
code_transformed: The Influence of Large Language Models on Code

Anonymous EMNLP submission

Abstract001

Coding remains one of the most fundamen-002
tal modes of interaction between humans and003
machines. With the rapid advancement of004
Large Language Models (LLMs), code gen-005
eration capabilities have begun to significantly006
reshape programming practices. This develop-007
ment prompts a central question: Have LLMs008
transformed code style, and how can such trans-009
formation be characterized? In this paper, we010
present a pioneering study that investigates the011
impact of LLMs on code style from the perspec-012
tives of naming conventions, complexity and013
maintainability, and structural similarity. By an-014
alyzing code from over 19,000 GitHub reposi-015
tories linked to arXiv papers published between016
2020 and 2025, we identify measurable trends017
in the evolution of coding style that align with018
characteristics of LLM-generated code. For in-019
stance, the proportion of snake_case variable020
names in Python code increased from 47% in021
Q1 2023 to 51% in Q1 2025. Furthermore, we022
extend our analysis to examine whether LLM-023
generated content influences their subsequent024
code generation behavior. Our experimental025
results provide the first large-scale empirical026
evidence that LLMs affect real-world program-027
ming style.028

1 Introduction029

Coding serves as one of the most fundamental in-030

teraction pathways between humans and machines.031

Recently, coding practices have undergone a signif-032

icant transformation with the emergence of tools033

like Copilot and Cursor, powered by Large Lan-034

guage Models (LLMs) (Liang et al., 2024a; Daigle035

and Staff, 2024; Peslak and Kovalchick, 2024; Li036

et al., 2025; Chen et al., 2021), including state-037

of-the-art models such as GPT-4o (Hurst et al.,038

2024), DeepSeek-Coder (Guo et al., 2024), and039

Gemini (Team et al., 2023).040

Despite significant advancements, the041

widespread adoption of LLMs has raised042

for i in range(1, n):
 if array[i] == array[i - 1]:
 current_length += 1
 else:

 total_magical_subarrays += count_subarrays(current_length)
 current_length = 1

for i in range(1, n + 1):
 if array[i] == last:
 count += 1
 else:
 last = array[i]

 summ += f(count)
 count = 1

LLM-generated code

Human-written code

Prompt: Your task is to carefully read
the following problem description and
revise the given code ...

Figure 1: An example of LLMs’ preference for longer
variable names and snake_case naming patterns.

concerns about code integrity (Wadhwa et al., 043

2024), potential copyright infringement (Wan 044

et al., 2024), and broader ethical or legal impli- 045

cations (Xu et al., 2024b). These issues have 046

motivated efforts to trace and attribute the influence 047

of LLM-assisted programming. Moreover, this 048

phenomenon suggests the intriguing possibility 049

that software itself may be evolving under the 050

influence of LLMs—not only through their direct 051

use in code generation but also via indirect expo- 052

sure to LLM-generated content. If substantiated, 053

this would position LLMs not merely as tools for 054

writing code, but as influential agents shaping 055

human coding practices and stylistic norms. 056

Figure 1 presents a motivating example il- 057

lustrating that content generated by LLMs dif- 058

fers from human-written code, supporting prior 059

observations that LLMs exhibit distinct coding 060

styles (Wang et al., 2024). As shown in the fig- 061

ure, LLMs tend to replace short variable names 062

with longer, more descriptive names following 063

the snake_case convention (i.e., current_length, 064

and total_magical_subarrays). This aligns 065

with findings from recent studies, which highlight 066

LLMs’ preferences in naming consistency, code 067

structure, and overall readability (Park et al., 2025). 068

Building on prior research that explores the influ- 069

ence of LLMs in text and speech domains (Liang 070

1

et al., 2024b; Geng et al., 2024), this paper turns071

to a research question in the programming context:072

Have LLMs transformed code style, and how can073

such transformation be characterized?074

To address this question, we conduct a pioneer-075

ing study to investigate the influence of LLMs on076

code, from the views of naming patterns, com-077

plexity and maintainability, and code similarity.078

Furthermore, we extend our analysis to examine079

whether the generated content affects the subse-080

quent code generation capabilities of LLMs.081

From the view of naming patterns, we first cate-082

gorize variable, function, and file names into sev-083

eral distinct formats: single letter, lower-case, UP-084

PERCASE, camelCase, snake_case, PascalCase,085

and endsWithDigits. By analyzing the names of086

variables and functions in GitHub repository code,087

we observe a clear increase in the usage of LLM-088

preferred naming styles.089

From the perspective of code complexity and090

maintainability, we simulate code generated and091

rewritten by LLMs, extract subsets for analysis,092

and compare them with human-written code from093

GitHub. Our results indicate that LLM-rewritten094

code tends to be more concise under certain met-095

rics—notably, cyclomatic complexity in Python.096

However, this improvement is less pronounced in097

stylistic aspects such as naming conventions. Addi-098

tionally, no clear trend is observed in the GitHub099

code, suggesting that LLMs may not differ substan-100

tially from human developers in these dimensions.101

From the perspective of code similarity, the102

rewritten code exhibits relatively high similarity103

to the original, especially when compared to code104

generated directly by LLMs. This observation fur-105

ther highlights that different usage scenarios—such106

as code rewriting versus direct generation—can107

yield distinct outcomes. These findings may offer108

valuable insights for future efforts to detect and109

distinguish how LLMs are utilized, whether for110

assisted programming.111

Based on the above findings, we further explore112

whether the generated content influences the subse-113

quent code generation abilities of LLMs. By ana-114

lyzing the models’ reasoning process, we find that115

their outputs do not always align with the expected116

algorithmic approaches for the given problems.117

We believe the findings in our work will enhance118

knowledge about LLMs’ programming abilities119

and coding styles, providing novel insights for as-120

sessing and monitoring their broader impacts. To121

facilitate further study, the experimental dataset122

and source code will be made available. 123

2 Background 124

2.1 Position of Our Work 125

Comparisons between code generated by LLMs 126

and that written by humans can be conducted from 127

multiple perspectives. Prior research has inves- 128

tigated various methods to distinguish between 129

the two, such as leveraging perplexity scores (Xu 130

and Sheng, 2024) and manually designed fea- 131

tures (Bulla et al., 2024; Park et al., 2025). How- 132

ever, rather than focusing on differentiating LLM- 133

generated code from human-written code, our 134

work considers a more realistic and increasingly 135

common scenario: LLM-assisted code authoring, 136

where human developers and language models col- 137

laboratively produce code. 138

In this paper, we investigate coding style from 139

observable perspectives, such as naming patterns 140

and Cyclomatic complexity (McCabe, 1976). With 141

regard to code-level metrics, Halstead complexity 142

metrics provide a quantitative assessment of code 143

complexity based on the use of operands and opera- 144

tors (Hariprasad et al., 2017). Graylin et al. (2009) 145

investigate the relationship between Cyclomatic 146

Complexity and lines of code. The Maintainability 147

Index is a calculation used to review the level of 148

maintenance of the software (Kencana et al., 2020). 149

Additionally, we also consider comparing the simi- 150

larity between human-written code and code that 151

has been rewritten or generated by LLMs using 152

cosine similarity and Jaccard similarity. In order 153

to better grasp how LLMs generate code, we also 154

carefully analyze the reasoning chains to see if they 155

think about the algorithms that the problems were 156

designed to elicit. 157

2.2 Code Style Measurements 158

Naming Patterns. Studies have pointed out that 159

the naming in code generated by LLMs has its own 160

characteristics (Park et al., 2025). Therefore, we 161

categorize variable, function, and file names into 162

several distinct formats (e.g. snake_case). The 163

length of the names has also been considered. 164

Cyclomatic Complexity. Cyclomatic complex- 165

ity is a metric used to measure the number of 166

linearly independent paths in the code. Some re- 167

searchers use this method to analyze the code gener- 168

ated by LLMs (Dou et al., 2024). Given the control- 169

flow graph (CFG) of a code snippet, let E denote 170

the number of edges, n the number of nodes, and P 171

2

Simulation

Revise the following code… Naming	Patterns

Complexity	&	Maintainability

Code	Similarity

Label	in	the	Reasoning

Subset Study	Views

Difficulty	&	Algorithm

Implementation

Brute	Force

Math
800-1199
1200-1599
1600-1999
2000+… …

Dataset

Figure 2: The process of our experiments.

the number of connected components. The cyclo-172

matic complexity is calculated by G = E−N+2P .173

For a single connected component (P = 1), it sim-174

plifies to the number of decision points plus one.175

Each occurrence of if, for, while, case, etc., is176

counted as one decision point.177

Code Similarity. Let A and B be the words of178

the code segment, and let v⃗A and v⃗B be their cor-179

responding vector representations. Then we can180

use the following cosine similarity to compare the181

similarity of the code, defined as follows:182

simcosine(A,B) =
v⃗A · v⃗B

∥v⃗A∥ · ∥v⃗B∥
(1)183

Similarly for Jaccard similarity:184

simJ(A,B) =


1, if A = ∅ and B = ∅
0, if A = ∅ or B = ∅
|A∩B|
|A∪B| , otherwise

(2)185

Label Similarity. In order to further refine our186

analysis, we analyzed the matching of reasoning187

and labels for each question separately. The spe-188

cific approach is as follows: take all collected tags189

as the full set, if the tag corresponding to the ques-190

tion appears in the reasoning, it is considered a191

match, and if a tag in the full set but not for this192

question appears, it is considered an error.193

Let T denote the set of all labels. For each ques-194

tion q, let Aq ⊆ T be the set of true labels in the195

question description, and let Rq ⊆ T be the set of196

labels in reasoning process. Then we define the197

match and error metrics as follows:198

match(q) = 1 (Aq ∩Rq ̸= ∅) , (3)199

error(q) = 1 ((T \Aq) ∩Rq ̸= ∅) , (4)200

where 1(·) is the indicator function: 1 if the condi-201

tion is met, 0 otherwise.202

3 Study Design203

Figure 2 illustrates the process of our experiment.204

We begin by collecting human-written code from205

GitHub and Codeforces, and then generate code 206

using three LLMs under different prompting strate- 207

gies. By comparing the differences in code metrics 208

between human and LLM-generated solutions, and 209

analyzing the temporal trends of these metrics on 210

GitHub, we investigate the relationship between 211

the two. Furthermore, to broaden the scope of our 212

study, we select a subset of problems and involve a 213

larger set of models to explore stylistic differences 214

across LLM-generated code. 215

3.1 Dataset 216

Human-Written Code. We utilize Code4Bench, 217

a multidimensional benchmark based on Code- 218

forces data (Majd et al., 2019). This dataset con- 219

tains user submissions on Codeforces before 2020, 220

Which were barely impacted by LLMs. 221

GitHub Coding Data. We collect GitHub repos- 222

itory links by matching them from the abstract and 223

comment fields in the arXiv dataset1. Our dataset 224

contains a total of 19,898 GitHub repositories and 225

926,935 source code files, corresponding to arXiv 226

papers from the first quarter of 2020 to the first 227

quarter of 2025. 228

Each repository in the dataset is labeled with 229

two attributes: the programming language, which 230

can be either Python or C/C++, and the scientific 231

domain, indicating whether the associated arXiv 232

paper belongs to the field of computer science (cs) 233

or a non-computer science category (non-cs). The 234

number of repositories and files of each language 235

per quarter based is shown in Table 3. 236

There are some issues in our dataset collection 237

process. In the arXiv dataset, a single GitHub link 238

may appear multiple times, likely because the same 239

repository was used for multiple paper submissions. 240

For such repositories, if the publication dates of all 241

associated papers fall within a two-quarter range, 242

we retain the link and assign it the most recent 243

publication date as its timestamp. Otherwise, we 244

1https://www.kaggle.com/datasets/
Cornell-University/arxiv/data

3

https://www.kaggle.com/datasets/Cornell-University/arxiv/data
https://www.kaggle.com/datasets/Cornell-University/arxiv/data

DeepSeek Gemma Qwen
0.0

0.1

0.2

0.3
Pr

op
or

tio
n

Human-Written
LLM-Revised
LLM-Generated

(a) Snake_case variables.

DeepSeek Gemma Qwen
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Human-Written
LLM-Revised
LLM-Generated

(b) Snake_case functions.

DeepSeek Gemma Qwen
0.000

0.005

0.010

0.015

Pr
op

or
tio

n

Human-Written
LLM-Revised
LLM-Generated

(c) Digit-suffixed functions.

DeepSeek Gemma Qwen
0

2

4

6

Av
g

Le
ng

th

Human-Written
LLM-Revised
LLM-Generated

(d) Length of variables.

2020 2021 2022 2023 2024 2025
0.30

0.35

0.40

0.45

0.50

Pr
op

or
tio

n

cs
non_cs

(e) Snake_case variables.

2020 2021 2022 2023 2024 2025

0.38

0.40

0.42

0.44

0.46

Pr
op

or
tio

n

cs
non_cs

(f) Snake_case functions.

2020 2021 2022 2023 2024 2025

0.020

0.025

0.030

0.035

Pr
op

or
tio

n

cs
non_cs

(g) Digit-suffixed functions.

2020 2021 2022 2023 2024 2025

7.0

7.5

8.0

8.5

9.0

Va
ria

bl
e

Na
m

e
Le

ng
th

cs
non_cs

(h) Length of variables.

Figure 3: The four figures in the first row present simulation results derived from Codeforces human-written code,
either revised by LLMs or directly generated by LLMs based on problem descriptions. The four figures in the
second row illustrate the trends over time in GitHub repositories for Python variable names using snake_case,
digit-suffixed function names, and the length of variable names.

discard the repository. Repositories that lack tar-245

get language files or are excessively large are also246

excluded from our analysis.247

Problem Subset. To reduce computational costs248

while maintaining representativeness, we select249

200 questions from Code4Bench, spanning a range250

of difficulty levels and algorithm types and catego-251

rize them into four groups based on their difficulty252

rating: 800–1199, 1200–1599, 1600–1999, and253

2000+. The first valid tag is utilized to determine254

each problem’s primary algorithm.255

We then filter problems that are annotated with256

one of the following ten target algorithms: im-257

plementation, brute force, constructive algorithms,258

greedy, binary search, math, dp, data structures,259

combinatorics, and dfs and similar. From each260

difficulty group, we randomly sample 50 problems.261

The number of problems per algorithm is propor-262

tional to its distribution within that group. Detailed263

information is provided in table 4.264

3.2 Studied LLMs265

We select a diverse set of models to cover a range266

of architectures and parameter scales. The Qwen3267

series (4B, 8B, 14B, 32B) and Qwen2.5-Coder-268

32B-Instruct are chosen for exploring the impact of269

model sizes on code genertion (Yang et al., 2025a;270

Hui et al., 2024). The DeepSeek family, includ-271

ing DeepSeek-V3, DeepSeek-R1, and DeepSeek-R1-272

Distill-Qwen-32B, was included to evaluate the rea-273

soning performance. (DeepSeek-AI, 2024, 2025).274

We also incorporate leading general-purpose LLMs,275

GPT-4o-mini (Hurst et al., 2024) and Claude-3.7-276

Sonnet (Anthropic, 2024), as well as Gemma-3- 277

27B (Team et al., 2025) and Llama-3.3-Nemotron- 278

Super-49B-V1 (Bercovich et al., 2025), to ensure 279

broad coverage of both closed- and open-source 280

training paradigms. 281

3.3 Simulations 282

We implement two strategies for code generation 283

using LLMs: 284

Direct Generation. LLMs are provided only 285

with the problem description and asked to generate 286

a solution from scratch. 287

Reference-Guided Generation. In addition to 288

the problem description, the model is also given 289

a reference solution (i.e., a user-submitted, passed 290

code). The model is instructed to analyze this code 291

and revise it when generating its solution. 292

We applied both strategies to three LLMs: 293

Deepseek-R1-Distill-Qwen-32B, Qwen3-32B, and 294

Gemma-3-27B. The prompt for the two strategies 295

are shown in Figures 7 and 8. 296

3.4 Evaluation 297

In addition to examining the similarities and dif- 298

ferences between human-written code and LLM- 299

generated code, we also aim to understand how dif- 300

ferent LLMs compare with each other, and whether 301

some models produce code that more closely re- 302

sembles human style. Therefore, we conduct a 303

larger-scale evaluation across a broader set of mod- 304

els. Based on our benchmark, we expanded our 305

analysis to include all models in Table 3.2 except 306

4

DeepSeek-R1-Distill-Qwen-32B. Here, we do not307

record the reasoning process, nor do we require308

the model to rewrite human-written code. We only309

prompt the models to generate code for each prob-310

lem, repeating the process 32 times. The prompt is311

shown in Figure 9.312

4 View I: Naming Patterns313

4.1 Settings314

We categorize variable, function, and file names315

into several distinct formats: single letter, lower-316

case, UPPERCASE, camelCase, snake_case, Pas-317

calCase, and endsWithDigits. Any name that does318

not match these specific patterns is grouped into319

the Other category. The length of the names is also320

considered as an additional metric.321

To extract names from source code, we apply322

different strategies depending on the programming323

language. For Python code, we use the ast mod-324

ule to statically parse the abstract syntax tree and325

extract function and variable names. For C/C++326

code, we use regular expressions to identify name327

patterns directly from the source text. All extracted328

names are then matched against predefined regu-329

lar expressions to classify them into the aforemen-330

tioned naming formats.331

To prevent large repositories from dominating332

the overall distribution, we normalize at the repos-333

itory level: we first compute naming pattern dis-334

tributions for each file, average them within each335

repository, and then average across repositories to336

obtain overall statistics.337

4.2 Results338

Naming Patterns in LLM-generated Code.339

LLMs have slight deviations from general human340

naming conventions when it comes to variables341

and functions, for instance, Figures 3a and 3b il-342

lustrate that all three evaluated LLMs tend to use343

snake_case in names compared to human-written344

code. Figure 3d shows that LLMs tend to use345

longer variable names. But there isn’t always a346

clear demarcation, for example, digit-suffixed nam-347

ing pattern plotted in Figure 3c.348

Trends in GitHub Repositories. Figures 3e and349

3f show the adoption of snake_case names steadily350

rises in both CS and non-CS projects, which is351

consistent with the stylistic differences observed352

between human-written code and LLM-generated353

code. Similarly, Figure 3h presents the growth in354

the length of variable names in GitHub code.355

Differences between Programming Languages. 356

Unlike Python, fewer naming patterns show clear 357

temporal trends in C/C++ repositories. However, 358

there are still notable cases: the use of snake_case 359

in both variable and function names shows an up- 360

ward trend as shown in Figures 13 and 14, while 361

the use of lowercase names in variables declines 362

over time. Both of them align with the stylistic 363

tendencies observed in LLM-generated code. 364

Influence of Disciplines. For non-CS reposito- 365

ries, naming patterns sometimes exhibit greater 366

fluctuation compared to the clearer trends observed 367

in CS repositories. The trend of Python function 368

names ending with digits, as shown in Figure 3c, 369

is a good example. It shows a steady decline in 370

CS repositories, while exhibiting greater variabil- 371

ity in non-CS projects. These results suggest that 372

Python Code and CS Repositories Appear to be 373

More Susceptible to LLM Influence than C++ Code 374

and Non-CS Repositories. 375

Other Evidences. There are more examples il- 376

lustrating how the evolution of human code naming 377

patterns increasingly aligns with the stylistic ten- 378

dencies of LLM-generated code. Figure 10 show 379

that all three LLMs tend to avoid single-letter and 380

digit-suffixed variable names, and these patterns 381

are also steadily declining in both CS and non-CS 382

repositories. Similar trends are observed in func- 383

tion names. At least two of the models favor the 384

use of snake_case and show a clear tendency to 385

avoid lowercase naming styles. GitHub reposito- 386

ries reflect this shift as well, with snake_case usage 387

showing a consistent upward trend, while the use 388

of lowercase names gradually decreases. These 389

parallel developments suggest a potential correla- 390

tion between human and machine-generated coding 391

styles. Full results and analysis are presented in 392

Section C in the appendix. 393

Finding 1: The coding style of human-
written code may be influenced by LLMs: they
may not only mirror existing norms but also
subtly reshape them, gradually pushing human
developers toward greater stylistic alignment
with LLM-preferred conventions.

394
5 View II: Complexity and 395

Maintainability 396

5.1 Settings 397

In order to explore the quality difference between 398

code written by humans and LLM, we adopt two 399

5

Hum
an

Qwen
2.5

-32
B

Qwen
3-4

B

Qwen
3-8

B

Qwen
3-1

4B

Qwen
3-3

2B

Dee
pS

ee
k-V

3

Dee
pS

ee
k-R

1

Gem
ma-3

-27
B

Lla
ma 3

.3

GPT-
4o

-m
ini

Clau
de

-3.
5-S

on
ne

t
0

5

10

15

20

Cy
clo

m
at

ic
Co

m
pl

ex
ity Python

C/C++

(a) Cyclomatic Complexity.

Hum
an

Qwen
2.5

-32
B

Qwen
3-4

B

Qwen
3-8

B

Qwen
3-1

4B

Qwen
3-3

2B

Dee
pS

ee
k-V

3

Dee
pS

ee
k-R

1

Gem
ma-3

-27
B

Lla
ma 3

.3

GPT-
4o

-m
ini

Clau
de

-3.
5-S

on
ne

t
0

20

40

60

80

So
ur

ce
 L

in
es

 o
f C

od
e Python

C/C++

(b) Source Lines of Code.

Figure 4: Results on our subset based on cyclo-
matic complexity and source lines of code metrics.
The names Llama-3.3-Nemotron-Super-49B-V1 and
Qwen2.5-Coder-32B-Instruct are abbreviated as Llama-
3.3 and Qwen2.5-32B.

2020 2021 2022 2023 2024 2025

14

15

16

17

18

cy
clo

m
at

ic
av

er
ag

e

CS
non-CS

(a) Cyclomatic Complexity.

2020 2021 2022 2023 2024 2025
82
84
86
88
90
92
94

slo
c

av
er

ag
e

CS
non-CS

(b) Source Lines of Code.

Figure 5: Temporal trends of cyclomatic complexity and
source lines of code in GitHub repositories.

text-based scoring methods that assess code main-400

tainability from multiple dimensions, including in-401

formation volume, control flow complexity, code402

structure, and adequacy of comments. We first cal-403

culate the mean and standard deviation for each404

problem across 32 generated outputs per model,405

using metrics defined in Section 2 and Appendix A.406

Subsequently, we average these per-problem statis-407

tics across all problems to obtain final results for408

each model. These final values reflect each model’s409

overall performance on the generation task, as well410

as the stability of its output for individual problems.411

5.2 Results412

LLM-Generated v.s LLM-Revised Tables 9413

and 10 show the results containing reference-414

guided generation . From the tables, we can see415

that for the same model, in Python and C++, the416

Halstead volume and effort of the solution obtained417

using the user AC code as the reference (REF)418

are often higher than those of direct ANS. For ex-419

ample, the volume (192.36) and effort (1367.70)420

of Deepseek-REF-Python are higher than those of421

Deepseek-ANS-Python (volume: 101.22, effort: 422

631.26), indicating that the LLM-modified code 423

is not as concise as the original output; while in 424

C++, the MI of REF does not change much com- 425

pared with ANS, both in the range of 38–42. 426

LLM v.s Human Tables 11 and 12 show the re- 427

sults of large-scale model evaluation. Figure 4a 428

shows the the cyclomatic complexity of the code 429

written by human and different models. Compared 430

to code generated by various LLMs, the cyclomatic 431

complexity of human-written C/C++ code ranks 432

second highest. And the standard deviation of 433

human-written code remains consistently high, in- 434

dicating greater variability. Figure 4b shows the 435

source lines of code of the code written by hu- 436

man and different models, from it we can also 437

find human-written code also tends to have longer 438

source lines of code (both Python and C/C++), in- 439

dicating that LLM-generated code is more concise. 440

Compared with the GitHub Dataset. Figure 5 441

shows the trend of cyclomatic index and sloc index 442

in our github dataset. We found that there is no ob- 443

vious trend in the cyclomatic index and sloc index 444

over time, which may indicate that LLM is still lim- 445

ited in its role in improving code maintainability in 446

complex scenarios such as GitHub repositories. 447

In addition, from Figure 5a, we found that the 448

cyclomatic complexity of the CS category is al- 449

ways significantly higher than that of the non-CS 450

category. In Figure 5b, the indicators of the two 451

categories are not much different. 452

Finding 2: LLM’s code writing has lower
complexity and higher maintainability than hu-
mans in the scenario of IO algorithm problems.
At the same time, the output is stable, and its
rewritten code indicators are inferior to direct
generation.

453

6 View III: Code Similarity 454

6.1 Settings 455

To quantify how closely LLM outputs mirror hu- 456

man style and how much they benefit from seeing 457

a human solution, we compare three versions of 458

each problem’s code: the original human-authored 459

solution (AC), the LLM’s output given only the 460

problem description (ANS), and the LLM’s out- 461

put when additionally conditioned on the human 462

solution (REF). The methods for generating and 463

rewriting code are defined in Section 3.3. We mea- 464

6

sure pairwise cosine and Jaccard similarities among465

AC, ANS, and REF (Park et al., 2025).466

6.2 Results467

Tables 1 and 5 show the cosine similarity and jac-468

card similarity between AC, ANS and REF. We can469

see that the overall trends of cosine similarity and470

Jaccard similarity are consistent. Among the three471

pairwise comparisons, AC vs REF yields the high-472

est similarity, indicating that LLMs are capable of473

imitating a given human-written solution when474

it is provided. In contrast, AC vs ANS exhibits the475

lowest similarity and remains relatively low over-476

all, suggesting that in the context of IO algorithm477

programming tasks, LLM-generated code, when478

produced without reference, differs substantially479

in style from human-written code. Additionally,480

similarity scores vary across models. For exam-481

ple, all three similarity values for Gemma-27B are482

noticeably higher than those of other models, indi-483

cating not only that its generated code most closely484

resembles human code, but also that it demon-485

strates the strongest capacity for learning and486

imitation when reference code is available.487

Finding 3: LLMs can effectively mimic hu-
man coding style when given reference code,
but without such guidance, their generated solu-
tions diverge significantly from human-written
code—especially in IO algorithm tasks.

488

7 Labels in the Reasoning Process489

7.1 Settings490

In addition to the final generated code, the rea-491

soning process of the model can also reveal how492

LLMs understand and solve coding problems. First,493

each problem on codeforces has a corresponding494

algorithm label, and a problem may have multiple495

algorithm labels corresponding to different solu-496

tions. Since the original code4bench dataset does497

not contain this part, we extend it by adding new in-498

formation. Then, for the model’s reasoning process,499

we match whether these labels appear in it. After500

counting each problem, we average all the match501

rates and error rates, count the rate of match and502

error, and calculate the match rate and error rate503

of questions of various difficulty levels separately.504

The definition of "match and error" and methods505

for calculating are defined in Section 2.1.506

str
ing dp so

rt

bin
ary

 se
arc

h bfs

str
ing

s dfs

im
ple

men
tat

ion
su

ffix tre
es

Algorithm

ANS_qwen_py

REF_qwen_py

ANS_qwen_cpp

REF_qwen_cpp

ANS_gemma_py

REF_gemma_py

ANS_gemma_cpp

REF_gemma_cpp

ANS_deepseek_py

REF_deepseek_py

ANS_deepseek_cpp

REF_deepseek_cpp

Ty
pe

-M
od

el
-L

an
gu

ag
e

807 346 241 138 39 162 47 205 46 22

509 26 60 114 60 153 58 83 36 18

1417 1682 548 286 294 375 441 610 147 127

894 792 147 451 186 245 579 276 146 111

1094 414 301 34 61 230 74 14 82 22

751 97 75 125 55 158 72 76 39 15

1874 1801 569 89 373 507 490 68 93 133

1184 777 153 352 189 288 719 290 122 158

2369 1325 510 274 246 248 32 49 267 36

999 320 173 165 147 153 42 61 58 47

5863 6388 1665 1312 1781 800 374 244 955 699

1203 993 240 506 384 241 489 294 206 194

0

70

300

650

1000

2400

3800

5200

Fr
eq

ue
nc

y

Figure 6: Frequency comparison of top 10 algorithms
on various models (ANS/REF, Python/C/C++).

7.2 Results 507

Tags Frequencies. Table 6 shows the tag fre- 508

quency of the collected questions, and Table 7 509

shows the tag frequency results of the model out- 510

put reasoning. Figure 6 shows the frequency of 511

the 10 most common algorithm labels in each field 512

for each model. We can see that most of the word 513

frequencies ANS is higher than REF, indicating 514

that the reference code-based model tends to an- 515

alyze without relying on algorithms. Addition- 516

ally, C/C++’s word frequency is always higher than 517

Python, indicating that the model is accustomed 518

to analyzing from an algorithmic perspective 519

when implementing C/C++ code. Furthermore, 520

deepseek’s output frequency in these ten tags is sig- 521

nificantly higher than qwen and gemma, and string 522

and dp even exceed 5000 and 6000 respectively, 523

indicating that its algorithm-based thinking per- 524

forms best in IO scenarios. 525

Match and Error Rate. Table 2 Shows the 526

match and error rate between the label and the 527

model output reason. Table 8 shows specific results 528

at different levels of difficulty. From the result, we 529

can see that the error rate generally exceeds the 530

matching rate, suggesting that LLMs tend to ex- 531

plore more incorrect approaches, likely due to 532

their reliance on a limited set of mainstream algo- 533

rithms. Additionaly, the matching performance 534

varies across models: Qwen achieves a higher 535

match rate when generating from scratch (ANS) 536

than with reference (REF), whereas Gemma and 537

Deepseek show the opposite trend. This indicates 538

that some models prioritize extracting high-level 539

ideas from reference code, while others focus 540

7

Model C/C++ Python

AC vs ANS AC vs REF ANS vs REF AC vs ANS AC vs REF ANS vs REF

Qwen-32B 0.2752 0.6140 0.3626 0.2038 0.5448 0.2849
Gemma-27B 0.2958 0.7431 0.3826 0.2541 0.7251 0.3106
DeepSeek-32B 0.1789 0.5603 0.2366 0.1758 0.4092 0.2370

Table 1: Cosine similarity between the human-written code (AC), the initial LLM-generated code (ANS), and the
LLM-rewritten code (REF) based on human-written code.

Model ANS (Python) REF (Python) ANS (C/C++) REF (C/C++)

Match Error Match Error Match Error Match Error

Qwen-32B 17.40% 25.15% 12.06% 16.67% 27.49% 35.84% 26.15% 24.71%
Gemma-27B 10.96% 16.67% 11.33% 13.52% 17.11% 20.79% 25.18% 23.34%
DeepSeek-32B 10.75% 15.57% 12.65% 15.28% 19.61% 27.95% 27.76% 25.43%

Table 2: Match and error rates between the model’s predicted reasoning (ANS or REF) and the ground-truth
algorithm labels, for both Python and C/C++ code.

more on implementing specific details. Fur-541

thermore, both the matching and error rates are542

higher for C++ than for Python, which may reflect543

language-specific design choices in the models-544

favoring algorithmic reasoning in C++ and prac-545

tical implementation in Python.546

Finding 4: LLMs have low algorithm analy-
sis capabilities, are more inclined to approach
C/C++ code from an algorithmic perspective,
and harder problems may better activate their
algorithmic reasoning capabilities.

547

8 Related Work548

LLMs for Code Generation. Code generation549

has been seen rapid progress in recent years. Before550

ChatGPT arrived, Transformer-based models for551

code generation had already been developed, such552

as CodeBERT (Feng et al., 2020), CodeT5 (Wang553

et al., 2021), Codex (Chen et al., 2021). Research554

and discussions on the use of LLMs for code gen-555

eration are ongoing (Liu et al., 2023; Jiang et al.,556

2024). Meanwhile, new LLM models always con-557

sider coding capability as a key evaluation met-558

ric (DeepSeek-AI, 2025; Yang et al., 2025b).559

LLM-Generated Code Detection. The meth-560

ods for detecting the code generated by LLMs561

are diverse, such as feature-based classifiers (Rah-562

man et al., 2024; Demirok and Kutlu, 2024), con-563

trastive learning (Ye et al., 2024; Xu et al., 2024c),564

Transformer-based encoder classifier (Gurioli et al.,565

2024). People are also interested in lexical diver-566

sity, readability, perplexity, conciseness, and natu-567

ralness (Shi et al., 2024; Wang et al., 2024; Xu and568

Sheng, 2024). Some studies have also pointed out 569

the limitations of these code detection methods (Xu 570

et al., 2024a; Suh et al., 2024) 571

9 Discussion and Conclusion 572

Although there have been many papers on the im- 573

pact of LLMs on text, no other studies have yet 574

examined their effect on code using real-world data. 575

The code generated by LLMs also has its own style, 576

such as in the names of variables and functions. 577

Therefore, we attempted to identify traces of LLMs 578

in the code from GitHub repositories and indeed 579

discovered some evidence. At the same time, due 580

to the diversity of programming languages, usage 581

behaviors, and LLMs, it is difficult to quantitatively 582

estimate how many people are using LLMs to assist 583

in programming. 584

Other researchers have shown that LLMs can ef- 585

fectively support students in learning coding (Kor- 586

pimies et al., 2024; Rasnayaka et al., 2024), and the 587

use of LLM-assisted programming tools is likely to 588

increase. The number of questions on Stack Over- 589

flow has declined since the emergence of LLMs, 590

which has raised concerns among many2. Conse- 591

quently, there is a strong possibility that human 592

coding style will shift toward that of LLMs in 593

the future. We therefore emphasize the need to 594

consider not only the programming capabilities of 595

LLMs, but also their broader societal implications. 596

2https://blog.pragmaticengineer.com/
stack-overflow-is-almost-dead/

8

https://blog.pragmaticengineer.com/stack-overflow-is-almost-dead/
https://blog.pragmaticengineer.com/stack-overflow-is-almost-dead/

Limitations597

Although we have conducted multiple experiments598

to evaluate the changes in code style in the LLM599

era, our research still has some limitations. First,600

the one-sided analysis of text style ignores the mea-601

surement of the accuracy of the code itself. For602

example, in the IO question scenario, we use the la-603

bel overlap rate instead of the pass rate calculation,604

which is an indirect indicator. The quantitative605

scoring of the code should not ignore the various606

parameters of the code runtime. We will improve607

these issues in future work.608

Second, our data set is insufficient. Code4bench609

is an early user AC code collection, which reflects610

the poor code style and thinking ability of users in611

the recent LLM era. The code collection of a single612

evaluation result cannot reflect the overall style of613

the entire human code ecology, and the comparison614

with the LLM-generated code is not complete. We615

will rebuild our code data set.616

In addition, there may be many scenarios for617

user-generated code and prompt parameters. Our618

simulation cannot exhaust all user usage situations,619

and the universality of our research results needs620

to be further improved.621

References622

Anthropic. 2024. Anthropic: Introducing claude 3.5623
sonnet.624

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad625
Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil, Zach626
Moshe, Tomer Ronen, Najeeb Nabwani, Ido Sha-627
haf, Oren Tropp, Ehud Karpas, Ran Zilberstein, Jiaqi628
Zeng, Soumye Singhal, Alexander Bukharin, Yian629
Zhang, Tugrul Konuk, and 114 others. 2025. Llama-630
nemotron: Efficient reasoning models. Preprint,631
arXiv:2505.00949.632

Luana Bulla, Alessandro Midolo, Misael Mongiovì, and633
Emiliano Tramontana. 2024. Ex-code: A robust and634
explainable model to detect ai-generated code. Infor-635
mation, 15(12):819.636

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,637
Henrique Ponde De Oliveira Pinto, Jared Kaplan,638
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg639
Brockman, and 1 others. 2021. Evaluating large640
language models trained on code. arXiv preprint641
arXiv:2107.03374.642

Kyle Daigle and GitHub Staff. 2024. Survey: The643
ai wave continues to grow on software devel-644
opment teams. GitHub Blog. Available online:645
https://github. blog/news-insights/research/survey-ai-646
wave-grows/# key-survey-findings.647

DeepSeek-AI. 2024. Deepseek-v3 technical report. 648
Preprint, arXiv:2412.19437. 649

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea- 650
soning capability in llms via reinforcement learning. 651
Preprint, arXiv:2501.12948. 652

Basak Demirok and Mucahid Kutlu. 2024. Aigcode- 653
set: A new annotated dataset for ai generated code 654
detection. arXiv preprint arXiv:2412.16594. 655

Shihan Dou, Haoxiang Jia, Shenxi Wu, Huiyuan Zheng, 656
Weikang Zhou, Muling Wu, Mingxu Chai, Jessica 657
Fan, Caishuang Huang, Yunbo Tao, and 1 others. 658
2024. What’s wrong with your code generated by 659
large language models? an extensive study. arXiv 660
preprint arXiv:2407.06153. 661

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 662
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 663
Ting Liu, Daxin Jiang, and 1 others. 2020. Codebert: 664
A pre-trained model for programming and natural 665
languages. arXiv preprint arXiv:2002.08155. 666

Mingmeng Geng, Caixi Chen, Yanru Wu, Dongping 667
Chen, Yao Wan, and Pan Zhou. 2024. The impact of 668
large language models in academia: from writing to 669
speaking. arXiv preprint arXiv:2409.13686. 670

Jay Graylin, Randy K SMITH, HALE David, 671
Nicholas A KRAFT, WARD Charles, and 1 others. 672
2009. Cyclomatic complexity and lines of code: 673
Empirical evidence of a stable linear relationship. 674
Journal of Software Engineering and Applications, 675
2(3):137–143. 676

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 677
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 678
Yu Wu, YK Li, and 1 others. 2024. Deepseek- 679
coder: When the large language model meets 680
programming–the rise of code intelligence. arXiv 681
preprint arXiv:2401.14196. 682

Andrea Gurioli, Maurizio Gabbrielli, and Stefano Zac- 683
chiroli. 2024. Is this you, llm? recognizing ai-written 684
programs with multilingual code stylometry. arXiv 685
preprint arXiv:2412.14611. 686

T Hariprasad, G Vidhyagaran, K Seenu, and Chan- 687
drasegar Thirumalai. 2017. Software complexity 688
analysis using halstead metrics. In 2017 interna- 689
tional conference on trends in electronics and infor- 690
matics (ICEI), pages 1109–1113. IEEE. 691

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, 692
Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun 693
Zhang, Bowen Yu, Keming Lu, and 1 others. 2024. 694
Qwen2. 5-coder technical report. arXiv preprint 695
arXiv:2409.12186. 696

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 697
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, 698
Akila Welihinda, Alan Hayes, Alec Radford, and 1 699
others. 2024. Gpt-4o system card. arXiv preprint 700
arXiv:2410.21276. 701

9

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2505.00949
https://arxiv.org/abs/2505.00949
https://arxiv.org/abs/2505.00949
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,702
and Sunghun Kim. 2024. A survey on large lan-703
guage models for code generation. arXiv preprint704
arXiv:2406.00515.705

Gilang Heru Kencana, Akuwan Saleh, Haryadi Am-706
ran Darwito, R Rizki Rachmadi, and Elsa Mayang707
Sari. 2020. Comparison of maintainability index708
measurement from microsoft codelens and line of709
code. In 2020 7th International Conference on Elec-710
trical Engineering, Computer Sciences and Informat-711
ics (EECSI), pages 235–239. IEEE.712

Kai Korpimies, Antti Laaksonen, and Matti Luukkainen.713
2024. Unrestricted use of llms in a software project714
course: Student perceptions on learning and impact715
on course performance. In Proceedings of the 24th716
Koli Calling International Conference on Computing717
Education Research, pages 1–7.718

Ruimiao Li, Manli Li, and Weifeng Qiao. 2025. Engi-719
neering students’ use of large language model tools:720
An empirical study based on a survey of students721
from 12 universities. Education Sciences, 15(3):280.722

Jenny T Liang, Chenyang Yang, and Brad A Myers.723
2024a. A large-scale survey on the usability of ai724
programming assistants: Successes and challenges.725
In Proceedings of the 46th IEEE/ACM international726
conference on software engineering, pages 1–13.727

Weixin Liang, Zachary Izzo, Yaohui Zhang, Haley Lepp,728
Hancheng Cao, Xuandong Zhao, Lingjiao Chen, Hao-729
tian Ye, Sheng Liu, Zhi Huang, and 1 others. 2024b.730
Monitoring ai-modified content at scale: A case study731
on the impact of chatgpt on ai conference peer re-732
views. arXiv preprint arXiv:2403.07183.733

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-734
ming Zhang. 2023. Is your code generated by chatgpt735
really correct? rigorous evaluation of large language736
models for code generation. Advances in Neural737
Information Processing Systems, 36:21558–21572.738

Amirabbas Majd, Mojtaba Vahidi-Asl, Alireza Khalil-739
ian, Ahmad Baraani-Dastjerdi, and Bahman Zamani.740
2019. Code4bench: A multidimensional benchmark741
of codeforces data for different program analysis tech-742
niques. Journal of Computer Languages, 53:38–52.743

Thomas J McCabe. 1976. A complexity measure. IEEE744
Transactions on software Engineering, 2(4):308–320.745

Shinwoo Park, Hyundong Jin, Jeong-won Cha, and Yo-746
Sub Han. 2025. Detection of llm-paraphrased code747
and identification of the responsible llm using coding748
style features. arXiv preprint arXiv:2502.17749.749

Alan Peslak and Lisa Kovalchick. 2024. Ai for coders:750
An analysis of the usage of chatgpt and github copilot.751
Issues in Information Systems, 25(4):252–260.752

Musfiqur Rahman, SayedHassan Khatoonabadi, Ahmad753
Abdellatif, and Emad Shihab. 2024. Automatic de-754
tection of llm-generated code: A case study of claude755
3 haiku. arXiv preprint arXiv:2409.01382.756

Sanka Rasnayaka, Guanlin Wang, Ridwan Shariffdeen, 757
and Ganesh Neelakanta Iyer. 2024. An empirical 758
study on usage and perceptions of llms in a software 759
engineering project. In Proceedings of the 1st Inter- 760
national Workshop on Large Language Models for 761
Code, pages 111–118. 762

Yuling Shi, Hongyu Zhang, Chengcheng Wan, and Xi- 763
aodong Gu. 2024. Between lines of code: Unraveling 764
the distinct patterns of machine and human program- 765
mers. arXiv preprint arXiv:2401.06461. 766

Hyunjae Suh, Mahan Tafreshipour, Jiawei Li, Adithya 767
Bhattiprolu, and Iftekhar Ahmed. 2024. An empir- 768
ical study on automatically detecting ai-generated 769
source code: How far are we? arXiv preprint 770
arXiv:2411.04299. 771

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean- 772
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan 773
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Mil- 774
lican, and 1 others. 2023. Gemini: a family of 775
highly capable multimodal models. arXiv preprint 776
arXiv:2312.11805. 777

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya 778
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, 779
Tatiana Matejovicova, Alexandre Ramé, Morgane 780
Rivière, and 1 others. 2025. Gemma 3 technical 781
report. arXiv preprint arXiv:2503.19786. 782

Nalin Wadhwa, Jui Pradhan, Atharv Sonwane, 783
Surya Prakash Sahu, Nagarajan Natarajan, Aditya 784
Kanade, Suresh Parthasarathy, and Sriram Rajamani. 785
2024. Core: Resolving code quality issues using llms. 786
Proceedings of the ACM on Software Engineering, 787
1(FSE):789–811. 788

Yao Wan, Guanghua Wan, Shijie Zhang, Hongyu Zhang, 789
Pan Zhou, Hai Jin, and Lichao Sun. 2024. Does 790
your neural code completion model use my code? 791
a membership inference approach. arXiv preprint 792
arXiv:2404.14296. 793

Yanlin Wang, Tianyue Jiang, Mingwei Liu, Jiachi 794
Chen, and Zibin Zheng. 2024. Beyond functional 795
correctness: Investigating coding style inconsis- 796
tencies in large language models. arXiv preprint 797
arXiv:2407.00456. 798

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH 799
Hoi. 2021. Codet5: Identifier-aware unified 800
pre-trained encoder-decoder models for code un- 801
derstanding and generation. arXiv preprint 802
arXiv:2109.00859. 803

Jinwei Xu, He Zhang, Yanjin Yang, Zeru Cheng, Jun 804
Lyu, Bohan Liu, Xin Zhou, Lanxin Yang, Alberto 805
Bacchelli, Yin Kia Chiam, and 1 others. 2024a. In- 806
vestigating efficacy of perplexity in detecting llm- 807
generated code. arXiv preprint arXiv:2412.16525. 808

Weiwei Xu, Kai Gao, Hao He, and Minghui Zhou. 809
2024b. Licoeval: Evaluating llms on license 810
compliance in code generation. arXiv preprint 811
arXiv:2408.02487. 812

10

Xiaodan Xu, Chao Ni, Xinrong Guo, Shaoxuan Liu,813
Xiaoya Wang, Kui Liu, and Xiaohu Yang. 2024c.814
Distinguishing llm-generated from human-written815
code by contrastive learning. ACM Transactions on816
Software Engineering and Methodology.817

Zhenyu Xu and Victor S Sheng. 2024. Detecting ai-818
generated code assignments using perplexity of large819
language models. In Proceedings of the aaai con-820
ference on artificial intelligence, volume 38, pages821
23155–23162.822

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,823
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,824
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi-825
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,826
Haoran Wei, Huan Lin, Jialong Tang, and 41 oth-827
ers. 2025a. Qwen3 technical report. arXiv preprint828
arXiv:2505.09388.829

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,830
Binyuan Hui, Bo Zheng, Bowen Yu, Chang831
Gao, Chengen Huang, Chenxu Lv, and 1 others.832
2025b. Qwen3 technical report. arXiv preprint833
arXiv:2505.09388.834

Tong Ye, Yangkai Du, Tengfei Ma, Lingfei Wu, Xuhong835
Zhang, Shouling Ji, and Wenhai Wang. 2024. Un-836
covering llm-generated code: A zero-shot synthetic837
code detector via code rewriting. arXiv preprint838
arXiv:2405.16133.839

A Other Metrics840

A.1 Comments Ratio841

CR =
Number of comment lines
Total number of code lines

× 100%.842

A.2 Halstead Complexity Metrics843

• Program Vocabulary: n = n1 + n2844

• Program Length: N = N1 +N2845

• Calculated Program Length: N̂ = n1 · log2 n1 +846

n2 · log2 n2847

• Volume: V = N · log2 n848

• Difficulty: D =
(
n1
2

)
·
(
N2
n2

)
849

• Effort: E = D · V850

• Time to Implement: T = E
18 (in seconds)851

• Estimated Bugs: B = E2/3

3000852

where n1 is the number of distinct operators, n2853

is the number of distinct operands, N1 is the total854

number of operator occurrences, and N2 is the total855

number of operand occurrences.856

A.3 The maintainability index 857

• Standard maintainability index: 858

MIstd = 171−5.2·ln(V)−0.23·CC−16.2·ln(SLOC) 859

• Custom maintainability index: 860

MIcustom = MIstd + 50 · sin
(√

2.4 · CR
)

861

where V denotes the Halstead volume, CC is 862

the cyclomatic complexity, SLOC is the number of 863

logical source lines of code (i.e., executable state- 864

ments excluding blank and comment lines, with 865

multi-line statements counted as one), and CR is 866

the comment ratio. 867

B Dataset 868

Table 3 shows the number of repositories in our 869

dataset. Table 4 shows the mumber of problems 870

per main algorithm across difficulty buckets. 871

B.1 Prompt 872

Figure 7, Figure 8 and Figure 9 show our prompt 873

for generating and revising. 874

C Github Result 875

Figure 10- 17 show the comparison of variable, 876

function, file, naming length and comment ratio 877

(Python and C/C++) in LLM-generated vs. human- 878

written code. 879

D Tags Frequencies 880

Table 6 shows the tag frequency of the collected 881

questions. Table 7 shows the tag frequency results 882

of the model output reasoning. Table 8 shows spe- 883

cific results at different levels of difficulty. 884

E Metrics Result 885

Tables 9 and 10 show the results containing 886

reference-guided generation . Tables 11 and 12 887

show the results of large-scale model evaluation. 888

11

Quarter Python-cs Python-non-cs C/C++-cs C/C++-non-cs
(#Repo / #Files) (#Repo / #Files) (#Repo / #Files) (#Repo / #Files)

2020 Q1 462 / 21643 139 / 3998 81 / 1532 29 / 385
2020 Q2 488 / 27190 111 / 2755 85 / 1002 18 / 241
2020 Q3 468 / 23008 152 / 5188 78 / 1077 18 / 206
2020 Q4 499 / 35083 131 / 3857 91 / 1367 19 / 490
2021 Q1 480 / 27155 139 / 3025 93 / 962 16 / 324
2021 Q2 523 / 28696 135 / 3471 117 / 1332 21 / 295
2021 Q3 520 / 27802 127 / 2448 121 / 1544 20 / 139
2021 Q4 508 / 29693 160 / 3649 105 / 1247 26 / 357
2022 Q1 486 / 24890 185 / 5684 160 / 1612 29 / 456
2022 Q2 498 / 31272 192 / 5495 170 / 2450 35 / 599
2022 Q3 495 / 34820 202 / 6358 208 / 3233 29 / 308
2022 Q4 515 / 37587 193 / 4873 218 / 2354 18 / 341
2023 Q1 521 / 45587 191 / 5862 225 / 2150 24 / 185
2023 Q2 508 / 38882 240 / 6345 226 / 2416 35 / 872
2023 Q3 506 / 36300 255 / 6110 267 / 2429 25 / 186
2023 Q4 525 / 44676 232 / 7428 277 / 3177 31 / 212
2024 Q1 524 / 34320 250 / 6581 266 / 3058 24 / 301
2024 Q2 533 / 44075 325 / 9628 320 / 4070 41 / 616
2024 Q3 530 / 48355 359 / 9620 366 / 5541 49 / 542
2024 Q4 529 / 40706 431 / 13031 405 / 4363 50 / 957
2025 Q1 520 / 59170 323 / 10541 296 / 4363 56 / 787

Total 10638 / 740910 4472 / 125947 4175 / 51279 613 / 8799

Table 3: Number of repositories and Python/C++ files per quarter and category

Main Algorithm 800–1199 1200–1599 1600–1999 2000+

implementation 25 13 6 2
brute force 10 9 7 12
constructive algorithms 5 6 9 7
greedy 5 8 4 1
math 3 2 3 4
binary search 1 4 8 9
dp 1 2 4 7
data structures 0 2 4 3
combinatorics 0 2 2 4
dfs and similar 0 2 3 1

Table 4: Number of problems per main algorithm across difficulty buckets.

Prompt

Your task is to carefully read the following problem description and implement a solution in
{language}. Please first provide your reasoning in plain text, and then provide the corresponding
code. Format your response as follows using Markdown:
Reasoning
<Please provide only your step-by-step reasoning in plain text here.>
Code
<Please provide only your code in {language} here, with no extra explanation or text.>
Here is the problem description: {context}

Figure 7: Prompt instructing LLMs to provide reasoning and solution code based only on problem descriptions.

12

Prompt

Your task is to carefully read the following problem description and revise the given code. The
code given is AC code (correct and has passed the test.) Please first provide your reasoning in plain
text, and then provide the corresponding code. Format your response as follows using Markdown:
Reasoning
<Please provide only your step-by-step reasoning in plain text here.>
Code
<Please provide only your code in {language} here, with no extra explanation or text.>
Here is the problem description: {context}
Here is the user’s AC Code: {code}

Figure 8: Prompt instructing LLMs to provide reasoning process and solution code based on both problem
descriptions and correct human-written code.

Prompt

Your task is to carefully read the following problem description and implement a solution in
{language}. Return only the code without any explanations. Here is the problem descrip-
tion:\n\n{context}

Figure 9: Prompt instructing LLMs to provide only solution code based on problem descriptions.

Figure 10: Comparison of Python variable naming styles in LLM-generated vs. human-written code and their
temporal trends on GitHub.

13

Figure 11: Comparison of Python function naming styles in LLM-generated vs. human-written code and their
temporal trends on GitHub.

Figure 12: Comparison of Python file naming styles in LLM-generated vs. human-written code and their temporal
trends on GitHub.

Model C/C++ Python

AC vs ANS AC vs REF ANS vs REF AC vs ANS AC vs REF ANS vs REF

Qwen-32B 0.2871 0.5884 0.3782 0.2761 0.5910 0.3340
Gemma-27B 0.3012 0.7397 0.3961 0.3703 0.7553 0.4198
DeepSeek-32B 0.1754 0.5204 0.2493 0.2474 0.4470 0.3323

Table 5: Jaccard similarity between the human-written code (AC), the initial LLM-generated code (ANS), and the
LLM-rewritten code (REF) based on human-written code.

14

Figure 13: Comparison of C/C++ variable naming styles in LLM-generated vs. human-written code and their
temporal trends on GitHub.

Figure 14: Comparison of C/C++ function naming styles in LLM-generated vs. human-written code and their
temporal trends on GitHub.

15

Figure 15: Comparison of C/C++ file naming styles in LLM-generated vs. human-written code and their temporal
trends on GitHub.

Figure 16: Comparison of naming length in LLM-generated vs. human-written code and their temporal trends on
GitHub. We do not prompt the models to rewrite file names, so no comparison is made in this regard.

2020 2021 2022 2023 2024 2025

0.08

0.09

0.10

0.11

0.12

Co
m

m
en

t R
at

io

cs
non_cs

2020 2021 2022 2023 2024 2025Q1
0.10

0.15

0.20

Co
m

m
en

t R
at

io

Cpp - Comment Ratio

cs non_cs

Figure 17: No consistent trend is observed in the comment ratio over time for either language.

16

Tag Freq Tag Freq Tag Freq Tag Freq

2-sat 7 binary search 260 bitmasks 81 brute force 404
chinese remainder theorem 3 combinatorics 154 constructive algorithms 350 data structures 395
dfs and similar 260 divide and conquer 57 dp 565 dsu 91
expression parsing 26 fft 9 flows 34 games 62
geometry 157 graph matchings 18 graphs 312 greedy 513
hashing 55 implementation 849 interactive 20 math 631
matrices 39 meet-in-the-middle 10 number theory 184 probabilities 78
schedules 2 shortest paths 80 sortings 248 string suffix structures 25
strings 221 ternary search 15 trees 189 two pointers 113

Table 6: Frequencies of all algorithmic tags

Tag A_q_p R_q_p A_q_c R_q_c A_g_p R_g_p A_g_c R_g_c A_d_p R_d_p A_d_c R_d_c

2-sat 0 0 4 3 0 0 3 7 0 0 2 5
bfs 39 60 294 186 61 55 373 189 246 147 1781 384
binary search 138 114 286 451 34 125 89 352 274 165 1312 506
bitmasks 0 1 1 8 0 3 6 6 3 2 17 6
brute force 3 0 29 4 5 0 26 2 8 4 12 4
chinese remainder theo 0 0 1 0 0 0 0 0 0 0 6 0
combinatorics 2 2 8 1 0 0 1 5 4 4 25 8
constructive algorithms 0 0 0 0 0 0 0 0 0 0 0 0
data structures 36 15 134 202 8 8 54 158 27 31 162 243
dfs 47 58 441 579 74 72 490 719 32 42 374 489
divide and conquer 0 0 5 0 0 0 2 2 0 0 4 10
dp 346 26 1682 792 414 97 1801 777 1325 320 6388 993
dsu 1 6 24 12 11 9 5 52 40 7 135 38
expression parsing 0 0 0 0 0 1 0 0 0 0 0 0
fft 0 0 0 17 0 0 0 39 0 0 43 20
flows 0 0 3 1 1 0 17 1 3 1 64 8
games 29 5 24 18 37 23 53 22 16 8 54 25
geometry 7 3 21 7 0 0 1 3 1 6 30 9
graph matchings 0 0 0 0 0 0 0 0 0 0 0 0
graphs 7 2 35 13 1 4 10 16 21 4 77 42
greedy 72 18 195 37 81 9 270 48 61 23 221 77
hashing 0 2 7 31 0 0 0 40 2 4 47 41
implementation 205 83 610 276 14 76 68 290 49 61 244 294
interactive 1 2 4 3 3 2 7 10 3 1 0 2
math 8 27 0 7 46 18 0 3 117 10 25 2
matrices 2 5 11 10 1 0 10 7 6 7 85 19
meet-in-the-middle 0 0 2 2 0 0 0 0 0 0 1 3
number theory 0 0 4 2 0 0 1 0 1 0 3 1
probabilities 16 23 88 98 9 10 88 85 9 9 267 81
schedules 6 2 3 6 0 2 3 2 2 2 6 2
shortest paths 8 5 72 48 8 11 85 49 5 5 195 50
similar 17 12 61 45 18 14 53 49 87 27 922 43
sort 241 60 548 147 301 75 569 153 510 173 1665 240
string 807 509 1417 894 1094 751 1874 1184 2369 999 5863 1203
strings 162 153 375 245 230 158 507 288 248 153 800 241
suffix 46 36 147 146 82 39 93 122 267 58 955 206
ternary search 0 0 0 19 0 0 3 13 1 0 36 7
trees 22 18 127 111 22 15 133 158 36 47 699 194
two pointers 26 13 54 15 8 4 10 7 14 6 33 20

Table 7: Frequencies of each output tag across different generation types. The format T_M_L denotes Type (A: ANS,
R: REF), Model (q: Qwen, g: Gemma, d: Deepseek), and Language (p: Python, c: C/C++).

17

Model-Language-Type 800–1199 1200–1599 1600–1999 2000+

Match Rate Error Rate Match Rate Error Rate Match Rate Error Rate Match Rate Error Rate

gemma-py-ans 5.61% 10.20% 10.26% 16.78% 16.15% 20.77% 13.51% 22.97%
gemma-py-ref 5.61% 8.16% 9.32% 11.19% 17.44% 16.92% 16.89% 26.35%
gemma-cpp-ans 5.69% 13.37% 11.68% 16.60% 18.45% 18.74% 22.40% 26.14%
gemma-cpp-ref 7.67% 9.16% 14.34% 16.60% 28.26% 19.77% 33.72% 32.89%
Qwen-py-ans 9.44% 18.11% 16.08% 22.38% 22.56% 32.31% 27.70% 32.43%
Qwen-py-ref 9.44% 11.22% 9.79% 16.08% 15.38% 20.51% 15.54% 23.65%
Qwen-cpp-ans 13.37% 20.54% 20.08% 24.18% 31.48% 36.75% 32.97% 45.21%
Qwen-cpp-ref 8.91% 11.88% 13.93% 19.47% 27.23% 22.11% 36.30% 32.64%
DeepSeek-py-ans 5.87% 13.01% 11.19% 17.02% 13.85% 15.38% 14.19% 18.24%
DeepSeek-py-ref 6.12% 10.97% 11.89% 14.22% 17.69% 17.44% 19.59% 24.32%
DeepSeek-cpp-ans 9.70% 18.33% 15.57% 25.44% 23.85% 28.44% 22.22% 32.04%
DeepSeek-cpp-ref 6.74% 12.67% 15.57% 17.32% 31.12% 24.80% 38.15% 33.61%

Table 8: Match rate and error rate for questions across different difficulty levels.

Model h1 h2 N1 N2 Vocab Length Cal_Len Volume Difficul Effort Time_Sec Bugs

AC-Python 5.39 17.53 14.80 28.76 22.92 43.56 93.63 216.66 4.41 1466.48 81.47 0.07
q-ANS-Python 4.91 14.66 11.93 23.15 19.57 35.08 74.64 164.70 3.87 939.75 52.21 0.05
q-REF-Python 4.97 14.45 11.61 22.52 19.42 34.14 73.82 160.69 3.88 946.77 52.60 0.05
g-ANS-Python 4.94 15.82 12.93 25.62 20.76 38.55 81.57 185.91 3.94 1083.57 60.20 0.06
g-REF-Python 4.79 14.00 11.38 22.13 18.79 33.51 71.37 157.69 3.81 947.36 52.63 0.05
d-ANS-Python 3.33 8.90 7.47 14.40 12.23 21.87 45.19 101.22 2.68 631.26 35.07 0.03
d-REF-Python 5.28 15.60 13.36 25.72 20.88 39.08 84.08 192.76 4.35 1367.70 75.98 0.06

AC-C/C++ 10.33 79.36 140.95 534.78 89.70 675.73 555.79 4597.99 33.53 227661.62 12647.87 1.53
q-ANS-C/C++ 9.15 55.84 82.68 276.47 64.98 359.15 358.02 2216.74 22.16 66253.53 3680.75 0.74
q-REF-C/C++ 9.66 58.73 95.64 367.51 68.38 463.15 383.55 2930.18 28.79 126870.70 7048.37 0.98
g-ANS-C/C++ 8.02 47.59 98.85 272.75 55.61 371.60 292.60 2205.17 22.62 67722.90 3762.38 0.74
g-REF-C/C++ 9.50 68.39 112.94 428.06 77.89 541.00 466.15 3589.22 28.44 153739.81 8541.10 1.20
d-ANS-C/C++ 4.78 29.71 50.56 170.63 34.49 221.19 188.31 1368.60 13.08 49152.88 2730.72 0.46
d-REF-C/C++ 9.44 64.40 108.91 417.83 73.84 526.74 431.17 3439.53 29.10 158810.53 8822.81 1.15

Table 9: Halstead results. Each label follows the format model_type_language, where type refers to the experimental
setting and language indicates the programming language. In the model abbreviation, q, g, and d refer to Qwen,
Gemma, and DeepSeek, respectively. Metric abbreviations are as follows: cal_len = calculated program length,
difficul = difficulty, time_sec = time to implement, bugs = estimated bugs.

18

Model Volume Cyclomatic SLOC LLOC Comment_Rate mi_std mi_custom

AC-Python 216.66 2.60 20.44 21.23 3.96 62.41 62.87
Qwen-ANS-Python 164.70 6.25 20.98 21.43 22.78 78.56 78.58
Qwen-REF-Python 160.69 2.68 17.38 17.66 6.03 66.56 67.07
gemma-ANS-Python 185.91 8.37 23.37 23.43 1.18 58.43 58.41
gemma-REF-Python 157.69 2.66 17.81 18.23 2.19 64.18 64.63
DeepSeek-ANS-Python 101.22 1.05 14.07 14.16 2.01 76.16 76.66
DeepSeek-REF-Python 192.76 3.24 21.96 22.15 7.88 67.82 68.40

AC-C/C++ 4597.99 15.94 69.39 49.72 0.05 41.96 35.51
Qwen-ANS-C/C++ 2216.74 10.67 42.34 37.30 0.04 48.51 41.59
Qwen-REF-C/C++ 2930.18 13.19 50.31 42.20 0.01 41.80 39.69
gemma-ANS-C/C++ 2205.17 14.47 46.66 42.20 0.01 41.74 40.27
gemma-REF-C/C++ 3589.22 14.16 58.18 44.73 0.02 42.37 38.26
DeepSeek-ANS-C/C++ 1368.60 6.37 29.11 24.45 0.01 68.15 66.52
DeepSeek-REF-C/C++ 3439.53 14.61 59.73 49.05 0.03 43.85 39.44

Table 10: Maintainability results. Each label follows the format model_type_language, where type refers to the
experimental setting and language indicates the programming language. Metric abbreviations are as follows:
mi_std = standard maintainability index, mi_custom = custom maintainability index.

19

Model Language Stat. h1 h2 N1 N2 Vocab Length Cal_Len Volume Difficul Effort Time_Sec Bugs

Claude
Python mean 6.22 20.36 18.01 35.13 26.58 53.14 114.86 277.88 5.30 2303.85 127.99 0.09

std 1.31 8.14 8.26 16.27 9.07 24.51 58.33 164.09 1.49 2061.31 114.52 0.05

C/C++ mean 8.54 65.90 96.68 312.96 74.44 409.64 430.84 2611.66 19.76 67162.33 3731.24 0.87
std 0.91 11.60 23.72 75.44 11.94 96.36 89.76 698.95 4.31 34582.01 1921.22 0.23

DSV3
Python mean 6.10 18.37 17.23 33.28 24.46 50.52 100.73 254.75 5.49 2102.24 116.79 0.08

std 0.77 4.14 4.58 8.93 4.65 13.50 28.68 85.88 0.99 1111.11 61.73 0.03

C/C++ mean 7.65 48.08 71.45 249.61 55.73 321.06 294.59 1908.68 19.52 51055.60 2836.42 0.64
std 0.62 3.52 10.80 36.49 3.81 46.29 26.88 305.03 2.99 18789.07 1043.84 0.10

DSR1
Python mean 6.84 22.29 20.54 39.59 29.12 60.13 128.84 319.45 6.05 2902.90 161.27 0.11

std 1.23 7.26 7.64 14.87 8.13 22.49 51.49 147.19 1.47 1927.68 107.09 0.05

C/C++ mean 8.42 57.94 84.00 337.67 66.36 421.67 377.04 2720.12 22.66 98184.66 5454.70 0.91
std 0.88 18.49 31.58 184.28 18.88 213.40 158.33 1753.39 5.24 102703.88 5705.77 0.58

Gemma
Python mean 5.52 21.20 17.90 36.14 26.72 54.04 115.75 278.83 4.60 1792.06 99.56 0.09

std 0.92 6.32 5.92 12.28 6.86 18.17 42.99 117.70 0.98 1076.68 59.82 0.04

C/C++ mean 7.11 47.51 112.19 293.85 54.62 406.04 287.21 2379.33 21.96 67879.88 3771.10 0.79
std 0.65 3.51 24.80 53.41 3.81 76.19 26.26 474.05 4.14 26880.38 1493.35 0.16

GPT
Python mean 5.01 13.60 11.32 22.04 18.62 33.36 67.50 151.65 4.07 912.18 50.68 0.05

std 1.02 3.80 3.58 7.07 4.53 10.64 23.91 59.85 1.07 528.82 29.38 0.02

C/C++ mean 7.59 48.34 63.12 203.35 55.93 266.48 295.94 1571.22 15.88 30078.52 1671.03 0.52
std 0.93 7.75 11.30 32.64 8.08 41.75 57.16 283.63 2.99 9882.98 549.05 0.09

Llama
Python mean 5.80 17.89 15.24 29.68 23.69 44.93 95.89 222.09 4.78 1582.12 87.90 0.07

std 1.27 6.22 6.22 12.21 7.12 18.42 41.73 112.55 1.44 1201.02 66.72 0.04

C/C++ mean 7.76 47.56 71.16 244.13 55.31 315.29 291.68 1869.23 19.49 52663.32 2925.74 0.62
std 1.09 7.90 21.61 70.48 8.37 88.71 60.37 579.59 5.68 49067.76 2725.99 0.19

Qw4B
Python mean 5.20 15.25 12.87 24.97 20.45 37.84 78.39 178.54 4.27 1105.91 61.44 0.06

std 0.85 4.14 3.87 7.66 4.77 11.52 28.29 70.75 0.91 651.17 36.18 0.02

C/C++ mean 7.47 50.81 66.06 235.00 58.28 301.07 315.46 1822.14 16.76 41082.45 2282.36 0.61
std 0.64 7.44 12.31 48.69 7.68 59.78 58.12 424.64 2.86 18516.05 1028.67 0.14

Qw8B
Python mean 5.11 15.05 12.86 24.96 20.16 37.82 77.21 180.06 4.19 1174.21 65.23 0.06

std 1.09 4.86 4.92 9.69 5.65 14.60 32.15 86.64 1.21 852.52 47.36 0.03

C/C++ mean 7.29 47.40 64.41 223.15 54.69 287.56 289.40 1719.90 16.42 42327.90 2351.55 0.57
std 0.91 7.83 18.62 71.91 8.26 89.09 60.75 643.36 3.90 43502.31 2416.80 0.21

Qw14B
Python mean 5.64 16.86 14.27 27.67 22.50 41.93 88.48 201.97 4.62 1330.55 73.92 0.07

std 0.90 4.24 4.16 8.17 4.90 12.32 28.49 74.61 0.99 763.02 42.39 0.02

C/C++ mean 7.78 55.85 72.02 255.75 63.62 327.77 354.15 2021.52 17.46 46444.34 2580.24 0.67
std 0.73 8.96 14.89 53.41 9.29 67.10 70.76 482.39 3.33 23781.57 1321.20 0.16

Qw32B
Python mean 5.90 17.56 14.72 28.50 23.46 43.22 93.84 211.90 4.76 1458.62 81.03 0.07

std 1.14 5.01 4.87 9.50 5.83 14.35 33.83 87.12 1.22 921.81 51.21 0.03

C/C++ mean 8.04 54.25 72.48 260.03 62.29 332.51 342.14 2038.57 18.82 51082.68 2837.93 0.68
std 0.89 8.35 15.50 56.92 8.73 70.74 64.18 488.85 4.02 23772.82 1320.71 0.16

QwCo
Python mean 5.51 17.09 14.74 28.57 22.60 43.31 90.83 212.60 4.58 1457.38 80.97 0.07

std 1.27 6.30 6.22 12.17 7.22 18.37 42.43 112.54 1.45 1142.83 63.49 0.04

C/C++ mean 7.70 43.79 64.09 216.48 51.49 280.57 264.30 1633.43 18.53 41956.16 2330.90 0.54
std 1.04 4.85 16.98 57.39 5.31 72.14 36.29 455.12 5.03 27470.03 1526.11 0.15

Human
Python mean 5.89 20.20 17.30 33.84 26.09 51.14 111.90 263.59 4.96 1973.81 109.66 0.09

std 0.83 4.00 3.72 7.41 4.58 11.13 25.66 66.45 0.85 624.38 34.69 0.02

C/C++ mean 9.66 67.54 116.54 387.92 77.20 504.47 454.55 3303.25 26.78 145862.09 8103.45 1.10
std 1.69 31.47 98.16 254.47 32.55 340.85 259.09 2649.44 10.24 235927.01 13107.06 0.88

Table 11: Halstead results on the evaluation subset. Model names use the following abbreviations: Claude =
Claude-3.5-Sonnet, DSV3 = DeepSeek-V3, DSR1 = DeepSeek-R1, Gemma = Gemma-3-27B, GPT = GPT-4o-mini,
Llama = Llama 3.3 Nemotron Super 49B v1, Qw14B = Qwen3-14B, Qw32B = Qwen3-32B, Qw4B = Qwen3-4B, Qw8B
= Qwen3-8B, and QwCo = Qwen2.5-Coder-32B-Instruct. The label Human refers to human-written code. Metric
abbreviations are: Cal_Len = calculated program length, Difficul = difficulty, Time_Sec = time to implement,
Bugs = estimated bugs.

20

Model Language Stat. Volume Cyclomatic SLOC LLOC Comment_Rate MI_Std MI_Custom

Claude
Python mean 277.88 9.37 29.06 29.22 20.47 72.62 72.72

std 164.09 4.71 9.71 9.70 11.13 7.45 7.45

C/C++ mean 2611.66 11.83 49.28 40.61 0.09 53.70 39.47
std 698.95 3.55 10.44 9.13 0.05 5.63 2.71

DSV3
Python mean 254.75 4.16 27.69 27.88 8.96 63.28 63.95

std 85.88 1.91 5.54 5.59 8.35 4.72 4.68

C/C++ mean 1908.68 10.37 42.54 37.72 0.00 42.87 42.02
std 305.03 2.10 5.73 5.55 0.01 2.06 1.59

DSR1
Python mean 319.45 5.63 33.16 33.62 18.92 56.58 57.29

std 147.19 3.53 9.56 9.67 47.74 7.55 7.49

C/C++ mean 2720.12 12.13 48.28 41.80 0.02 42.08 40.41
std 1753.39 3.52 12.44 9.98 0.05 3.89 2.91

Gemma
Python mean 278.83 11.64 31.14 31.49 0.54 52.74 52.74

std 117.70 3.76 6.82 6.89 0.63 3.80 3.79

C/C++ mean 2379.33 18.64 51.23 47.04 0.00 38.88 38.23
std 474.05 5.14 8.57 8.60 0.00 2.89 2.51

GPT
Python mean 151.65 4.34 19.77 20.18 7.35 66.81 67.11

std 59.85 2.38 3.89 3.99 8.25 8.40 8.40

C/C++ mean 1571.22 8.01 33.61 28.85 0.02 48.89 44.51
std 283.63 1.75 4.63 4.22 0.03 5.41 1.87

Llama
Python mean 222.09 6.67 24.25 24.67 3.60 59.23 59.45

std 112.55 3.85 7.10 7.27 7.10 7.05 7.04

C/C++ mean 1869.23 10.02 39.97 34.97 0.00 43.38 42.66
std 579.59 3.80 9.92 9.21 0.01 3.50 3.05

Qw4B
Python mean 178.54 5.43 25.25 25.61 14.78 66.60 66.90

std 70.75 1.80 4.61 4.63 11.42 5.08 5.07

C/C++ mean 1822.14 9.85 38.15 33.42 0.02 46.83 43.38
std 424.64 2.20 6.74 5.96 0.02 3.38 2.02

Qw8B
Python mean 180.06 4.63 23.17 23.57 6.59 62.92 63.26

std 86.64 2.23 5.84 5.91 8.36 6.05 6.03

C/C++ mean 1719.90 8.72 36.59 31.88 0.02 46.74 44.08
std 643.36 3.47 9.41 8.86 0.03 3.89 2.63

Qw14B
Python mean 201.97 5.68 27.68 28.20 9.60 64.48 64.77

std 74.61 1.97 5.15 5.20 7.13 4.72 4.72

C/C++ mean 2021.52 9.74 41.83 36.14 0.03 47.95 42.10
std 482.39 2.37 7.65 6.87 0.03 3.94 2.15

Qw32B
Python mean 211.90 4.71 26.86 27.27 4.78 61.56 62.00

std 87.12 2.45 6.03 6.09 4.69 5.79 5.76

C/C++ mean 2038.57 10.26 41.78 37.35 0.02 45.98 42.01
std 488.85 2.73 8.41 8.02 0.02 4.43 2.52

QwCo
Python mean 212.60 6.19 23.45 23.93 1.26 57.81 57.94

std 112.54 3.00 7.00 7.13 3.01 5.88 5.90

C/C++ mean 1633.43 9.22 34.53 30.81 0.00 44.76 44.44
std 455.12 2.97 8.02 7.71 0.00 3.13 2.84

Human
Python mean 263.59 2.64 36.01 23.59 6.51 60.82 60.82

std 66.45 1.45 9.26 4.76 11.64 5.64 5.64

C/C++ mean 3303.25 12.62 55.01 39.09 0.05 45.10 38.82
std 2649.44 7.00 29.40 18.13 0.09 7.81 6.46

Table 12: Maintainability results on the evaluation subset, broken down by model, language (Python vs. C/C++),
and statistic (mean vs. std). Model abbreviations follow those in Table 11

21

	Introduction
	Background
	Position of Our Work
	Code Style Measurements

	Study Design
	Dataset
	Studied LLMs
	Simulations
	Evaluation

	View I: Naming Patterns
	Settings
	Results

	View II: Complexity and Maintainability
	Settings
	Results

	View III: Code Similarity
	Settings
	Results

	Labels in the Reasoning Process
	Settings
	Results

	Related Work
	Discussion and Conclusion
	Other Metrics
	Comments Ratio
	Halstead Complexity Metrics
	The maintainability index

	Dataset
	Prompt

	Github Result
	Tags Frequencies
	Metrics Result

