
Comparing Few to Rank Many: Active Human Preference Learning Using
Randomized Frank-Wolfe Method

Kiran Thekumparampil 1 Gaurush Hiranandani 2 Kousha Kalantari 1 Shoham Sabach 1 3 Branislav Kveton 4

Abstract
We study learning human preferences from lim-
ited comparison feedback, a core machine learn-
ing problem that is at the center of reinforcement
learning from human feedback (RLHF). We for-
mulate the problem as learning a Plackett-Luce
(PL) model from a limited number of K-subset
comparisons over a universe of N items, where
typically K ≪ N . Our objective is to select the
K-subsets such that all items can be ranked with
minimal mistakes within the budget. We solve
the problem using the D-optimal design, which
minimizes the worst-case ranking loss under the
estimated PL model. All known algorithms for
this problem are computationally infeasible in our
setting because we consider exponentially many
subsets in K. To address this challenge, we pro-
pose a randomized Frank-Wolfe algorithm with
memoization and sparse updates that has a low
O(N2 +K2) per-iteration complexity. We ana-
lyze it and demonstrate its empirical superiority
on synthetic and open-source NLP datasets.

1. Introduction
Learning to rank from human feedback is a fundamental
machine learning problem. We consider the setting where
a larger set of N items is ranked based on feedback on its
K-subsets. This setting has various practical applications.
In web search (Agichtein et al., 2006; Hofmann et al., 2013;
2016), the items are retrieved web pages for a given query
and they are rated by human annotators. Since this task is
time consuming, the annotators typically label only a subset
of the web pages (Hofmann et al., 2013; MS MARCO).
Online marketplaces display only a handful of items from a
catalogue of billions of items to a user and the user’s choice
among them can be viewed as a noisy ranking observation.

1Amazon 2Typeface 3Technion 4Adobe Research. Correspon-
dence to: Kiran Thekumparampil <kkt@amazon.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

These real-world interactions are well-modeled by prefer-
ence models studied in this work (Negahban et al., 2018).
Finally, in reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022; Rafailov et al., 2023), human
feedback is used to learn a reward model, which is then used
to align a large-language model (LLM) with human prefer-
ences. In this case, the items are LLM responses and the
relative feedback is used because it yields better alignment
than absolute feedback (Christiano et al., 2017; Bai et al.,
2022). A comparison of more than two responses has been
investigated because it is practical and improves statistical
efficiency (Zhu et al., 2023b; Mukherjee et al., 2024).

We formulate the problem as learning to rank N items, such
as web pages or LLM responses, from a limited K-way
feedback. In general, K ≪ N because humans cannot pro-
vide high-quality preferential feedback on a large number
of choices (Tversky & Kahneman, 1974). When K = 2, we
get a relative feedback over two responses, known as the
Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952).
When K ≥ 2, we get a ranking feedback over K responses,
known as the Plackett-Luce (PL) model (Plackett, 1975;
Luce, 2005). To learn high-quality preference models, we
ask humans questions that maximize information gain. Such
problems have long been studied in the field of optimal de-
sign (Kiefer & Wolfowitz, 1960; Pukelsheim, 2006). An
optimal design is a feedback collection policy that mini-
mizes the uncertainty in the downstream learning task. This
policy can be learned by iterative algorithms, such as the
Frank-Wolfe (FW) method (Khachiyan, 1996). The main
challenge of our setting is that these algorithms are im-
practical when K ≪ N , since we need to optimize over
exponentially-many O(

(
N
K

)
) K-subsets. In this work, we

focus on solving large-scale optimal designs with trillions
of potential choices for K-way feedback. We make the
following contributions:

(1) We propose a general optimal design framework for
collecting human feedback to learn to rank N items from
K-way feedback (Sections 2 and 3), where K ≤ N . This
generalizes known frameworks (Mukherjee et al., 2024;
Mehta et al., 2023; Das et al., 2024) that assume K = N .

(2) We bound the prediction error and ranking loss of the
PL model learned from human feedback (Section 3.3). Both

1

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

decrease as the amount of feedback increases.

(3) We propose a novel algorithm DopeWolfe for solving
our optimal design efficiently (Section 5). DopeWolfe has
a low O(N2 + K2) per-iteration complexity. In contrast,
the per-iteration complexity of the FW method is O(

(
N
K

)
).

We achieve this with the help of a randomized FW method
(Zhao & Freund, 2023), combined with memoization and
sparse operations.

(4) We provide a convergence analysis for DopeWolfe by
generalizing the analysis of the randomized FW method be-
yond Lipschitz smoothness (Kerdreux et al., 2018) to a gen-
eral class of logarithmically homogeneous self-concordant
barrier (LHSCB) objectives (Theorem 3 and Corollary 4).

(5) We empirically evaluate DopeWolfe on both synthetic
and real-world problems (Section 6). We observe an order
of magnitude reduction in sample size in our experiments
on the Nectar dataset (Zhu et al., 2023a).

Our real-world datasets cover reward modeling in RLHF
and learning to rank. However, we stress that all our ex-
periments are on linear models over frozen language model
embeddings instead of fine-tuning LLMs. In this way, we
stay faithful to the Plackett-Luce model that we study.

Related work. There are two lines of related works: learn-
ing to rank from human feedback and solving large-scale
optimal designs. Mehta et al. (2023) and Das et al. (2024)
learn to rank pairs of items from pairwise feedback. They
optimize the maximum gap. Mukherjee et al. (2024) learn to
rank lists of K items from K-way feedback. They optimize
both the maximum prediction error and ranking loss. We
propose a general framework for learning to rank N items
from K-way feedback, where K ≥ 2 and N ≥ K. This
setting is more general than in the prior works. Our main
algorithmic contribution is a randomized Frank-Wolfe algo-
rithm. It addresses a specific computational problem of our
setting, solving a D-optimal design with O(

(
N
K

)
) variables

for learning to rank. This distinguishes it from other recent
works for solving large-scale optimal designs (Hendrych
et al., 2023; Ahipaşaoğlu, 2015; Zhao & Freund, 2023). We
review related works in more detail in Appendix A.

This paper is organized as follows. Section 2 introduces our
ranking problem and Section 3 presents our framework for
collecting human feedback to rank N items using K-way
feedback. We show the impracticality of the FW method
in Section 4 and make it efficient in Section 5. Section 6 is
devoted to experiments. We conclude in Section 7.

2. Setting
We start with introducing notation. Let [n] = {1, . . . , n}
and Rd be a d-dimensional real vector space. Let △S be
the probability simplex over set S. For any distribution

π ∈ △S ,
∑

i∈S π(i) = 1. For any positive-definite matrix
A ∈ Rd×d and vector x ∈ Rd, let ∥x∥A =

√
x⊤Ax. We

say that a square matrix M ∈ Rd×d is PSD / PD if it is
positive semi-definite / positive definite.

We study the problem of learning to rank N items. An item
k ∈ [N] is represented by its feature vector xk ∈ X , where
X ⊆ Rd is the support of all feature vectors. The relevance
of item k is defined as x⊤

k θ∗, where θ∗ ∈ Rd is an unknown
parameter, and we call it the mean reward. Linear models of
relevance have a long history in learning to rank (Zong et al.,
2016; Li et al., 2016). A standard way of applying them to
modern machine learning problems is to set xk to the last
hidden-layer embedding of the neural network (Riquelme
et al., 2018). Our experiments in Section 6 are with such
embeddings. Without loss of generality, we assume that the
original order of the items is optimal, x⊤

j θ∗ > x⊤
k θ∗ for any

j < k.

We interact with a human T times. In interaction ℓ ∈ [T],
we select a K-subset of items Sℓ ∈ S and the human ranks
all items in Sℓ according to their preferences, where S is
a collection of all K-subsets of [N]. Note that |S| =

(
N
K

)
.

We represent the ranking as a permutation σℓ : [K]→ Sℓ,
where σℓ(k) is the item at position k. The probability that
this permutation is generated is

p(σℓ) =

K∏
k=1

exp[x⊤
σℓ(k)

θ∗]∑K
j=k exp[x

⊤
σℓ(j)

θ∗]
. (1)

In short, items with higher mean rewards are more preferred
by humans and thus more likely to be ranked higher. This
feedback model is known as Plackett-Luce (Plackett, 1975)
and is the most popular approach to eliciting unknown hu-
man preferences from ranking multiple options (Negahban
et al., 2018).

Our goal is to select the subsets such that we can learn the
true order of the items. Specifically, after T interactions,
we output a permutation σ̂ : [N]→ [N], where σ̂(k) is the
index of the item at position k. The quality of the solution
is measured by the ranking loss

R(T) =
2

N(N − 1)

N∑
j=1

N∑
k=j+1

1{σ̂(j) > σ̂(k)} , (2)

where N(N − 1)/2 is a normalizing factor that scales the
loss to [0, 1]. Simply put, the ranking loss is the fraction of
incorrectly ordered pairs of items in permutation σ̂. It can
also be viewed as the normalized Kendall tau rank distance
(Kendall, 1948) between the optimal order of items and that
according to σ̂, multiplied by 2/(N(N − 1)). While other
objectives are possible, such as the mean reciprocal rank
(MRR) and normalized discounted cumulative gain (NDCG)
(Manning et al., 2008), we focus on the ranking loss in (2)

2

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

to simplify our presentation. For completeness, we report
the NDCG in our experiments.

To simplify exposition, and without loss of generality, we
focus on ranking N items in a single list. Our setting can
be generalized to multiple lists as follows. Suppose that we
want to rank multiple lists with N1, . . . , NM items using
K-way feedback. This can be viewed as a ranking problem
over

∣∣∣(N1

K

)∣∣∣+ · · ·+ ∣∣∣(NM

K

)∣∣∣ subsets, where any K-subset of
items from the M lists is included in S . Since our algorithm
depends only on S (Section 5), it remains the same even in
this more challenging setting. In fact, we experiment with
this setting in Section 6.2, where we learn to rank 30 000
lists, each with 7 items from K-subsets of size K = 2 and
K = 3. Even for K = 2, this is 630 000 subsets and two
orders of magnitude more than in prior works (Mukherjee
et al., 2024).

3. Optimal Design for Learning To Rank
In this section, we introduce our basic algorithm and analyze
it. More specifically, we generalize Mukherjee et al. (2024)
to ranking N items from K-way feedback, from ranking K
items only, for any K ≤ N . While these contributions are
not surprising technically, they significantly expand the class
of modeled and solved problems. The fundamental novel
challenge is solving the optimal design in (7). Since |S| =(
N
K

)
, it has exponentially many variables in K. Therefore,

it cannot be written out and solved using standard methods,
such as CVXPY (Diamond & Boyd, 2016). We address this
challenge separately in Section 5.

3.1. Maximum Likelihood Estimate

We note that the problem of learning from K-way feedback
is identical to that in Zhu et al. (2023b). Therefore, we just
summarize their solution. Suppose that the human interacts
with T subsets {Sℓ}ℓ∈[T] (Section 2). We use the human
responses σℓ on Sℓ to estimate θ∗. Specifically, since the
probability of σℓ under θ∗ is (1), the negative log-likelihood
of all feedback is

LT (θ) = −
T∑

ℓ=1

K∑
k=1

log

(
exp[x⊤

σℓ(k)
θ]∑K

j=k exp[x
⊤
σℓ(j)

θ]

)
. (3)

To estimate θ∗, we solve a maximum likelihood estimation
(MLE) problem, θ̂ = argmin θ∈Θ LT (θ). The problem is
convex (Zhu et al., 2023b) and thus can be solved efficiently
by standard methods for generalized linear models (GLMs)
(Bishop, 2006). Finally, we estimate the mean reward of
item k as x⊤

k θ̂ and sort the items in descending order of
x⊤
k θ̂, which defines σ̂ in (2).

3.2. Active Learning

The problem of choosing the most informative subsets Sℓ

for solving (3) was studied by Mukherjee et al. (2024) and
can be summarized as follows. Let∇2LT (θ) be the Hessian
of LT (θ), which can be used to measure the uncertainty in
the MLE θ̂. Let zj,k = xj − xk be the difference of feature
vectors of items j and k, and Z denote the set of all feature
vector differences. Let zℓ,j,k = zσℓ(j),σℓ(k). In our notation,
Zhu et al. (2023b) showed that a high-probability bound on
the prediction error, for any z ∈ Z , is

|z⊤(θ̂ − θ∗)| ≤ Õ(
√
d∥z∥M−1) , (4)

where

M =
C

2K(K − 1)

T∑
ℓ=1

K∑
j=1

K∑
k=j+1

zℓ,j,kz
⊤
ℓ,j,k (5)

is a lower bound on the Hessian, ∇2LT (θ) ⪰M holds for
any θ ∈ Θ and a universal constant C > 0.

The minimization of maxz∈Z ∥z∥M−1 is equivalent to max-
imizing log det(M) (Kiefer & Wolfowitz, 1960). This
maximization problem is known as the D-optimal design.
Mukherjee et al. (2024) formulated it using matrix notation
as follows. Each subset S ∈ S is represented by its matrix
AS = (zj,k)(j,k)∈Π2(S), where

Π2(S) = {(j, k) : j < k; j, k ∈ S} (6)

is the set of all pairs in S where the first entry has a lower
index than the second one. The matrix AS has d rows and
K(K − 1)/2 columns. Equipped with these matrices, the
D-optimal design (Pukelsheim, 2006) is solved as

π∗ = argmax
π∈∆S

g(π) , where (7)

g(π) = log det (Vπ) , Vπ =
∑
S∈S

π(S)ASA
⊤
S ,

π ∈ ∆S is a probability distribution over the subsets in S,
∆S is the simplex of all such distributions, and π(S) denotes
the probability of choosing the subset S under π. Note that
we could have indexed π by an integer defined through a
bijective mapping C : S → [

(
N
K

)
] from the subsets to natural

numbers. We do not do this to simplify presentation. The
problem (7) is concave since log det is concave for PSD
matrices and all π(S)ASA

⊤
S are PSD by design. Moreover,

its solution is sparse (Kiefer & Wolfowitz, 1960). Therefore,
fast convex optimization methods, such as the Frank-Wolfe
method, can be used to solve it. After π∗ is computed, the
human feedback is collected on sampled subsets Sℓ ∼ π∗.

We go beyond prior works in two aspects. First, we learn to
rank N ≥ K items from K-way feedback. This can be done
by combining (7) and (3), and we analyze this approach in

3

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

Section 3.3. Second, (7) cannot be solved efficiently because
S is exponentially large in K. To address this challenge, we
propose a randomized Frank-Wolfe algorithm in Section 5.

3.3. Generalization Analysis

In this section, we analyze active learning by the D-optimal
design for ranking N ≥ K items from K-way feedback.
We start with proving that the differences in estimated item
relevance under θ̂ converge to those under θ∗ as the sample
size T increases. The proof is under two assumptions that
are not essential and only avoid rounding. We also assume
that the parameter and feature vectors are bounded, as in
Mukherjee et al. (2024), which allows to derive C in (5).

Assumption 1. For all k ∈ [N], ∥xk∥2 ≤ 1. In addition,
∥θ∗∥2 ≤ 1 and ∥θ̂∥2 ≤ 1.

We can ensure that ∥θ̂∥2 ≤ 1 when optimizing (3) because
Θ =

{
θ ∈ Rd : ∥θ∥2 ≤ 1

}
is a convex set and (3) is a con-

vex function. As a result, this can be done using gradient
descent with a projection step to Θ.

Our first claim is proved below.

Proposition 1. Let K be even and N/K be an integer. Let
the feedback be collected according to π∗ in (7). Then with
probability at least 1− δ,

N∑
j=1

N∑
k=j+1

(
z⊤j,k(θ∗ − θ̂)

)2
= Õ

(
N2K4d2 log(1/δ)

T

)
,

where zj,k = xj − xk.

Proof. We build on Theorem 5 of Mukherjee et al. (2024),
which says that for any collection S of K-subsets,

max
S∈S

∑
(j,k)∈Π2(S)

(
z⊤j,k(θ∗ − θ̂)

)2
= Õ

(
K6d2 log(1/δ)

T

)

holds with probability at least 1 − δ. To reuse this result,
we design a collection C such that any item pair appears
in at least one S ∈ C. Then any (z⊤j,k(θ∗ − θ̂))2 would be
bounded. Let I = {Iℓ}ℓ∈[2N/K] be a partition of [N] into
sets with consecutive item indices, each of size K/2. Then
C can be designed as follows. The first 2N/K − 1 sets in
C contain items I1 combined with any other set I \ I1, the
next 2N/K − 1 sets in C contain items I2 combined with
any other set I \ I2, and so on. Clearly, the size of C is at
most 4N2/K2 and all (z⊤j,k(θ∗ − θ̂))2 are covered. Thus

N∑
j=1

N∑
k=j+1

(
z⊤j,k(θ∗ − θ̂)

)2
≤ 4N2

K2
Õ

(
K6d2 log(1/δ)

T

)
.

This concludes the proof.

The bound in Proposition 1 is O(d2/T), which is standard
for a squared prediction error in linear models with d param-
eters and sample size T . The dependencies on N2, K4, and
log(1/δ) are due to bounding predictions errors of O(N2)
item pairs, from relative K-way feedback with probability
at least 1− δ.

Now we derive an upper bound on the ranking loss R(T).

Proposition 2. Let the feedback be collected according to
π∗ in (7). Then the ranking loss is bounded as

R(T) ≤ 4

N(N − 1)

N∑
j=1

N∑
k=j+1

exp

[
−

z2j,kT

CK4d
+ d

]
,

where C > 0 is a universal constant from the concentration
analysis in Lemma 9 in Mukherjee et al. (2024).

Proof. We build on Theorem 6 of Mukherjee et al. (2024).
Specifically, the key step in their proof is that

P
(
x⊤
j θ̂ ≤ x⊤

k θ̂
)
≤ exp[−z2j,kT/(CK4d) + d]

holds for any set of K items S and items (j, k) ∈ Π2(S) in
it. Our claim follows from noting that P (σ̂(j) > σ̂(k)) =

P
(
x⊤
j θ̂ ≤ x⊤

k θ̂
)

and then applying the above bound.

Proposition 2 says that the ranking loss decreases exponen-
tially with sample size T and squared gaps; and increases
with the number of features d and K. The dependence on
T , gaps, and d is similar to prior works on fixed-budget
best-arm identification in GLMs (Theorem 2 of Azizi et al.
(2022)). Therefore, although we do not prove a lower bound,
our bound is likely near-optimal.

4. Frank-Wolfe Method for Optimal Design
The Frank-Wolfe (FW) method has been traditionally uti-
lized as a scalable algorithm for solving D-optimal designs
(Khachiyan, 1996; Zhao & Freund, 2023). When applied
to (7), we obtain Algorithm 1. Each iteration of the method
comprises three steps. First, we compute the gradient Gt

at the current iterate (Line 2 of Algorithm 1). Second, we
find the distribution π̂t that maximizes the linear functional
defined by Gt (Line 3 of Algorithm 1) using a linear maxi-
mization oracle (LMO). Finally, we update the iterate with
a convex combination of the current iterate πt and π̂t with a
step size αt, which is set to maximize g((1−α) ·πt+α · π̂t)
(Line 4 of Algorithm 1) using linear search. It is known
that this method converges to the maximizer of (7) (Zhao &
Freund, 2023).

The FW method is efficient when the LMO can be imple-
mented efficiently. In our problem (7) on simplex ∆S , the

4

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

Algorithm 1 Frank-Wolfe method for solving the D-optimal
design in (7).
Input: #steps Tod, initial iterate π0 ∈ ∆S

1 for t = 0, 1, . . . , Tod−1 do
2 Compute gradient: Gt = ∇πg(πt)
3 LMO: π̂t ∈ argmax

π∈∆S
⟨Gt, π⟩

4 Line search: αt ∈ argmax
α∈[0,1]

g((1− α) · πt + α · π̂t)

5 Iterate update: πt+1 = (1− αt) · πt + αt · π̂t

6 return πTod

LMO can be written

π̂t = eSt
, where (8)

St = argmax
S∈S

Gt(S) , eSt
(S) = 1{S = St} .

Simply put, π̂t is a distribution where all probability mass
is put on set St, which has the largest corresponding partial
derivative maxS∈S Gt(S). Note that this implies that line
search with eSt can only increase the number of non-zero
elements in the iterate π̂t by at most one. So, after t steps,
the number of non-zero elements in π̂t is at most t plus the
number of non-zero elements in π0. This is one reason why
the FW method is often preferred over gradient descent.

While the LMO in (8) seems simple, it requires computing
the gradient with respect an

(
N
K

)
-dimensional vector and

finding its maximum entry. When N ≫ K, this means that
the computational complexity is exponential in K. As an
example, in our experiments (Section 6), the FW method
runs out of memory when N = 100 and K = 10 because
the full gradient is a 1013-dimensional vector. Even under
conservative estimates, this requires 68 TB of RAM for a
float32 precision, which is out of reach for most practition-
ers. We tried parallelization and could compute 105 partial
gradients at a time. This reduced the per-iteration compu-
tational complexity of the FW method to 108 = 1013/105.
This is again impractical.

The line search can also be computationally costly because
it requires objective calculations at many feasible iterates
and each such calculation involves computing the log det
of a d× d matrix, which requires O(d3) operations in most
practical implementations. In Section 5, we address these
and other limitations through a new algorithm DopeWolfe,
which has a better per-iteration complexity in terms of N ,
K, and d. Zhao (2023) proposed an away step variant of the
FW method that has a superior empirical convergence rate
for solving optimal designs. This method would face the
same computation challenge as the FW method. We discuss
this in detail in Appendix A.

Algorithm 2 DopeWolfe: A randomized FW method for
solving the D-optimal design in (7).
Input: sampling size R, #steps Tod, initial subset S0 ∈ S,

regularization γ, and line-search tolerance αtol

1 Let S be the collection of all K-subsets of [N]
2 Set zj,k = xj − xk, ∀(j, k) ∈ Π2([N]) and π0 = eS0

// Update iterate (Algorithm 4)
3 Set V inv

0 = UpdateInverse(Id×d, AS0/(1− γ), 1− γ)
4 for t = 0, 1, . . . , Tod−1 do

// Randomized LMO
5 SampleRt ∼ Uniform({R ⊆ S | |R| = R})
6 {Gt(S)} = PartialGrad(N,Rt, V

inv
t , {zj,k})

7 St ∈ argmax S∈Rt
Gt(S)

// Line search (Algorithm 4)
8 αt = GoldenSearch(V inv

t , ASt , αtol)
// Update iterate (Algorithm 4)

9 πt+1 = (1− αt) · πt + αt · eSt

10 V inv
t+1 = UpdateInverse(V inv

t , ASt
, αt)

11 return πTod

12 Sub-routine PartialGrad(N,R, V inv, {zj,k})
13 for (j, k) ∈ Π2([N]) do

// Pair gradients
14 Dj,k ← z⊤j,kV

invzj,k

15 for S ∈ Rt do
16 G(S) =

∑
(j,k)∈Π2(S) Dj,k

17 return {G(S)}S∈Rt

5. DopeWolfe: Randomized Frank-Wolfe
Method for Optimal Design

We propose and analyze our algorithm for solving the D-
optimal design in (7) next. We call it DopeWolfe and show
its pseudo-code in Algorithm 2. The pseudo-code for some
sub-routines is in Appendix. DopeWolfe is a fast random-
ized variant of the FW method that incorporates compu-
tationally efficient memoization, and low-rank and sparse
operations. In the rest of the section, we describe the build-
ing blocks of the algorithm and show how they address the
scaling concerns identified in Section 4.

5.1. Randomized LMO and Cached Derivatives

The computational complexity of the LMO in Section 4 is
O(
(
N
K

)
) because the maximization step is over an exponen-

tially large S in (8). We utilize a randomized variant of the
FW method (Kerdreux et al., 2018) to reduce it to O(R)
by restricting the maximization to an R-subsetRt chosen
uniformly at random from S (Lines 5 and 7 of Algorithm 2),

St ∈ argmax
S∈Rt

Gt(S) , where

Rt ∼ Uniform({R ⊆ S | |R| = R}) .

5

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

This implies that we only need to compute R partial gradi-
ents Gt(S) =

∂g(πt)
∂πt(S) for the subsets S ∈ Rt.

Next we show how the partial gradients can be computed
efficiently. Recall the definitions of g(π) and Vπ from (7).
Since the gradient of log det(U) is U−1 for a PSD matrix
U , the partial derivative at any S can be written as

∂g(π)

∂π(S)
= ⟨ASA

⊤
S , V

−1
π ⟩ =

∑
(j,k)∈Π2(S)

z⊤j,kV
−1
π zj,k︸ ︷︷ ︸

Dj,k

, (9)

where Dj,k = z⊤j,kV
−1
π zj,k. Simply put, all partial deriva-

tives are sums of
(
K
2

)
terms chosen from the

(
N
2

)
terms in

{Dj,k}(j,k)∈Π2([N]). In DopeWolfe, we leverage this struc-
ture in sub-routine PartialGrad, which first computes and
caches all Dj,k (Line 14 in Algorithm 2), and then combines
them to obtain partial derivatives for all S ∈ Rt (Line 16 in
Algorithm 2). Assuming that V −1

π is known, this reduces the
overall LMO complexity from O(

(
N
K

)(
K
2

)
d2) in Section 4

to O(
(
N
2

)
d2 + R

(
K
2

)
). We parallelize these computations

in our code.

5.2. Line Search with Low-Rank and Sparse Updates

We noted earlier that line search (Line 4 of Algorithm 1) is
computationally costly. In DopeWolfe, we replace it with
sub-routine GoldenSearch (Line 8 of Algorithm 2), which
is provided in Algorithm 4 in Appendix. This sub-routine
solves a one-dimensional unimodal maximization problem
using the golden-section search (Kiefer, 1953). The golden-
section search reduces the search space by a multiplicative
factor of φ, known as the golden ratio, per iteration. As a
result, it is guaranteed to return the maximizer up to an error
αtol after 1 + logφ(αtol) iterations.

We also noted earlier that a naive computation of the objec-
tive value in line search has a complexity of O(d3). Here
we note that the update can be written as

(1− α)Vπ + αASA
⊤
S . (10)

Let r =
(
K
2

)
≪ d. Then αASA

⊤
S is a rank-r matrix since

AS ∈ Rd×r. Assuming access to V −1
π , the log-determinant

of (10) can be computed using that of an r × r matrix. This
update is derived in Appendix C. This reduces the overall
line search complexity to O((r3 + rd2) logφ(αtol)) from
O(d3α−1

tol) in Section 4.

Both the partial derivative and objective value computation
require the inverse of Vπ . DopeWolfe initializes the matrix
by V inv

0 (Line 3 of Algorithm 2) and then updates it (Line 10
of Algorithm 2) using UpdateInverse. The computational
complexity of naively inverting a d×d matrix is O(d3). We
note though that Vπ is updated by a low-rank matrix in (10).
Therefore, we can compute the inverse of Vπ by using the

inverse of an r × r matrix (Algorithm 4 in Appendix). As
a result, the inverse computational complexity is reduced
from O(d3) to O(r3 + rd2).

Finally, we address how DopeWolfe maintains and stores
the iterate πt in exponentially-many dimensions

(
N
K

)
. When

N ≫ K > 1, it becomes both computationally and space
costly. Since DopeWolfe is initialized with a one-hot vector
and its updates are sparse (Lines 2 and 9 of Algorithm 2),
we store πt as a sparse vector and update it using sparse
operations. This reduces the complexity of maintaining πt

to its number of non-zero elements, which is at most t+ 1
after t iterations. We discuss this in detail in Appendix C.

5.3. Convergence Rate of Randomized FW Method

We analyze the convergence rate of DopeWolfe next. Since
DopeWolfe is a randomized FW method, we know that it
converges to the maximizer of (7) if g was Lipschitz smooth
(Kerdreux et al., 2018). However, g does not satisfy this con-
dition because of the logarithm in its definition. To provide
guarantees, we prove a more general result, that a random-
ized FW method (Algorithm 3 in Appendix) converges for
problems of the form

min
y∈Y

F (y) = min
y∈Y

f(A(y)) , (11)

where Y is the convex hull of set V of Ñ vectors, A : Y →
K is a linear operator,K is a regular cone, and f : int(K)→
R is a logarithmically-homogeneous self-concordant barrier
(LHSCB) (Zhao & Freund, 2023).

Theorem 3. If the initial iterate y0 maps to domain of f ,
i.e. A(y0) ∈ int(K), then Randomized FW method (Algo-
rithm 3) which samples R elements from V for computing
the randomized LMO achieves an ε sub-optimal solution to
the problem (11) after TFW = O(max(1, Ñ/R)ε−1) itera-
tions, i.e. E[F (yTFW

)]−miny∈Y F (y) ≤ ε.

This result extends the convergence analysis of a random-
ized FW method for Lipschitz smooth objectives to prob-
lems of the form (11). As a corollary of Theorem 3, we
provide the convergence rate for DopeWolfe.

Corollary 4. For full-rank Vπ0 , γ = 0, and small enough
αtol, DopeWolfe (Algorithm 2) outputs an ε sub-optimal
solution to the D-optimal design problem (7) after Tod =
O(max(1,

(
N
K

)
/R)ε−1) iterations, i.e. maxπ∈∆S g(π) −

E[g(πTod
)] ≤ ε.

We provide the proofs of these statements in Appendix B.
Note that Corollary 4 needs Vπ0

to be full-rank; otherwise
the objective might not be well-defined. In practice, this can
be guaranteed by regularizing the matrix as Vπ0

+ γId×d

with a small γ > 0. Finally, aggregating the complexities
of all steps of DopeWolfe, we observe that its per-iteration

6

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

complexity is O(
(
N
2

)
d2 +R

(
K
2

)
+ (r3 + rd2) logφ(αtol) +

Tod), eliminating any
(
N
K

)
and d3 dependence.

Note that DopeWolfe without a randomized LMO would
have the per-iteration complexity of O(

(
N
2

)
d2 +

(
N
K

)(
K
2

)
+

(r3 + rd2) logφ(αtol) + Tod) and the iteration complexity
of O(ε−1) (Zhao & Freund, 2023). As a result, in theory,
the randomized LMO has a better per-iteration complex-
ity while increasing the worst-case iteration complexity to
O(
(
N
K

)
/(Rε)). Note that this is desirable because the FW

method is impractical even for small instances of our prob-
lems, as discussed in Section 4. We do not observe empir-
ically (Section 6) that the convergence rate of DopeWolfe
is exponentially worse, as bounded in Corollary 4. Similar
observations have been made in prior works, where the em-
pirical convergence rate of the randomized FW method is
much better than the theoretical upper bound when applied
to Lipschitz smooth problems (Kerdreux et al., 2018, Figure
1). Therefore, we conjecture that Theorem 3 is not tight for
most problems and defer further study to future work.

6. Experiments
We evaluate the performance of DopeWolfe in three experi-
ments. In Section 6.1, we compare it to Dope (Mukherjee
et al., 2024) on the same datasets and in the same setting.
This is the closest related work. The main difference in our
algorithm is that it can be applied to larger problems. We
evaluate DopeWolfe on such problems with synthetic feed-
back in Section 6.2 and with real feedback in Section 6.3.
The main evaluation metric is the mean ranking loss in (2).
We also report NDCG in Appendix.

6.1. Comparison to Dope

In the first experiment, we compare to Dope (Mukherjee
et al., 2024) on both Anthropic (Zhu et al., 2023a) and Nec-
tar (Bai et al., 2022) datasets in their work. We implement
Dope using Algorithm 1. This is a major computational im-
provement over the original implementation of Mukherjee
et al. (2024), which solves the linear maximization problem
in (8) using linear programming. Moreover, we replace the
line search in Algorithm 1 with the golden-section search
in Algorithm 2. We also compare to a baseline that chooses
subsets of items uniformly at random. While simple, it is
known to be competitive in real-world problems where fea-
ture vectors may cover the feature space close to uniformly
(Ash et al., 2019; Yuan et al., 2020; Ash et al., 2021; Ren
et al., 2021). We call it Uniform. DopeWolfe is run with
10% of randomly sampled subsets of items.

We vary the sample size from T = 100 to T = 1000, and
report our results in Figure 1. We observe that the ranking
losses of DopeWolfe and Dope are similar, while those of
Uniform are much worse. We note a major difference in

100 200 300 400 500 600 700 800 900 1000
Sample Size (T)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
Ra

nk
in

g
Lo

ss

Anthropic Dataset

Uniform
Dope
DopeWolfe

100 200 300 400 500 600 700 800 900 1000
Sample Size (T)

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n
Ra

nk
in

g
Lo

ss

Nectar Dataset

Uniform
Dope
DopeWolfe

Figure 1. Mean ranking loss of DopeWolfe, Dope, and Uniform

on the Antropic and Nectar problems in Mukherjee et al. (2024).

the run times of DopeWolfe and Dope. Although we imple-
ment Dope more efficiently than Mukherjee et al. (2024),
DopeWolfe is more than three times faster on the Anthropic
dataset (6.184 seconds on average versus 20.147) and more
than two times faster on the Nectar dataset (0.411 seconds
on average versus 0.960). This is despite the fact that our
method is designed for much larger problems.

6.2. Synthetic Feedback

Our second experiment is on problems where Dope cannot
be implemented efficiently. We experiment with two text
retrieval datasets, BEIR-COVID1 and TREC Deep Learn-
ing (TREC-DL)2, and Nectar (Bai et al., 2022) dataset. In
the first two datasets, we experiment with single lists of
N = 100 items. In the Nectar dataset, we choose 30 000
lists, each with 7 items, and learn to rank of these lists simul-
taneously, as described in the last paragraph in Section 2.
Even for K = 2, this means 30 000 ·

(
7
2

)
= 630 000 subsets

of items to choose from, which is two orders of magnitude
more than in Section 6.1.

The feature vectors of the items are their 100-dimensional
1https://huggingface.co/datasets/BeIR/trec-covid
2https://microsoft.github.io/msmarco/TREC-Deep-Learning

7

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

(a) BEIR-COVID, K = 2 (b) TREC-DL, K = 2 (c) NECTAR, K = 2

(d) BEIR-COVID, K = 3 (e) TREC-DL, K = 3 (f) NECTAR, K = 3

Figure 2. Mean ranking loss on three datasets with synthetic feedback. Medoids fails on the Nectar dataset due to excessive memory
requirements, 2 TB and 8 TB of RAM, respectively.

(a) Ranking loss on BEIR-COVID with real feedback.

(b) Ranking loss on TREC-DL with real feedback.

Figure 3. Mean ranking loss on two datasets with real feedback.

BERT embeddings. The parameters of the Plackett-Luce
model are learned from data and the feedback is sampled
according to (1) with those parameters. We consider three
baselines: Uniform, which was already introduced in Sec-
tion 6.1; DBSCAN (Ester et al., 1996), which is a clustering
baseline; and Medoids, which is another clustering baseline.
We describe the baselines in more detail in Appendix D.1.
All results are averaged over 100 random runs.

We vary the sample size from T = 100 to T = 1000, and
report results for K ∈ {2, 3} in Figure 2. We observe the
following trends. First, DopeWolfe has the lowest ranking
loss. Some improvements are of an order of magnitude. In
particular, for K = 2 on the Nectar dataset, the ranking
loss of DopeWolfe at T = 100 is lower than that of all
baselines at T = 1000. Second, both DBSCAN and Medoids
perform relatively poorly because they often do not even
outperform Uniform. We also note that the ranking losses
of all methods decrease as T and K increase. The former is
expected because the methods benefit from more feedback.
The latter is also expected because each unit of feedback
contains more information, due to ranking more items. For
completeness, we report NDCG in Figure 4 (Appendix D.1)
and results for K = 4 in Figure 5 (Appendix D.1). We
also compare the run times of DopeWolfe and DBSCAN in
Appendix D.3.

6.3. Real Feedback

The third experiment is a more realistic variant of the exper-
iment in Section 6.2. There are three main differences. First,
we use real feedback instead of simulated feedback. The

8

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

real feedback is more challenging since the optimized model
may be and likely is misspecified. Second, we use more rep-
resentative 1024-dimensional BGE-M3 embeddings (Chen
et al., 2024) to ensure that the features are sufficiently rich to
learn the true ranking order under real feedback. Finally, we
explore a wider range of feedback with K ∈ {2, 4, . . . , 10}.
Note that large N and moderate K make this experiment
an extremely large-scale ranking problem. Particularly, for
N = 100 and K = 10, there are 17 trillion subsets of items
for eliciting feedback. Therefore, it is essentially impossible
to run prior optimal design methods (Mukherjee et al., 2024)
or the Frank-Wolfe method (Zhao & Freund, 2023). We
omit DBSCAN and Medoids baselines due to the same scale
issues. We provide more details in Appendix D.2.

We plot all results as a function of K and report them in Fig-
ure 3. We observe the following trends. First, DopeWolfe
has the lowest ranking loss in all settings. Second, the rank-
ing losses of both methods decrease as K increases. This
is expected because each unit of feedback contains more
information, due to ranking more items. While Figures 2
and 3 are not comparable, they can be compared by looking
at relative differences in the ranking losses of Uniform and
DopeWolfe. This is consistently 20% in Figure 3 and sim-
ilar to many relative differences in Figure 2. We conclude
the despite the more challenging settings, the improvements
due to DopeWolfe can be of a similar magnitude. For com-
pleteness, we report NDCG in Figure 6 (Appendix D.2).

7. Conclusions
We study learning to rank N items from K-way ranking
feedback under a limited feedback budget. We develop an
D-optimal design framework for eliciting K-way feedback
by generalizing Mukherjee et al. (2024) and prove that it is
statistically efficient in minimizing the ranking loss. We also
show that the classic methods for solving this problem are
infeasible in our setting because they optimize over O(

(
N
K

)
)

variables, exponentially many in K.

To address this challenge, we propose DopeWolfe for solv-
ing our optimal design problem. DopeWolfe is a random-
ized FW method that uses memoization and sparse updates
to improve the per-iteration complexity of the FW method
from O(

(
N
K

)
) to O(N2 + K2). Furthermore, we provide

a convergence analysis for DopeWolfe by generalizing the
analysis of the randomized FW method beyond Lipschitz
smoothness to a general class of logarithmically homoge-
neous self-concordant barrier objectives. Finally, we em-
pirically demonstrate the computational and statistical effi-
ciency of our framework on both synthetic and real-world
datasets, with large N and moderate K.

Limitations. Our work can be viewed as learning to rank
N items from relative K-way feedback. A natural question

to ask is if this can be done using absolute feedback. In our
opinion, absolute feedback has three major shortcomings.
First, annotators often exhibit variable calibration when as-
signing absolute scores, making cross-annotator aggregation
difficult. Second, comparing items is typically more natural
and faster for humans. Finally, often we only have access to
proxy signals (ad clicks or video watch time), which have
an approximately monotonic relation to the real preference.
A relative comparison requires only ordering rather than
judging the precise value, mitigating calibration and proxy
issues. Ultimately, whether the absolute or relative feedback
is used is a design choice, and we believe that both should
be studied.

We have an offline active learning problem, in a sense that
DopeWolfe selects K-subsets of items to elicit feedback on
before receiving any feedback. The most natural way of
making it online would be to update item embeddings after
receiving feedback.

Future work. Our work can be extended in multiple direc-
tions. First, we only studied one particular human feedback
model, K-way ranking, popularized by RLHF (Ouyang
et al., 2022) and DPO (Rafailov et al., 2023). Second, the
O(d2) dependence in Proposition 1 is suboptimal. It can
be reduced to O(d) by avoiding the Cauchy-Schwarz in-
equality in (4). Finally, we want to conduct more realistic
experiments on high-dimensional LLM embeddings used in
the reward modeling phase of RLHF (Sun et al., 2023).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abdi, H. and Williams, L. J. Principal component analysis.

Wiley interdisciplinary reviews: computational statistics,
2(4):433–459, 2010.

Agichtein, E., Brill, E., Dumais, S., and Ragno, R. Learn-
ing user interaction models for predicting web search
result preferences. In Proceedings of the 29th Annual
International ACM SIGIR Conference, pp. 3–10, 2006.

Ahipaşaoğlu, S. D. A first-order algorithm for the a-optimal
experimental design problem: a mathematical program-
ming approach. Statistics and Computing, 25:1113–1127,
2015.

Ash, J., Goel, S., Krishnamurthy, A., and Kakade, S. Gone
fishing: Neural active learning with fisher embeddings.

9

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

Advances in Neural Information Processing Systems, 34,
2021.

Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J.,
and Agarwal, A. Deep batch active learning by di-
verse, uncertain gradient lower bounds. arXiv preprint
arXiv:1906.03671, 2019.

Audibert, J.-Y., Bubeck, S., and Munos, R. Best arm iden-
tification in multi-armed bandits. In Proceedings of the
23rd Annual Conference on Learning Theory, pp. 41–53,
2010.

Azizi, M. J., Kveton, B., and Ghavamzadeh, M. Fixed-
budget best-arm identification in structured bandits. In
Proceedings of the 31st International Joint Conference
on Artificial Intelligence, 2022.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T.,
et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Barzilai, J. and Borwein, J. M. Two-point step size gradient
methods. IMA journal of numerical analysis, 8(1):141–
148, 1988.

Bishop, C. Pattern Recognition and Machine Learning.
Springer, New York, NY, 2006.

Bradley, R. A. and Terry, M. Rank analysis of incom-
plete block designs: I. the method of paired comparisons.
Biometrika, 39(3-4):324–345, 1952.

Bubeck, S., Munos, R., and Stoltz, G. Pure exploration
in multi-armed bandits problems. In Proceedings of the
20th International Conference on Algorithmic Learning
Theory, pp. 23–37, 2009.

Casper, S., Davies, X., Shi, C., Gilbert, T. K., Scheurer, J.,
Rando, J., Freedman, R., Korbak, T., Lindner, D., Freire,
P., et al. Open problems and fundamental limitations
of reinforcement learning from human feedback. arXiv
preprint arXiv:2307.15217, 2023.

Chen, J., Xiao, S., Zhang, P., Luo, K., Lian, D., and
Liu, Z. Bge m3-embedding: Multi-lingual, multi-
functionality, multi-granularity text embeddings through
self-knowledge distillation, 2024.

Christiano, P., Leike, J., Brown, T., Martic, M., Legg, S.,
and Amodei, D. Deep reinforcement learning from hu-
man preferences. In Advances in Neural Information
Processing Systems 30, 2017.

Das, N., Chakraborty, S., Pacchiano, A., and Chowdhury,
S. R. Active preference optimization for sample efficient

RLHF. CoRR, abs/2402.10500, 2024. URL https:
//arxiv.org/abs/2402.10500.

Diamond, S. and Boyd, S. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of
Machine Learning Research, 17(83):1–5, 2016.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In KDD, volume 96, pp. 226–231,
1996.

Fedorov, V. V. Theory of optimal experiments. Elsevier,
2013.

Guttman, L. Enlargement methods for computing the in-
verse matrix. The annals of mathematical statistics, pp.
336–343, 1946.

Hendrych, D., Besançon, M., and Pokutta, S. Solving the
optimal experiment design problem with mixed-integer
convex methods. arXiv preprint arXiv:2312.11200, 2023.

Hiranandani, G., Singh, H., Gupta, P., Burhanuddin, I. A.,
Wen, Z., and Kveton, B. Cascading linear submodular
bandits: Accounting for position bias and diversity in
online learning to rank. In Proceedings of the 35th Con-
ference on Uncertainty in Artificial Intelligence, 2019.

Hofmann, K., Whiteson, S., and de Rijke, M. Fidelity,
soundness, and efficiency of interleaved comparison
methods. ACM Transactions on Information Systems,
31(4):1–43, 2013.

Hofmann, K., Li, L., and Radlinski, F. Online evaluation
for information retrieval. Foundations and Trends in
Information Retrieval, 2016.

Jaggi, M. Revisiting frank-wolfe: Projection-free sparse
convex optimization. In International conference on ma-
chine learning, pp. 427–435. PMLR, 2013.

Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably
efficient for offline rl? In International Conference on
Machine Learning, pp. 5084–5096. PMLR, 2021.

Kang, Y., Shi, D., Liu, J., He, L., and Wang, D. Beyond
reward: Offline preference-guided policy optimization.
arXiv preprint arXiv:2305.16217, 2023.

Kendall, M. G. Rank correlation methods. Griffin, 1948.

Kerdreux, T., Pedregosa, F., and d’Aspremont, A. Frank-
wolfe with subsampling oracle. In International Con-
ference on Machine Learning, pp. 2591–2600. PMLR,
2018.

Khachiyan, L. G. Rounding of polytopes in the real num-
ber model of computation. Mathematics of Operations
Research, 21(2):307–320, 1996.

10

https://arxiv.org/abs/2402.10500
https://arxiv.org/abs/2402.10500

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

Khetan, A. and Oh, S. Data-driven rank breaking for effi-
cient rank aggregation. In International Conference on
Machine Learning, pp. 89–98. PMLR, 2016.

Kiefer, J. Sequential minimax search for a maximum. Pro-
ceedings of the American mathematical society, 4(3):
502–506, 1953.

Kiefer, J. and Wolfowitz, J. The equivalence of two ex-
tremum problems. Canadian Journal of Mathematics, 12:
363–366, 1960.

Kveton, B., Szepesvari, C., Wen, Z., and Ashkan, A. Cas-
cading bandits: Learning to rank in the cascade model.
In Proceedings of the 32nd International Conference on
Machine Learning, 2015.

Lagree, P., Vernade, C., and Cappe, O. Multiple-play bandits
in the position-based model. In Advances in Neural In-
formation Processing Systems 29, pp. 1597–1605, 2016.

Lattimore, T. and Szepesvari, C. Bandit Algorithms. Cam-
bridge University Press, 2019.

Li, S., Wang, B., Zhang, S., and Chen, W. Contextual
combinatorial cascading bandits. In Proceedings of the
33rd International Conference on Machine Learning, pp.
1245–1253, 2016.

Luce, R. D. Individual Choice Behavior: A Theoretical
Analysis. Dover Publications, 2005.

Manning, C., Raghavan, P., and Schutze, H. Introduction
to Information Retrieval. Cambridge University Press,
2008.

McInnes, L., Healy, J., and Melville, J. Umap: Uniform
manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426, 2018.

Mehta, V., Das, V., Neopane, O., Dai, Y., Bogunovic, I.,
Schneider, J., and Neiswanger, W. Sample efficient
reinforcement learning from human feedback via ac-
tive exploration. CoRR, abs/2312.00267, 2023. URL
https://arxiv.org/abs/2312.00267.

MS MARCO. MS MARCO Dataset.
https://microsoft.github.io/msmarco/, 2016.

Mukherjee, S., Lalitha, A., Kalantari, K., Deshmukh, A.,
Liu, G., Ma, Y., and Kveton, B. Optimal design for human
preference elicitation. In Advances in Neural Information
Processing Systems 37, 2024.

Negahban, S., Oh, S., Thekumparampil, K. K., and Xu, J.
Learning from comparisons and choices. The Journal of
Machine Learning Research, 19(1):1478–1572, 2018.

Nesterov, Y. Introductory Lectures on Convex Optimiza-
tion: A Basic Course. Springer Publishing Company,
Incorporated, 1 edition, 2014.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens,
M., Askell, A., Welinder, P., Christiano, P., Leike, J., and
Lowe, R. Training language models to follow instructions
with human feedback. In Advances in Neural Information
Processing Systems 35, 2022.

Pan, Y., Tsang, I. W., Chen, W., Niu, G., and Sugiyama, M.
Fast and robust rank aggregation against model misspeci-
fication. Journal of Machine Learning Research, 23(23):
1–35, 2022.

Plackett, R. L. The analysis of permutations. Journal of the
Royal Statistical Society: Series C (Applied Statistics),
24(2):193–202, 1975.

Pozrikidis, C. An introduction to grids, graphs, and net-
works. Oxford University Press, USA, 2014.

Pukelsheim, F. Optimal Design of Experiments. Society for
Industrial and Applied Mathematics, 2006.

Radlinski, F., Kleinberg, R., and Joachims, T. Learning
diverse rankings with multi-armed bandits. In Proceed-
ings of the 25th International Conference on Machine
Learning, pp. 784–791, 2008.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C., Ermon,
S., and Finn, C. Direct preference optimization: Your
language model is secretly a reward model. In Advances
in Neural Information Processing Systems 36, 2023.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence
embeddings using siamese bert-networks. In Proceed-
ings of the 2019 Conference on Empirical Methods in
Natural Language Processing. Association for Compu-
tational Linguistics, 11 2019. URL http://arxiv.
org/abs/1908.10084.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta,
B. B., Chen, X., and Wang, X. A survey of deep active
learning. ACM Computing Surveys (CSUR), 54(9):1–40,
2021.

Riquelme, C., Tucker, G., and Snoek, J. Deep Bayesian ban-
dits showdown: An empirical comparison of Bayesian
deep networks for Thompson sampling. In Proceedings
of the 6th International Conference on Learning Repre-
sentations, 2018.

Saha, A. and Gopalan, A. Active ranking with subset-
wise preferences. In Proceedings of the 22nd Interna-
tional Conference on Artificial Intelligence and Statistics,
2019a.

11

https://arxiv.org/abs/2312.00267
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

Saha, A. and Gopalan, A. PAC battling bandits in the
Plackett-Luce model. In Proceedings of the 30th Inter-
national Conference on Algorithmic Learning Theory,
2019b.

Sun, W., Yan, L., Ma, X., Ren, P., Yin, D., and Ren, Z. Is
chatgpt good at search? investigating large language mod-
els as re-ranking agent. arXiv preprint arXiv:2304.09542,
2023.

Szorenyi, B., Busa-Fekete, R., Paul, A., and Hullermeier,
E. Online rank elicitation for Plackett-Luce: A dueling
bandits approach. In Advances in Neural Information
Processing Systems 28, 2015.

Tennenholtz, G., Chow, Y., Hsu, C.-W., Shani, L., Liang, E.,
and Boutilier, C. Embedding-aligned language models.
arXiv preprint arXiv:2406.00024, 2024.

Tversky, A. and Kahneman, D. Judgment under uncertainty:
Heuristics and biases. Science, 185(4157):1124–1131,
1974.

Woodbury, M. A. Inverting modified matrices. Department
of Statistics, Princeton University, 1950.

Xu, T., Wang, Y., Zou, S., and Liang, Y. Provably effi-
cient offline reinforcement learning with trajectory-wise
reward. arXiv preprint arXiv:2206.06426, 2022.

Yang, J. and Tan, V. Minimax optimal fixed-budget best arm
identification in linear bandits. In Advances in Neural
Information Processing Systems 35, 2022.

Yuan, M., Lin, H.-T., and Boyd-Graber, J. Cold-start ac-
tive learning through self-supervised language modeling.
arXiv preprint arXiv:2010.09535, 2020.

Zanette, A. When is realizability sufficient for off-policy
reinforcement learning? In International Conference on
Machine Learning, pp. 40637–40668. PMLR, 2023.

Zhao, R. An away-step frank-wolfe method for minimizing
logarithmically-homogeneous barriers. arXiv preprint
arXiv:2305.17808, 2023.

Zhao, R. and Freund, R. M. Analysis of the frank–wolfe
method for convex composite optimization involving a
logarithmically-homogeneous barrier. Mathematical pro-
gramming, 199(1):123–163, 2023.

Zhu, B., Frick, E., Wu, T., Zhu, H., and Jiao, J. Starling-
7b: Improving llm helpfulness & harmlessness with rlaif,
November 2023a.

Zhu, B., Jiao, J., and Jordan, M. Principled reinforce-
ment learning with human feedback from pairwise or
K-wise comparisons. CoRR, abs/2301.11270, 2023b.
URL https://arxiv.org/abs/2301.11270.

Zong, S., Ni, H., Sung, K., Ke, N. R., Wen, Z., and Kveton,
B. Cascading bandits for large-scale recommendation
problems. In Proceedings of the 32nd Conference on
Uncertainty in Artificial Intelligence, 2016.

12

https://arxiv.org/abs/2301.11270

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

A. Related Work
Three recent papers studied a similar setting. Mehta et al. (2023) and Das et al. (2024) learn to rank pairs of items from
pairwise feedback. Mukherjee et al. (2024) learn to rank lists of K items from K-way feedback in (1). We propose a general
framework for learning to rank N items from K-way feedback, where K ≥ 2 and N ≥ K. Therefore, our setting is more
general than in prior works. Our setting is also related to other bandit settings as follows. Due to the sample budget, it is
reminiscent of fixed-budget best arm identification (BAI) (Bubeck et al., 2009; Audibert et al., 2010; Azizi et al., 2022; Yang
& Tan, 2022). The main difference is that we do not want to identify the best arm. We want to estimate the mean rewards of
N items to sort them. Online learning to rank has also been studied extensively (Radlinski et al., 2008; Kveton et al., 2015;
Zong et al., 2016; Li et al., 2016; Lagree et al., 2016; Hiranandani et al., 2019). We do not minimize cumulative regret or try
to identify the best arm.

We discuss related work on Frank-Wolfe (FW) methods next. The use of FW method for solving standard optimal design
problem (for linear and logistic regression) is not new. In fact, it can be traced even up to 1990s (Khachiyan, 1996).
Ahipaşaoğlu (2015) presents two first-order Frank-Wolfe algorithms with rigorous time-complexity analyses for the A-
optimal experimental design. Hendrych et al. (2023) optimize an experimental design by the Frank-Wolfe algorithm within
a mixed-integer convex optimization framework. Zhao & Freund (2023) introduce a generalized Frank-Wolfe method
for composite optimization with a logarithmically-homogeneous self-concordant barrier (LHSCB). None of these works
focus on ranking problems. Please see Zhao & Freund (2023) for a comprehensive literature review. Recently Zhao (2023)
proposed and analyzed Away-step variant of the FW (AFW) method for LHSCB problems. Just like in the case of Lipschitz
smooth problems, AFW achieves better empirical performance than standard FW method. However, we would like to
highlight that AFW is also infeasible for our problem since it has higher per-iteration cost than the standard FW method
which is already infeasible. Additionally, their implementation (Zhao, 2023, Sec 6.2-6.3) nitializes π0 with a uniform
distribution, which can also be a practical challenge for us since π is O(NK) dimensional. This is the reason we do not
compare against this algorithm. Our randomized Frank-Wolfe algorithm addresses this specific computational challenge
when solving for a D-optimal design for learning to rank with O(

(
N
K

)
) variables.

While other works have learning to rank with ranking feedback, motivated by learning preference models in RLHF (Rafailov
et al., 2023; Kang et al., 2023; Casper et al., 2023), our work is unique in applying optimal designs to collect human feedback
for learning to rank. Tennenholtz et al. (2024) show the benefits of using an optimal design of a state-dependent action set to
improve an embedding-aligned guided language agent’s efficiency. Additionally, Khetan & Oh (2016) and Pan et al. (2022)
provide optimal rank-breaking estimators for efficient rank aggregation under different user homogeneity assumptions. Our
work stands out by integrating optimal design with randomized Frank-Wolfe method in the context of ranking a large list of
N items through K-way ranking feedback.

In offline RL, the agent directly observes the past history of interactions. Note that these actions can be suboptimal and
there can be issues of data coverage and distribution shifts. Therefore in recent years pessimism under offline RL has
gained traction (Jin et al., 2021; Xu et al., 2022; Zanette, 2023). In contrast to these works, we study offline K-wise
preference ranking under PL and BTL models for pure exploration setting. We do not use any pessimism but use optimal
design (Pukelsheim, 2006; Fedorov, 2013) to ensure diversity among the data collected. If the action set is infinite, then
approximately optimal designs can sometimes be found efficiently (Lattimore & Szepesvari, 2019). (Sun et al., 2023)
investigated generative LLMs, such as ChatGPT and GPT-4, for relevance ranking in IR and found that properly instructed
LLMs can deliver competitive, even superior results to state-of-the-art supervised methods on popular IR benchmarks. We
note that our approach can further be used in such settings to enhance the performance.

There are also related works in the bandit community. Saha & Gopalan (2019a) proposed non-contextual algorithms. That
is, they do not have access to features of the items and hence the relevance (Plackett-Luce score) of each item is estimated
independently of other items. The paper studies two feedback models: the winner out of K items and top-m ranked items
out of K for m ≤ K. The performance metric is a ranking loss. We differ from this work by having a contextual algorithm,
which parameterizes the relevance of an item as a linear function of its feature. Szorenyi et al. (2015) also proposed
non-contextual algorithms. The paper studies dueling feedback. The performance metrics are the best item and a ranking
loss. We differ from this work by having a contextual algorithm and more general feedback than dueling (K > 2). Saha &
Gopalan (2019b) also proposed non-contextual algorithms. The paper studies two feedback models: the winner out of K
items and top-m ranked items out of K for m ≤ K. The performance metric is the best item. We differ from this work by
having a contextual algorithm and different performance metric.

The most naive approach to solving our problem is uniform sampling. That is πuniform(S) =
(
N
K

)−1 ∀S ∈ S. Its

13

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

convergence rate depends on the distribution of feature vectors and can be significantly worse than that of DopeWolfe. To
see this, consider K = 2 and N ≫ d. Let x1 = (1, 0, 0). For k > 1, let xk = (0, 1, 0) for even k and xk = (0, 0, 1) for
odd k. In this case, only N − 1 feature vector differences out of N(N − 1)/2 have a non-zero entry in the first dimension.
Therefore, the minimum eigenvalue of Vπ grows at the rate of Ω(T/N) in expectation, unlike Ω(T/d) in the D-optimal
design. The implication for the bounds is that one d in Proposition 1 is replaced with N and the only d in Proposition 2 is
replaced with N .

B. Theoretical convergence rate analyses
This section provides the theoretical convergence rate analysis of DopeWolfe (Algorithm 2). We do this by first proving a
more general result for the broad class of LHSCB problems (11). Then we will provide the convergence rate of DopeWolfe
as a corollary of this result.

B.1. Generic Randomized FW method for solving the LHSCB problem

In this section we analyze the convergence of the generic randomize FW method (Algorithm 3) for minimizing composition
of θ-LHSCB functions and affine transformations. More precisely, we recall the studied optimization problem

min
y∈Y

F (y) = min
y∈Y

f(A(y)), (12)

where Y is the convex hull of a set V of Ñ vectors (Y = conv(V)), A : Y → K is a linear operator, K is a cone, and
f : int(K)→ R is a θ-logarithmically-homogeneous self-concordant barrier (LHSCB) (Zhao & Freund, 2023). Next we
define the LHSCB function.

Definition 5. We say that a function f is θ-logarithmically homogenous self-concordant barrier (LHSCB) if

1. f : K → R is a convex mapping with a regular cone K ⊊ Rm (closed, convex, pointed and with non-empty interior
int(K)) as its domain,

2. f is θ-logarithmically homogenous, i.e. f(tu) = f(u)− θ log t, for all u ∈ int(K) and t > 0 for some θ ≥ 1,

3. f is self-concordant, i.e. |D3f(u)[v, v, v]|2 ≤ 4⟨v,∇2f(u)v⟩3 for all u ∈ int(K) and v ∈ Rm, where D3f(u)[v, v, v]
is the third order derivative of f at u in the direction v and ∇2f(u) is the Hessian of f at u, and

4. f is a barrier, i.e. f(uk)→ +∞ for any (uk)k≥0 ⊆ int(K) and uk → u ∈ bd(K), where bd(K) is the boundary of
K.

From the above assumption it is clear that problem (12) is a convex problem.

Algorithm 3 Randomized Frank-Wolfe Method for LHSCB Problem (12)
Input: y0 such that A(y0) ∈ int(K), sample size R

1 for t = 0, 1, . . . , TFW do
2 Sample R (≤ Ñ) subsets uniformly at random from V: Rt ∼ Uniform({R ⊆ S | |R| = R⌉})

Compute vt = argmin
v∈Rt

⟨∇F (yt), v⟩ // Randomizes LMO

3 Compute αt = argmin
α∈[0,1]

F (xt + α(vt − xt)) // Line Search

4 Update xt+1 = xt + αt(vt − xt)

In Algorithm 3, we provide the generic randomize FW method for solving problem (12). Before providing its convergence
rate we state a known property of LHSCB functions. It is know that LHSCB functions satisfy the following approximate
second-order upper bound. We define, for a given positive semi-definite matrix M , the weighted norm ∥u∥M =

√
uTMu.

Proposition 6 ((Zhao & Freund, 2023; Nesterov, 2014)). Let f : K → R be LHSCB. Then,

f(u) ≤ f(v) + ⟨∇f(u), v − u⟩+ ω(∥v − u∥∇2f(u)) , ∀u ∈ int(K), v ∈ K (13)

14

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

where

ω(a) =

{
−a− ln(1− a), a < 1

+∞, 1 ≤ a.
(14)

Note that the ω is convex and non-negative in (−∞, 1).

Now we are ready to provide the convergence rate of Algorithm 3. For the sake of clarity, we restate Theorem 3 with more
details below. This proof is inspired from the proof techniques developed in (Kerdreux et al., 2018; Zhao & Freund, 2023).
Theorem 7. Let the initial iterate y0 maps to domain of f , i.e. A(y0) ∈ int(K), and δ0 = F (y0) −miny∈Y F (y), then
Randomized FW method (Algorithm 3) which uniformly samples R elements from V for computing the randomized LMO at
each step outputs an ε sub-optimal solution to the θ-LHSCB problem (11) in expectation, after

TFW =
⌈
5.3

Ñ

R
(δ0 + θ)max

{
ln
(
10.6

Ñ

R
δ0

)
, 0
}⌉

+
⌈
12

Ñ

R
θ2 max

{1
ε
−max

{ 1

δ0
, 10.6

Ñ

R

}
, 0
}⌉

, (15)

iterations, i.e. E[F (yTFW
)]−miny∈Y F (y) ≤ ε.

Proof. First notice that since A is a linear mapping, the update rule in Algorithm 3 can be re-written as

vt = argmin
v∈Rt

⟨∇F (yt), v⟩ = argmin
v∈Rt

⟨A⊤(∇f(A(yt))), v⟩ = argmin
v∈Rt

⟨∇f(A(yt)),A(v)⟩, (16)

and
αt = argmin

α∈[0,1]

F ((1− α)yt + αv) = argmin
α∈[0,1]

f(A((1− α)yt + αv)). (17)

Above also follows from the well-known affine invariance property of FW method (Jaggi, 2013). Next using Proposition 6
we get

F ((1− α)yt + αvt) = f(A((1− α)yt + αvt))

≤ f(A(yt)) + ⟨∇f(A(yt)),A((1− α)yt + αvt)⟩+ ω(∥A((1− α)yt + αvt)∥∇2f(A(yt)))

≤ F (yt) + α⟨∇f(A(yt)),A(vt − yt)⟩+ ω(α∥A(vt − yt)∥∇2f(A(yt))).

Let Gt = −⟨∇f(A(yt)),A(vt − yt)⟩ and Dt = ∥A(vt − yt)∥∇2f(A(yt)). We also assume that v∗t ∈
argmin v∈V⟨∇f(A(yt)), v⟩ is the output of the LMO if we run regular deterministic FW method (general version of
Algorithm 1) at iteration t. Note that we can also define this LMO output as v∗t ∈ argmin v∈Y⟨∇f(A(yt)), v⟩ since
Y = conv(V) and a minimizier of a linear functional on a closed convex polytope is one of its vertices. Using this definition
of v∗t we also define G∗

t = −⟨∇f(A(yt)),A(v∗t − yt)⟩ and D∗
t = ∥A(v∗t − yt)∥∇2f(A(yt)). Then taking the minimum

w.r.t. α on both sides of the above inequality yields

F (yt+1) = min
α∈[0,1]

F ((1− α)yt + αvt) ≤ F (yt) + min
α∈[0,1]

[−αGt + ω(αDt)], (18)

and by taking expectation conditioned on the randomness of yt we get

E[F (yt+1) | yt] ≤ F (yt) + E[min
α∈[0,1]

[−αGt + ω(αDt)] | yt]. (19)

Notice that when α = 0 we obviously have that −αGt + ω(αDt) = 0 since ω(0) = 0. Therefore, minα∈[0,1][−αGt +
ω(αDt)] ≤ 0. Note that, in contrast to regular FW method (Algorithm 1) where Gt is always negative, for the worst
case sampling of Rt, the quantity Gt can be positive. Therefore, choosing the α dynamically is necessary to ensure
non-increasing objective values in randomized FW (Kerdreux et al., 2018). Next, we upper bound the above inequality as

E[F (yt+1) | yt] ≤ F (yt) + (1− Prob(v∗t ∈ Vt)) · 0 + Prob(v∗t ∈ Vt) min
α∈[0,1]

[−αG∗
t + ω(αD∗

t)]

= F (yt) + (R/Ñ) min
α∈[0,1]

[−αG∗
t + ω(αD∗

t)]. (20)

Now notice that the above “descent lemma” inequality is similar to (Zhao & Freund, 2023, Inequality 2.7), except for the
conditional expectation on the LHS and the discount factor (R/Ñ) ≤ 1 on second term which corresponds to the minimum
decrease in objective value. Therefore, rest of the proof follow similar arguments as (?)Theorem 1]zhao2023analysis.

15

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

This proves that randomized FW method convergence to the the minimizer of the LHSCB problem in ((Ñ/R)ε−1) steps.
Compared to regular FW method, randomized version increases the iteration complexity by a factor of Ñ/R. We see similar
increase in iteration complexity even for convex problems with bounded Lipschitz smoothness (Kerdreux et al., 2018). In
the next section we specialize this result to provide a convergence rate guarantee for DopeWolfe (Algorithm 2).

B.2. Theoretical analysis of DopeWolfe

Again for the sake of clarity we first restate Corollary 4 providing the iteration complexirt of DopeWolfe (Algorithm 4) with
more details and then provide its proof.
Corollary 8 (of Theorem 7). Let Vπ0

be full-rank, γ = 0, R ≤
(
N
K

)
, αtol be small enough and δ0 = maxπ∈∆S g(π)−g(π0),

then DopeWolfe (Algorithm 2) which uniformly samples R subsets from S for computing the randomized LMO at each step,
outputs an ε sub-optimal solution to the D-optimal design problem (7) in expectation, after

Tod =
⌈
5.3

(
N
K

)
R

(δ0 + d)max
{
ln
(
10.6

(
N
K

)
R

δ0

)
, 0
}⌉

+
⌈
12

(
N
K

)
R

d2 max
{1
ε
−max

{ 1

δ0
, 10.6

(
N
K

)
R

}
, 0
}⌉

(21)

iterations, i.e. maxπ∈∆S g(π)− E[g(πTod
)] ≤ ε.

Proof. Let Sd+ be the regular cone of all PSD matrices of dimension d× d. Then we notice that the maximization problem
in the D-optimal design (7) can be written as a special case of the minimization problem (12) by setting F = −g, y = π,
K = Sd+, f = − log det : Sd+ → R, A =

∑
S∈S π(S)ASA

⊤
S : π → Sd+, and V = S (Ñ =

(
N
K

)
). It is known that

f = log det is an LHSCB function (Definition 5) with θ = d (Zhao & Freund, 2023). Moreover, A maps to Sd+ because
π(S)ASA

⊤
S is PSD for all S ∈ S.

This equivalence implies that when αtol → 0 and γ = 0, running DopeWolfe (Algorithm 2) is equivalent to running
randomized FW method (Algorithm 3) for the above specialization. Please see Section 5 for description of how various
sub-routines of Algorithm 2 implements varioius steps of Algorithm 3. Finally, we can satisfy the condition y0 = int(K) if
Vπ0

is full rank since Vπ0
∈ int(Sd+). Then the the iteration complexity of DopeWolfe directly follows from Theorem 7.

Note that above theorem requires that αtol is small enough, but since GoldenSearch is an exponentially fast algorithm,
αtol can reach machine precision in a very few steps. For example in our implementation we set αtol = 10−16 and this is
achieved in 76 steps of GoldenSearch.

C. Additional algorithmic details and sub-routines for DopeWolfe
In this section, we provide additional details for DopeWolfe (Algorithm 2). We begin by providing the complete pseudocode
for the three undefined sub-routines of DopeWolfe (UpdateInverse, GoldenSearch, UpdateLogDet) in Algorithm 4.
Next we provide explanation for various algorithmic choices made in DopeWolfe.

C.1. Low-rank update for the log det objective

As mentioned in Section 5.2 computing objective function values involves computing the log det of a d× d matrix which
has a worst case complexity of O(d3). However, we simplify this computation by noting that Vπ is only updated with the
r =

(
K
2

)
rank matrix ASA

⊤
S (for some S). Since AS ∈ Rr×d this is a low-rank matrix when r ≪ d, which allows us to

simplify the relevant change in objective function value after the convex combination with a step size α as follows. For the
sake of simplicity, we denote Ṽ inv = (Vπ)

−1/(1− α) and Ã =
√
αAS . Then,

g((1− α) · π + α · eS)− g(π)

= log det
(
(1− α)Vπ + αASA

⊤
S

)
− log det(Vπ)

= log det
(
(1− α)(Id×d + ÃÃ⊤Ṽ inv)Vπ

)
− log det(Vπ)

= d log(1− α) + log det(Id×d + ÃÃ⊤Ṽ inv)

= d log(1− α) + log det(Ir×r + Ã⊤Ṽ invÃ), (22)

where the third equality follows from the facts that log det(BC) = log det(B) + log det(C) and log det(cBd×d) =
d log(c)+ log det(B), and the third equality follows from the Weinstein–Aronszajn identity log det(I+BC) = log det(I+

16

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

Algorithm 4 Sub-routines required for Algorithm 2
1 Sub-routine UpdateInverse(V inv, A, α):
2 Set r =

(
K
2

)
, Ṽ inv = V inv/(1− α), and Ã =

√
αA

3 V inv
+ = Ṽ inv − V invÃ

(
Ir×r + ÃTV invÃ

)−1

ÃTV inv

4 return V inv
+

5 Sub-routine GoldenSearch(V inv, A, αtol):
6 Set φ = (

√
5 + 1)/2, αa = 0, αh = αb = 1

7 Initialize:
8 αc = αa + αhφ

−2, αd = αa + αhφ
−1

9 V ld
c = UpdateLogDet(V inv, A, αc)

V ld
d = UpdateLogDet(V inv, A, αd)

10 while |αa − αb| ≥ αtol do
11 αh = αhφ

−1

12 if V ld
c > V ld

d then
13 αb, αd, V

ld
d , αc = αd, αc, V

ld
c , αa + αhφ

−2

14 V ld
c = UpdateLogDet(V inv, A, αc)

15 else
16 αa, αc, V

ld
c , αd = αc, αd, V

ld
d , αa + αhφ

−1

17 V ld
d = UpdateLogDet(V inv, A, αd)

18 return (αa + αb)/2

19 Sub-routine UpdateLogDet(V inv, A, α) :
20 Set r =

(
K
2

)
, Ṽ inv = V inv/(1− α), and Ã =

√
αA

21 V ld
+ = d log(1− α) + log det

(
Ir×r + Ã⊤Ṽ invÃ

)
22 return V ld

+

CB) (Pozrikidis, 2014). GoldenSearch sub-routine (Line 5 of Algorithm 4) in turn uses the UpdateLogDet sub-routine
(Line 19 of Algorithm 4) which implements (22) assuming the access to V −1

π . Since (22) computes log det of an r × r
matrix we reduce complexity of computing change in objective function values from O(d3) to O(r3 + rd2). Note that one
can further reduce the total complexity of GoldenSearch from O(logφ(α

−1
tol)(r

3 + rd2)) to O(logφ(α
−1
tol) + r3 + rd2)

by computing eigenvalues {λi} of A⊤
St
V −1
πt

ASt once and then computing the change in objective function values as
d log(1− α) +

∑r
i log(1 + αλi), however this approach may be numerically less stable.

C.2. Low-rank inverse update

Here we expand on how DopeWolfe computes the inverse of the d× d matrix Vπt
used in PartialGrad (Line 12 of

Algorithm 2) and UpdateLogDet (Line 19 of Algorithm 4) sub-routines. Naively implementing it at every iteration incurs
a cost of O(d3) every iteration. Instead, UpdateInverse sub-routine (Line 1 of Algorithm 4) is used in DopeWolfe to
iteratively update the matrix V inv storing the inverse as follows

V inv
+ = ((1− α)Vπ + αASA

⊤
S)

−1

= ((Ṽ inv)−1 + ÃÃ⊤)−1 (23)

= Ṽ inv − Ṽ invÃ(Ir×r + Ã⊤Ṽ invÃ)−1Ã⊤Ṽ inv,

where we used the notations from Section 5.2 and the second equality used the Woodburry matrix inversion identity
(Guttman, 1946; Woodbury, 1950) with r =

(
K
2

)
. When r ≪ d, this update rule improves the complexity of finding

the inverse to O(r3 + rd2). Similarly V inv
0 is also initialized using the same UpdateInverse sub-routine (Line 3 of

17

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

Algorithm 2) because (for γ < 1):

V inv
0 = (AS−1

A⊤
S−1

+ γId×d)
−1

= (γId×d + (1− γ)AS−1
A⊤

S−1
/(1− γ))−1

= UpdateInverse(Id×d, AS−1
/(1− γ), 1− γ) (24)

Therefore even initialization only costs O(r3 + rd2) compute.

C.3. Sparse iterate update

Finally we discuss how we store and update the large
(
N
K

)
dimensional iterate πt (Line 9 of Algorithm 2). If we initialize

DopeWolfe with a sparse π0 and if Tod ≪
(
N
K

)
, then its iterates are sparse since the update rule πt+1 = (1−αt)·πt+αt ·eSt

consists of the one-hot probability vector eSt . This implies that maintaining πt as a
(
N
K

)
dimensional dense vector is

unnecessary and expensive. Therefore, DopeWolfe maintains it as sparse vector π(sp)
t (scipy.sparse.csc array3)

of size
(
N
K

)
. This begs the question how DopeWolfe maps a subset S ∈ S to an index of π(sp)

t . DopeWolfe answers this by
using the combinadics number system of order K4 which defines a bijective mapping, CK : S → [

(
N
K

)
], from the collection

of subsets of size K to integers. Therefore our update rule in terms of π(sp)
t translates to π

(sp)
t+1 = (1−αt)·π(sp)

t +αt ·e(sp)CK(St)
,

where e
(sp)
CK(St)

is the basis vector for the CK(St)-th dimension. These modifications improves the worst case complexity of

updating and maintaining πt after t iterations from O(
(
N
K

)
) to only O(t).

D. Additional Experimental Details and Results
In this section we provide additional experimental details and results that were omitted from Section 6.

We experiment with (a) BEIR-COVID5, (b) Trec Deep Learning (TREC-DL)6, and (c) NECTAR7 datasets. These are
question-answering datasets, where the task is to rank answers or passages by relevance to the question. Each question in
BEIR-COVID and TREC-DL has a hundred potential answers. Each question in NECTAR has seven potential answers. All
the following experiments are conducted on 3.5 GHz 3rd generation Intel Xeon Scalable processors with 128 vCPUs and
1TB RAM. Code for our experiments is available at https://github.com/tkkiran/DopeWolfe.

D.1. Synthetic Feedback Setup

In this section we provide additional experimental details and results that were omitted from Section 6.2.

We first compute 384-dimensional dense BERT embeddings (Reimers & Gurevych, 2019) for each question and answer,
and then reduce the embedding dimensions to 10 by fitting UMAP (McInnes et al., 2018) on the answers in a dataset. The
same UMAP transformation is applied to questions to get 10-dimensional embedding of the questions. Let q and a be the
projected embeddings of a question and an answer to it. Then, we consider the outer product vec(qaT) as the feature vector
of the question-answer pair. Its length is d = 100. We choose a random θ∗ ∈ R100 to generate feedback in (1).

The output of DopeWolfe is a distribution over all K-subsets of the original set of N items. To show the efficacy of
DopeWolfe, we compare it with the following baselines:

leftmirgin=0.5cm Uniform: This approach chooses K-subsets at random with equal probability.

leftmiirgiin=0.5cm DBSCAN: We apply DBSCAN clustering (Ester et al., 1996) over features of all K-subsets, each
of which is a concatenation of the features of the items in it. DBSCAN has a distance hyper-
parameterϵ that has a major impact on the clustering. To select it, we evaluate several clustering
ϵ ∈ {10−5, 10−4, . . . , 1}, and choose the one that results in the fewest clusters; and then define

3https://scipy.org/
4https://en.wikipedia.org/wiki/Combinatorial_number_system
5https://huggingface.co/datasets/BeIR/trec-covid
6https://microsoft.github.io/msmarco/TREC-Deep-Learning
7https://huggingface.co/datasets/berkeley-nest/Nectar

18

https://github.com/tkkiran/DopeWolfe
https://scipy.org/
https://en.wikipedia.org/wiki/Combinatorial_number_system

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

uniform distribution over the cluster centers. This can be viewed as the sparsest distribution of core
samples or centroids.

leftmiiirgiiin=0.5cm m-medoids: We set m to the size of the support of the distribution from DopeWolfe. Then, we run
the m-medoids algorithm 8 over the same features as in DBSCAN. Finally, we select K-subsets
associated with (centroids) at random with equal probabilities. Note that this approach has extra
information in terms of m which other methods do not have.

We consider 1 random question in BEIR-COVID and TREC-DL datasets. The number of 2-way subsets and 3-way subsets
for one question with hundred answers are

(
100
2

)
= 4950 and

(
100
3

)
= 161700, respectively. We consider random 30,000

questions in NECTAR dataset. The number of 2-way subsets and 3-way subsets, where each question has seven answers, are
30000

(
7
2

)
= 630000 and 30000

(
7
3

)
= 1050000, respectively. Given a sample size T , we fit a PL ranking model. m-medoids

fails for the NECTAR dataset due to excessive memory requirements (2 TB and 8 TB of RAM, respectively).

In Figure 4, we show the mean NDCG metric (higher is better) for the experiment in Section 6.2 for K = 2, 3 on the three
datasets. The observations are consistent with Section 6.2, where DopeWolfe achieves better ranking performance than
baselines.

(a) BEIR-COVID, K = 2 (b) TREC-DL, K = 2 (c) NECTAR, K = 2

(d) BEIR-COVID, K = 3 (e) TREC-DL, K = 3 (f) NECTAR, K = 3

Figure 4. Mean NDCG metric (higher is better) on BEIR-COVID, TREC-DL and NECTAR datasets with synthetic feedback.

We next show the ranking loss (2) (lower is better) and NDCG metric (higher is better) for K = 4 for BEIR-COVID and
TREC-DL datasets in Figure 5 for the synthetic setup (Section 6.2. Note that, for NECTAR dataset, since the number of
answers for each question are only seven, the number of possible subsets are same for K = 3 and K = 4; thus, we ignore
NECTAR dataset for K = 4. We again observe that DopeWolfe achieves better performance than baselines on the ranking
task.

D.2. Real Feedback Setup

In this section, we provide more details on the experimental choices for the experiment with real feedback (Section 6.3).

We use real feedback from TREC-DL and BEIR-COVID datasets. Each question in TREC-DL and BEIR-COVID datasets
has 100 potential answers. The answers are ranked. When a learning algorithm queries a subset of K answers, the feedback
is their ranked order in the dataset. We vary K at a fixed value of T and observe how the metrics change.

Similarly to Section 6.2, we evaluate the feedback elicitation methods by assessing the downstream performance of the
learned PL model. Specifically, we compare DopeWolfe to Uniform sampling for feedback elicitation. DBSCAN and

8https://tinyurl.com/scikit-learn-m-medoids

19

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

(a) BEIR-COVID, K = 4 (b) BEIR-COVID, K = 4

(c) TREC-DL, K = 4 (d) TREC-DL, K = 4

Figure 5. BEIR-COVID and TREC-DL datasets with synthetic feedback: Mean KDtau and NDCG metric on Datasets for K = 4. On
average, DopeWolfe achieves better performance than Uniform sampling and DBSCAN.

m-medoids are excluded from this comparison due to their inability to scale effectively for this problem size.

For both BEIR-COVID and TREC-DL datasets, since the feedback is real, we use more representative 1024 dimensional
BGE-M3 embedding (Chen et al., 2024) to ensure that the features are rich and reasonable enough to capture the true
ranking (realizable ranking problem). We then apply Principal Component Analysis (PCA) (Abdi & Williams, 2010) so that
the feature matrix is full rank. We end up with 98 and 78 features for BEIR-COVID and TREC-DL datasets, respectively.
We then run DopeWolfe on the datasets by setting γ = 10−6, αtol = 10−16, and R = min(

(
100
K

)
, 105) and initializing

it with a uniformly chosen single subset, i.e. nnz(π0) = 1. We find that the DopeWolfe converges in 200 iterations for
BEIR-COVID and in 1500 iterations for TREC-DL. Since the feedback is real and does not change whenever we sample a
new K-way subset for feedback, we pick the top K-way subsets that have the highest probability mass in the sampling
distribution obtained through DopeWolfe. Note that due to significant amount of ranking ties in the BEIR-COVID dataset,
we use the MLE for the pairwise rank breaking of the observations (Negahban et al., 2018, Equation 39, Page 25) instead
of the K-wise MLE (3). We found that choosing only top-25 K-way subsets for BEIR-COVID works well, possibly
due to the simpler nature of the problem as a consequence of the ties. For TREC-DL dataset, we choose top-500 K-way
subsets. Lastly, we run the Plackett-Luce model’s maximum likelihood estimation process using gradient descent with
Barzilai-Borwein stepsize rule (Barzilai & Borwein, 1988) with min and max stepsize clip values of 10−8 and 5× 104/103

for BEIR-COVID/TREC-DL, which converges in 200/1000 iterations for BEIR-COVID/TREC-DL. All the reported metrics
provide mean and standard error over over 10 trials.

The ranking loss (2) results for this experiment is shown in Figure 3. We also show NDCG@10 for this experiment in
Figure 6. We choose NDCG@10 to show the accuracy at the top of the ranking. In the NDCG computation, we use linear
gain function for BEIR-COVID, and an exponential gain with temperature 0.1 for TREC-DL with the aim of differentiating
its very close score values. We see that DopeWolfe performs better than the baselines for the ranking tasks in both datasets.

D.3. Practical Run Time Comparison

We now compare the run time of DopeWolfe with DBSCAN. Although the running times for DopeWolfe and DBSCAN are
not directly comparable due to different deciding parameters—DopeWolfe relies on the number of Frank-Wolfe iterations,
while DBSCAN depends on the distance threshold (ϵ). We chose DBSCAN as a baseline clustering algorithm, because it
does not require an input parameter specifying distribution sparsity (e.g., m-medoids requiring m), and it provides cluster
centers as actual data points.

Nonetheless, in Table 1, we present run-time comparisons for DopeWolfe with 1000 Frank-Wolfe iterations and DBSCAN

20

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

(a) BEIR-COVID (b) TREC-DL

Figure 6. BEIR-COVID and TREC-DL datasets with real feedback: Models learned through ranking feedback collected on DopeWolfe

samples achieve higher NDCG@10 than the ones learned on Uniformly selected samples.

Table 1. Run time comparison: DopeWolfe vs DBSCAN.
Method Time in Seconds
DopeWolfe at 1000 iterations 1646.70
DBSCAN (ϵ = 10−5) 37.52
DBSCAN (ϵ = 10−4) 37.46
DBSCAN (ϵ = 10−3) 39.63
DBSCAN (ϵ = 10−2) 69.28
DBSCAN (ϵ = 10−1) 1346.28
DBSCAN (ϵ = 1) 3397.21

with distance thresholds varying between [10−5, . . . , 1], as explained in Section 6.2 for the BEIR-COVID dataset with
K = 3, corresponding to 161,700 possible subsets. We observe that DBSCAN takes twice the time of our proposed method
for ϵ = 1. The total run-time for the DBSCAN-based baseline is 4927.38 seconds; whereas ours is only 1646.70 seconds.
Although we used 1000 iterations in all our experiments, convergence is typically achieved in around 100 iterations, yielding
similar performance, which only takes 164.67 seconds. This demonstrates that our proposed method not only achieves
superior performance but also is computationally efficient.

D.4. Additional baseline

The closest related work from the bandit baselines in Appendix A is Saha & Gopalan (2019a) and we compare to it in the
following experiments. Since both of their algorithms perform comparably, we implemented simpler Beat-the-Pivot (for TR
feedback) as follows:

1. We give Beat-the-Pivot the optimal pivot (best item). This simplifies our implementation while giving Beat-the-Pivot a
slight advantage.

2. We divide all items into groups of size K − 1 and add the pivot to each group.

3. We go over the groups in a round robin and get ranking feedback on them. For each item in each group, we estimate
the fraction of times that it beats the pivot.

4. We sort the items by the fraction of times that they beat the pivot in a descending order. This yields the final ranked list.

We report our results in the synthetic feedback setting (Section 6.2) in Tables 2 and 3.

We observe that Beat-the-Pivot performs worse than any of our current baselines (compare to Figure 1 on page 7 and Figure
3 in Appendix). This is because the approach is not contextual. Specifically, since the relevance of each item is estimated

21

Comparing Few to Rank Many: Active Human Preference Learning Using Randomized Frank-Wolfe Method

Dataset K 100 200 300 400 500 600 700 800 900 1000
BEIR-COVID 2 0.87 ± 0.01 0.82 ± 0.01 0.80 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.76 ± 0.01 0.74 ± 0.01 0.73 ± 0.01 0.72 ± 0.01 0.70 ± 0.01
BEIR-COVID 3 0.83 ± 0.01 0.78 ± 0.01 0.75 ± 0.01 0.73 ± 0.01 0.71 ± 0.01 0.69 ± 0.01 0.67 ± 0.01 0.67 ± 0.01 0.65 ± 0.01 0.63 ± 0.01
TREC-DL 2 0.99 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
TREC-DL 3 0.97 ± 0.01 0.98 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.93 ± 0.01 0.93 ± 0.01

Table 2. Mean ranking loss of Beat-the-Pivot.

Dataset K 100 200 300 400 500 600 700 800 900 1000
BEIR-COVID 2 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.22 ± 0.00 0.21 ± 0.00 0.21 ± 0.00
BEIR-COVID 3 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.22 ± 0.00 0.21 ± 0.00 0.22 ± 0.00 0.22 ± 0.00 0.22 ± 0.00 0.22 ± 0.00 0.22 ± 0.00
TREC-DL 2 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00
TREC-DL 3 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00

Table 3. NDCG of Beat-the-Pivot.

independently, Beat-the-Pivot is less statistically efficient than the methods that utilize features. Due to this shortcoming, we
also do not run experiments on the NECTAR dataset, which has 30k separate lists. Even with a total of 1000 samples, the
number of samples allotted to a list could be 0 and non-contextual algorithms cannot share information across lists.

22

