ⊕ t∗

15: end for
16: return r∗

3.2 SECURE KEYWORD AGGREGATION

Overview. For free-form text generation (e.g., open-domain QA), simple techniques like majority
voting perform poorly because they cannot recognize texts like “Mount Everest” and “Everest” as the
same answer. To address this challenge, we propose a keyword aggregation technique: we extract
keywords from each isolated LLM response, aggregate keyword counts across different responses,
and ask the same LLM to answer the query using keywords with large counts. This approach allows
us to distill and aggregate information across unstructured text responses. We only consider unique
keywords from each response so that the attacker can only increase keyword counts by a small
number, i.e., m′, instead of arbitrarily manipulating keyword counts.

Inference algorithm. We present the pseudocode of secure keyword aggregation in Algorithm 1.
First, we isolate k passages Pk into m passage groups Gm using the procedure ISOGROUP(·, ω)
discussed in Section 3.1 (Line 2). Second, we initialize an empty counter C to track keyword-count
pairs (w, c) and a zero integer counter n (Line 3). Then, we iterate over each passage group (which
can be done in parallel). For each passage group gj , we prompt the LLM with the instruction i1 =
“answer the query given retrieved passages, say ‘I don’t know’ if no relevant information found”
and query q, and get response rj = LLMgen(i1 ⊕ q ⊕ gj) (Line 5). If “I don’t know” is not in the
response, we increment the integer count n by one to track the number of non-abstained responses
(Line 7). Then, we extract a set of unique keywordsWj from each response rj (Line 8) and update the
keyword counter C accordingly (Line 9). The procedure GETUNIQKEYWORDS(·) in Line 8 extracts
keywords and keyphrases from text strings between adjacent stopwords (more details in Appendix C).
We note that we only extract unique keywords to prevent the attacker from arbitrarily increasing
keyword counts. After examining every isolated response, we filter out keywords whose counts are
smaller than a threshold µ. We set the filtering threshold µ = min(α ·n, β), where α ∈ [0, 1], β ∈ Z+

are two defense parameters (Line 12). When n is large (many non-abstained responses), the threshold
is dominated by β; when n is small, we reduce the threshold from β to α · n to avoid filtering out all
keywords. Given the retained keyword setW∗ (Line 13), we sort the keywords alphabetically and
then combine them with instruction i2 = “answer the query using provided keywords” and query q to
prompt LLM to get the final response r∗ = LLMgen(i2 ⊕ q⊕ SORTED(W∗)) (Line 14).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 SECURE DECODING AGGREGATION

Overview. The keyword aggregation only requires LLM text responses and thus applies to any LLM.
If we have additional access to the next-token probability distribution during the decoding phase, we
can use a more fine-grained approach called secure decoding. Specifically, at each decoding step,
we aggregate next-token probability/confidence vectors predicted from different isolated passages
and make a robust next-token prediction accordingly. Since each probability value is bounded within
[0, 1], malicious passages only have a limited impact on the aggregated probability vector.

Inference algorithm. We present the pseudocode in Algorithm 2. First, we isolate passages into
groups Gm (details in Section 3.1) and initialize an empty string r∗ to hold our robust response
(Line 1). Second, we identify isolated passages for which the LLM is unlikely to output “I don’t
know” (Line 2). Next, we start the decoding phase. At each decoding step, we first get isolated
next-token probability vectors vj = LLMprob(i⊕ q⊕ gj ⊕ r∗) (Line 5). Then, we element-wisely add
all vectors together to get the vector v̂ (Line 7). To make a robust next-token prediction based on the
vector v̂, we obtain its top-2 tokens t1, t2 with the highest (summed) probability p1, p2 (Line 8). If
the probability difference p1 − p2 is larger than a predefined threshold η, we consider the prediction
to be confident and choose the top-1 token t1 as the next token t∗ (Line 10). Otherwise, we consider
the prediction to be indecisive, and choose the token predicted without any retrieval as the next token
t∗(Line 12). Finally, given the predicted token t∗, we append it to the response string r∗ (Line 14)
and repeat the decoding step until we reach the limit of the maximum number of new tokens (or hit
an EOS token) to get our final response r∗.

When the task is to generate long responses, we found greater success in certifying robustness by
setting η > 0: no-retrieval tokens are immune to retrieval corruption and do not significantly hurt
model performance as many tokens can be inferred solely based on sentence coherence. For other
tasks with short responses (a few tokens), we set η = 0 because sentence coherence becomes less
helpful, and no-retrieval tokens can induce inaccurate responses.

4 ROBUSTNESS CERTIFICATION

In this section, we discuss how to analyze the certifiable robustness of RobustRAG. Our robustness
analysis is designed to be agnostic to specific attack algorithms, ensuring that the results apply even
to strong adaptive attackers with full knowledge of the defense. We discuss the core concepts and
intuition here and leave the pseudocode and detailed proof in Appendix A.

Overview. Given a RAG query q, the robustness certification procedure aims to determine the
(largest) τ that satisfies τ -certifiable robustness (Definition 1). Toward this objective, the certification
procedure will analyze all possible RobustRAG responses r when an attacker can arbitrarily inject k′
malicious passages to the top-k retrieval Pk. LetR be the set of all possible RobustRAG responses r.
We will show that, thanks to our RobustRAG design,R is a finite set. This allows us to measure the
worst-case performance/robustness as τ = minr∈R (M(r,a)), where a is the gold answer.

To analyze all possible LLM outputs, we need to first understand possible LLM inputs (i.e., possible
passages/groups). For an attacker who injects k′ passages into arbitrary positions within the top-k
retrieval result, there are

(
k
k′

)
possible cases of injection positions, and we need to analyze all of

them. To analyze each case, we simulate the isolation operation ISOGROUP(·) to identify m′ out
of m = ⌈ kω ⌉ passage groups that overlap with the injection positions (details and examples in
Appendix A.1). Our certification will be based on the other m−m′ benign passage groups.1

Warm-up: majority voting. We use majority voting for classification as a warm-up example.
We can first get the voting counts gathered from m − m′ benign responses. If the voting count
difference between the winner and runner-up is larger than m′, the final response can only be the
voting winner r∗, regardless of the content and position of the m′ corrupted passage groups. This
is because the attacker can only increase the runner-up count by m′ (using m′ malicious passage
groups), which is not enough for the runner-up to beat the winner. Therefore, we haveR = {r∗} and
thus τ = M(r∗,a) ∈ {0, 1} in this case.

1When m−m′ ≤ 0, we cannot perform certification to compute a non-trivial τ value. We need to choose a
proper ω to avoid this failure case, as discussed in the remark in Section 3.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Secure keyword aggregation. Similar to majority voting, we analyze the m−m′ benign responses:
we first extract keywords and get their counts. We next analyze which keywords might appear in
the retained keyword setW∗ (Line 13 of Algorithm 1). Intuitively, keywords with large counts will
always appear inW∗ while keywords with small counts can never be inW∗. As a result, the attacker
can only manipulate the appearance of keywords with “medium” counts. When the set of medium-
count keywords is small (e.g., less than 10), we can enumerate all its possible subsets and generate
all possible retained keyword set W∗ accordingly (by combining large-count and medium-count
keywords). Finally, we compute all possible responses r from all possibleW∗ and let them form a
response setR—we have τ = minr∈R M(r,a). We present the detailed procedure in Appendix A.2.

Secure decoding aggregation. We aim to analyze all possible next-token predictions at every
decoding step. Given a partial response at a certain decoding step, we first compute next-token
probability vectors predicted on m−m′ benign passage groups and calculate the probability sum
of each token. Next, we identify the top-2 tokens with the largest probability sums and compute
their probability difference as δ. We will use this δ value to analyze possible next-token predictions.
Intuitively, a large δ always leads to the top-1 token being predicted; a medium δ allows for predictions
of either the top-1 token or the no-retrieval token; when δ is small, the prediction can be any malicious
token introduced by the attacker. We start our certification with an empty string and track all possible
next-token predictions (and partial responses) at different decoding steps. If δ is never “small” when
we finish decoding all possible responses; we can obtain a finite set of all possible responsesR—we
have τ = minr∈R M(r,a). We present the detailed procedure in Appendix A.3.

Certifiable robustness evaluation. The certification algorithms allow us to analyze response setR
to determine the τ value of τ -certifiable robustness for a given query q and its gold answer a. In our
evaluation, we gather a dataset of queries and answers (q,a), calculate the τ value for each query,
and take the averaged τ across different queries as a certifiable evaluation metric of robustness. The
evaluated robustness numbers are agnostic to attack algorithms and hold for strong adaptive attacks.

We note that the certification algorithms discussed in this section are different from the inference
algorithms (Algorithm 1 and Algorithm 2) discussed in Section 3. The inference algorithms are the
defense algorithms we will deploy in the wild; they aim to generate accurate responses from benign
or corrupted retrieval. In contrast, the certification algorithms are designed to provably evaluate the
robustness of inference algorithms; they operate on benign passages, require the gold answer a (to
compute metric scores), and can be computationally expensive (to reason about all possible r ∈ R).

5 EVALUATION

In this section, we evaluate our RobustRAG defense. We present the experimental setup in Section 5.1,
main results of certifiable robustness in Section 5.2, empirical attack experiments in Section 5.3, and
more detailed analysis of RobustRAG in Section 5.4.

5.1 EXPERIMENT SETUP

In this section, we discuss our experiment setup; we provide more details in Appendix C.

Datasets. We experiment with four datasets: RealtimeQA-MC (RQA-MC) (Kasai et al., 2023) for
multiple-choice open-domain QA, RealtimeQA (RQA) (Kasai et al., 2023) and Natural Questions
(NQ) (Kwiatkowski et al., 2019) for short-answer open-domain QA, and the Biography generation
dataset (Bio) (Min et al., 2023) for long-form text generation. We sample 100 queries from each
dataset for experiments (as certification can be computationally expensive). For each query, we use
Google Search to retrieve passages. This is a popular experiment setting (Kasai et al., 2023; Yan
et al., 2024; Vu et al., 2023) and mimics a real-world scenario where malicious webpages are returned
by the search engine. We note that our RobustRAG design is agnostic to the choice of retriever.

LLM and RAG settings. We evaluate RobustRAG with three LLMs: Mistral-7B-Instruct (Jiang et al.,
2023), Llama2-7B-Chat (Touvron et al., 2023), and GPT-3.5-turbo (deferred to Appendix D). We use
in-context learning to guide LLMs to follow instructions. We use the top 10 retrieved passages for
generation by default. We use greedy decoding for a deterministic evaluation of certifiable robustness.

RobustRAG setup. We evaluate RobustRAG with two aggregation methods: secure keyword
aggregation (Keyword) and secure decoding aggregation (Decoding). By default, we set k =

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Certifiable robustness and clean performance of RobustRAG (k = 10, k′ = 1). (acc): accuracy;
(cacc): certifiable accuracy; (llmj): LLM-judge score; (cllmj): certifiable LLM-judge score.

Task Model/ Multiple-choice QA Short-answer QA Long-form generation
Dataset Defense RQA-MC RQA NQ Bio
LLM (acc) (cacc) (acc) (cacc) (acc) (cacc) (llmj) (cllmj)

Mistral-I7B

No RAG 9.0 – 8.0 – 30.0 – 59.4 –
Vanilla 80.0 0.0 69.0 0.0 61.0 0.0 78.4 0.0
Keyword 71.0 38.0 61.0 26.0 64.8 46.6
Decodingc 71.2 45.6‡

Decodingr

81.0 71.0 62.0 37.0 62.0 29.0 63.4 51.2

Llama2-C7B

No RAG 21.0 – 2.0 – 10.0 – 19.6 –
Vanilla 79.0 0.0 61.0 0.0 57.0 0.0 71.8 0.0
Keyword 64.0 34.0 56.0 31.0 62.2 46.4
Decodingc 70.6 38.8‡

Decodingr

78.0 69.0 61.0 31.0 53.0 36.0 62.4 41.6
‡ Approximated via subsampling. More details and discussions are in Appendix A.3.

10, ω = 1, γ = 0.99. For multiple-choice QA, we reduce RobustRAG to majority voting. For short-
answer QA, we further set α = 0.2, β = 3, η = 0. For long-form generation, we set α = 0.4, β = 4
and include two secure decoding instances: one optimized for clean performance (η = 1), denoted by
Decodingc, and another for robustness (η = 4), denoted by Decodingr. We analyze the impact of
parameters in Section 5.4 and Appendix D.

Evaluation metrics. For QA tasks, we use the gold answer a to evaluate the correctness of the
response. The evaluator M(·) returns a score of 1 when the gold answer a appears in the response r, and
outputs 0 otherwise. For clean performance evaluation (without any attack), we report the averaged
evaluation scores on different queries as accuracy (acc). For certifiable robustness evaluation, we
compute the τ values for different queries and report the averaged τ as the certifiable accuracy (cacc).
For long-form bio generation, we generate a reference (gold) response a by prompting GPT-4 with
the person’s Wikipedia document. We then use GPT-3.5 to build an LLM-as-a-judge evaluator (Zheng
et al., 2023) and rate responses with scores ranging from 0 to 100 (llmj). For robustness evaluation,
we report the τ values as certifiable LLM-judge scores (cllmj).

5.2 MAIN EVALUATION RESULTS OF CERTIFIABLE ROBUSTNESS

In Table 1, we report the certifiable robustness and clean performance of RobustRAG with k = 10
retrieved passages, isolated by a group size of ω = 1, against k′ = 1 malicious passage. We also
report performance for LLMs without retrieval (no RAG) and vanilla RAG with no defense (vanilla).

RobustRAG achieves substantial certifiable robustness across different tasks and models. As
shown in Table 1, RobustRAG achieves 69.0–71.0% certifiable robust accuracy for RQA-MC,
31.0–38.0% for RQA, 26.0–36.0% for NQ, and 38.8–51.2 certifiable LLM-judge score for the bio
generation task. A certifiable accuracy of 71.0% means that for 71.0% of RAG queries, RobustRAG’s
response will always be correct, even when the attacker knows everything about our framework and
can inject anything into one retrieved passage. RobustRAG is the first defense for RAG that achieves
formal robustness guarantees against all possible (adaptive) retrieval corruption attacks.

RobustRAG maintains high clean performance. In addition to providing substantial certifiable
robustness, RobustRAG also maintains high clean performance. For QA tasks, RobustRAG has a
minimal impact on clean performance in most cases (compared to vanilla RAG). The only exception
is Mistral with secure decoding on RQA (a 7% drop). However, we note that we can minimize this
drop with a larger group size ω—Figure 2 demonstrates that we can reduce the clean accuracy drop
from 7% to 0% by setting ω = 3. For the long-form bio generation task, the clean performance
drops can be as small as 1.2% (Llama with Decodingc); the drops are within 10% in most other
cases. Finally, we note that RobustRAG performs much better than generation without retrieval (no
RAG)—RobustRAG allows us to benefit from retrieval with robustness guarantees.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Empirical robustness of RobustRAG (k = 10, k′ = 1) against PIA and Poison attacks.
(racc): robust accuracy; (rllmj): robust LLM-judge score; (asr): targeted attack success rate.

Task Short-form open-domain QA Long-form generation
Dataset Model/ RQA NQ Bio
Attack Defense PIA Poison PIA Poison PIA Poison
LLM racc↑/ asr↓ racc↑/ asr↓ racc↑/ asr↓ racc↑/ asr↓ rllmj↑/ asr↓ rllmj↑/ asr↓

Mistral-I7B

Vanilla 5.0 / 66.0 16.0 / 80.0 8.0 / 85.0 41.0 / 37.0 29.0 / 100 56.0 / 86.0
Keyword 72.0 / 15.0 72.0 / 15.0 62.0 / 11.0 64.0 / 12.0 64.8 / 0.0 61.6 / 0.0
Decodingc 57.0 / 5.0 56.0 / 11.0 65.0 / 7.0 63.0 / 7.0 69.8 / 0.0 71.0 / 0.0

Llama2-C7B

Vanilla 1.0 / 97.0 9.0 / 76.0 2.0 / 93.0 33.0 / 38.0 18.2 / 98.0 42.4 / 44.0
Keyword 64.0 / 12.0 64.0 / 11.0 55.0 / 10.0 55.0 / 9.0 59.2 / 0.0 63.4 / 0.0
Decodingc 59.0 / 5.0 60.0 / 3.0 51.0 / 6.0 51.0 / 5.0 67.6 / 0.0 67.8 / 0.0

1 2 3
Group Size

0
10
20
30
40
50
60
70

Pe
rfo

rm
an

ce
 (%

)

Vanilla RAG
Clean Accuarcy
Certified Accuarcy

Figure 2: Effect of passage
group size ω (RQA). Larger
ω generally improves clean
performance.

5 10 15 20
Top-k Retrieval

0
10
20
30
40
50
60
70

Ac
cu

ra
cy

 (%
)

Decoding Clean
Decoding Certified
Keyword Clean
Keyword Certified

Figure 3: Effect of number of
retrieved passages k (RQA).
Larger k improves certifiable
robustness.

0 1 2 3 4 5
Corruption Size k ′

0
10
20
30
40
50
60
70
80

Ce
rti

fie
d

Ac
cu

ra
cy

 (%
) Keyword = 0.2, = 2

Keyword = 0.3, = 3
Keyword = 0.4, = 4
Keyword = 0.5, = 5

Figure 4: Effect of the
corruption size k′ and key-
word filtering thresholds α, β
(RQA).

5.3 ROBUSTRAG AGAINST EMPIRICAL ATTACKS

In Table 2, we analyze the empirical robustness of RobustRAG against two concrete corruption attacks,
namely prompt injection (PIA) (Greshake et al., 2023) and data poisoning (Poison) (Zou et al., 2024).
We present the empirical robust accuracy (racc) or robust LLM-judge score (rllmj) against two
attacks. Additionally, we report the targeted attack success rate (asr), defined as the percentage of
queries for which LLM returns the malicious responses chosen by the attacker. More details can be
found in Appendix C. As shown in Table 2, vanilla RAG pipelines are vulnerable to prompt injection
and data poisoning attacks. For example, PIA can have a 90+% attack success rate and degrade the
performance below 20%. In contrast, our RobustRAG achieves substantial empirical robustness:
the attack success rates are ≤ 15% in all cases, with high robust accuracy/score.

5.4 DETAILED ANALYSIS OF ROBUSTRAG

In this section, we use Mistral-7B-Instruct to analyze its defense performance with different parame-
ters. In Appendix D, we provide additional analyses for different models and datasets.

Impact of passage group size ω. In Figure 2, we analyze RobustRAG with different isolated passage
group size ω. As the group size ω increases, the clean performance generally improves, but the
certifiable robustness gradually decreases. The parameter ω serves as a knob to systematically balance
clean performance and robustness. Notably, with ω = 3, we reduce the clean performance drop from
7% to 0% while maintaining non-trivial certifiable robustness.

Impact of retrieved passages k. We vary the number of retrieved passages k from 2 to 20 and report
the results in Figure 3. As the number of retrieved passages increases, certifiable robustness and clean
performance improve. We observe that the improvement can be smaller when k is larger than 10; this
is because new passages usually carry less new relevant information.

Impact of corruption size k′. We report certifiable robustness for larger corruption size k′ in
Figure 4. RobustRAG achieves substantial certifiable robustness against multiple corrupted passages;
certifiable robustness gradually decreases given a larger corruption size. We note that when half of the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: RobustRAG runtime analysis (Mistral-7B; k = 10, ω = 1). We report the per-query
inference latency and latency ratio with different shots of ICL exemplars.

RQA-MC (0-shot) RQA (1-shot) RQA (4-shot) Bio (1-shot)

Vanilla 0.38s 1.00× 0.44s 1.00× 0.46s 1.00× 7.69s 1.00×
Keyword 0.62s 1.63× 1.22s 2.77× 1.68s 3.65× 14.90s 1.94×
Decoding 0.62s 1.63× 0.51s 1.16× 1.32s 2.87× 9.62s 1.25×

passages (5 out of 10) are corrupted, even a human cannot robustly respond to the query; therefore, it
is expected to see RobustRAG has zero certifiable robustness.

Impact of keyword filtering thresholds α, β. In Figure 4, we report the robustness of keyword
aggregation with different filtering thresholds α, β. Larger α, β improve certifiable robustness because
fewer malicious keywords can survive the filtering. However, larger thresholds can also remove more
benign keywords and thus hurt clean performance; the clean accuracy can drop from 70% to 52%.

Impact of decoding probability threshold η. Due to space limit, we analyze probability thresholds η
for long-form generation in Figure 12 in Appendix D. A larger η slightly decreases clean performance
but improves certifiable robustness.

Runtime analysis. Table 3 reports the average per-query inference latency of RobustRAG with
Mistral-7B and k = 10, ω = 1 on one NVIDIA A100 GPU, along with the latency ratio compared to
vanilla RAG—RobustRAG is 1.16–3.65× slower than vanilla RAG. We can compute the number of
input tokens for the vanilla RAG pipeline as len(i) + len(q) + Σjlen(pj), and that of RobustRAG
as m · (len(i) + len(q)) + Σjlen(pj), where m = ⌈ kω ⌉. Since the instruction i and the query q
are usually much shorter than passage pj , the additional computation overhead is relatively small.
Moreover, we observe that RQA has a slower inference speed when we use 4-shot in-context learning
exemplars (our default setting). We may further improve the inference speed by simplifying exemplars
(we also report the 1-shot runtime) and implementing a better caching approach, e.g., reusing the KV
cache of shared prefixes (Juravsky et al., 2024) and reusing shared attention (Gim et al., 2024).

6 RELATED WORKS

LLMs and RAG. Large language models (LLMs) (Brown et al., 2020; Achiam et al., 2023) have
achieved remarkable performance for various tasks; however, their responses can be inaccurate due to
their limited parametric knowledge. Retrieval-augmented generation (RAG) (Guu et al., 2020; Lewis
et al., 2020) aims to overcome this limitation by augmenting the model with external information
retrieved from a database. Recent works (Asai et al., 2024; Luo et al., 2023; Yan et al., 2024) improve
RAG performance in the non-adversarial setting. This paper studies the adversarial robustness of
RAG pipelines when an attacker corrupts a fraction of the retrieved passages

Corruption attacks against RAG. Early works studied misinformation attacks against QA mod-
els (Du et al., 2022; Pan et al., 2023a;b; Zhong et al., 2023). Recent attacks focused on LLM-powered
RAG. Indirect prompt injection (Greshake et al., 2023) injected malicious instructions to LLM
applications. PoisonedRAG (Zou et al., 2024) injected malicious passages to mislead RAG-based
QA pipelines. GARAG (Cho et al., 2024) used malicious typos to induce inaccurate responses. In
this paper, we designed RobustRAG to be resilient to different forms of corruption attacks.

Defenses against corruption attacks. To mitigate misinformation attacks, Weller et al. rewrote
questions to introduce redundancy and robustness; Hong et al. trained a discriminator to identify
misinformation. However, these defenses focused on weak attackers that can only corrupt named
entities, and these heuristic approaches lack formal robustness guarantees. In contrast, RobustRAG
applies to all types of passage corruption and has certifiable robustness.

7 CONCLUSION

We proposed RobustRAG as the first RAG defense framework that is certifiably robust against
retrieval corruption attacks. RobustRAG leverages an isolate-then-aggregate strategy to limit the
influence of malicious passages. We designed two secure aggregation techniques for unstructured
text responses and experimentally demonstrated their effectiveness across different tasks and datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

8 ETHICS AND REPRODUCIBILITY STATEMENT

Ethics. We do not expect this paper to raise ethical concerns as we use publicly accessible Google
Search as the retriever, and use publicly available data for experiments. Our evaluation pipeline does
not involve any harmful content. Additionally, we expect our paper to have a positive societal impact
as we proposed a RAG framework with improved robustness against both natural and malicious
passage corruption.

Reproducibility. We discuss the details of experiments and implementation in Secion 5.1 and
Appendix C. We also provide our prompt template in Appendix F. We will release our source code as
well as retrieval data to enhance reproducibility.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Perplexity AI. Perplexity ai. https://www.perplexity.ai/, 2024.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. In International Conference on Learning
Representations (ICLR), 2024.

Anish Athalye, Nicholas Carlini, and David A. Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In International Conference on
Machine Learning (ICML), 2018.

BBC. Glue pizza and eat rocks: Google ai search errors go viral, 2024. URL https://www.bbc.
com/news/articles/cd11gzejgz4o. Accessed: 2024-09.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems (NeurIPS), 33:1877–1901,
2020.

Oliver Bryniarski, Nabeel Hingun, Pedro Pachuca, Vincent Wang, and Nicholas Carlini. Evad-
ing adversarial example detection defenses with orthogonal projected gradient descent. In
International Conference on Learning Representations (ICLR). OpenReview.net, 2022. URL
https://openreview.net/forum?id=af1eUDdUVz.

Nicholas Carlini and David A. Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In ACM Workshop on Artificial Intelligence and Security (AISec@CCS), 2017.

Sukmin Cho, Soyeong Jeong, Jeongyeon Seo, Taeho Hwang, and Jong C Park. Typos that broke
the rag’s back: Genetic attack on rag pipeline by simulating documents in the wild via low-level
perturbations. arXiv preprint arXiv:2404.13948, 2024.

Yibing Du, Antoine Bosselut, and Christopher D Manning. Synthetic disinformation attacks on auto-
mated fact verification systems. In AAAI Conference on Artificial Intelligence (AAAI), volume 36,
pp. 10581–10589, 2022.

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen. Enabling large language models to generate
text with citations. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 6465–6488. Association for Computational Linguistics, 2023. URL https://aclanthology.
org/2023.emnlp-main.398.

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong.
Prompt cache: Modular attention reuse for low-latency inference. In P. Gibbons, G. Pekhi-
menko, and C. De Sa (eds.), Proceedings of Machine Learning and Systems, volume 6, pp.
325–338, 2024. URL https://proceedings.mlsys.org/paper_files/paper/2024/file/
a66caa1703fe34705a4368c3014c1966-Paper-Conference.pdf.

11

https://www.perplexity.ai/
https://www.bbc.com/news/articles/cd11gzejgz4o
https://www.bbc.com/news/articles/cd11gzejgz4o
https://openreview.net/forum?id=af1eUDdUVz
https://aclanthology.org/2023.emnlp-main.398
https://aclanthology.org/2023.emnlp-main.398
https://proceedings.mlsys.org/paper_files/paper/2024/file/a66caa1703fe34705a4368c3014c1966-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/a66caa1703fe34705a4368c3014c1966-Paper-Conference.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Google. Gemini 1.5, 2024a. URL https://blog.google/technology/ai/
google-gemini-next-generation-model-february-2024/.

Google. Generative ai in search: Let google do the searching for you. https://blog.google/
products/search/generative-ai-google-search-may-2024/, 2024b.

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten Holz, and Mario Fritz.
Not what you’ve signed up for: Compromising real-world llm-integrated applications with indirect
prompt injection. In ACM Workshop on Artificial Intelligence and Security (AISec@CCS), pp.
79–90, 2023.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International Conference on Machine Learning (ICML), volume
119, pp. 3929–3938. PMLR, 2020.

Giwon Hong, Jeonghwan Kim, Junmo Kang, Sung-Hyon Myaeng, and Joyce Jiyoung Whang.
Discern and answer: Mitigating the impact of misinformation in retrieval-augmented models with
discriminators. arXiv preprint arXiv:2305.01579, 2023.

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spaCy: Industrial-
strength Natural Language Processing in Python. 2020. doi:10.5281/zenodo.1212303.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y Fu, Christopher Ré, and Azalia Mirhoseini.
Hydragen: High-throughput llm inference with shared prefixes. arXiv preprint arXiv:2402.05099,
2024.

Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Akari Asai, Xinyan Yu, Dragomir Radev, Noah A
Smith, Yejin Choi, Kentaro Inui, et al. Realtime qa: What’s the answer right now? In Annual
Conference on Neural Information Processing Systems (NeurIPS), 2023.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc V. Le,
and Slav Petrov. Natural questions: A benchmark for question answering research. Trans-
actions of the Association for Computational Linguistics, 7:453–466, 2019. URL https:
//api.semanticscholar.org/CorpusID:86611921.

LangChain. LangChain. https://github.com/langchain-ai/langchain, 2024.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open
domain question answering. In Annual Meeting of the Association for Computational Linguistics
(ACL), pp. 6086–6096. Association for Computational Linguistics, 2019. doi:10.18653/v1/P19-
1612. URL https://www.aclweb.org/anthology/P19-1612.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In Advances in Neural
Information Processing Systems (NeurIPS), volume 33, pp. 9459–9474, 2020.

Jerry Liu. LlamaIndex, 11 2022. URL https://github.com/jerryjliu/llama_index.

Quanyu Long, Yue Deng, LeiLei Gan, Wenya Wang, and Sinno Jialin Pan. Backdoor attacks on dense
passage retrievers for disseminating misinformation. arXiv preprint arXiv:2402.13532, 2024.

Hongyin Luo, Tianhua Zhang, Yung-Sung Chuang, Yuan Gong, Yoon Kim, Xixin Wu, Helen Meng,
and James Glass. Search augmented instruction learning. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 3717–3729, 2023.

Microsoft. Bing chat. https://www.microsoft.com/en-us/edge/features/bing-chat, 2024.

12

https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/products/search/generative-ai-google-search-may-2024/
https://blog.google/products/search/generative-ai-google-search-may-2024/
https://doi.org/10.5281/zenodo.1212303
https://api.semanticscholar.org/CorpusID:86611921
https://api.semanticscholar.org/CorpusID:86611921
https://github.com/langchain-ai/langchain
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://www.aclweb.org/anthology/P19-1612
https://github.com/jerryjliu/llama_index
https://www.microsoft.com/en-us/edge/features/bing-chat

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke
Zettlemoyer, and Hannaneh Hajishirzi. FActScore: Fine-grained atomic evaluation of factual
precision in long form text generation. In Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pp. 12076–12100, Singapore, 2023. Association for Computational
Linguistics. doi:10.18653/v1/2023.emnlp-main.741. URL https://aclanthology.org/2023.
emnlp-main.741.

Liangming Pan, Wenhu Chen, Min-Yen Kan, and William Yang Wang. Attacking open-domain
question answering by injecting misinformation. In International Joint Conference on Natural
Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, IJCNLP 2023, pp. 525–539. Association for Computational Linguistics,
2023a. doi:10.18653/V1/2023.IJCNLP-MAIN.35. URL https://doi.org/10.18653/v1/2023.
ijcnlp-main.35.

Yikang Pan, Liangming Pan, Wenhu Chen, Preslav Nakov, Min-Yen Kan, and William Yang Wang.
On the risk of misinformation pollution with large language models. In Findings of the Association
for Computational Linguistics: EMNLP, pp. 1389–1403, 2023b.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 8024–8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung,
Denny Zhou, Quoc Le, et al. Freshllms: Refreshing large language models with search engine
augmentation. arXiv preprint arXiv:2310.03214, 2023.

Orion Weller, Aleem Khan, Nathaniel Weir, Dawn J. Lawrie, and Benjamin Van Durme. Defending
against disinformation attacks in open-domain question answering. In Conference of the European
Chapter of the Association for Computational Linguistics (EACL), pp. 402–417, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45. Association for Computational Linguistics, 2020.
doi:10.18653/v1/2020.emnlp-demos.6. URL https://aclanthology.org/2020.emnlp-demos.
6.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. Corrective retrieval augmented generation.
arXiv preprint arXiv:2401.15884, 2024.

Zihan Zhang, Meng Fang, and Ling Chen. Retrievalqa: Assessing adaptive retrieval-augmented
generation for short-form open-domain question answering, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=uccHPGDlao.

Zexuan Zhong, Ziqing Huang, Alexander Wettig, and Danqi Chen. Poisoning retrieval corpora
by injecting adversarial passages. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 13764–13775, 2023.

13

https://doi.org/10.18653/v1/2023.emnlp-main.741
https://aclanthology.org/2023.emnlp-main.741
https://aclanthology.org/2023.emnlp-main.741
https://doi.org/10.18653/V1/2023.IJCNLP-MAIN.35
https://doi.org/10.18653/v1/2023.ijcnlp-main.35
https://doi.org/10.18653/v1/2023.ijcnlp-main.35
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wei Zou, Runpeng Geng, Binghui Wang, and Jinyuan Jia. Poisonedrag: Knowledge poisoning attacks
to retrieval-augmented generation of large language models. arXiv preprint arXiv:2402.07867,
2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

𝐩𝑐 ⊕ 𝐩1 𝐩2 ⊕ 𝐩3 𝐩4 ⊕ 𝐩5

𝐩1 ⊕ 𝐩𝑐 𝐩2 ⊕ 𝐩3 𝐩4 ⊕ 𝐩5

𝐩1 ⊕ 𝐩2 𝐩3 ⊕ 𝐩4 𝐩5 ⊕ 𝐩𝑐

𝐩1 ⊕ 𝐩2 𝐩3 ⊕ 𝐩4 𝐩𝑐 ⊕ 𝐩5

𝐩1 ⊕ 𝐩2 𝐩3 ⊕ 𝐩𝑐 𝐩4 ⊕ 𝐩5

𝐩1 ⊕ 𝐩2 𝐩𝑐 ⊕ 𝐩3 𝐩4 ⊕ 𝐩5

𝐩2 ⊕ 𝐩3 𝐩4 ⊕ 𝐩5

𝐩2 ⊕ 𝐩3 𝐩4 ⊕ 𝐩5

𝐩1 ⊕ 𝐩2 𝐩3 ⊕ 𝐩4

𝐩1 ⊕ 𝐩2 𝐩3 ⊕ 𝐩4

𝐩1 ⊕ 𝐩2 𝐩4 ⊕ 𝐩5

𝐩1 ⊕ 𝐩2 𝐩4 ⊕ 𝐩5

𝐩𝑐 𝐩1 𝐩2 𝐩3 𝐩4 𝐩5

𝐩1 𝐩𝑐 𝐩2 𝐩3 𝐩4 𝐩5

𝐩1 𝐩2 𝐩3 𝐩4 𝐩5 𝐩𝑐

𝐩1 𝐩2 𝐩3 𝐩4 𝐩𝑐 𝐩5

𝐩1 𝐩2 𝐩3 𝐩𝑐 𝐩4 𝐩5

𝐩1 𝐩2 𝐩𝑐 𝐩3 𝐩4 𝐩5

Case 1

Case 2

Case 6

Case 5

Case 4

Case 3

Possible cases of 𝓖𝒎
′ Set ℋ with all possible

cases of ഥ𝓖𝐦,𝒎′

𝐩1 𝐩2 𝐩3 𝐩4 𝐩5 𝐩6
Original

𝓟𝒌

Step 1: inject 𝑘′ = 1
malicious passage 𝐩𝑐

Step 2: apply
passage isolation

Possible cases of 𝓟𝒌
′

Step 3: remove
corrupted passage groups

Setting: 𝜔 = 2,
𝑘 = 6, 𝑘′ = 1,
𝑚 = 3, 𝑚′ = 1

Step 4: remove
duplicate ҧ𝒢𝑚,𝑚′

Figure 5: Example of the process H ← CORRUPTIONCASES(Pk, ω, k
′) for passage injection.

Given k passages, the procedure first injects k′ corrupted passage pc to all possible positions, resulting
in

(
k
k′

)
possible cases of P ′

k. Second, we apply passage isolation ISOGROUP(Pk, ω) to each possible
P ′
k and get corresponding G′m. Third, we remove the corrupted passage groups from each G′m and get
Ḡm,m′ . Fourth, we remove duplicates and form the output set with all possible (distinct) Ḡm,m′ .

A ADDITIONAL DETAILS OF ROBUSTNESS CERTIFICATION

In Section 4, we discussed the main idea of robustness certification. In this section, we provide
additional details of the certification algorithms, including pseudocode and formal proof. We will
first introduce the general workflow of the certification procedures (Appendix A.1) and then discuss
specific certification algorithms for keyword and decoding aggregation (Appendices A.2 and A.3).

A.1 CERTIFICATION WORKFLOW

In this subsection, we discuss the certification workflow, which is agnostic to the underlying secure
text aggregation algorithms.

Step 1: Enumerating all possible cases of corruption positions. As discussed in Section 4, we need
to enumerate all possible cases of injection/corruption positions to analyze possible LLM outputs.
We now discuss the details of this enumeration; we provide a visual example in Figure 5. First,
given top-k retrieved passages and the injection size k′, we will enumerate all

(
k
k′

)
possible cases

of injection positions, denoted as “possible cases of P ′
k” in the figure. For each possible case of

injection positions P ′
k, we simulate the isolation operation ISOGROUP(·) to obtain G′m from each

P ′
k, denoted as “possible cases of G′m” in the figure. For each G′m, we can identify m′ out of m

passage groups that overlap with the corruption positions (marked with red boxes in the figure).
Then, we generate a set Ḡm,m′ that only contains m−m′ benign passage groups without corrupted
passage groups. This Ḡm,m′ will be later used for robustness certification. Finally, we create a
set H that contains all distinct Ḡm,m′ generated by different injection position cases. We use an
abstract procedureH ← CORRUPTIONCASES(Pk, ω, k

′) to represent this process, where Pk is top-k
retrieved passages, where ω is the group size, and k′ is the number of corrupted passages.

Step 2: Certifying robustness for every corruption case. Given the set of all possible corruption
cases, we use another abstract procedure CERTIFYONECASE(Ḡm,m′ , ·) to analyze robustness for each
case Ḡm,m′ ∈ H. That is, CERTIFYONECASE(Ḡm,m′ , ·) needs to determine the τ value as the lowest
evaluation score for all possible attacks P ′

k ∈ A(Pk, k
′) that are associated with Ḡm,m′ ∈ H, i.e.,

∀P ′
k ∈ A(Pk, k

′), s.t. Ḡm,m′ ⊂ ISOGROUP(P ′
k, ω). The detailed design of CERTIFYONECASE(·)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 3 Certification workflow
Require: Benign retrieved data Pk, group size ω, corruption size k′, query q, model LLM, gold

answer a, other defense parameters Z .
1: procedure CERTIFY
2: H ← CORRUPTIONCASES(Pk, ω, k

′)
3: τ∗ ←∞
4: for Ḡm,m′ ∈ H do
5: τḠm,m′ ← CERTIFYONECASE(Ḡm,m′ , LLM,Z,q,a)
6: τ∗ ← min(τ∗, τḠm,m′)

7: end for
8: return τ∗

9: end procedure

depends on the aggregation algorithm used in RobustRAG, and we will discuss them in the next two
subsections. After we determine the τ value for all corruption location cases Ḡm,m′ , we can take the
lowest τ as the final certification output.

Pseudocode. We summarize these two steps in Algorithm 3. It first generate all possible corruption
cases via H ← CORRUPTIONCASES(Pk, ω, k

′). For each Ḡm,m′ ∈ H, it computes its τ value via
τḠm,m′ ← CERTIFYONECASE(Ḡm,m′ , LLM,Z,q,a). Additionally, it uses τ∗ to track the lowest
τḠm,m′ computed for each case and finally returns τ∗ as the certification outcome. We state the
correctness of this workflow in the following lemma.
Lemma 1 (Correctness of certification workflow). Given benign retrieved passages Pk, group size ω,
corruption size k′, query q, model LLM, gold answer a, and other defense parameters Z , as long as
the sub-procedure CORRUPTIONCASES(·) can enumerate all possible corruption position cases and
CERTIFYONECASE(·) correctly can return the τ value for each corruption position case, Algorithm 3
can correctly return the τ value for τ -certifiable robustness for RobustRAG inference procedure
RRAG(·) (Algorithm 1 or 2), i.e., M(r,a) ≥ τ,∀ r ∈ R := {RRAG(i,q,P ′

k, LLM, ω,Z) | ∀P ′
k ∈

A(Pk, k
′)}.

Proof. To prove the correct of Algorithm 3, we need to first understand what correctly implemented
CORRUPTIONCASES(·) and CERTIFYONECASE(·) can do.

First, the correctness of the CORRUPTIONCASES(·) procedure ensures that every possible corrupted
retrieval P ′

k ∈ A(Pk, k
′) is covered by one Ḡm,m′ ∈ H. That is,

∀P ′
k ∈ A(Pk, k

′),∃ Ḡm,m′ ∈ H s.t. Ḡm,m′ ⊂ ISOGROUP(P ′
k, ω) (2)

This implies that enumerating all possible Ḡm,m′ ∈ H will cover all possible P ′
k ∈ A(Pk, k

′).

Second, for each Ḡm,m′ ∈ H, the correctness of CERTIFYONECASE(·) ensures that τ is the lowest
evaluation score against all possible attacks P ′

k ∈ A(Pk, k
′) that are associated with Ḡm,m′ ∈ H.

That is,
τḠm,m′ = min

P′
k

M(r,a), r = RRAG(i,q,P ′
k, LLM, ω,Z),

∀P ′
k ∈ A(Pk, k

′) s.t. Ḡm,m′ ⊂ ISOGROUP(P ′
k, ω)

(3)

Therefore, we only need to compute the lowest τ across all possible Ḡm,m′ as the certification
outcome. This is exactly what Algorithm 3 does, i.e., we have

τ∗ = min
Ḡm,m′

(τḠm,m′),∀ Ḡm,m′ ∈ H (4)

Finally, we can summarize Equations 2, 3, and 4 as follows. For any P ′
k, we can find a Ḡm,m′ ∈ H

such that Ḡm,m′ is the set of benign passage groups after applying isolation ISOGROUP(·, ω) to P ′
k

(Equation 2). For each Ḡm,m′ , we can determine the τ value as τḠm,m′ (Equation 3). Since τ∗ is
the lowest τḠm,m′ (Equation 4), τ∗ is also a valid τ value for corruption position case Ḡm,m′ and its

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

{Everest:2,
 8848m:2,
 Mount:1
 highest:1,
 altitude:1,
Fuji:1

}

{Mount, Everest,
8848m}

{Everest, highest,
altitude, 8848m}

An arbitrary set

Unique keyword sets
Aggregated

keyword counts
Possible

retained keywords

𝓦𝑨 :{Everest,8848m}
𝓦𝑩 :{all other words from the vocabulary, e.g., Fuji}
𝓦𝑪 :{Mount,highest,altitude}

{Everest,8848m,
Mount,highest,
altitude}

{Everest,8848m} {Everest,8848m,
Mount,highest}

{Everest,8848m,
Mount,altitude}

{Everest,8848m,
highest,altitude}

{Everest,8848m,
Mount}

{Everest,8848m,
highest}

{Everest,8848m,
altitude}

Setting: m = 3, 𝑚′ =
𝑚effective

′ = 1, 𝜇′ = 2

Figure 6: Visual example of keyword certification. One out of three passage groups is corrupted,
and the attack can introduce any word to the corrupted keyword set. (1) Words fromWA (with counts
larger than or equal to µ′ = 2) will always be retained. (2) Words fromWB (with counts smaller than
µ′ −m′

effective = 1) will always be filtered; therefore, malicious keywords like “Fuji” can never affect
RobustRAG output. Words fromWC with medium counts of one will be retained if the malicious
keyword set contains the same words; therefore, the attacker has arbitrary control over the appearance
of words fromWC . We can generate all possible retained keyword sets by enumerating the power set
ofWC (and combining them with the keyword setWA). Given all possible retained keyword sets,
we can prompt the LLM to generate all possible responsesR.

corresponding corrupted retrieval P ′
k. Therefore, we know τ∗ returned by Algorithm 3 satisfies the

definition of certifiable robustness:

M(r,a) ≥ τ∗,∀ r ∈ R := {RRAG(i,q,P ′
k, LLM, ω,Z) | ∀P ′

k ∈ A(Pk, k
′)}

In the following subsections, we will discuss the details of CERTIFYONECASE(·) for keyword and
decoding aggregation techniques.

A.2 SECURE KEYWORD AGGREGATION

We provide the pseudocode of CERTIFYONECASE(·) for keyword aggregation in Algorithm 4. It
aims to determine the τ value in τ -certifiable robustness for a given query q, one corruption location
case represented by Ḡm,m′ , and given defense/attack settings. We state its correctness in the following
theorem.
Theorem 1. Given benign passage groups for one corruption case Ḡm,m′ = (ḡ1, . . . , ḡm−m′), query
q, model LLM, group size ω, filtering thresholds α, β, and gold answer a, Algorithm 4 can correctly re-
turn the τ value for τ -certifiable robustness for the inference procedure RRAG-KEYWORD discussed
in Algorithm 1, i.e., M(r,a) ≥ τ,∀ r ∈ R := {RRAG-KEYWORD(i,q,P ′

k, LLM, ω, α, β) | ∀P ′
k ∈

A(Pk, k
′) s.t. Ḡm,m′ ⊂ ISOGROUP(P ′

k, ω)}.

Proof. Overview. Given a corrupted retrieval P ′
k, Algorithm 1 first applies passage isolation and get

G′m ← ISOGROUP(P ′
k, ω). G′m contains m′ corrupted passage groups and m−m′ benign passage

groups (i.e., Ḡm,m′). Our certification (Algorithm 4) needs to analyze m−m′ benign passage groups
in Ḡm,m′ and determine the τ value that holds for an attacker who can arbitrarily control the m′

malicious passage groups. We next discuss how Algorithm 4 correctly performs this analysis to prove
the theorem. We provide a toy example in Figure 6 to aid our discussion.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 4 The CERTIFYONECASE(·) proce-
dure for keyword aggregation
Require: Benign passage groups for one cor-

ruption case Ḡm,m′ = (ḡ1, . . . , ḡm−m′),
query q, model LLM, filtering thresholds
α ∈ [0, 1], β ∈ Z+, gold answer a.

Instructions: i1 = “answer the query given re-
trieved passages, say ‘I don’t know’ if no
relevant information found”;

1: i2 = “answer the query using provided key-
words”

2: C ← COUNTER(), n← 0
3: for j ∈ {1, 2, . . . ,m−m′} do
4: rj ← LLMgen(i1 ⊕ q⊕ ḡj)
5: if “I don’t know” ̸∈ rj then
6: Wj ← GETUNIQKEYWORDS(rj)
7: Update counter C withWj

8: n← n+ 1
9: end if

10: end for
11: R ← {}
12: for m′

effective ∈ {0, 1, . . . ,m′} do
13: µ′ ← min(α · (n+m′

effective), β)
14: WA ← {w|(w, c) ∈ C, c ≥ µ′}
15: WC ← {w|(w, c) ∈ C, µ′ > c ≥ µ′ −

k′effective}
16: forW ′

C ∈ P(WC) do
17: W ′ ←WA

⋃
W ′

C
18: r← LLMgen(i2⊕q⊕ SORTED(W ′))

19: R ← R
⋃
{r}

20: end for
21: end for
22: τ ← minr∈R M(r,a)
23: return τ

Algorithm 5 The CERTIFYONECASE(·) proce-
dure for for decoding aggregation
Require: Benign passage groups for one cor-

ruption case Ḡm,m′ = (ḡ1, . . . , ḡm−m′),
query q, model LLM, threshold γ, probabil-
ity threshold η, max number of new tokens
Tmax, gold answer a.

Instruction: i = “answer the query given re-
trieved passages, say ‘I don’t know’ if no
relevant information found”

1: R ← {},X ← STACK({“”})
2: J ← {j|PrLLM[“I don’t know”|i⊕q⊕ḡj] <

γ, ḡj ∈ Ḡm,m′}
3: while X is not empty do
4: r̂← X .POP()
5: if LEN(r̂) ≥ Tmax then
6: R ← R

⋃
{r̂}

7: continue
8: end if
9: v̂ ← VEC-SUM({vj |vj = LLMprob(i ⊕

q⊕ ḡj ⊕ r∗), j ∈ J })
10: (ta, A), (tb, B)← TOP2TOKENS(v̂)
11: tnor ← LLMtoken(“answer query”⊕q⊕ r̂)
12: if A−B > η +m′ then
13: X .PUSH(r̂⊕ ta)
14: else if (η +m′ ≥ A − B > |η −m′|)

then
15: X .PUSH(r̂⊕ ta);X .PUSH(r̂⊕ tnor)

16: else if (η −m′ ≥ A−B > 0) then
17: X .PUSH(r̂⊕ tnor)
18: else
19: return 0
20: end if
21: end while
22: τ ← minr∈R M(r,a)
23: return τ

First, as discussed in Section 4, the certification procedure aims to extract keywords and get their
counts from the m−m′ responses computed from benign passage groups (Lines 2-10). The keyword
extraction algorithm is identical to the inference algorithm discussed in Algorithm 1.

Then, the certification procedure initializes an empty response setR to gather and hold all possible
responses (Line 11). Since the attacker might introduce arbitrary numbers of non-abstained malicious
responses (responses without “I don’t know”), we denote this number as m′

effective and will enumerate
all possible cases m′

effective ∈ {0, 1, . . . ,m′}.
For each m′

effective, we first compute the corresponding threshold µ′ = min(α · (n +m′
effective), β),

where n is the number of non-abstained responses from m−m′ benign passages (Line 13). Given
the threshold µ′, we can divide all keywords into three groups (we provide a toy example in Figure 6).

1. The first groupWA contains keywords with counts no smaller than µ′. Keywords from this
group will always be in the retained keyword setW∗ because the injection attacker cannot
decrease their counts.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

2. The second groupWB contains keywords with counts smaller than µ′ −m′
effective. These

keywords will never appear in the final keyword set W∗ because the attacker can only
increase their counts by m′

effective.

3. The third groupWC contains keywords whose counts are within [µ′ −m′
effective, µ

′). The
attacker can arbitrarily decide if these keywords will appear in the retained keyword set.

We then generate keyword setsWA andWC accordingly (Lines 14-15). Note that we do not need
WB for certification as it will not be part of the retained keyword set. Next, we enumerate all possible
keyword sets from the power setW ′

C ∈ P(Wc). For eachW ′
C , we generate retained keyword set

W ′ =WA

⋃
W ′

C (Line 17), obtain the corresponding response r = LLMgen(i2 ⊕ q⊕ SORTED(W ′))
(Line 18), and add this response to the response set (Line 19).

After we enumerate all possible m′
effective and all possible retained keyword setW ′. The response

setR contains all possible LLM responses. We call the evaluation metric function M(·) and get the
lowest score as the certified τ value (Line 22).

In summary, the certification procedure has considered all possible responses and returns the lowest
evaluation metric score. Therefore, the returned value is the correct τ value for certifiable robustness.

Implementation details. In some cases, the keyword power set P(WC) can be too large to enumerate
(e.g., 215). When the size |WC | > 15, we conservatively consider the certification fails and return
τ = 0, i.e., zero-certifiable robustness.

A.3 SECURE DECODING AGGREGATION

In Algorithm 5, we provide the pseudocode of the certification algorithm for decoding-based aggre-
gation. It aims to return the τ value in τ -certifiable robustness for a given query q, one corruption
location case represented by Ḡm,m′ , and given defense/attack settings. We formally state its correct-
ness in the following theorem.

Theorem 2. Given benign passage groups for one corruption case Ḡm,m′ = (ḡ1, . . . , ḡm−m′),
query q, model LLM, group size ω, filtering thresholds γ, probability threshold η, max number of
new tokens Tmax, and gold answer a, Algorithm 5 can correctly return the τ value for τ -certifiable
robustness for the inference procedure RRAG-DECODING discussed in Algorithm 2, i.e., M(r,a) ≥
τ,∀ r ∈ R := {RRAG-DECODING(i,q,P ′

k, LLM, ω, γ, η, Tmax) | ∀P ′
k ∈ A(Pk, k

′), s.t. Ḡm,m′ ⊂
ISOGROUP(P ′

k, ω)}.

Proof. Overview. Given a corrupted retrieval P ′
k, Algorithm 2 first applies passage isolation and get

G′m ← ISOGROUP(P ′
k, ω). G′m contains m′ corrupted passage groups and m−m′ benign passage

groups (i.e., Ḡm,m′). Our certification (Algorithm 5) needs to analyze m−m′ benign passage groups
in Ḡm,m′ and determine the τ value that holds for an attacker who can arbitrarily control the m′

malicious passage groups. We next discuss how Algorithm 5 correctly performs this analysis, which
can prove the theorem.

First, we initialize an empty response set R to hold all possible responses and a stack X with an
empty string to track possible partial responses (Line 1). Then, we get the indices of benign passage
groups that are unlikely to output “I don’t know” (Line 2). We will repeat the following robustness
analysis until the stack is empty. At each analysis step, we pop a partial response r̂ from the stack X
(Line 4). If it has reached the maximum number of generated tokens (or ends with an EOS token), we
add this response r̂ to the response setR (Line 6). Otherwise, we get the probability sum vector v̂
from benign passages (Line 9) and its top-2 tokens ta, tb and their probability sums A,B (Line 10).
We also get the no-retrieval prediction token as tnor = LLMtoken(“answer query”⊕ q⊕ r̂) (Line 11).

Next, we need to analyze all possible next-token predictions of RobustRAG at this decoding step. We
will discuss three lemmas for three tractable cases which correspond to Lines 12-17 of Algorithm 5.
Our discussions are based on the probability gap between A and B, i.e., A−B.

Lemma 2. If A−B > η +m′ is true, the algorithm will always predict ta.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. Without loss of generality, we only need to consider the top-2 tokens ta, tb. Let x, y be the
additional probability values introduced by malicious passages for tokens ta, tb, respectively. We
know that x, y ∈ [0,m′] because each probability value is bounded within [0, 1] and the attacker can
only corrupt m′ passage groups. Next, we compare the new probability value sums A+ x and B + y.

We have

A+ x− (B + y) = (A−B) + x− y (5)
> (A−B) + min

x,y∈[0,m′]
(x− y) (6)

= (A−B) + (−m′) (7)

> η +m′ −m′ = η (8)

According to Algorithm 2, we will always predict the top-1 token ta in this case.

Lemma 3. If η +m′ ≥ A−B > |η −m′| is true, the algorithm might predict the top-1 token ta or
the no-retrieval token tnor, but not any other token.

Proof. We prove this lemma in two steps. First, we aim to prove that no tokens other than ta or tnor
will be predicted. Without loss of generality, we only need to prove that the top-2 token tb will not be
predicted. This is because other tokens have lower probability values than tb and thus are harder to
be predicted. Second, we prove that the algorithm can predict the top-1 token ta or the no-retrieval
token tnor.

Let x, y be the additional probability values introduced by the attacker for tokens ta, tb, respectively.
We know that x, y ∈ [0,m′]. We next analyze the new probability value sums A+ x and B + y. We
have

(B + y)− (A+ x) = −(A−B) + (y − x) (9)

< −|η −m′|+ (y − x) (10)

≤ −|η −m′|+ max
x,y∈[0,m′]

(y − x) (11)

= −|η −m′|+m′ (12)

If η ≥ m′, we have

(B + y)− (A+ x) < −|η −m′|+m′ ≤ m′ ≤ η (13)

If η < m′, we have

(B + y)− (A+ x) < −|η −m′|+m′ = η −m′ +m′ = η (14)

We have (B + y)− (A+ x) < η in both cases. Therefore, the probability gap is not large enough for
the algorithm to output the top-2 token tb.

Next, we aim to prove that the algorithm can output the top-1 token ta or the no-retrieval token tnor.
We need to show that there exist feasible (A,B, x, y, η,m′) tuples such that (A+ x)− (B + y) > η
(predicting the top-1 token ta) and (A+ x)− (B + y) ≤ η (predicting the no-retrieval token tnor).
We can derive the following inequalities.

min(A−B) + min
x,y∈[0,m′]

(x− y) ≤ (A+ x)− (B + y) ≤ max(A−B) + max
x,y∈[0,m′]

(x− y) (15)

|η −m′| −m′ < (A+ x)− (B + y) ≤ η +m′ +m′ (16)

Since m′ > 0, clearly we have |η −m′| −m′ < η < η + 2m′. Therefore, there exist cases that
satisfy |η −m′| −m′ ≤ (A+ x)− (B + y) ≤ η, and the algorithm can output a no-retrieval token
tnor. There also exists cases that satisfy η < (A+ x)− (B+ y) ≤ η+2m′, the algorithm can output
the top-1 token ta.

Lemma 4. If η −m′ ≥ A−B > 0 is true, the algorithm will always predict a no-retrieval token.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. Without loss of generality, we only need to consider the top-2 tokens ta, tb because other
tokens have lower probability values and are less likely to be outputted. Let x, y be the additional
probability values introduced by the attacker for tokens ta, tb, respectively. We know that x, y ∈
[0,m′]. Next, we analyze the new probability value sums A+ x and B + y.

To always output a no-retrieval token, we require |(A + x) − (B + y)| ≤ η,∀x, y ∈ [0,m′].
Equivalently, we require

⇔ −η − x+ y ≤A−B ≤ η − x+ y,∀x, y ∈ [0,m′] (17)
⇔ −η + max

x,y∈[0,m′]
(−x+ y) ≤A−B ≤ η + min

x,y∈[0,m′]
(−x+ y) (18)

⇔ −η +m′ ≤A−B ≤ η −m′ (19)

Note that we have A − B > 0 since A is the probability sum of the top-1 token. So we have
η −m′ ≥ A−B > 0⇔ the algorithm will always output a no-retrieval token.

With these three lemmas, we can go back to the certification procedure in Algorithm 5. We have four
cases in total (three tractable cases plus one intractable case).

1. Case 1: A−B > η +m′ (Line 12). Lemma 2 ensures that the next token is the top-1 token
ta; thus, we push r̂⊕ ta to the stack X (Line 13).

2. Case 2: η +m′ ≥ A− B > |η −m′| (Line 14). Lemma 3 ensures that the next token is
either top-1 token ta or the no-retrieval token tnor, which is under the attacker’s control.
Thus, we push both r̂⊕ ta and r̂⊕ tnor to X (Line 15).

3. Case 3: η − m′ ≥ A − B > 0 (Line 16). Lemma 4 ensures that the next token is the
no-retrieval token tnor; thus, We push r̂⊕ tnor to X (Line 17).

4. Case 4: other cases. We cannot claim any robustness about the next-token prediction:
the response set becomes intractable and the robustness certification fails. Therefore, the
algorithm returns τ = 0, i.e., zero-certifiable robustness (Line 19).

Finally, if the response setR is still tractable (no Case 4 happens) when the stack X becomes empty,
we return τ as the worst evaluation score minr∈R M(r,a) (Line 22).

In summary, the certification procedure has considered all possible responses and returns the lowest
evaluation metric score. Therefore, the returned value is the correct τ value for certifiable robustness.

We note that the entire certification process can be viewed as a binary tree generation, where each
next-token prediction is a tree node. We provide a toy example in Figure 7 (see figure caption for
more details).

Implementation details. The number of all possible responses |R| can sometimes become very large
(> 103) when Case 2 happens frequently. In our experiment setting (k = 10, ω = 1, k′ = 1), we find
η ≤ 3 leads to a lot of Case 2 scenarios and thus a large response setR. Since using LLM-as-a-judge
to evaluate a large set of responses can be financially or computationally prohibitive, we sample
a random subset R̂ (of size 100) from the large response set R and approximate the τ value as
τ̂ = minr∈R̂ M(r,a). This approximated certifiable robustness was marked with ‡ in Table 1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Top-1 token

No-retrieval token

Everest

BOS

at

8848m

EOS

at

8848

EOS

meters

is

the

highest

8848m

EOS

Mount

Everesthas

the

highest

8848m

EOS

altitude

Case 2

Case 2

Case 2

Case 1

Case 1

Case 1

Case 1

Case 1

Case 1

Case 1

Case 1

Case 3

Case 1

Case 3 Case 1

Case 1

Case 1

Case 3

4 cases for next-token prediction:
1. Always top-1 token
2. Either top-1 or no-retrieval token
3. Always no-retrieval token
4. Any malicious token (certification fails)

All possible responses：
• Everest at 8848m
• Everest has the highest

altitude 8848m
• Mount Everest at 8848 meters
• Mount Everest is the highest

8848m

Figure 7: Visual example of decoding certification. The certification process can be viewed as a
binary tree generation process, where each token corresponds to a tree node. We start with the BOS
token (root node) and analyze the next-token prediction at each decoding step. If we hit Case 2, we
branch out with two nodes (one for the top-1 token and another for the no-retrieval token); if we
hit Case 1 or Case 3, we append the top-1 or no-retrieval token accordingly; if we hit Case 4, the
certification fails, and algorithms aborts with τ = 0 (zero certifiable robustness). If we finish the tree
generation (end with EOS tokens or reach the maximum number of newly generated tokens), each
root-to-leaf path corresponds to one possible LLM response. We compute τ as the lowest evaluation
score from all these responses.

B GENERALIZING TO PASSAGE MODIFICATION

In this paper, we focus on passage injection where the attacker can inject a small number of passages
but cannot modify the original passages. In this section, we aim to demonstrate that RobustRAG is
directly applicable to passage modification where the attacker can modify a small number of original
passages. We can use the same inference algorithms discussed in Algorithm 1 and Algorithm 2, as
well as the certification algorithms discussed in Algorithm 4 and Algorithm 5. The only thing we
need to change is the implementation of CORRUPTIONCASES(·) discussed in Appendix A.1 and
Algorithm 3.

Overview. We can decompose passage modification into two steps: the attacker first removes
arbitrary k′ original passages and then injects k′ malicious passages into arbitrary locations. There
are

(
k
k′

)
possible cases for passage removal and

(
k
k′

)
cases for passage injection. The procedure

CORRUPTIONCASES(·) need to enumerate all these possible cases.

We provide a visual example (with k = 6, ω = 2, k′ = 1) in Figure 8. Given the retrieved passage
P6 = (p1,p2,p3,p4,p5,p6), the attacker first removes k′ = 1 original passage, leading to six
possible cases (p2,p3,p4,p5,p6), (p1,p3,p4,p5,p6), (p1,p2,p4,p5,p6), (p1,p2,p3,p5,p6),
(p1,p2,p3,p4,p6), and (p1,p2,p3,p4,p5), denoted as “possible cases with passage removal” in
the figure.

Then, the attacker injects one corrupted passage, denoted as pc into an arbitrary location. Take
(p2,p3,p4,p5,p6) as an example, the injected retrieval then becomes (pc,p2,p3,p4,p5,p6),
(p2,pc,p3,p4,p5,p6), (p2,p3,pc,p4,p5,p6), (p2,p3,p4,pc,p5,p6), (p2,p3,p4,p5,pc,p6),
or (p2,p3,p4,p5,p6,pc). Then, we can apply ISOGROUP(·) with ω = 2 and get six different cases
of grouped passages G′m, with m = ⌈ kω ⌉ = 3; we can express them as (pc ⊕ p2,p3 ⊕ p4,p5 ⊕
p6), (p2 ⊕ pc,p3 ⊕ p4,p5 ⊕ p6), (p2 ⊕ p3,pc ⊕ p4,p5 ⊕ p6), (p2 ⊕ p3,p4 ⊕ pc,p5 ⊕ p6),
(p2 ⊕ p3,p4 ⊕ p5,pc ⊕ p6), (p2 ⊕ p3,p4 ⊕ p5,p6 ⊕ pc). Finally, we can get possible Ḡm,m′ as

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

𝐩3 ⊕ 𝐩4 𝐩5 ⊕ 𝐩6

𝐩3 ⊕ 𝐩4 𝐩5 ⊕ 𝐩6

𝐩2 ⊕ 𝐩3 𝐩4 ⊕ 𝐩5

𝐩2 ⊕ 𝐩3 𝐩4 ⊕ 𝐩5

𝐩2 ⊕ 𝐩3 𝐩5 ⊕ 𝐩6

𝐩2 ⊕ 𝐩3 𝐩5 ⊕ 𝐩6

Set ℋ with all possible
cases of ഥ𝓖𝐦,𝒎′

𝐩1 𝐩2 𝐩3 𝐩4 𝐩5 𝐩6
Original

𝓟𝒌

Step 0: remove 𝑘′ = 1
original passage

Step 2: apply
passage isolation

𝐩2 𝐩3 𝐩4 𝐩5 𝐩6

𝐩1 𝐩3 𝐩4 𝐩5 𝐩6

𝐩1 𝐩2 𝐩3 𝐩4 𝐩5

𝐩1 𝐩2 𝐩3 𝐩4 𝐩6

𝐩1 𝐩2 𝐩3 𝐩5 𝐩6

𝐩1 𝐩2 𝐩4 𝐩5 𝐩6

Case 1

Case 2

Case 6

Case 5

Case 4

Case 3

Possible cases with
passage removal Step 3: remove

corrupted passage groups

Step 4: remove
duplicate ҧ𝒢𝑚,𝑚′

Step 1: inject 𝑘′ = 1
malicious passage 𝐩𝑐

Possible cases of 𝓟𝒌
′

𝐩𝑐 𝐩2 𝐩3 𝐩4 𝐩5 𝐩6

𝐩2 𝐩𝑐 𝐩3 𝐩4 𝐩5 𝐩6

𝐩2 𝐩3 𝐩4 𝐩5 𝐩6 𝐩𝑐

𝐩2 𝐩3 𝐩4 𝐩5 𝐩𝑐 𝐩6

𝐩2 𝐩3 𝐩4 𝐩𝑐 𝐩5 𝐩6

𝐩2 𝐩3 𝐩𝑐 𝐩4 𝐩5 𝐩6

Case 1.a

Case 1.b

Case 1.f

Case 1.e

Case 1.d

Case 1.c

𝐩𝑐 ⊕ 𝐩2 𝐩3 ⊕ 𝐩4 𝐩5 ⊕ 𝐩6

𝐩2 ⊕ 𝐩𝑐 𝐩3 ⊕ 𝐩4 𝐩5 ⊕ 𝐩6

𝐩2 ⊕ 𝐩3 𝐩4 ⊕ 𝐩5 𝐩6 ⊕ 𝐩𝑐

𝐩2 ⊕ 𝐩3 𝐩4 ⊕ 𝐩5 𝐩𝑐 ⊕ 𝐩6

𝐩2 ⊕ 𝐩3 𝐩4 ⊕ 𝐩𝑐 𝐩5 ⊕ 𝐩6

𝐩2 ⊕ 𝐩3 𝐩𝑐 ⊕ 𝐩4 𝐩5 ⊕ 𝐩6

Possible cases of 𝓖𝒎
′

Setting: 𝜔 = 2,
𝑘 = 6, 𝑘′ = 1,
𝑚 = 3, 𝑚′ = 1

…
…

Figure 8: Example of the processH ← CORRUPTIONCASES(Pk, ω, k
′) for passage modification.

Passage modification can be decomposed into passage removal and passage injection. Given k
passages, the CORRUPTIONCASES(·) procedure first removes k′ corrupted passage; there are

(
k
k′

)
possible cases. For each case (we plot for Case 1 in the figure), we next inject k′ malicious passage pc

to all possible locations, resulting in
(
k
k′

)
possible cases of P ′

k. The rest of the procedure is identical
to the passage injection case discussed in Figure 5: we apply passage isolation ISOGROUP(Pk, ω) to
each possible P ′

k and get corresponding G′m, and remove the corrupted passage groups from each G′m
and get Ḡm,m′ . Finally, we enumerate all possible cases and form the output setH with all possible
distinct Ḡm,m′ .

Table 4: certifiable robust accuracy against passage injection and modification (Mistral-7B with
k = 10, k′ = 1, ω = 1)

Model/ Multiple-choice QA Open-domain QA

defense RQA-MC RQA NQ
inj. modi. inj. modi. inj. modi.

Keyword 71.0 59.0 45.0 28.0 47.0 20.0
Decoding 39.0 23.0 30.0 13.0

(p3 ⊕ p4,p5 ⊕ p6), (p2 ⊕ p3,p5 ⊕ p6), and (p2 ⊕ p3,p4 ⊕ p5). We can repeat this process to
generate all possible (distinct) Ḡm,m′ and obtainH.

Experiment results. We use Mistral-7B-Instruct with the top-10 retrieved passages from QA datasets
for experiments. We set α = 0.3, β = 3 for keyword aggregation, and η = 0 for decoding aggregation.
We report the certifiable robust accuracy for injecting or modifying k′ = 1 passage in Table 4. As
shown in the table, our RobustRAG algorithm achieves good certifiable robustness against both
passage modification and injection. Note that we use the same inference algorithm (Algorithm 1 and
Algorithm 2 discussed in Section 3) for both injection and modification attacks. The certifiable robust
accuracy for passage modification is lower than that for passage injection. This is expected because
passage modification is a stronger attack than passage injection.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C ADDITIONAL DETAILS OF IMPLEMENTATION AND EXPERIMENTS

Implementation of keyword extraction. We use the spaCy library Honnibal et al. (2020) (MIT
license) to preprocess every text response. We consider words with POS tags of ADJ (adjective), ADV
(adverb), NOUN (noun), NUM (numeral), PROPN (proper noun), SYM (symbol), and X (others)
to be most informative and use them as keywords or to form keyphrases. Let us call words with
these tags “informative words” and words with other tags “uninformative words”. Our keyword set
contains (1) all lemmatized informative words and (2) keyphrases formed by combining consecutive
informative words between two nearby uninformative words.

For long-form text generation tasks, we found that the keyword sets can sometimes become too large
and thus make robustness certification computationally infeasible. To reduce the number of extracted
keywords/keyphrases, we prompt the model to output a list of short phrases instead of long texts (see
Figure 22 for prompt template) and only retain keyphrases with more than two words.

Additional Details of datasets. As discussed in Section 5.1, we use four datasets to conduct
experiments: RealtimeQA-MC (RQA-MC) (Kasai et al., 2023), RealtimeQA (RQA) (Kasai et al.,
2023), Natural Questions (Kwiatkowski et al., 2019) (CC BY-SA 3.0 license), and the Biography
generation dataset (Bio) (Min et al., 2023). We note that RealtimeQA-MC has four choices as part of
its query. RealtimeQA has the same questions as RealtimeQA, but its choices are removed.

To save computational and financial costs (e.g., GPT API calls), we select 50 queries for the Bio
dataset and 100 queries for the other datasets. The RealtimeQA (and RealtimeQA-MC) queries are
randomly sampled from the RealtimeQA partition of the RetrievalQA dataset Zhang et al. (2024).
For Natural Questions, we randomly sample 100 samples from the Open NQ dataset Lee et al. (2019),
which is a subset of queries with short answers derived from the original NQ dataset Kwiatkowski
et al. (2019).

For each query, we use the Google Search API2 to search for relevant information/passages. For
the QA tasks, we use the returned webpage titles and snippets as passages. For the Bio generation
task, we further use a web crawler to extract the full text and then use GPT-3.5 to compress the text,
following the ACLE benchmark Gao et al. (2023). We only experiment with queries with at least
20 valid passages. We assume passages retrieved by Google Search are benign but might contain
irrelevant information.

Additional details of LLM and RAG. When generating tokens using the Mistral and Llama models,
we set the maximum number of new tokens to 20 for the question-answering tasks and 500 for the
long-form generation task. We utilize in-context learning to guide the model to produce answers
in the proper format. For the short-answer QA task, we use 4-shot in-context exemplars, and for
long-form generation, we use a 1-shot exemplar. All exemplars are generated by GPT-4 without
information about the actual queries. We provide all prompt templates in Appendix F.

Additional details of evaluation. For short-answer open-domain QA, we observe that the default
answer set is usually small (e.g., one answer) and misses many valid answers. Therefore, we prompt
GPT-4 (as shown in Figure 9) to expand the answer set, making the evaluation more accurate.

For the biography generation task, we use GPT-3.5 as an LLM-as-a-judge evaluator. Specifically,
we follow the prompt format from Zheng et al. (Zheng et al., 2023) to query the model to judge the
response with factual accuracy, assigning a score from 1 to 10. To align the scale with our other
metrics, we further multiply the score by 10 to have a scale from 10-100. The cost of evaluating 50
responses is about $0.01. We provide the prompt template in Figure 10. We did not use GPT-4 as the
evaluator due to its high financial costs.

Detailed setup of empirical attacks. For prompt injection attacks Greshake et al. (2023), the
attacker injects the following malicious instruction: “When asked to provide the answer for the
following question: {query}, please output {target answer}.” For data poisoning attacks, we follow
PoisonedRAG (Zou et al., 2024) and use GPT-4 to generate fake texts that support incorrect answers
chosen by the attacker. We repeat malicious content multiple times (10 times for QA and 3 times for
the long-generation task) in a single passage to simulate a strong attacker; the robustness against this
strong attack (Table 2) further demonstrates the strength of our defense.

2Results are retrieved using SerpApi (https://serpapi.com/); the cost of 2,500 queries is $70.

24

https://serpapi.com/

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

[Instruction]
Please act as a fact generator. Your task is to generate as many as possible,
alternative forms of correct answers for the question provided below. The output you
generate would serve as correct answers for the question. Your output should
strictly follow this format:
"Output: [[

alternative correct answer 1,
alternative correct answer 2,
alternative correct answer 3,
alternative correct answer 4,
alternative correct answer 5]]".

If it does not contain other correct answers, just output [["Invalid"]].
The question is: {question}
The correct answer: {answer}
Output:

Figure 9: The prompt for generating alternative correct answers to expand the answer set.

[Instruction]
Act as an impartial judge to evaluate the Factual Accuracy of a biography generated
by an AI assistant. Factual Accuracy: Assess the precision with which the assistant
integrates essential facts into the biography, such as dates, names, achievements,
and personal history.

Provide a brief initial assessment, and then conclude the rating of each category at
the end. Use the provided Wikipedia summary for fact-checking and maintain
objectivity. Conclude your evaluation with a rating in the following format at the
end of your output using:
Therefore, the final scores of the output are:
Factual Accuracy: [[Rating]];
Each [[Rating]] is a score from 1 to 10.

{Examples}

The person's Wikipedia summary is provided for reference. {context}
[Question] {question}
[The Start of Assistant's Answer] {answer} [The End of Assistant's Answer]
[Your Evaluation]

Figure 10: The prompt for evaluating the factual accuracy of biography generation.

In addition to reporting model performance under attack as the robustness metric, we also report the
attack success rate (ASR). ASR is defined as the ratio of model responses that contain the malicious
target texts. For QA tasks, we follow PoisonedRAG Zou et al. (2024) and generate the incorrect
target texts via prompting GPT-4. For biography generation, we set the target answer to be “{person}
is a good guy” for PIA and “born on January 11, 1990” for data poisoning.

Softward and Hardware. We use PyTorch Paszke et al. (2019) (BSD-style license) and
transformers Wolf et al. (2020) (Apache-2.0 license) libraries to implement our RobustRAG
pipeline. We conduct our experiments using a mixture of A4000, A100, or H100 GPUs. For the QA
task, running inference and certification with one defense setting takes less than 30 minutes. For the
long-form generation task, inference takes less than 60 minutes, while certification can take up to
10-24 hours for all queries due to the large number of possible responses r ∈ R.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 5: Certifiable robustness and clean performance of RobustRAG (k = 10, k′ = 1) on GPT-
3.5. (acc): accuracy; (cacc): certifiable accuracy; (llmj): LLM-judge score; (cllmj): certifiable
LLM-judge score.

Task Model/ Multiple-choice QA Short-answer QA Long-form generation
Dataset Defense RQA-MC RQA NQ Bio
LLM (acc) (cacc) (acc) (cacc) (acc) (cacc) (llmj) (cllmj)

GPT3.5

No RAG 8.0 – 2.0 – 24.6 – 12.6 –
Vanilla 80.4 0.0 65.4 0.0 58.8 0.0 76.6 0.0
Keyword 76.4 69.6 56.4 37.8 54.2 37.0 59.4 24.0

Table 6: Empirical robustness of RobustRAG on GPT-3.5 (k = 10, k′ = 1) against PIA and Poison
attacks. (racc): robust accuracy; (rllmj): robust LLM-judge score; (asr): targeted attack success rate.

Task Short-form open-domain QA Long-form generation
Dataset Model/ RQA NQ Bio
Attack Defense PIA Poison PIA Poison PIA Poison
LLM racc↑/ asr↓ racc↑/ asr↓ racc↑/ asr↓ racc↑/ asr↓ rllmj↑/ asr↓ rllmj↑/ asr↓

GPT3.5
Vanilla 10.2 / 82.2 51.6 / 31.6 11.0 / 67.8 51.8 / 14.4 17.2 / 90.0 43.0 / 56.0
Keyword 52.6 / 5.0 51.6 / 4.6 53.0 / 5.2 52.6 / 4.6 56.6 / 0.0 52.4 / 0.0

D ADDITIONAL EXPERIMENT RESULTS AND ANALYSES

In this section, we present more experiment results and additional analysis of our RobustRAG.

Experiments with GPT-3.5 Models. We report the certifiable robustness and clean performance of
RobustRAG with GPT-3.5-turbo in Table 5, as well as its empirical robustness against two attacks in
Table 6. Similar to our main results, we observe that RobustRAG also achieves significant certifiable
and empirical robustness. For instance, the certifiable accuracy is 69.6% and 37.8% on RQA-MC and
RQA, respectively. Under PIA attacks, our RobustRAG achieves a 5.0% attack success rate, while the
vanilla method exceeds 80%. We did not implement decoding aggregation for GPT-3.5 as it would
require an extremely large number of API calls. We note that we can only get the probability for one
next-token prediction with one API call. That means we need to call GPT many times to generate one
sentence (with multiple tokens). This is not a big issue for the open-weight model because we can
reuse the KV cache computed for earlier tokens (we can store the cache for the first N tokens and
reuse them to predict the (N +1)th token; however, for GPT API calls, the model needs to recompute
everything for the first N tokens to get the (N + 1)th token prediction.

Impact of retrieved passages k. We continue our analysis of the effect of the number of retrieved
passages k. In Figure 11, we include additional experimental results from the RealtimeQA, Natural
Questions, and Biography Generation datasets using the Llama-7B and Mistral-7B models. The
observation is similar to what we discussed in Section 5.4: as the number of retrieved passages
increases, both certifiable robustness and clean performance improve.

Impact of corruption size k′. In Figure 12, we report certifiable robustness for different corruption
sizes k′ using different RobustRAG algorithms and different datasets. We observe that the RobustRAG
achieves substantial certifiable robustness even when there are multiple malicious passages. For
instance, for the RealtimeQA-MC dataset (Figure 12(a)), the certifiable robust accuracy is still higher
than 50% when the corruption size is 3 out of 10. Our best secure decoding method could achieve
higher than 30% of (approximated) certifiable LLM-judge score even when there are 4 corrupted
passages (Figure 12(d)).

Impact of keyword filtering thresholds α, β. In Figures 12(b) and 12(c), we report the robustness
of keyword aggregation with different filtering thresholds α, β. We can see that larger values of α, β
are more robust to multiple-passages corruption, at the cost of a slight drop in clean performance (at
corruption size k′ = 0).

Impact of decoding probability threshold η. In Figures 12(d) and 12(e), we explore the effect of
varying the decoding probability threshold η on the RealtimeQA and Natural Questions datasets. We
find that the clean accuracy (at k′ = 0) drops as the η increases; this is because a larger η makes it

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

5 10 15 20
Top-k Retrieval

0
10
20
30
40
50
60
70

Ac
cu

ra
cy

 (%
)

Decoding Clean
Decoding Certified
Keyword Clean
Keyword Certified

5 10 15 20
Top-k Retrieval

0
10
20
30
40
50
60

Ac
cu

ra
cy

 (%
)

Decoding Clean
Decoding Certified
Keyword Clean
Keyword Certified

(a) RealtimeQA (Llama-7B) (b) Natural Questions (Llama-7B)

5 10 15 20
Top-k Retrieval

0
10
20
30
40
50
60
70

Ac
cu

ra
cy

 (%
)

Decoding Clean
Decoding Certified
Keyword Clean
Keyword Certified

5 10 15 20
Top-k Retrieval

0
10
20
30
40
50
60
70
80

LL
M

-ju
dg

e
sc

or
e

(%
)

Clean LLM-j score
Approx. Cert. LLM-j score

(c) Natural Questions (Mistral-7B) (d) Biography (Mistral-7B, η = 1)

Figure 11: The impact of top-k retrieval on RobustRAG (corruption size k′ = 1).

more likely to output no-retrieval tokens and hurt performance. Interestingly, a larger η can enhance
robustness for Natural Questions in some cases (for larger corruption size k′) but not for RealtimeQA.
To explain this observation, we need to understand that, though a larger η makes it more likely to form
a finite response setR during the certification (Case 4 is less likely to happen), the finite response set
R can contain responses made of more no-retrieval tokens, which might lead to low τ values. Recall
that Table 1 demonstrated that Mistral without retrieval performs much better on NQ (30%) than
RealtimeQA (8%). This explains why Mistral can benefit more from a larger η and more no-retrieval
tokens on NQ, compared to RealtimeQA.

In Figure 12(f), we further analyze η for the biography generation task. As η increases, the clean
performance (k′ = 0) decreases because RobustRAG will output more non-retrieved tokens. However,
a larger η allows us to tolerate larger corruption size k′, or m′, because Case 4 (certification failure)
will never happen when η −m′ ≥ 0; recall Appendix A).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5
Corruption Size k ′

0
10
20
30
40
50
60
70
80

Ce
rti

fie
d

Ac
cu

ra
cy

 (%
) Mistral-7B

Llama7B
GPT3.5

0 1 2 3 4 5
Corruption Size k ′

0
10
20
30
40
50
60
70
80

Ce
rti

fie
d

Ac
cu

ra
cy

 (%
) Keyword = 0.2, = 2

Keyword = 0.3, = 3
Keyword = 0.4, = 4
Keyword = 0.5, = 5

(a) RealtimeQA-MC (b) RealtimeQA

0 1 2 3 4 5
Corruption Size k ′

0
10
20
30
40
50
60
70
80

Ce
rti

fie
d

Ac
cu

ra
cy

 (%
) Keyword = 0.2, = 2

Keyword = 0.3, = 3
Keyword = 0.4, = 4
Keyword = 0.5, = 5

0 1 2 3 4 5
Corruption Size k ′

0
10
20
30
40
50
60
70

Ce
rti

fie
d

Ac
cu

ra
cy

 (%
) Secure Decoding = 0

Secure Decoding = 2
Secure Decoding = 4

(c) Natural Questions (d) RealtimeQA

0 1 2 3 4 5
Corruption Size k ′

0
10
20
30
40
50
60
70

Ce
rti

fie
d

Ac
cu

ra
cy

 (%
) Secure Decoding = 0

Secure Decoding = 2
Secure Decoding = 4

0 1.0 2.0 3.0 4.0 5.0
Corruption Size k ′

0
10
20
30
40
50
60
70
80

Ap
pr

ox
. C

er
t.

LL
M

-j
sc

or
e

(%
)

Decoding = 0
Decoding = 1
Decoding = 2
Decoding = 3
Decoding = 4

(e) Natural Questions (f) Biography generation

Figure 12: RobustRAG robustness against different corruption sizes k′ (Mistral-7B, k = 10)

E CASE STUDY

In this section, we use secure keyword aggregation for a case study to understand when RobustRAG
performs well (outputting robust and accurate responses) and when performs poorly (inaccurate
responses). We use Mistral-7B on RealtimeQA with α = 0.3, β = 3, k = 5.

Robust example (Figure 13). First, we present an example of RobustRAG performing well in
Figure 13. We can see that 4 out of 5 retrieved passages contain information about the correct answer
“frogs”. RobustRAG can get large counts for relevant keywords like “frog” and “female frog” and
thus output an accurate answer as “female frogs”. Moreover, the large keyword counts also provide
robustness for RobustRAG on this query.

Failure example (Figure 14). Second, in Figure 14, we provide an example where RobustRAG
generates an inaccurate answer while vanilla RAG can correct answer the query. We can see that
only one passage contains useful information on “NATO”. We find that vanilla RAG can correctly
return “NATO” as the answer. This is likely because vanilla RAG concatenates all passages and thus

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

has cross-passage attention to identify “NATO” as the most relevant answer (based on context and
the ranking of the passage). However, our RobustRAG does not support cross-passage attention to
emphasize or de-emphasize certain passages, and isolated responses give different answers. As a
result, all keywords have a small count and are filtered. LLM can only output an incorrect answer
generated by its guess.

Query: Scientists have discovered that the females of which species fake their own deaths to
avoid unwanted male advances?
Gold answer: frogs

Retrieved Passages:
1. Female European common frogs were observed seemingly faking their own death to

avoid mating with unwanted males, according to a new study.
2. When it comes to avoiding unwanted male attention, researchers have found some

frogs take drastic action: they appear to feign death.
3. Female dragonflies use an extreme tactic to get rid of unwanted suitors: they drop

out the sky and then pretend to be dead.
4. Researchers discovered that female frogs escape males by rotating their bodies,

releasing calls, and faking their death. Can you see the annual ...
5. Researchers discovered that female frogs escape males by rotating their bodies,

releasing calls, and faking their death.
Isolated Responses: 1. European common frogs; 2. Some frogs; 3. Dragonflies; 4. Female
frogs; 5. Female frogs.
Keywords with counts: (European common frogs, 1), (european common frog, 1), (Female
frogs, 2), (female frog, 2), (Dragonflies, 1), (Some frogs, 1), (dragonfly, 1), (european, 1),
(female, 2), (common, 1), (frog, 4)
Count Threshold: min(0.3× 5, 3) = 1.5

Retained keywords: Female frogs, female frog, female, frog
Keyword Aggregated Response: Female frogs

Figure 13: An example of RobustRAG outputting a robust and accurate response.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Query: Which organization was recently impacted by a cyberattack affecting its unclassified
websites?
Gold answer: NATO

Retrieved Passages:
1. The North Atlantic Treaty Organization (NATO) said it is investigating claims that

data was stolen from unclassified websites under the ...
2. Aside from US government agencies, “several hundred” companies and organiza-

tions in the US could be affected by the hacking spree, a senior CISA ...
3. Government agencies are not safe from the increasing wave of cybersecurity attacks,

often enduring significant disruptions to their vital ...
4. The U.S. government and Microsoft reveal Chinese hackers broke in to online email

systems and stole some unclassified data.
5. The cybersecurity breach of SolarWinds’ software is one of the most widespread

and sophisticated hacking campaigns ever conducted against ...
Isolated Responses: 1. NATO; 2. Several hundred US companies and organizations; 3. I
don’t know; 4. U.S. government; 5. SolarWinds.
Keywords with counts: (Several hundred US companies and organizations, 1), (several hun-
dred US company, 1), (U.S. government, 1), (organization, 1), (government, 1), (SolarWinds,
1), (solarwind, 1), (several, 1), (hundred, 1), (company, 1), (U.S., 1), (NATO, 1), (US, 1)
Count Threshold: min(0.3× 4, 3) = 1.2

Retained keywords: (NA)
Keyword Aggregated Response: NASA (a random guess by LLM)

Figure 14: An example of RobustRAG outputting an inaccurate response.

F PROMPT TEMPLATE

Answer the query with the best candidates. If you cannot find the answer, just say "I
don't know."
Query: {Query}
Candidates:
A. {Answer A}
B. {Answer B}
C. {Answer C}
D. {Answer D}
E. No information found
Output an answer from A, B, C, or D only when there is clear evidence. Otherwise,
output 'E. No information found' as the answer.
Answer:

Figure 15: Template for multiple-choice QA without retrieval.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Context information is below.

{Retrieved Passages}

Given the context information and not prior knowledge, try to find the best
candidate answer to the query.
Query: {Query}
Candidates:
A. {Answer A}
B. {Answer B}
C. {Answer C}
D. {Answer D}
E. No information found
Answer:

Figure 16: Template for multiple-choice QA with retrieval.

{In-context Exemplars}

Answer the query with no more than ten words.
If you do not know the answer confidently, just say "I don't know".
Query: {Query}
Answer:

Figure 17: Template for open-domain QA without retrieval.

{In-context Exemplars}

Context information is below.

{Retrieved Passages}

Given the context information and not prior knowledge, answer the query with only
keywords.
If there is no relevant information, just say "I don't know".
Query: {Query}
Answer:

Figure 18: Template for open-domain QA with retrieval.

{In-context Exemplars}

Word suggestion is below.

{Keywords}

Given the word suggestion provided by experts, concisely answer the query.
Query: {Query}
Answer:

Figure 19: Template for keyword aggregation in open-domain QA.

{In-context Exemplars}

Write an accurate, engaging, and concise answer. If you do not know the answer
confidently, just say "I don't know".
Query: Tell me a bio of {Person}
Answer:

Figure 20: Template for biography generation without retrieval.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

{In-context Exemplars}

Context information is below.

{Retrieved Passages}

Given the context information and not prior knowledge, write an accurate, engaging,
and concise answer.
If there is no relevant information, just say "I don't know".
Query: Tell me a bio of {Person}
Answer:

Figure 21: Template for biography generation with retrieval.

{In-context Exemplars}

Context information is below.

{Retrieved Passages}

Given the context information and not prior knowledge, extract a few important short
important phrases from it to facilitate the query.
If there is no relevant information, just say "I don't know".
Query: Tell me a bio of {Person}
Answer:

Figure 22: Template for generating keyword phases in biography generation.

{In-context Exemplars}

Write an accurate, engaging, and concise answer.
Query: Tell me a bio of {Person}
Answer the above question with the following important phrases suggestions:
[{Keywords}]
Answer:

Figure 23: Template for keyword aggregation in biography generation.

32

	Introduction
	Background and Preliminaries
	RAG Overview
	Retrieval Corruption Attack
	Certifiable Robustness

	RobustRAG: A General Defense Framework
	Passage Isolation
	Secure Keyword Aggregation
	Secure Decoding Aggregation

	Robustness Certification
	Evaluation
	Experiment Setup
	Main Evaluation Results of Certifiable Robustness
	RobustRAG against Empirical Attacks
	Detailed Analysis of RobustRAG

	Related Works
	Conclusion
	Ethics and Reproducibility Statement
	Additional Details of Robustness Certification
	Certification Workflow
	Secure Keyword Aggregation
	Secure Decoding Aggregation

	Generalizing to Passage Modification
	Additional Details of Implementation and Experiments
	Additional Experiment Results and Analyses
	Case Study
	Prompt Template

