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Abstract

In real-world applications, time series data fre-
quently exhibit non-stationarity, with statistics
changing over time. This variability undermines
the forecasting accuracy of deep learning models
that are trained on historical data but deployed
for future prediction. A common approach to
mitigate this issue involves normalizing the data
to counteract statistical drift, followed by denor-
malization on the prediction. However, exist-
ing methods often employ heuristic normaliza-
tion techniques that do not fully account for the
unique characteristics of the series. Our paper ad-
dresses the critical question in this context: which
statistics should be removed and restored? We
argue that the statistics selected for normalization
should exhibit both local invariance and global
variability to ensure their correctness and helpful-
ness. To this end, we propose the Selective and In-
terpretable Normalization methodology, dubbed
SIN. This approach maximizes the covariance
between a given look-back window and its subse-
quent future values, thereby identifying key statis-
tics for normalization and simultaneously learning
the corresponding normalization transformations.
The interpretable framework can be used to ex-
plain the success and limitations of some popular
normalization methods. By integrating SIN, we
demonstrate improvements in the performance
of several prevalent forecasting models, thereby
validating the utility of our approach.
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Figure 1. The normalization method removes the statistics from
the input and restores the statistics to the model’s prediction. This
process mitigates statistics drift that happens globally. Previous
methods usually use heuristic normalizations that ignore the unique
statistics of each time series. In contrast, our method overcomes
the limitations by using a learned normalization method.

1. Introduction
Time series forecasting plays a pivotal role in numerous
domains, including energy (Kardakos et al., 2013), trans-
portation (Kadiyala & Kumar, 2014), and healthcare (Morid
et al., 2023). In recent years, deep learning has emerged
as a dominant force in this field and brought about a signif-
icant shift from traditional statistical methods (Box et al.,
2015) to various kinds of neural networks (Hochreiter &
Schmidhuber, 1997; Cho et al., 2014; Rangapuram et al.,
2018; Bai et al., 2018; Franceschi et al., 2019; Zhou et al.,
2021; Wu et al., 2021a; Zhou et al., 2022; Liu et al., 2022b).
These methods demonstrated improved performance over
traditional statistical approaches, particularly in handling
high-dimensional series with long-term dependencies.

However, the efficacy of deep learning models in time
series forecasting is often hindered by the inherent non-
stationarity in time series (Hyndman & Athanasopoulos,
2018; Petropoulos et al., 2022). Non-stationarity, character-
ized by time-varying statistical properties such as mean, and
variance, presents a formidable challenge. Models trained
on historical data may struggle with future series that exhibit
different distributions (Kim et al., 2021; Han et al., 2024).

In response to this challenge, the normalization method has
become a critical step, as depicted in Figure 1. By removing
the local statistics from the series, normalization mitigates
the effects of distribution drift between seen and unseen
data, enhancing the model’s ability to generalize from past
observations to future deployment (Passalis et al., 2020;
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Kim et al., 2021; Fan et al., 2023). However, the effective-
ness of normalization is contingent upon two key decisions:
the selection of statistics to normalize and the method of
normalization. Traditional approaches often resort to heuris-
tic techniques such as shifting the series to zero mean (Kim
et al., 2021), but these approaches may not fully capture the
unique aspects and dynamics of the time series.

Recognizing the limitations of existing methods, this pa-
per reevaluates the role of normalization and focuses on
the critical question: Which statistics should be removed
and restored? We pinpoint two important properties that
the statistics should possess – local invariance and global
variability. The local invariance property indicates that the
statistics should remain unchanged or change slowly among
the look-back history and the forecasting future so that the
remove and restore operation is valid. The global variability
says the statistics should have a large variance over time,
which is challenging for the base model to learn, necessitat-
ing normalization to prevent overfitting on training data.

To this end, we propose Selective and Interpretable Nor-
malization (SIN) to learn how to normalize. SIN utilizes
Partial Least Squares (PLS), a statistical method known
for its ability to handle high-dimensional data and uncover
the latent structures that explain covariance between vari-
ables. By maximizing covariance between adjacent past and
future, SIN effectively discerns critical statistics for normal-
ization and devises optimal normalization strategies. This
dual functionality ensures the selected statistics exhibit both
local invariance and global variability, while also providing
interpretable normalization transformations. Our empirical
analysis demonstrates that, while the mean is often the most
explanatory statistic for covariance in many time series, it is
not universally optimal, as evidenced by the significant role
of the sinusoidal wave in explaining covariance. Our SIN
method adeptly learns and applies these pertinent statistics
for normalization. When integrated into various contem-
porary models, our SIN method demonstrates a substantial
improvement in forecasting performance. Our contributions
are outlined as follows:

1. We rethink the normalization process in time series and
identify two properties that the statistics should possess
– local invariance and global variability.

2. We propose Selective and Interpretable Normalization
(SIN) to learn to select and perform normalization by
partial least squares that maximize the covariance of
statistics between history and the future. Experiments
show its effectiveness in improving the performance of
various recent forecasting models.

3. The SIN is interpretable and is a generalization of pop-
ular normalization methods like shifting to zero means.
The success and limitations of these methods on differ-
ent kinds of series can be explained in our framework.

2. Related Work
Time series forecasting. Time series forecasting is a criti-
cal area of research that finds applications in both industry
and academia. With the powerful representation capability
of neural networks, deep forecasting models have undergone
a rapid development (Lim & Zohren, 2020; Wu et al., 2020;
2021b; Cirstea et al., 2018; Cui et al., 2021). Two widely
used methods for time series forecasting are recurrent neu-
ral networks (RNNs) and convolutional neural networks
(CNNs). RNNs model successive time points based on the
Markov assumption (Hochreiter & Schmidhuber, 1997;
Cho et al., 2014; Rangapuram et al., 2018), while CNNs
extract variation information along the temporal dimension
using techniques such as temporal convolutional networks
(TCNs) (Bai et al., 2018; Franceschi et al., 2019). How-
ever, due to the Markov assumption in RNN and the local
reception property in TCN, both of the two models are un-
able to capture the long-term dependencies in sequential
data. Recently, the potential of Transformer models for
long-term time series forecasting tasks has garnered atten-
tion due to their ability to extract long-term dependencies
via the attention mechanism (Zhou et al., 2021; Wu et al.,
2021a; Zhou et al., 2022). Nevertheless, Zeng et al. (2023)
have highlighted that Transformers are less effective than a
simple linear model. Further analysis by Han et al. (2024)
attributes the phenomenon to the lack of robustness to resist
the distribution drift at test time.

Non-stationarity of time series. Non-stationary time se-
ries are those where statistical properties, such as mean and
variance, change over time. It is a critical aspect of statistical
modeling and forecasting, particularly in fields such as eco-
nomics, finance, and environmental science. Non-stationary
time series often exhibit trends, seasonality, or varying
volatility, making them more complex to analyze (Mad-
sen, 2007). Traditional methods usually stationarize the
time series to make them more predictable. For example,
Box & Jenkins (1968) use the differencing method to make
a non-stationary time series stationary by subtracting the
previous observation. Decomposition methods model the
trend and seasonality in the series and then remove them
to get a stationary series (Cleveland et al., 1990; Dagum
& Bianconcini, 2016; Wu et al., 2021a; Zhou et al., 2022).
Even though these models may capture the non-stationarity
within the seen series, they are vulnerable to the inherent
distribution drift in unseen series (Kim et al., 2021; Han
et al., 2024).

Normalization in time series forecasting. Unlike tradi-
tional drift challenges in machine learning, the target follows
closely after the input in time series tasks, thus the target and
input are highly correlated. Based on this, normalization
techniques have become a focal point in recent research.
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These methods strive to mitigate non-stationary elements
and align data to a consistent distribution. DAIN (Passalis
et al., 2020) introduces an innovative non-linear network.
This network is adept at adaptively normalizing each input
instance. ST-norm (Deng et al.) contributes by presenting
dual normalization modules, focusing on both temporal and
spatial dimensions of data. Subsequent research, however,
highlights a critical insight: non-stationary factors are not
mere noise but integral components for accurate forecasting.
The removal of these elements can potentially lead to sub-
par predictions. Addressing this issue, RevIN (Kim et al.,
2021) proposes a novel symmetric normalization method. It
involves normalizing the input sequences and subsequently
applying denormalization to the model’s output sequences,
leveraging instance normalization (Ulyanov et al., 2016).
Building on this concept, Non-stationary Transformers (Liu
et al., 2022c) introduce an innovative de-stationary attention
mechanism within self-attention frameworks. This inclu-
sion significantly enhances the performance of transformer-
based models by integrating non-stationary factors. Recent
advancement in this field is presented in Fan et al. (2023),
where the study identifies both intra- and inter-space dis-
tribution shifts in time series data. The proposed solution
focuses on learning distribution coefficients to address these
shifts effectively. Lastly, SAN (Liu et al., 2023) extends the
normalization concept further. It moves beyond the instance
level, applying normalization at the slice level, thereby open-
ing new avenues in handling non-stationary time series data.

However, these methods apply normalization in a heuris-
tic way, usually by subtracting the mean and dividing the
standard deviation. However, these heuristically selected
statistics are not enough to fully describe the local invari-
ance in time series data. Recognizing the limitations of
previous methods, we propose a novel method to select the
statistics and learn the normalization transformation.

3. Preliminaries
3.1. Time Series Forecasting

Time series forecasting deals with time series data that con-
tain one or more variables, or channels, at each time step.
Given historical values X ∈ RL×C , where L represents the
length of the look-back window and C is the number of chan-
nels. The goal is to predict the future values Y ∈ RH×C ,
where H > 0 is the forecast horizon. The objective of the
forecasting model is the minimize the forecasting risk R:

min
f

R(f) = min
f

Et∈[T ]ℓ(f(Xt),Yt). (1)

ℓ is the regression loss, which is usually the MSE loss (Zhou
et al., 2021; Wu et al., 2021a; Zhou et al., 2022).

3.2. Normalization in Time Series

A major challenge in time series forecasting is the distribu-
tion drift caused by the non-stationarity of the data. Forecast-
ing models, trained on historical data, may underperform
when confronted with unseen data exhibiting a distinct dis-
tribution. Distinct from general machine learning scenarios,
in time series forecasting, the target output is closely corre-
lated with the input. Therefore, normalization methods are
popular to be applied to solve the distribution drift by remov-
ing and subsequently transferring statistical properties from
the historical input to future predictions. Formally, given
the history input, the normalization method first computes
the statistics Θt with a specific function g:

Θt = g(Xt). (2)
Then a normalization function h is used to remove the statis-
tics from the input:

X̃t = h(Xt,Θt) (3)
The forecasting model predicts the normalized future values
Ỹt based on the normalized input X̃t:

Ỹt = f(X̃t) (4)
Lastly, a denormalization function h∗ is used to get the
final prediction Ŷt based on the normalized values and the
statistics:

Ŷt = h∗(Ỹt,Θt) (5)

Traditional normalization methods primarily apply heuris-
tics, such as calculating mean and variance, to compute
these statistics. However, such heuristic methods may not
fully leverage the distinctive characteristics of each time
series dataset.

4. Methodology
The previous section describes the framework of
normalization-based methods to alleviate the distribution
drift of time series forecasting. In this section, we first
rethink the role of normalization and argue about two prop-
erties that the transferred statistics should possess – local in-
variance and global variability. Then, based on the idea, we
propose a simple method called Selective and Interpretable
Normalization (SIN) to learn the normalization and denor-
malization pair by the partial least square method. Last, we
explain how to forecast with the learned normalization.

4.1. Properties for Normalization

The key idea of normalization is to transfer the statistics
of the input history to the future prediction. This poses
unique requirements for the properties of the statistics. Here
we identify two important properties that statistics should
possess, named local invariance and global variability.
Definition 4.1 (Local Invariance). Given a similarity func-
tion sim, the statistics computation function g, and a set
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Figure 2. The illustration of the Selective and Interpretable Normalization (SIN) method. SIN first learns the normalization method by
maximizing the local invariance and global variability of the statistics between the lookback window and the future. Then we use the
learned normalization method to remove the statistics from the original series and restore them to the forecasting values. This process
captures the invariance in times series and makes the forecasting model less vulnerable to distribution drift on unseen data. SIN uses a
simple linear model that makes the normalization interpretable and helpful to reveal the characteristics of each time series.

of the look-back series xt and the corresponding futures yt,
the local invariance of g is measured as

∑
t sim(xt, yt)

Keeping the local invariance large ensures the correctness
of the normalization and the denormalization operation for
time series forecasting. The statistics should remain un-
changed within the prediction window to enable their accu-
rate transference from historical data to future predictions.
However, local invariance alone is insufficient for the full
efficacy of normalization. For instance, a function g(·) = 0
achieves perfect local invariance but contributes nothing
to time series prediction accuracy. Hence, an additional
property is required:

Definition 4.2 (Global Variability). Given the statistics com-
putation function g, and a set of the sub-series xt, the global
variability of g is measured as the variance of the statistics
V ar[g(xt)].

Keeping global variability large ensures the helpfulness of
the normalization function in predicting future values ac-
cording to the given history. These global varying statistics
pose challenges for forecasting models to capture and put the
model at risk of overfitting. Thus, a well-designed normal-
ization method mitigates the risk of misinterpreting unseen
data series removing these globally variable statistics.

4.2. Learning Normalization

Building on the previously outlined properties essential
for effective normalization, we introduce a straightforward
methodology to identify the optimal statistics for normaliza-

tion. Given that the historical input and future values may
differ in sequence lengths and necessitate distinct compu-
tational approaches, we define two statistical functions, gx
for the input and gy for the future values. For simplicity, we
assume that gx is a linear projection parameterized by a unit
vector u ∈ RL. In other words, gx(x) = u⊤x. Similarly,
gy(y) = v⊤y,v ∈ RH , ∥v∥ = 1. Firstly, we maximize the
local invariance as shown in Definition 4.1. We select the
negative Euclidean distance as the similarity measure. As a
result, the local invariance loss takes the following form:

Lloc inv =
∑
t

(gx(xt)− gy(yt))
2 (6)

To maximize the variance on these statistics according to
Definition 4.1, the global variability loss has the following
form:

Lglo var = −Var[gx(x)]−Var[gy(y)] (7)

It is safe to assume that the time series are centered along
the series with zero mean without loss of generality. Con-
sequently, adding the two losses together will result in a
simplified objective:

argmin
u,v

Lloc inv + Lglo var

=∥Xu− Y v∥2 − ∥Xu∥2 − ∥Y v∥2

=− 2u⊤X⊤Y v

s.t. ∥v∥ = 1, ∥u∥ = 1.

(8)
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Here, we define X = (x1,x2, . . . ,xT )
⊤,Y =

(y1,y2, . . . ,yT )
⊤ as the set of the subseries.1 Equation (8)

is a framework that aims to maximize the covariance be-
tween the computed statistics of X and Y . For simplicity
and interpretability, we only use the linear projection here.
However, the framework can be easily extended to the non-
linear scenarios by kernel methods or neural networks (Lind-
gren et al., 1993). Equation (8) also corresponds to the clas-
sical Partial Least Squares (PLS) problem that finds linear
projection on the predicted variables and the observable
variables to a new space. In the new space, the covariance
between the two variables is explained maximally (Abdi,
2010). Many methods can be applied to solve the PLS
problem (Dayal & MacGregor, 1997; Trygg & Wold, 2002).
Here, we apply the PLS-SVD method that can efficiently
compute the projection u and v. Concretely, the Singular
Value Decomposition (SVD) of the covariance matrix takes
the following form:

UΣV ⊤ = X⊤Y .

where U , V are orthogonal matrix. The diagonal matrix
Σ measures the importance of each left and right singular
vector pair. PLS-SVD algorithm just takes the top left/right
singular vectors as the linear projection on x and y.

In the experiments, we find that the singular values decay
drastically to zero, and the projection with singular values
larger than τ = 0.05×max{L,H} usually exhibits a mean-
ingful pattern and better results. Therefore, we select the
singular vectors with singular values larger than τ as the
projection functions. Denoting the selected singular vectors
as Ũ , Ṽ , the learned normalization functions take the form:

gx(x) = Ũ⊤x, gy(y) = Ṽ ⊤y (9)

For each channel, we learn the normalization methods inde-
pendently.

Discussion. It is easy to see that by setting u =
1√
L
1L,u = 1√

H
1H where 1n is all 1 vector of dimen-

sion n, SIN is strictly equal to the mean shifting methods in
instance normalization. SIN also include the discrete cosine
transformation by setting u = c

∥c∥ , c = {cos(πkL + a)}Lk=1.
In Section 5.2, we show these transformations contribute
differently on different series. The comparison results of
the mean shifting, discrete cosine transformation and SIN
are shown in Appendix C.

4.3. Forecasting with Normalization

Normalization. Once we learn the normalization method
gx and gy from the previous subsection, we apply the nor-
malization method to the forecasting task to help the model

1Here, we omit the channel dimension since we compute the
statistics loss for each channel independently.

improve the forecasting performance. To avoid confusion
of symbols, we omit the channel symbol for each series
since we apply normalization for each channel indepen-
dently. Given a look-back window X , denote the series for
a single channel as x ∈ RL. We first compute the statistics
by gx:

Θx = gx(x) = Ũ⊤x

Then we normalize the series by subtracting the reconstruc-
tion from the statistics:

x̃ = x− g−1
x (Θx) = ΘxŨ

Here the inverse function g−1
x is computed as the lin-

ear projection to the original space, namely, g−1
x (Θx) =

minU⋆∥ΘxU
⋆ − x∥ = ΘxŨ . This normalization removes

the local invariant and global variable statistics from the se-
ries, leaving the dynamics component that does not change
much to the forecasting model. This process fully utilizes
the capability of predicting the dynamics of time series,
as well as reducing the risk of overfitting caused by high-
variance features.

Denormalization. The learned statistics computation
functions are locally invariant among the history-future pair.
Thus, the statistics can be easily transferred from the past
to the future. Following the normalization practice in (Kim
et al., 2021), we use a simple affine model to transfer the
statistics from x to y. Concretely, the module is parameter-
ized as ϕ and the statistics of y is computed as the following
form:

Θy = ϕ⊙Θx

where ⊙ is the element-wise product. Then given the model
prediction ỹ we restore the statistics by the following equa-
tion:

ŷ = ỹ + g−1
y (Θy) = ỹ +

√
H

L
ΘyṼ

Here, we align the scale of the inverse transformations g−1
x

and g−1
y by

√
H
L .

5. Analysis and Experiment
In this section, we conduct experiments to show the effec-
tiveness of our method. We first give an analysis of the
learned transformation and reveal the characteristics of each
time series dataset. We then show that our method can
improve forecasting models on various kinds of datasets.

5.1. Setup

Datasets. We conduct extensive experiments on 11 widely
used, real-world datasets that cover five mainstream time
series forecasting applications, namely energy, electricity,
traffic, economics, and weather. The datasets include: (1)
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(b) Exchange-Rate (Trend Series)
Figure 3. Visualization of learned SIN transformation on two typi-
cal datasets. (1) The upper is a typical channel. (2) The mid-left is
the singular values of each channel. (3) The mid-right and bottom-
left figures show the left and right singular vectors (transformation
vectors on the look-back window and the future). (4) Comparison
between the learned SIN transformation and the commonly used
mean shifting method with the local invariance loss and global
variability loss.

ETT (Electricity Transformer Temperature) (Zhou et al.,
2021) comprises two hourly-level datasets (ETTh) and two
15-minute-level datasets (ETTm). Each dataset contains
seven oil and load features of electricity transformers from
July 2016 to July 2018. (2) Traffic describes the road oc-
cupancy rates. It contains the hourly data recorded by the
sensors of San Francisco freeways from 2015 to 2016. (3)
Electricity collects the hourly electricity consumption of
321 clients from 2012 to 2014. (4) Exchange-Rate (Lai
et al., 2018) collects the daily exchange rates of 8 countries
from 1990 to 2016. (5) Weather includes 21 indicators of
weather, such as air temperature, and humidity. Its data is
recorded every 10 min for 2020 in Germany. (6) ILI de-
scribes the ratio of patients seen with influenza-like illness
and the number of patients. It includes weekly data from the
Centers for Disease Control and Prevention of the United
States from 2002 to 2021. (7) Solar-Energy (Lai et al.,
2018) records the solar power production of 137 PV plants
in 2006, which is sampled every 10 minutes. (8)PEMS (Liu
et al., 2022a) contains public traffic network data in Califor-
nia collected by 5-minute windows.

Forecasting models. SIN is a model-agnostic method that
can be integrated with arbitrary forecasting models. To
evidence the effectiveness of the method, we select some
mainstream models based on different architectures and eval-
uate their performance for long-term multivariate time series
forecasting: Informer (Zhou et al., 2021), Autoformer (Wu
et al., 2021a) and FEDformer (Zhou et al., 2022). We follow
the implementation and settings provided in the official code
of FEDformer 2 to implement these models.

Experiments details. The statistics transfer module is
a simple affine model with parameter ϕ ∈ Rm, where
m is the number of selected singular vectors. We use
ADAM (Kingma & Ba, 2017) as the default optimizer across
all the experiments and report the mean squared error (MSE)
and mean absolute error (MAE) as the evaluation metrics.
A lower MSE/MAE indicates a better performance. All
the experiments are implemented by PyTorch (Paszke et al.,
2019) and are conducted for three runs with a fixed random
seed on a single NVIDIA RTX 3090 24GB GPU.

5.2. Interpretable Analysis

Our SIN uses a simple linear projection to model the nor-
malization transformation, which makes our method inter-
pretable to inspect the characteristics of each time series. In
this subsection, visualize the learned transformations on dif-
ferent series and compare them under these visualizations.

Visualization of the transformations. Here, we experi-
ment with the case that L = 96, H = 192. To understand

2https://github.com/MAZiqing/FEDformer
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Table 1. Long-term multivariate forecasting errors with prediction lengths H ∈ {12, 24, 48, 96} for PEMS datasets and H ∈
{96, 192, 336, 720} for others. We fix the lookback length T = 96. All the results are averaged from all prediction lengths. Re-
sults of all prediction lengths are provided in Appendix F.

Autoformer +SIN FEDformer +SIN Informer +SIN

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1 0.479 0.486 0.470 0.478 0.455 0.432 0.458 0.432 0.830 1.092 0.518 0.555
ETTm1 0.516 0.588 0.434 0.440 0.451 0.438 0.409 0.392 0.699 0.886 0.453 0.466

PEMS03 0.606 0.660 0.346 0.241 0.299 0.184 0.293 0.170 0.290 0.189 0.239 0.136
PEMS04 0.649 0.745 0.341 0.230 0.264 0.141 0.250 0.130 0.234 0.124 0.224 0.115
PEMS07 0.675 0.850 0.353 0.258 0.248 0.144 0.241 0.135 0.264 0.197 0.219 0.140
PEMS08 0.692 0.866 0.475 0.499 0.344 0.271 0.335 0.261 0.333 0.335 0.290 0.233

Electricity 0.327 0.214 0.305 0.198 0.322 0.209 0.293 0.183 0.414 0.329 0.319 0.217
Exchange 0.509 0.522 0.492 0.445 0.496 0.506 0.494 0.448 1.007 1.632 0.472 0.462

Solar 0.653 0.728 0.398 0.315 0.426 0.353 0.343 0.263 0.257 0.233 0.252 0.226
Traffic 0.379 0.615 0.351 0.539 0.373 0.605 0.338 0.519 0.444 0.769 0.429 0.703

Weather 0.361 0.320 0.345 0.311 0.456 0.453 0.326 0.286 0.557 0.634 0.331 0.271
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Figure 4. Distribution on train and test data after being normalized
by mean shifting and SIN. Our SIN method can learn to transform
the data into more normal distributions.

the learned transformations of SIN and the properties of
each time series data, we selectively visualize the following
things on two typical time series data: (1) upper is the plot
of the univariant series on a selected channel. This channel
is high on the mid-left figure with markers on its line. (2)
mid-left is the singular value arranged in descending order.
We highlight a typical example of these channels. The hori-
zon line annotated as mean shifting is the case that u′ and
v′ as the unit vector. The mean shifting line is located at
(u′)⊤X⊤Y v′, which proportion to the Lloc inv+Lglo var, (3)
The mid-right and the bottom-left shows the first three left
singular vectors and right singular vectors. The left/right sin-
gular vectors with corresponding singular values larger than
τ = 0.05 ∗max{96, 192} are highlighted. (4) the bottom
right figure shows the value of local invariance, global vari-
ability, and the combination of the two losses with the mean
shifting and the learned SIN transformation represented by
the top-1 singular vectors pair. The results are displayed in
the 3. From the figure, we got the following conclusions.

SIN adopts different normalization transformations for
different datasets. Figure 3 presents two typical datasets
– Traffic with mainly seasonal series and Exchange-Rate
with mainly trended series. The spectrum (singular values)
of the two datasets shows different patterns. For the seasonal
series, the spectrum is usually dominated by two singular
values. These two values correspond to two different har-
monic waves with the same frequency but different phases.
These waves represent the main periods for the series. For
example, the traffic data is sampled hourly, and therefore
the main period of traffic is 24, in accord with the period
learned by SIN. For the trended series, the spectrum is dom-
inated by the first singular value (> 99% for all channels).
The corresponding singular vector is approximately the con-
stant vector, equivalent to the mean shifting operation. The
SIN can automatically adopt different strategies for different
time series.

Success and limitation of mean shifting. Mean shifting
is an important operation in instance normalization that has
been a necessary preprocess for many state-of-the-art meth-
ods. This transformation is a special case in our framework
by setting u and v to constant vectors. From our visualiza-
tion, we can compare this operation to our SIN framework.
On the trended dataset like Exchange-Rate, the mean shift-
ing operation is especially useful because it achieves nearly
the largest singular value for a dataset of this kind. It is also
close to the transformation learned by SIN. The mean of
the series achieves both low local invariance loss and global
variability loss. Therefore, the mean shifting is a beneficial
normalization for trended series. However, for seasonal se-
ries like traffic, only shifting the mean may not help improve
the forecasting performance. As shown in the spectrum of
traffic series, the mean shifting only contributes to a very
small portion of covariance. The reason behind this is that
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Table 2. Comparison between the learned normalization method by SIN and the heuristic method RevIN. The forecasting model is
FEDformer and we report the results of typical seasonal and trend datasets – Traffic, Solar, and Exchange. Our SIN model can adaptively
select better normalization, and achieves better performance, especially on the seasonal datasets.

Seasonal Trend

Traffic Solar Exchange

Horizon 96 192 336 720 96 192 336 720 96 192 336 720

MAE RevIN 0.355 0.361 0.363 0.378 0.389 0.388 0.448 0.435 0.275 0.373 0.488 0.779
SIN 0.323 0.336 0.337 0.355 0.315 0.345 0.353 0.359 0.292 0.372 0.466 0.846

MSE RevIN 0.609 0.637 0.645 0.688 0.345 0.377 0.461 0.449 0.145 0.261 0.437 1.037
SIN 0.493 0.509 0.522 0.554 0.218 0.261 0.281 0.291 0.148 0.237 0.354 1.053

although the mean shifting is local invariant it is not globally
diverse. In Table 2 of the next section, we also show that
our SIN method achieves better performance improvement
compared to instance normalization, especially on seasonal
series.

SIN produces more “normal” distributions. Addition-
ally, we compare the data distribution after being normalized
by the mean shifting operation and our SIN. The distribu-
tions are plotted in Figure 4. From the figures, we can see
that on the trended series (Exchange), the SIN produces
a similar normalized distribution as the mean shifting nor-
malization. However, on the seasonal series (Traffic), SIN
produces distributions that are closer to the normal distribu-
tion, showing the advantage of our adaptive method.

5.3. Main Results

We report the multivariate forecasting results in Table 1.
The PEMS datasets have a forecasting horizon of H ∈
{12, 24, 48, 96} while the others have a forecasting hori-
zon of H ∈ {96, 192, 336, 720}. As for the input sequence
length, we follow the traditional protocol and fix L = 96
for all the models. Full results are provided in Appendix F.
As shown in the table, we clearly find that our proposed
SIN framework can boost these models by a large margin in
most cases of the benchmark dataset. The improvement of
the SIN method can be attributed to the reasons analyzed in
Section 5.2. SIN automatically selects suitable normaliza-
tion methods according to the characteristics of the datasets
and transforms the data to a more normal distribution. On
both trended datasets (e.g., Exchange) and seasonal datasets
(Traffic, PEMS), SIN improves all the models’ forecasting
performance in all cases. On Exchange-Rate, SIN improves
the performance to around 0.45 MSE for all the models.
It is a 72% improvement for Informer. On Traffic, SIN
improves Autoformer from 0.615 to 0.539 (12.3%) and
improves FEDformer from 0.605 to 0.519 (14.2%). On
the four PEMS datasets, SIN also shows a huge improve-
ment over the original Autoformer. On PEMS07, a 70%

improvement is shown.

5.4. Comparison to Heuristic Normalization

In Section 5.2, we have analyzed our SIN method with the
heuristic means shifting normalization which simply trans-
fers the mean from the look-back window to the feature
prediction. In the analysis, we have omitted the scaling
operation in the instance normalization as well as the affine
module in RevIN (Kim et al., 2021). In this section, we com-
pare our method SIN with RevIN, which differs mainly in
the normalization and denormalization operation. We con-
duct the experiments on three typical datasets, with two con-
sisting of the seasonal series and one consisting of mainly
trend series. The forecasting error is presented at Table 2.
This table shows the superiority of our method in adap-
tively handling different types of series. On the seasonal
series, our method can achieve consistently better results
over all the horizons. On the solar dataset, SIN outperforms
RevIN by a large margin, which is an around 35.5% im-
provement. The improvement on Solar is also 20%. While
on the trend dataset (Exchange), the SIN achieves similar
results as RevIN since the learned transformation is almost
the same as the instance normalization. The superior perfor-
mance on seasonal datasets and the similar performance on
the trend datasets is the empirical evidence of our analysis
in Section 5.2.

6. Conclusion
This paper rethinks the important role of normalization for
long-term time series forecasting. In this paper, we answer
the questions of which statistics should be selected and how
to perform normalization effectively. We argue about two
properties – local invariance and global variability – that the
statistics should be extracted in the normalization. Then we
propose the SIN method to learn the normalization method
and validate its effectiveness on various kinds of datasets
with various datasets.

8



SIN: Selective and Interpretable Normalization for Long-Term Time Series Forecasting

Acknowledgments
This research was supported by National Science and Tech-
nology Major Project (2022ZD0114805), NSFC (61773198,
62376118,61921006), Collaborative Innovation Center of
Novel Software Technology and Industrialization.

Impact Statement
This paper presents work whose goal is to advance the field
of Time Series Forecasting. There are many potential soci-
etal consequences of our work, none of which we feel must
be specifically highlighted here.

References
Abdi, H. Partial least squares regression and projection on

latent structure regression (pls regression). Wiley interdis-
ciplinary reviews: computational statistics, 2(1):97–106,
2010.

Agarwal, A., Shah, D., Shen, D., and Song, D. On robust-
ness of principal component regression. In NeurIPS, pp.
9889–9900, 2019.

Bai, S., Kolter, J. Z., and Koltun, V. An empirical evalua-
tion of generic convolutional and recurrent networks for
sequence modeling. CoRR, abs/1803.01271, 2018.

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M.
Time series analysis: forecasting and control. John Wiley
& Sons, 2015.

Box, G. E. P. and Jenkins, G. M. Some recent advances in
forecasting and control. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 17(2):91–109, 1968.

Chao, W., Ye, H., Zhan, D., Campbell, M. E., and Wein-
berger, K. Q. Revisiting meta-learning as supervised
learning. CoRR, abs/2002.00573, 2020.

Chatterjee, S. Matrix estimation by universal singular value
thresholding. 2015.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y.
On the properties of neural machine translation: Encoder-
decoder approaches. In Wu, D., Carpuat, M., Carreras, X.,
and Vecchi, E. M. (eds.), SSST@EMNLP, pp. 103–111.
Association for Computational Linguistics, 2014.

Cirstea, R.-G., Micu, D.-V., Muresan, G.-M., Guo, C., and
Yang, B. Correlated time series forecasting using multi-
task deep neural networks. In ICKM, pp. 1527–1530,
2018.

Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Ter-
penning, I. Stl: A seasonal-trend decomposition. J. Off.
Stat, 6(1):3–73, 1990.

Cui, Y., Zheng, K., Cui, D., Xie, J., Deng, L., Huang, F.,
and Zhou, X. METRO: A generic graph neural network
framework for multivariate time series forecasting. Proc.
VLDB Endow., 15(2):224–236, 2021.

Dagum, E. B. and Bianconcini, S. Seasonal adjustment
methods and real time trend-cycle estimation. Springer,
2016.

Dayal, B. S. and MacGregor, J. F. Improved pls algorithms.
Journal of Chemometrics: A Journal of the Chemometrics
Society, 11(1):73–85, 1997.

Deng, J., Chen, X., Jiang, R., Song, X., and Tsang, I. W.
St-norm: Spatial and temporal normalization for multi-
variate time series forecasting. In Zhu, F., Ooi, B. C., and
Miao, C. (eds.), KDD.

Donoho, D., Gavish, M., and Romanov, E. Screenot: Exact
mse-optimal singular value thresholding in correlated
noise. The Annals of Statistics, 51(1):122–148, 2023.

Fan, W., Wang, P., Wang, D., Wang, D., Zhou, Y., and Fu,
Y. Dish-ts: a general paradigm for alleviating distribution
shift in time series forecasting. In AAAI, volume 37, pp.
7522–7529, 2023.

Franceschi, J., Dieuleveut, A., and Jaggi, M. Unsupervised
scalable representation learning for multivariate time se-
ries. In Wallach, H. M., Larochelle, H., Beygelzimer,
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A. Datasets Description
In Section 5.1, we have described the datasets used in the experiments. We detail the description plus the link to download
them here:

1. ETT (Electricity Transformer Temperature) (Zhou et al., 2021) 3 comprises two hourly-level datasets (ETTh) and
two 15-minute-level datasets (ETTm). Each dataset contains seven oil and load features of electricity transformers
from July 2016 to July 2018.

2. Traffic4 describes the road occupancy rates. It contains the hourly data recorded by the sensors of San Francisco
freeways from 2015 to 2016.

3. Electricity5 collects the hourly electricity consumption of 321 clients from 2012 to 2014.

4. Exchange-Rate (Lai et al., 2018) 6 collects the daily exchange rates of 8 countries from 1990 to 2016.

5. Weather includes 21 indicators of weather, such as air temperature, and humidity. Its data is recorded every 10 min for
2020 in Germany.

6. ILI 7 describes the ratio of patients seen with influenza-like illness and the number of patients. It includes weekly data
from the Centers for Disease Control and Prevention of the United States from 2002 to 2021.

7. Solar-Energy (Lai et al., 2018) records the solar power production of 137 PV plants in 2006, which is sampled every
10 minutes.

8. PEMS (Liu et al., 2022a) contains public traffic network data in California collected by 5-minute windows.

Other details of these datasets have been concluded in Table 3.

Table 3. Detailed dataset descriptions. Channels denotes the number of channels in each dataset. Dataset Split denotes the total number
of time points in (Train, Validation, Test) split respectively. Prediction Length denotes the future time points to be predicted and four
prediction settings are included in each dataset. Frequency denotes the sampling interval of time points.

Dataset Channels Prediction Length Dataset Size Frequency Domain

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily Economy

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min Weather

ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Transportation

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min Energy

PEMS03 358 {12, 24, 48, 96} (15617,5135,5135) 5min Transportation

PEMS04 307 {12, 24, 48, 96} (10172,3375,281) 5min Transportation

PEMS07 883 {12, 24, 48, 96} (16911,5622,468) 5min Transportation

PEMS08 170 {12, 24, 48, 96} (10690,3548,265) 5min Transportation

3https://github.com/zhouhaoyi/ETDataset
4http://pems.dot.ca.gov
5https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
6https://github.com/laiguokun/multivariate-time-series-data
7https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

12

https://github.com/zhouhaoyi/ETDataset
http://pems.dot.ca.gov
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://github.com/laiguokun/multivariate-time-series-data
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html


SIN: Selective and Interpretable Normalization for Long-Term Time Series Forecasting

B. Singular Value Thresholding
(Chatterjee, 2015; Agarwal et al., 2019; Donoho et al., 2023) provide solid theoretical foundations for SVT’s applicability in
denoising and handling missing values. However, the SIN framework’s core aim diverges fundamentally from the primary
objectives of SVT. The normalization method inherent to SIN, especially when applied in the context of PLS-SVD, does
not endeavor to eliminate “noise” in the traditional sense. Instead, SIN strategically identifies and utilizes components that
most significantly explain the covariance between a look-back window x and future y, leaving the rest parts to the base
forecaster. Unlike SVT, the rest parts encapsulate local dynamics vital for long-term forecasting, which may inadvertently
be lost in pursuit of denoising covariance matrices. This nuanced approach distinguishes SIN from SVT, where SVT’s focus
is predominantly on minimizing noise impact.

To empirically substantiate this distinction, we incorporated the ScreeNOT method (Donoho et al., 2023) within the
SIN framework. We meticulously calculate the standard deviation of predictions from the base model. The Informer
forecasting results with SIN over 5 runs are reported in Table 4. The comparative results, as detailed in the table provided,
decisively illustrate that applying ScreeNOT’s thresholding criteria adversely affects forecasting accuracy and increases
result variability. This outcome underscores the fundamental difference in the objectives between SIN and conventional
SVT applications: SIN aims to retain significant covariance components—including those not strictly considered noise—for
enhanced forecasting efficacy. We can also conclude that the standard deviation of the performance is influenced by the
normalization method. A suitable normalization method will lead to better average performance as well as smaller variance
on the performance.

Table 4. Informer forecasting results with SIN and SIN (ScreeNOT). We report the error bar over 5 runs.

Informer +SIN +SIN(ScreeNOT)

MAE MSE MAE MSE MAE MSE

ETTh1 0.83+0.025 1.092+0.042 0.518+0.012 0.546+0.041 0.993+0.051 1.677+0.146
ETTh2 1.763+0.061 4.632+0.263 0.514+0.032 0.533+0.016 1.308+0.136 3.328+0.683
ETTm1 0.699+0.031 0.886+0.062 0.453+0.013 0.465+0.038 0.77+0.3123 1.113+1.489
ETTm2 0.896+0.053 1.658+0.178 0.433+0.003 0.412+0.014 1.305+0.2187 3.124+1.01

PEMS03 0.29+0.007 0.189+0.008 0.238+0.008 0.135+0.011 0.351+0.019 0.264+0.022
PEMS04 0.234+0.004 0.124+0.003 0.224+0.015 0.113+0.018 0.366+0.015 0.272+0.018
PEMS07 0.264+0.003 0.197+0.002 0.216+0.004 0.131+0.006 0.295+0.011 0.225+0.013
PEMS08 0.333+0.006 0.335+0.008 0.275+0.011 0.213+0.026 0.423+0.016 0.477+0.018

Electricity 0.414+0.006 0.329+0.006 0.315+0.009 0.217+0.016 0.412+0.009 0.344+0.018
Exchange 1.007+0.014 1.632+0.042 0.467+0.002 0.448+0.012 1.561+0.144 3.952+0.669

Solar 0.252+0.009 0.233+0.011 0.257+0.007 0.226+0.002 0.279+0.011 0.257+0.003
Traffic 0.429+0.009 0.769+0.012 0.432+0.014 0.684+0.034 0.456+0.008 0.769+0.021

Weather 0.557+0.016 0.634+0.034 0.328+0.008 0.270+0.018 0.521+0.060 0.558+0.127

C. Selective DCT Normalization
This paper shows that the Discrete Cosine Transformation (DCT) and Mean Shifting (MS) are special cases of our SIN
framework (Discussion,Section 4.2). We enriched our ablation study to encompass additional comparisons, including mean
shifting (simplified RevIN), Discrete Cosine Transformation (DCT), and SIN. The transformation of DCT is also selected
by SIN criterion (Equation (8)). Table 5 highlights the comparative analysis:

Our analysis revealed that while mean shifting can mitigate some forecasting challenges, its normalization impact is
somewhat constrained and does not consistently outperform more adaptive methods like DCT (SIN) and SIN. Intriguingly,
DCT (SIN) often delivered superior performance, suggesting that perfectly regular patterns might offer more robustness
against real-world time series noise than learned transformations. For example, in Figure 3, there are some learned
transformations that exhibiting patterns with sharpness (LSV3/RSV3 in Figure 3.(a)). Anyway, the results not only validate
the flexibility and effectiveness of our SIN framework but also underscore the critical role of choosing the appropriate
normalization strategy to enhance forecasting accuracy.
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Table 5. Comparative results among Mean Shifting (MS), Discrete Cosine Transformation (DCT), and SIN. While mean shifting can
mitigate some forecasting challenges, its normalization impact is somewhat constrained and does not consistently outperform more
adaptive methods like DCT (SIN) and SIN. Intriguingly, DCT (SIN) often delivered superior performance, suggesting that perfectly
regular patterns might offer more robustness against real-world time series noise than learned transformations.

Transformer +MS +DCT (SIN) +SIN

MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1 0.819 1.039 0.551 0.59 0.518 0.537 0.521 0.551
ETTh2 1.544 3.813 0.509 0.517 0.463 0.463 0.498 0.507
ETTm1 0.685 0.834 0.49 0.507 0.445 0.452 0.449 0.449
ETTm2 0.87 1.536 0.417 0.413 0.388 0.359 0.417 0.402

PEMS03 0.236 0.135 0.257 0.163 0.222 0.117 0.234 0.126
PEMS04 0.21 0.106 0.232 0.122 0.209 0.099 0.211 0.104
PEMS07 0.239 0.175 0.238 0.138 0.202 0.103 0.21 0.13
PEMS08 0.277 0.264 0.276 0.199 0.246 0.163 0.259 0.205

Electricity 0.366 0.271 0.32 0.209 0.292 0.19 0.288 0.183
Exchange 0.89 1.374 0.51 0.505 0.427 0.371 0.464 0.447

Solar 0.249 0.237 0.264 0.234 0.274 0.231 0.25 0.216
Traffic 0.357 0.656 0.364 0.592 0.346 0.574 0.363 0.561

Weather 0.577 0.663 0.412 0.383 0.308 0.271 0.316 0.279

D. Validation on Other Forecasters
We expanded our experimentation to include a variety of models beyond transformers, specifically incorporating DLinear,
TCN, and GRU. Below (in next reply) are the refined results showcasing the effectiveness of SIN across these different
architectures. The results are shown in Table 6. These results affirm the SIN framework’s broad applicability and efficiency,

Table 6. Comparison results of SIN applied to DLinear, TCN and GRU.

DLinear +SIN TCN +SIN GRU +SIN

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1 0.454 0.444 0.426 0.415 0.861 1.161 0.637 0.753 0.754 0.935 0.754 1.002
ETTh2 0.464 0.469 0.406 0.366 1.204 2.359 0.532 0.586 1.522 3.242 1.14 2.576
ETTm1 0.379 0.357 0.381 0.358 0.831 1.071 0.475 0.474 0.696 0.921 0.686 0.85
ETTm2 0.403 0.356 0.32 0.264 1.162 2.047 0.456 0.432 0.92 1.604 0.912 1.56

PEMS03 0.358 0.264 0.396 0.345 0.366 0.256 0.362 0.25 0.24 0.141 0.238 0.136
PEMS04 0.354 0.264 0.417 0.377 0.422 0.324 0.367 0.266 0.209 0.107 0.216 0.112
PEMS07 0.373 0.312 0.401 0.351 0.341 0.261 0.321 0.225 0.234 0.171 0.199 0.107
PEMS08 0.397 0.357 0.408 0.385 0.676 0.912 0.548 0.641 0.264 0.25 0.261 0.214

Electricity 0.264 0.167 0.261 0.166 0.679 0.758 0.627 0.68 0.386 0.297 0.365 0.266
Exchange 0.416 0.342 0.378 0.291 1.507 3.276 1.1 1.992 1.383 3.422 0.903 1.22

Solar 0.398 0.327 0.396 0.32 0.324 0.255 0.301 0.224 0.281 0.225 0.271 0.215
Traffic 0.296 0.434 0.302 0.437 0.73 1.325 0.679 1.189 0.396 0.708 0.391 0.677

Weather 0.298 0.245 0.295 0.245 0.46 0.436 0.424 0.366 0.661 0.867 0.495 0.502

not only enhancing performance on complex models like transformers but also on simpler architectures such as DLinear,
with the exception of PEMS datasets. In scenarios where DLinear underperforms, it suggests a potential over-simplification
through normalization, indicating SIN’s nuanced impact based on the model’s inherent complexity.
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E. Ablation on Local Invariance and Global Variability
In this section, we validate the necessity of selecting proper statistics by local invariance and global variability. We provide
the results of learning transformation by solely local invariance loss (Lloc inv) and global variability loss (Lglo var). For the
local invariance loss, there is no closed-form solution. Therefore, we use a training stage to learn the transformation u and
v. The global variability loss forms the traditional PCA problems for both X and Y , which have closed-form solutions.
However, it can not be thresholded by a unified singular value. Therefore, we select the top 1 singular vectors. The results
are shown in Table 7, which shows that both local invariance and global variability can improve the performance of the base
forecaster by normalization. However, we also note that

Table 7. The performance of SIN with only local invariance and global variability loss. Combining both local invariance and global
variability loss will lead to better performance than using either.

Transformer Lloc inv Lglo var Lloc inv + Lglo var (SIN)

Datasets MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1 0.819 1.039 0.618 0.699 0.585 0.622 0.532 0.567
ETTh2 1.544 3.813 0.650 0.810 0.522 0.560 0.507 0.522
ETTm1 0.685 0.834 0.508 0.533 0.508 0.532 0.464 0.459
ETTm2 0.870 1.536 0.661 0.965 0.476 0.520 0.425 0.417

PEMS03 0.236 0.135 0.234 0.127 0.349 0.260 0.236 0.128
PEMS04 0.210 0.106 0.213 0.103 0.337 0.239 0.212 0.105
PEMS07 0.239 0.175 0.228 0.147 0.266 0.166 0.211 0.132
PEMS08 0.277 0.264 0.274 0.221 0.389 0.372 0.262 0.212

Electricity 0.366 0.271 0.366 0.266 0.390 0.303 0.288 0.184
Exchange 0.890 1.374 0.588 0.617 0.590 0.774 0.485 0.464

Solar 0.249 0.237 0.265 0.225 0.308 0.244 0.255 0.219
Traffic 0.357 0.656 0.363 0.621 0.438 0.829 0.368 0.561

Weather 0.577 0.663 0.486 0.524 0.475 0.466 0.316 0.280

F. Full Results of Long-Term Forecasting
In this section, we provide the full results of all the datasets described in Section 5.1. The full results can be found in Table 8.

G. Discussion and Limitations
Although the SIN method can learn the normalization method automatically and is a model-agnostic method that can be
integrated with various kinds of forecasting models, it still has the following limitations now. First, the current SIN method
involves only the linear projection of the data to ensure interpretability and reduce the risk of overfitting. However, there
may be complex statistics that can not be expressed by a simple linear projection. Second, the choice of the look-back
window size in SIN is critical, as it influences the features selected for normalization. An inappropriate window size could
either miss important trends (if too small) or include irrelevant data noise (if too large). Currently, the process of determining
the optimal window size lacks a systematic method and largely relies on heuristic approaches. Third, the computational
complexity of SIN, especially in the context of large-scale datasets with numerous channels, is a notable limitation. As the
algorithm needs an extra phase that involves the calculation of the singular vectors, it requires significant computational
resources, potentially limiting its applicability in resource-constrained scenarios. Last, the way of computing the best
statistics may change due to the non-stationarity in time series. Considering both the global and local properties (Ye et al.,
2020) of time series may help design instance-specific normalization methods to improve the performance (Lu et al., 2021).

Accordingly, future research could focus on developing non-linear transformations such as kernel-based methods or neural
networks, thereby improving the efficacy of SIN. Besides, developing an adaptive method to automatically determine
the optimal look-back window size based on the dataset’s characteristics would significantly enhance SIN’s usability
and accuracy. Furthermore, the idea of learning the normalization method could be extended to scenarios with few (Ye
et al., 2023) or streaming samples (Zhao et al., 2024). We believe that the learned normalization by SIN presents certain
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Table 8. Full results on the datasets with forecasting models selected as Autoformer, FEDformer, Informer and Transformer.
Autoformer +SIN FEDformer +SIN Informer +SIN Transformer +SIN

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

E
T

T
h1

96 0.455 0.451 0.430 0.419 0.416 0.375 0.413 0.372 0.767 0.939 0.446 0.438 0.763 0.905 0.467 0.462
192 0.475 0.495 0.455 0.457 0.443 0.419 0.443 0.417 0.786 1.009 0.500 0.525 0.837 1.080 0.489 0.498
336 0.494 0.519 0.474 0.489 0.463 0.451 0.465 0.448 0.903 1.233 0.518 0.559 0.867 1.121 0.530 0.568
720 0.490 0.478 0.521 0.547 0.499 0.484 0.509 0.490 0.864 1.187 0.608 0.698 0.810 1.049 0.643 0.742
Avg 0.479 0.486 0.470 0.478 0.455 0.432 0.458 0.432 0.830 1.092 0.518 0.555 0.819 1.039 0.532 0.567

E
T

T
h2

96 0.389 0.347 0.403 0.362 0.383 0.344 0.412 0.357 1.352 2.932 0.484 0.495 1.188 2.131 0.439 0.418
192 0.433 0.422 0.457 0.454 0.442 0.435 0.472 0.453 2.104 6.339 0.517 0.570 1.907 5.729 0.475 0.493
336 0.466 0.453 0.515 0.511 0.478 0.484 0.527 0.527 1.928 5.265 0.561 0.600 1.681 4.477 0.538 0.559
720 0.484 0.478 0.567 0.600 0.479 0.468 0.593 0.639 1.670 3.991 0.586 0.623 1.400 2.913 0.575 0.619
Avg 0.443 0.425 0.485 0.482 0.446 0.433 0.501 0.494 1.763 4.632 0.537 0.572 1.544 3.813 0.507 0.522

E
T

T
m

1

96 0.446 0.424 0.405 0.383 0.413 0.368 0.373 0.320 0.558 0.624 0.408 0.389 0.585 0.629 0.411 0.379
192 0.490 0.536 0.419 0.412 0.436 0.412 0.394 0.366 0.617 0.724 0.439 0.441 0.686 0.833 0.442 0.426
336 0.551 0.657 0.431 0.440 0.468 0.467 0.418 0.405 0.873 1.213 0.465 0.485 0.744 0.931 0.468 0.457
720 0.575 0.734 0.480 0.524 0.487 0.507 0.451 0.475 0.749 0.985 0.499 0.551 0.727 0.942 0.537 0.572
Avg 0.516 0.588 0.434 0.440 0.451 0.438 0.409 0.392 0.699 0.886 0.453 0.466 0.685 0.834 0.464 0.459

E
T

T
m

2

96 0.309 0.224 0.339 0.253 0.283 0.190 0.326 0.211 0.473 0.393 0.325 0.235 0.547 0.556 0.311 0.230
192 0.342 0.286 0.398 0.321 0.325 0.260 0.402 0.316 0.709 0.817 0.420 0.388 0.783 1.167 0.396 0.380
336 0.374 0.340 0.445 0.388 0.361 0.321 0.465 0.399 0.928 1.460 0.481 0.495 0.828 1.193 0.457 0.457
720 0.420 0.426 0.526 0.516 0.421 0.430 0.555 0.547 1.476 3.961 0.509 0.529 1.322 3.230 0.535 0.600
Avg 0.361 0.319 0.427 0.370 0.347 0.300 0.437 0.368 0.896 1.658 0.434 0.412 0.870 1.536 0.425 0.417

PE
M

S0
3

12 0.364 0.236 0.237 0.112 0.245 0.121 0.245 0.113 0.300 0.206 0.205 0.095 0.201 0.103 0.197 0.084
24 0.479 0.398 0.287 0.157 0.253 0.129 0.259 0.125 0.272 0.168 0.222 0.114 0.217 0.116 0.211 0.098
48 0.715 0.834 0.373 0.265 0.302 0.178 0.312 0.188 0.292 0.187 0.251 0.151 0.244 0.141 0.244 0.130
96 0.868 1.172 0.488 0.430 0.398 0.308 0.357 0.253 0.295 0.194 0.278 0.184 0.283 0.180 0.291 0.199

Avg 0.606 0.660 0.346 0.241 0.299 0.184 0.293 0.170 0.290 0.189 0.239 0.136 0.236 0.135 0.236 0.128

PE
M

S0
4

12 0.348 0.218 0.273 0.150 0.217 0.100 0.222 0.103 0.229 0.120 0.197 0.086 0.195 0.093 0.185 0.080
24 0.532 0.468 0.327 0.205 0.246 0.121 0.229 0.109 0.239 0.127 0.204 0.092 0.205 0.102 0.197 0.089
48 0.710 0.788 0.388 0.289 0.261 0.135 0.260 0.135 0.238 0.128 0.232 0.117 0.221 0.114 0.212 0.102
96 1.004 1.505 0.378 0.277 0.332 0.207 0.289 0.174 0.228 0.121 0.266 0.166 0.252 0.148 0.220 0.114

Avg 0.649 0.745 0.341 0.230 0.264 0.141 0.250 0.130 0.234 0.124 0.224 0.115 0.218 0.106 0.203 0.105

PE
M

S0
7

12 0.299 0.166 0.265 0.136 0.205 0.102 0.208 0.097 0.267 0.197 0.192 0.102 0.230 0.166 0.180 0.083
24 0.467 0.375 0.301 0.172 0.221 0.111 0.221 0.110 0.241 0.177 0.207 0.127 0.234 0.167 0.193 0.102
48 0.815 1.056 0.372 0.252 0.263 0.168 0.257 0.145 0.271 0.203 0.233 0.157 0.245 0.183 0.222 0.144
96 1.121 1.802 0.472 0.470 0.303 0.196 0.279 0.187 0.277 0.211 0.244 0.174 0.249 0.183 0.248 0.198

Avg 0.675 0.850 0.353 0.258 0.248 0.144 0.241 0.135 0.264 0.197 0.219 0.140 0.239 0.175 0.211 0.132

PE
M

S0
8

12 0.472 0.413 0.423 0.402 0.280 0.158 0.269 0.172 0.293 0.282 0.236 0.134 0.236 0.210 0.218 0.121
24 0.555 0.560 0.465 0.486 0.316 0.197 0.300 0.208 0.317 0.310 0.271 0.179 0.267 0.245 0.243 0.137
48 0.730 0.891 0.426 0.387 0.360 0.265 0.343 0.268 0.345 0.346 0.309 0.273 0.297 0.291 0.271 0.217
96 1.013 1.602 0.584 0.722 0.421 0.465 0.427 0.396 0.375 0.402 0.343 0.345 0.309 0.308 0.316 0.373

Avg 0.692 0.866 0.475 0.499 0.344 0.271 0.335 0.261 0.333 0.335 0.290 0.233 0.277 0.264 0.262 0.212

E
le

ct
ri

ci
ty

96 0.309 0.195 0.287 0.174 0.303 0.188 0.279 0.168 0.391 0.300 0.307 0.202 0.352 0.251 0.270 0.164
192 0.321 0.207 0.293 0.188 0.310 0.196 0.281 0.173 0.416 0.329 0.310 0.206 0.368 0.268 0.278 0.176
336 0.327 0.213 0.303 0.197 0.329 0.216 0.299 0.188 0.420 0.330 0.318 0.215 0.364 0.270 0.293 0.186
720 0.350 0.241 0.338 0.233 0.347 0.237 0.313 0.205 0.431 0.357 0.341 0.245 0.380 0.294 0.311 0.209
Avg 0.327 0.214 0.305 0.198 0.322 0.209 0.293 0.183 0.414 0.329 0.319 0.217 0.366 0.271 0.288 0.184

E
xc

ha
ng

e 96 0.274 0.143 0.280 0.138 0.281 0.151 0.292 0.148 0.771 0.905 0.259 0.127 0.588 0.563 0.254 0.114
192 0.389 0.288 0.403 0.287 0.382 0.276 0.372 0.237 0.836 1.101 0.352 0.230 0.818 1.131 0.404 0.284
336 0.512 0.472 0.465 0.356 0.491 0.445 0.466 0.354 1.013 1.607 0.499 0.491 0.959 1.442 0.467 0.364
720 0.853 1.173 0.821 0.999 0.819 1.133 0.846 1.053 1.409 2.916 0.780 0.999 1.196 2.359 0.815 1.096
Avg 0.509 0.522 0.492 0.445 0.496 0.506 0.494 0.448 1.007 1.632 0.472 0.462 0.890 1.374 0.485 0.464

So
la

r

96 0.643 0.696 0.400 0.308 0.399 0.316 0.315 0.218 0.233 0.217 0.223 0.188 0.218 0.193 0.212 0.200
192 0.562 0.564 0.389 0.304 0.407 0.327 0.345 0.261 0.252 0.223 0.251 0.224 0.247 0.263 0.255 0.220
336 0.724 0.854 0.401 0.311 0.429 0.368 0.353 0.281 0.267 0.240 0.269 0.249 0.270 0.255 0.263 0.229
720 0.682 0.795 0.403 0.337 0.469 0.399 0.359 0.291 0.278 0.252 0.267 0.244 0.283 0.237 0.268 0.226
Avg 0.653 0.728 0.398 0.315 0.426 0.353 0.343 0.263 0.257 0.233 0.252 0.226 0.255 0.237 0.249 0.219

Tr
af

fic

96 0.378 0.610 0.337 0.516 0.361 0.579 0.323 0.493 0.451 0.770 0.428 0.697 0.359 0.635 0.352 0.536
192 0.386 0.617 0.345 0.529 0.372 0.601 0.336 0.509 0.443 0.779 0.435 0.689 0.354 0.637 0.345 0.540
336 0.371 0.602 0.351 0.539 0.378 0.613 0.337 0.522 0.434 0.756 0.420 0.686 0.365 0.661 0.359 0.560
720 0.382 0.632 0.372 0.573 0.382 0.626 0.355 0.554 0.450 0.771 0.431 0.739 0.394 0.689 0.372 0.607
Avg 0.379 0.615 0.351 0.539 0.373 0.605 0.338 0.519 0.444 0.769 0.429 0.703 0.368 0.656 0.357 0.561

W
ea

th
er

96 0.294 0.217 0.269 0.208 0.328 0.240 0.280 0.215 0.435 0.397 0.262 0.185 0.453 0.448 0.258 0.201
192 0.351 0.298 0.337 0.286 0.509 0.518 0.314 0.264 0.486 0.486 0.309 0.237 0.566 0.629 0.289 0.236
336 0.382 0.350 0.357 0.324 0.573 0.649 0.329 0.293 0.544 0.599 0.351 0.292 0.593 0.681 0.330 0.297
720 0.418 0.415 0.419 0.424 0.416 0.405 0.382 0.370 0.764 1.053 0.403 0.372 0.696 0.896 0.389 0.385
Avg 0.361 0.320 0.345 0.311 0.456 0.453 0.326 0.286 0.557 0.634 0.331 0.271 0.577 0.663 0.316 0.280
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meta-knowledge (Chao et al., 2020) of the time series, and should be helpful for fast learning of forecaster under resource
constraint Concerns (Zhou, 2023).
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