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ABSTRACT

We try to provide an overarching perspective on some of the research done in the
last few years explaining the behaviour of deep neural networks (DNNs) when
they are used to complete a variety of classification and prediction tasks. We start
by providing an overview of several noteworthy papers on the fundamental prop-
erties of DNNs across different architectures and data regimes. We then forward
our own integrated perspective of DNNs as progressive coarse-graining systems
inspired by Erik Hoel’s Causal Emergence 2.0 framework.

1 INTRODUCTION

Deep Neural Networks (DNNs) performing supervised learning (SL) have shown impressive perfor-
mance in a range of prediction and classification tasks. Despite this, relatively little information is
known about why and how they are capable at these tasks.

While empirical work has been carried out to estimate the capabilities of networks of various sizes
for Large Language Models (LLMs, see Kaplan et al. (2020), and mechanistic interpretability work
has been carried out for a range of models and architectures (see Olah et al. (2020) and later work
like Lindsey et al. (2025)), a high level explanation behind the mechanisms of SL models is still
lacking. We propose a potential high level explanation of how and why overparameterised DNN
models succeed at classification and prediction tasks, inspired by Erik Hoel’s Causal Emergence 2.0
Framework Hoel (2025).

To verify this model, we also conduct a literature review over past work on DNN learning behaviour
Feng et al. (2022), including research on the rank of DNN subnetworks, hierarchies of concepts in
transformers Dorszewski et al. (2025), Tishby’s Information Bottleneck theory (See Shwartz-Ziv &
Tishby (2017)) and the Lottery Ticket Hypothesis (See Frankle & Carbin (2019)). We find strong
evidence from multiple sources that neural network layers perform progressive simplification of
input data in service of prediction and classification, discarding irrelevant information and exposing
relevant information. Our work contrasts against circuit-based interpretability work, which is limited
to particular case studies and isolated behaviours, by offering a general picture of DNN behaviour
after training via stochastic gradient descent (SGD).

2 DEFINITIONS

A deep neural network (DNN) is a multi-layer perceptron (MLP) with up to L layers. At each
layer i the output is given by the formula:

xi = act(wixi−1 + bi) (1)

Where wi is the weight matrix, bi is a bias vector, and act is a nonlinear activation function e.g.
ReLU (except for the last layer, when act is the identity function). The input is x0 or just x. The
output is xn, usually denoted ŷ to separate it from the output label y.

Our convention is to label a neural network F and the function at layer i of that network fi. The
subnetwork formed from layer 1 to i of a network F is written as F1:i = fi ◦ fi−1... ◦ f1. Here ◦ is
the composition operator.
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A feature or feature vector is a column in a weight matrix wi, which we denote as wi,j . The
formula for the jth value in the output vector xi is shown here to make the relationship between
features and output explicit:

xi,j = act(wi,jxi−1 + bi,j) (2)

A feature space is the space formed by linear combinations of all features in a given weight matrix
multiplied by some scalar. This space may not be a valid vector space because features in any given
weight matrix are not guaranteed to be linearly independent.

The rank of the feature space of a layer fi (denoted Rank(fi)) is analogous to the rank of the weight
matrix. The intrinsic dimension of a layer is denoted Dim(fi).

The numerical rank of a function f (denoted Rank(num)(f)) is taken from the definition given in
Feng et al. (2022), where they use it to measure the approximate rank of DNN layers. A function’s
numerical rank is defined as the rank of its Jacobian matrix over some input domain. When we
are estimating the numerical rank of DNN layers, this is troublesome because even a small amount
of noise can make an otherwise very low-rank matrix full rank. To get around this the authors
estimate the numerical rank by counting the number of non-zero values in the singular matrix sigma
of the Jacobian matrix. To correct for noise, the singular values must be higher than a threshold
epsilon||W ||2 to be counted. Here ||W ||2 is the L2 or spectral norm of the Jacobian matrix and
epsilon is a fixed error threshold.

The effective rank of a layer fi (denoted Rankeff(fi)) of a network F with layers 1...i...L is the
numerical rank of the function F1:i−1 Similarly, the effective feature space of a layer fi is the
space formed from the possible outputs of F1:i−1 and the feature space of fi 1

When we mention the rank or feature space of a layer in a DNN, unless specified otherwise we
always mean the effective rank or the effective feature space of that layer. We further note that as a
rule in DNNs Rankeff(fi) < Ranknum(fi) and the effective feature space is smaller than the feature
space.

3 PRIOR WORK

A lot of work has been done in neural networks to study exactly how they process inputs. According
to Shi et al. (2025), ”Deep neural networks (DNNs) progressively compute features from which the
final layer generates predictions. When optimized via stochastic dynamics over a data-dependent
energy, each layer learns to compute better features than the previous one, ultimately transforming
the data to a regular low-dimensional geometry.” According to Xu et al. (2020), DNNs work by
”extracting hierarchies of progressively more informative features in representation learning”. The
idea of progressivity, i.e. that each layer improves upon the performance of the previous layer, is
key.

We add to that the narrative given in Feng et al. (2022). It says that as you progressively compute
features layer by layer, the numerical rank of each layer also decreases monotonically and progres-
sively. This is intrinsically connected to the rank of the feature space (weight matrix), because
each layer consists of multiplying the input by the weight matrix and then applying some nonlinear
function.

They then show that the fundamental primitives of neural networks (namely, matrix multiplication,
the chain rule, and nonlinear activation functions) can only construct functions whose numerical
rank is equal to or lower than the numerical rank of the functions that serve as their inputs. In other
words, a neural network is not only incentivised to project input data into a ”regular low-dimensional
geometry”, but is in fact equipped with an inductive bias that requires such a projection. This is true
even if the width of the hidden layers remains stable.

1Consider the case where fi has 64 feature vectors. Each feature vector has 6 values and are linearly
independent, but they differ in only the 6th value. So one vector might be [0, 1, 5, 2, 3, 6] and another might be
[0, 1, 5, 2, 3, 7]. Now suppose that the output of F1:i−1 is always 0 in the sixth value. Effectively, the 64 feature
vectors are now identical, making the effective feature space much smaller!]
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Such an inductive bias raises the possibility of oversimplification, since a DNN is required to de-
compose the input into lower-rank feature spaces by the nature of its construction. If the feature
space becomes too ”rank deficient”, however, the authors show that many of the terminal features
in a DNN can be modelled as linear combinations of other terminal features. This is true even
if the features themselves are semantically unrelated. In a particularly striking example, the out-
put strength for the ”junco” bird category in the GluMixer-24 model can be effectively predicted
by simply multiplying the strength of the ”triumphal arch” building category by a fixed coefficient
(−0.923).

Next, we note the work of He & Su (2023). Effectively, the authors show that as you go down the
layers of a DNN, the resulting features can be mapped to unique target classes via linear regression
more and more clearly. This separation is smooth and regular, and increases progressively with
each layer just as the rank decreases progressively with each layer. This phenomenon on its surface
contradicts computation or circuit-based models of DNN functionality which are generally based
around the idea of computing non-smooth logical operations with features (e.g. taking the logical
AND of two features to form a composite feature).

In an information theory setting, we can treat each layer like a signal-generating function. In that
case, rank diminishing can be correlated with a decrease in the intrinsic dimension of that function
(this is also noted by the authors of Feng et al. (2022)). This indicates that fewer independent
variables are required to represent the function’s behaviour, meaning that the function contains less
information overall. The increasingly low numerical rank of these functions (down to possibly rank-
1) highlighted in the rank diminishing research also suggests that information is being discarded at
each layer between the input and the output. This means that more elements of the output will be
dependent each other compared to the input, which is what happens when inputs are multiplied by
a weight matrix containing many redundant features. This information, once lost, cannot be easily
recovered: we usually cannot construct a true inverse for a DNN layer which involves a matrix
multiplication and a nonlinear activation 2.

Finally, the comparison of neural networks with Bayesian modelling has been an ongoing field of
study, leading to work like Bayesian neural networks (see Yu et al.) and Bayesian RNNs (see Coscia
et al. (2025)). In this regard the work of Mingard et al. is particularly significant. In Mingard et al.
(2020), the authors point out that DNNs trained by SGD effectively approximate what Bayesian
learning suggests should be ideal function f for predicting some set of observations S. They also
point out that the Bayesian estimation process strongly prefers simple ”low-error and low complex-
ity functions”. Taking into account the rank diminishing phenomenon, we believe this means that
the DNN’s inductive bias towards simplification and low-rank feature spaces is in fact beneficial in
most cases. The high compatibility between SGD and Bayesian estimation implies that the ”ideal”
Bayesian posterior functions produced by Gaussian estimation also ignore large amounts of irrele-
vant information present in the input and are hence ”simple” in an information-theoretic sense.

4 DNNS AS PROGRESSIVE COARSE-GRAINING SYSTEMS

Here we aim to present an overarching perspective on how DNNs achieve strong performance. We
emphasise the similarities that arise between different frames in light of the prior work we have
examined. Overall, A deep neural network can be described as a principled simplification process
with the goal of procedurally removing irrelevant information from the input, resulting in regular
and predictive features that can be used to minimise loss.

4.1 WHAT IS COARSE-GRAINING?

Returning to our initial problem of understanding the mechanics of DNNs, we can see DNNs then
as a means of progressively coarse-graining inputs layer by layer. By coarse-graining we mean
discarding microscale low-level information in a manner which improves macroscale high-level
predictive performance, similar to the definition offered by Hoel (2025) 3. For example, an image

2This is trivially true especially with a activation function like ReLU, which simply zeroes out the negative
components of any input.

3However, we do not follow Hoel in requiring that the resulting simplified system demonstrate the same
behaviour under random walkers, since we are not analysing markov chains.

3
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input might to a human viewer contain the information ”this is an image of a cat with orange fur and
a black tail sitting on top of a brown cabinet”. After coarse-graining only prediction-relevant high-
level information remains—for an image classification task, that information is ”this is an image of
a cat”.

Importantly, this process cannot be trivially reversed. We cannot get a precise image of any given
cat back just by being told the probability that an image is of a cat. The idea that DNNs are coarse-
graining, then, is correlated with the information loss at each layer we explored with regards to
Feng et al. (2022), and the correlation of progressive information loss with progressively improving
classification performance is validated by He & Su (2023). From this lens, we can say that the
primary operation of the DNN is to simultaneously reduce extraneous information in the input and
expose prediction relevant information 4.

The progressive coarse-graining perspective also generalises the argument put forth in Olah et al.
(2020) and related works where CNNs are depicted as having a hierarchy of features. This hierarchy
is not only about the predictive quality of the features (as proposed in Xu et al. (2020)), but about
semantic qualities of the features. The hierarchy goes from very simple, generic, and low-level
features like edge or shape detectors at the first few layers to very complex, specific, and high-level
features like the face of a dog or a car door at the later layers. The multiple layers of the hierarchy
are important, since if a high-level concept or terminal feature is identified from very early layers
it would disrupt the progressive coarse-graining narrative. However, in CNNs this hierarchy is
explicitly encoded via the use of kernels, and does not offer much evidence for progressive coarse-
graining being present in DNNs without such built-in modules. Our perspective suggests that a
similar hierarchy of features from low-level to high-level must be present in DNNs as well. This
should be true even when the size of the hidden layer is fixed and there is no inductive bias towards
the concatenation of local information created by the use of kernel and pooling operations.

Such a hypothesised hierarchy of concepts has since been demonstrated by Dorszewski et al. (2025).
In that paper they show that a hierarchy of concepts from low-level and generic ideas like ”colour”
and ”shape” to high-level and specific ones like particular objects and creatures is present in Vi-
sion Transformers. They detect this hierarchy by measuring the strength of simple and complex
concepts across MLP layers with neuron labelling. We note specifically that Vision Transformers
have uniform residual stream length across all layers and do not use CNN-style kernels in between
MLP layers 5. Therefore, the existence of similar conceptual hierarchies in Vision Transformers and
CNNs is significant and shows that progressive coarse-graining is present across different architec-
tures and independent of encoded inductive biases.

4.2 COARSE-GRAINING AND INFORMATION BOTTLENECK THEORY

We see some more validation of this argument when we analyse DNN behaviour through the lens of
Tishby et al.’s Information Bottleneck framework. As established by Shwartz-Ziv & Tishby (2017)
and confirmed in Goldfeld et al. (2019), early layers of trained neural networks consistently show
higher mutual information with inputs compared to latter layers, which privilege mutual information
with ideal outputs. This gradient from relatively high to relatively low mutual information is, again,
monotonic and progressive. This suggests that DNNs are in fact performing progressive coarse
graining, removing irrelevant information from the input data layer by layer such that what remains
is information that may not be very representative of the inputs but is much more predictive of the
correct outputs.

4For a more information-theoretic framing of this process, see Appendix I.
5Vision Transformers (ViT) ingest images as patches, using the attention layer to share information across

patches and the MLP layer to aggregate or modify information within patches. The authors of the Vision
Transformer paper specify that there are very few image-specific or hierarchical inductive biases encoded in
the architecture: ”We note that Vision Transformer has much less image-specific inductive bias than CNNs.
In CNNs, locality, two-dimensional neighborhood structure, and translation equivariance are baked into each
layer throughout the whole model. In ViT, only MLP layers are local and translationally equivariant, while
the self-attention layers are global. The two-dimensional neighborhood structure is used very sparingly: in
the beginning of the model by cutting the image into patches and at fine-tuning time for adjusting the position
embeddings for images of different resolution [...] Other than that, the position embeddings at initialization
time carry no information about the 2D positions of the patches and all spatial relations between the patches
have to be learned from scratch.” From Dosovitskiy et al. (2021), emphasis mine.

4
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Butakov et al. (2024) extend this work by showing that training of DNNs has two distinct stages
consistent with the Information Bottleneck theory: a smooth ”fitting” stage, where intermediate
representations gain mutual information with both inputs and outputs, and then a ”compression”
stage, where mutual information between intermediate representations inputs across the layers is
sacrificed in favour of greater mutual information with (i.e. more effective prediction of) outputs.
This is explicitly related to our definition of coarse graining, and shows that the training of DNNs
with SGD pushes them into becoming progressive coarse-graining machines over time.

Let us operationalise what this perspective means for classification and prediction. In a classification
context, we can say that as we go deeper into the network each successive layer has an effective
feature space that is lower rank and more predictive of class membership, until the terminal features
can be used to perform class prediction via linear regression. In a prediction context, each layer has
an effective feature space that is lower rank and more informative about the next time step, until
at the final layer the next token or pixel can (again) be predicted using linear regression over the
terminal features.

4.3 OVERPARAMETERISATION AND UNDERPARAMETERISATION

With this feature space-oriented idea in mind, we can return to the historic debates about overpa-
rameterisation and underparameterisation. If the network is underparameterised, the coarse-graining
process is stopped prematurely. If the network is overparameterised, generalisation improves as you
can coarse-grain beyond special-case features optimised for the training set only into generally pre-
dictive features for the problem as a whole. This holds provided the training set is sufficiently
representative of the true distribution. From this perspective, the ”rank deficiency” phenomenon
identified in Feng et al. (2022) indicates that the neural network has coarse-grained too much, and
lost too much information. It can no longer keep semantically independent features independent of
each other in feature space. Skip operations in residual networks can be seen as a way of combatting
such information loss, delaying rank deficiency.

4.4 DNNS AS UNMIXERS

The authors of Gutknecht et al. (2025) propose a similar and related hypothesis to the idea of DNNs
as progressive coarse-graining systems. They suggest that one of the primary operations of DNNs
is in effect a kind of ”unmixing”, where DNNs take information that has been ”mixed” or dis-
tributed over multiple data points and recover the information in a way that is linearly separable,
and therefore amenable to classification via linear regression. For example, a wing of a parrot might
be distributed over 30x30 pixels, and it is the job of the DNN to recover a single ”wing” or ”wing
colour” feature from that distributed mass if it is useful for e.g. bird classification.

They show that as you go deeper into the layers of a neural network, information becomes more
redundant and less vulnerable, after giving specific information-theoretic definitions of those terms.
In the image classification context, for example, class information is distributed over many sources
(pixels) and easily disrupted by manipulation of a few of those sources. We know this thanks to
the adversarial attacks which have been developed for CNNs and image transformers which change
only relatively few pixels but result in large changes in final classification (see Weng et al. (2023)).

The unmixing operation, then, separates out the irregularly distributed information into a series of
semantically meaningful and redundant features. This unmixing process is repeated each layer to
make classification easier and easier. The progressive unmixing frame is supported by Feng et al.
(2022) and He & Su (2023) —feature spaces with approximately redundant features are naturally
of lower rank than feature spaces with linearly independent features. It is also harder to change the
direction of output vectors that come from these feature spaces by simply changing a few inputs.

4.5 DNNS AS LOTTERY TICKETS

We now include for consideration the ”lottery ticket hypothesis” proposed by Frankle & Carbin
(2019) and extended by Zhou et al. (2020), Malach et al. (2020), Pensia et al. (2021) and various
others 6. The hypothesis by Frankle and Carbin in Frankle & Carbin (2019) states that within a large

6A survey of recent research is given in Liu et al. (2024).
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randomly initialised neural network there is a much smaller sparse sub-network called the ”lottery
ticket”. Training only this subnetwork can get you almost or exactly the same performance as the
original, much larger network. Since then various extensions have been made, including the strong
hypothesis stated in Zhou et al. (2020) and extended by Malach et al. (2020) and Pensia et al. (2021)
which suggests that simply pruning away the rest of the original network (by setting weights to 0)
also gives you equivalent performance. The key subnetwork does not even need to be trained, simply
setting the sign for each scalar value correctly suffices.

In light of the results we have examined so far this hypothesis seems eminently reasonable: if latter
feature spaces are truly filled with redundant and approximately linearly dependent features after
training (referring again to Gutknecht et al. (2025)), then large parts of those latter layers can be
zeroed out with no impact on the network’s ability to find and detect important features. Further-
more, if the rank diminishing is sharp and rapid, especially if you use ”rank deficient” components
as identified in Feng et al. (2022), then large parts of the entire network can effectively be zeroed
out with no loss of intrinsic dimension/information in each layer. This gives a strong reason for why
the lottery ticket hypothesis holds for massively overparameterised networks.

Furthermore, if a layer after training contains large amounts of redundant features, it can in principle
be converted in a much sparser layer via pruning without loss of function. To do this, you can
identify and zero out all features that are approximate linear combinations of other features. Then
you can rescale connections to the remaining, linearly independent features based on the strengths
of connections to the eliminated features. The precise connection between this kind of rescaling and
the pruning techniques used in investigations of the lottery ticket hypothesis is not fully clear, and
somewhat beyond the scope of this review. In practice pruning does not always preserve a ”clean”
set of linearly independent features.

5 FORMAL DESCRIPTION OF COARSE GRAINING

Based on the arguments above, we propose the following framework for coarse-graining in trained
DNNs, extended from Theorem 2 in Feng et al. (2022).

Suppose that each layer fi, i = 1...L of network F is almost everywhere smooth and data domain
X is a manifold7, then the following conditions hold at each successive layer fi:

Rankeff(fi) < Rankeff(fi−1) (3)
Dim(fi) < Dim(fi−1) (4)

Now we add the contributions from Goldfeld et al. (2019). Let Si be the set of outputs for layer i,
and I be mutual information. Then we can say

I(Si, Ẏ )) > I(Si−1, Ẏ ) (5)

I(Si, Ẋ)) < I(Si−1, Ẋ)) (6)

Here Ẋ and Ẏ stand for the set of all inputs and labels in the training dataset, not manifolds.

And using the measure of separability D := Tr(SSwSS+
b ) established in He & Su (2023) 8, we can

also point out that

Di > Di−1 (7)

We call the combination of all of these phenomena coarse-graining.

DEFINITION 1. Coarse-graining means that each layer fi produces a global reduction in com-
plexity and a local reduction in complexity while increasing classification accuracy.

7In accordance with the manifold hypothesis laid out in Cayton (2005)
8In words: the data separability metric D for some layer fi is defined as the trace of the product matrix

created by the within-class sum of squares SSw and the Moore-Penrose inverse of the between-class sum of
squares SS+

b , with the sum of squares taken over the outputs of F1:i when given every data point for every class.

6
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The global reduction in complexity is given by the reduction in intrinsic dimensionality from fi−1

to fi seen in equation (4). Importantly, a global reduction does not imply a uniform reduction. This
reduction is not merely blurring an image, for example.

The local reduction in complexity can be defined as a reduction in the complexity of the outputs
of a DNN layer when compared to the inputs to that layer. Consider the set of all inputs Ẋ . Using
K(·) as the Kolmogorov complexity function, we should observe that

K(F1:i−1(Ẋ)) > K(fi(F1:i−1(Ẋ))) (8)

To explain the intuition behind this, we can look at the first layer f1, which takes as input an element
of Ẋ and produces an output which will be a member of S1. For classification and prediction
the set of output labels Ẏ will simply be one-hot vectors. Therefore, for any reasonable choice of
classification or prediction problem K(Ẋ) >> K(Ẏ ) 9.

We know from Goldfeld et al. (2019) that the following is true:

I(S1, Ẏ ) > I(Ẋ, Ẏ )

I(S1, Ẋ) < I(Ẋ, Ẋ)

This is taken from equations (5) and (6), and from there we can construct the same inequalities
between S1 and S2:

I(S2, Ẏ ) > I(S1, Ẏ )

I(S2, Ẋ) < I(S1, Ẋ)

We can also do this for S2 and S3, and so on.

Normally, this formulation indicates that the intermediate representations become less predictive of
the inputs and more predictive of the outputs as you go down the layers. Since mutual information is
a symmetrical measure, we can also reverse this. In other words, the inputs (which have a long de-
scription length) become less predictive of the representation, while the outputs (which have a short
description length) become more predictive of the representation. Since we know that the intrinsic
dimensionality of each layer is progressively decreasing, we rule out the idea that the intermediate
representations are becoming more complex in a way that aligns less well with Ẋ and more well
with Ẏ .

In addition, the phenomenon of feature redundancy observed in Gutknecht et al. (2025) suggests
that more components within the intermediate representations should become correlated with each
other, reducing the information value of each feature and therefore of the representation as a whole.

Therefore, we extend the results in Goldfeld et al. (2019) to mean that the description length of the
representations is also decreasing, leading to a local decrease in complexity. This formalises the
notion from Shi et al. (2025) about ”transforming the data to a regular low-dimensional geometry”.

Finally, the increase in classification accuracy is given by the law of data separation proposed in
He & Su (2023) and also by the information bottleneck results.

6 CONCLUSION

In this paper, we review multiple lines of research on the behaviour of DNNs on a layer-by-layer
basis. We show that there are strong and consistent trends in multiple domains which indicate that
neural networks perform some kind of information discarding operation each layer. The information

9For classification or prediction problems where the inputs are also one-hot vectors (i.e. next-token pre-
diction for LLMs), we can consider Ẋ as the set of input vectors multiplied by the learned embedding layer.
This explains a lot of phenomena around embedding layers being able to substantially encode task-relevant
information, as seen in Zhang et al. (2025) and Lu et al. (2021).

7
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that is discarded from the inputs cannot be recovered thanks to the lack of a true inverse for a layer
function, and the layers themselves form increasingly low-rank and low intrinsic dimensionality
subnetworks.

We propose a unified perspective on what information is being discarded based on Erik Hoel’s the-
ory of coarse-graining, where local and context-specific information is discarded for better predictive
performance. This allows us to unify multiple parts of the research space, combining insights from
novel proposed summary statistics for learning systems, numerical analysis of layers as functions,
and information bottleneck theory. The resulting coarse-graining perspective makes empirical pre-
dictions about hierarchies of features which have since been proven in research such as Dorszewski
et al. (2025), suggesting further lines of research into simple-to-complex feature hierarchies that no
longer rely on built in inductive biases of architectures like CNNs.

7 ETHICS STATEMENT

After reviewing the ICLR Code of Ethics, I do not believe that this paper contains any potential
violations of the Code of Ethics.
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A APPENDIX: INFORMATION-THEORETIC DESCRIPTION OF OPTIMAL
COARSE-GRAINING

Our idea of sacrificing microscale information for macroscale accuracy can also be related to Aaron-
son et al.’s idea of complextropy, formalised in Aaronson et al. (2014). Specifically, the discarding
of ”non-necessary”, microscale, or irrelevant information in a classification or prediction context can
be explained as the principled reduction of information content of the input from K(x) to a value
approximating K(x) −K(x|S). Here x is some input, S a system describing a set of elements of
which x might be a ”generic member”, and K is Kolmogorov complexity. With regards to DNN
classification, S describes the possible members of a given class, for DNN prediction S describes
the possible precursors for some next token or next pixel value. K(x|S) is the description length
of x assuming it is a member of S, and K(x|notS) the description length of x assuming it is not a
member.

Here, coarse-graining means that we start with an input whose information content is the Kol-
mogorov complexity of the input expressed as an n-bit string (e.g. a normal picture of a cat),
then we progressively discard all the ”random” information which separates x from any ”generic”
member of S. Similar to the formulation of mutual information, we find the most apt formation of
this intuition to be K(x)−K(x|S). It can also be written K(x|notS). We suggest that this is read
as ”the length of the program needed to describe x, minus the description length of the information
distinguishing x from a generic member of S”. If this value is high, that means that S is a useful de-
scription of x, such that presuming notS requires you to fill in lots of descriptive information. If the
value is low, this means that S is a poor descriptor of x, such that removing S from the description
of x does not increase the description length of x by much at all. In other words, if we assume that
a tabby cat is not a cat, we then have to fill in a lot of information about its legs, fur, whiskers etc.,
for which the single word ”cat” would have been mostly sufficient. If we assume a stone table is not
a cat, that shouldn’t really change the description of the table at all.

In the language of apparent complexity, each layer of a DNN is like a blurring or denoising func-
tion, taking away a part of the incidental or ”random” information until all that is left is the ”non-
random” signal. What remains should be effectively the correlation of x with S, or the amount of
shared ”non-random” information between x and S. In the cat classifier case, this would be the
amount of ”generic-cat” information contained in the image. In the DNN context the amount of
shared information is interpreted as the strength of the terminal feature for class S, which becomes
probability x is a member of class S. Here the neural network is used to encode the system S, and
the discrimination process is equivalent to feeding the input into the neural network.

Importantly, it should not be possible to find more information about the correlation between x and
S than K(x) −K(x|S). This is related to the idea of maximising I(L, Y ) given in Butakov et al.
(2024). Of course, it is trivially possible to discard information beyond this lower bound, but that
leads to the rank deficiency phenomenon highlighted in Feng et al. (2022).
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