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Abstract

Structural pruning can simplify network architecture and improve inference speed.
We propose Hardware-Aware Latency Pruning (HALP) that formulates structural
pruning as a global resource allocation optimization problem, aiming at maximiz-
ing the accuracy while constraining latency under a predefined budget on targeting
device. For filter importance ranking, HALP leverages latency lookup table to track
latency reduction potential and global saliency score to gauge accuracy drop. Both
metrics can be evaluated very efficiently during pruning, allowing us to reformu-
late global structural pruning under a reward maximization problem given target
constraint. This makes the problem solvable via our augmented knapsack solver,
enabling HALP to surpass prior work in pruning efficacy and accuracy-efficiency
trade-off. We examine HALP on both classification and detection tasks, over vary-
ing networks, on ImageNet and VOC datasets, on different platforms. In particular,
for ResNet-50/-101 pruning on ImageNet, HALP improves network throughput
by 1.60⇥/1.90⇥ with +0.3%/�0.2% top-1 accuracy changes, respectively. For
SSD pruning on VOC, HALP improves throughput by 1.94⇥ with only a 0.56
mAP drop. HALP consistently outperforms prior art, sometimes by large margins.
Project page at https://halp-neurips.github.io/.

1 Introduction

Convolutional Neural Networks (CNNs) act as the central tenet behind the rapid development in
computer vision tasks such as classification, detection, segmentation, image synthesis, among others.
As performance boosts, so do model size, computation, and latency. With millions, sometimes billions
of parameters (e.g., GPT-3 [4]), modern neural networks face increasing challenges upon ubiquitous
deployment, that mostly faces stringent constraints such as energy and latency [9, 46, 45, 55]. In
certain cases like autonomous driving, a breach of real-time constraint not only undermines user
experience, but also imposes critical safety concerns. Even for cloud service, speeding up the
inference directly translates into higher throughput, allowing more clients and users to benefit from
the service.

One effective and efficient method to reduce model complexity is network pruning. The primary
goal of pruning is to remove the parameters, along with their computation, that are deemed least
important for inference [2, 20, 37, 45]. Compatible with other compression streams of work such as
quantization [5, 64, 73], dynamic inference [31, 67, 70], and distillation [23, 47, 69], pruning enables
a flexible tuning of model complexity towards varying constraints, while requiring much less design
efforts by neural architecture search [58, 61, 65] and architecture re-designs [24, 42, 59]. Thus, in this
work, we study pruning, in particular structured pruning that reduces channels to benefit off-the-shelf
platforms, e.g., GPUs.

⇤Equal contribution.
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Figure 1: The proposed hardware-aware latency pruning (HALP) paradigm. Considering both perfor-
mance and latency contributions, HALP formulates global structural pruning as a global resource
allocation problem (Section 3.1), solvable using our augmented Knapsack algorithm (Section 3.2).
Pruned architectures surpass prior work across varying latency constraints given changing network
architectures for both classification and detection tasks (Section 4).
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Figure 2: Pruning ResNet50 on the ImageNet dataset. The proposed HALP surpasses state-of-the-art
structured pruning methods over accuracy, latency, and FLOPs metrics. Target hardware is NVIDIA
Titan V GPU. Top-left is better.

As the pruning literature develops, the pruning criteria also evolve to better reflect final efficiency. The
early phase of the field focuses on maximum parameter removal in seek for minimum representations
of the pretrained model. This leads to a flourish of approaches that rank neurons effectively to
measure their importance [46, 62]. As each neuron/filter possesses intrinsically different computation,
following works explore proxy to enhance redundancy removal, FLOPs being one of the most widely
adopted metrics [32, 66, 72] to reflect how many multiplication and addition computes needed for
the model. However, for models with very similar FLOPs, their latency can vary significantly [58].
Recently, more and more works start directly working on reducing latency [6, 68, 55]. However, not
much was done in the field of GPU friendly pruning methods due to non-trivial latency-architecture
trade-off. For example, as recently observed in [51], GPU usually imposes staircase-shaped latency
patterns for convolutional operators with varying channels, which inevitably occur per varying
pruning rate, see the latency surface in Fig. 1. This imposes a constraint that pruning needs to be done
in groups to achieve latency improvement. Moreover, getting the exact look-up table of layers under
different pruning configurations will benefit maximizing performance while minimizing latency.

Pruning different layers in the deep neural network will result in different accuracy-latency trade-off.
Typically, removing channels from the latter layers has smaller impact on accuracy and smaller impact
on latency versus removing channels from the early layers. We ask the question, if it is better to
remove more neurons from latter layer or less from early layer to achieve the same accuracy-latency
trade-off. By nature, the problem is combinatorial and requires the appropriate solution.

In this paper, we propose hardware-aware latency pruning (HALP) that formulates pruning as a
resource allocation optimization problem to maximize the accuracy while maintaining a latency
budget on the targeting device. The overall workflow is shown in Fig. 1. For latency estimate per
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pruned architecture, we pre-analyze the operator-level latency values by creating a look-up table for
every layer of the model on the target hardware. Then we introduce an additional score for each
neuron group to reflect and encourage latency reduction. To this end, we first rank the neurons
according to their importance estimates, and then dynamically adjust their latency contributions. With
neurons re-calibrated towards the hardware-aware latency curve, we now select remaining neurons to
maximize the gradient-based importance estimates for accuracy, within the total latency constraint.
This makes the entire neuron ranking solvable under the knapsack paradigm. To enforce the neuron
selection order in a layer to be from the most important to the least, we have enhanced the knapsack
solver so that the calculated latency contributions of the remaining neurons would hold. HALP
surpasses prior art in pruning efficacy, see Fig. 2 and the more detailed analysis in Section 4. Our
main contributions are summarized as follows:

• We propose a latency-driven structured pruning algorithm that exploits hardware latency traits
to yield direct inference speedups.

• We orient the pruning process around a quick yet highly effective knapsack scheme that seeks
for a combination of remaining neuron groups to maximize importance while constraining to
the target latency.

• We introduce a group size adjustment scheme for knapsack solver amid varying latency contri-
butions across layers, hence allowing full exploitation of the latency landscape of the underlying
hardware.

• We compare to prior art when pruning ResNet, MobileNet, VGG architectures on ImageNet,
CIFAR10, PASCAL VOC and demonstrate that our method yields consistent latency and
accuracy improvements over state-of-the-art methods. Our ImageNet pruning results present a
viable 1.6⇥ to 1.9⇥ speedup while preserving very similar original accuracy of the ResNets.

2 Related work

Pruning methods. Depending on when to perform pruning, current methods can generally be
divided into three groups [14]: i) prune pretrained models [20, 40, 33, 22, 46, 45, 16], ii) prune at
initialization [15, 30, 10], and iii) prune during training [2, 17, 41]. Despite notable progresses in the
later two streams, pruning pretrained models remains as the most popular paradigm, with structural
sparsity favored by off-the-shelf inference platforms such as GPU.

To improve inference efficiency, many early pruning methods trim down the neural network aiming
to achieve a high channel pruning ratio while maintaining an acceptable accuracy. The estimation of
neuron importance has been widely studied in literature [25, 40, 46]. For example, [45] proposes
to use Taylor expansion to measure the importance of neurons and prunes a desired number of
least-ranked neurons. However, a channel pruning ratio does not directly translate into computation
reduction ratio, amid the fact that a neuron at different location leads to different computations.

There are recent methods that focus primarily on reducing FLOPs. Some of them take FLOPs into
consideration when calculating the neuron importance to encourage penalizing neurons that induce
high computations [66]. An alternative line of work propose to select the best pruned network from a
set of candidates [32, 68]. However, it would take a long time for candidate selection due to the large
amount of candidates. In addition, these methods use FLOPs as a proxy of latency, which is usually
inaccurate as networks with similar FLOPs might have significantly different latencies [58].

Latency-aware compression. Emerging compression techniques shift attention to directly cut down
on latency. One popular stream is Neural Architecture Search (NAS) methods [9, 12, 58, 65] that
adaptively adjusts the architecture of the network for a given latency requirement. They incorporate
the platform constraints into the optimization process in both the architecture and parameter space
to jointly optimize the model size and accuracy. Despite remarkable insights, NAS methods remain
computationally expensive in general compared to their pruning counterparts.

Latency-oriented pruning has also gained a growing amount of attention. [6] presents a framework
for network compression under operational constraints, using Bayesian optimization to iteratively
obtain compression hyperparameters that satisfy the constraints. Along the same line, NetAdapt [68]
iteratively prunes neurons across layers under the guidance of the empirical latency measurements on
the targeting platform. While these methods push the frontier of latency constrained pruning, the
hardware-incurred latency surface in fact offers much more potential under our enhanced pruning
policy - as we show later, large rooms for improvements remain unexploited and realizable.
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3 Method

In this section, we first formulate the pruning process as an optimization process, before diving deep
into the importance estimation for accuracy and latency. Then, we elaborate on how to solve the
optimization via knapsack regime, augmented by dynamic grouping of neurons. We finalize the
method by combining these key steps under one realm of HALP.

3.1 Objective Function

Consider a neural network that consists of L layers performing linear operations on their inputs,
together with non-linear activation layers and potentially pooling layers. Suppose there are Nl neurons
(output channels) in the lth layer and each neuron is encoded by parameters Wn

l 2 RC in
l ⇥K l ⇥K l ,

where C in is the number of input channels and K is the kernel size. By putting all the neurons across
the network together, we get the neuron parameter set W = {{Wn

l }
N l
n =1 }L

l =1 , where N =
! L

l =1 Nl
is the total number of neurons in the network.

Given a training set D = {(xi , yi )}M
i =1 , the problem of network pruning with a given constraint C

can be generally formulated as the following optimization problem:

arg min
öW

L ( öW, D) s.t. !
!

f ( öW, x i )
"

! C (1)

where Ŵ ⇢ W is the remaining parameters after pruning and L is the loss of the task. f(·) encodes the
network function, and �(·) maps the network to the constraint C, such as latency, FLOPs, or memory.
We primarily focus on latency in this work while the method easily scales to other constraints.

The key to solving the aforementioned problem relies on identifying the portion of the network that
satisfies the constraint while incurring minimum performance disruption:

arg max
p1 ,··· ,p l

L#

l =1

I l (pl ), s.t.
L#

l =1

Tl (pl�1, pl ) ! C, " l 0 ! pl ! N l (2)

where pl denotes the number of kept neurons at layer l, Il (pl ) signals the maximum importance to
the final accuracy with pl neurons, and Tl (pl�1, pl ) checks on the associated latency contribution of
layer l with pl�1 input channels and pl output channels. p0 denotes a fixed input channel number for
the first convolutional block, e.g., 3 for RGB images. We next elaborate on I(·) and T (·) in detail.

Importance score. To get the importance score of a layer to final accuracy, namely Il (pl ) in Eq. 2,
we take it as the accumulated score from individual neurons

! pl
j =1 I j

l . We first approximate the
importance of neurons using the Taylor expansion of the loss change [45]. Specifically, we prune on
batch normalization layers and the importance of the n-th neuron in the l-th layer is calculated as

In
l =

"
"g! n

l
�

n
l + g" n

l
�

n
l

"
" , (3)

where g denotes the gradient of the weight, �n
l and �

n
l are the corresponding weight and bias from

the batch normalization layer, respectively. Unlike a squared loss in [45], we use absolute difference
as we observe slight improvements.

In order to maximize the total importance, we keep the most important neurons at a higher priority.
To this end, we rank the neurons in the lth layer according to their importance score in a descending
order and denote the importance score of the jth -ranked neuron as I j

l , thus we have

I l (pl ) =
pl#

j =1

I j
l , 0 ! pl ! N l , I 1

l # á á á # IN l
l . (4)

Latency contribution. We empirically obtain the layer latency Tl (pl�1, pl ) in Eq. 2 by pre-building
a layer-wise look-up table with pre-measured latencies. This layer latency corresponds to the
aggregation of the neuron latency contribution of each neuron in the layer, cj

l :

Tl (pl�1, pl ) =
pl#

j =1

cj
l , 0 ! pl ! N l . (5)

The latency contribution of the j-th neuron in the l-th layer can also be computed using the entries in
the look up table as:

cj
l = Tl (pl�1, j ) $ Tl (pl�1, j $ 1), 1 ! j ! pl . (6)
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Algorithm 1 Augmented Knapsack Solver
Input: Importance score {Il 2 RN l }L

l =1 where Il is sorted descendingly; Neuron latency contribution {cl 2 RN l }L
l =1 ; Latency constraint C .

1: maxV 2 R( C +1) , keep 2 RL ! ( C +1) ! maxV[c]: max importance under constraint c; keep[l , c]: # neurons to keep in layer l to achieve maxI[c]
2: for l = 1 , . . . , L do
3: for j = 1 , . . . , N l do
4: for c = 1 , . . . , C do
5: v keep = I j

l + maxV[c � cj
l ], v prune = maxV[c] ! total importance can achieve under constraint c with object n being kept or not

6: if v keep > v prune and keep[l, c � cj
l ] == j � 1 then ! check if it leads to higher score and if more important neurons in layer are kept

7: keep[l, c ] = j , update_maxV[c] = v keep
8: else
9: keep[l, c ] = keep[l, c � 1] , update_maxV[c] = v prune

10: end if
11: end for
12: maxV update_maxV
13: end for
14: end for
15:
16: keep_n = to save the kept neurons in model
17: for l = L, . . . , 1 do ! retrieve the set of kept neurons
18: pl = keep[l, C ]
19: keep_n keep_n [ {pl top ranked neurons in layer l}
20: C  C �

! p l
j =1 cj

l
21: end for
Output: Kept important neurons (keep_n).

In practice, we first rank globally neurons by importance and then consider their latency contribution.
Thus, we can draw the following properties. If we remove the least important neuron in layer l, then
the number of neurons will change from pl to pl �1, leading to a latency reduction c

pl
l as this neuron’s

latency contribution score. We assign the potential latency reduction to neurons in the layer by the
importance order. The most important neuron in that layer would always have a latency contribution
c

1
l . At this stage, finding the right combination of neurons to keep imposes a combinatorial problem,

and in the next section we tackle it via reward maximization considering latency and accuracy traits.

3.2 Augmented Knapsack Solver

Given both importance and latency estimates, we now aim at solving Eq. 2. By plugging back in the
layer importance Eq. 4 and layer latency Eq. 5, we come to

max
L#

l =1

pl#

j =1

I j
l , s.t.

L#

l =1

pl#

j =1

cj
l ! C, 0 ! pl ! N l , I 1

l # I 2
l # . . . I N l

l . (7)

This simplifies the overall pruning process into a knapsack problem only with additional preceding
constraints. The preceding enforcement originates from the fact that for a neuron with rank j in the
lth layer, the neuron latency contribution only holds when all the neurons with rank r = 1, . . . , j � 1
are kept in the lth layer and the rest of the neurons with rank r = j + 1, j + 2, · · · , Nl are removed.
Yet the problem is solvable by specifying each item with a list of preceding items that need to be
selected before its inclusion.

We augment the knapsack solver to consider the reordered neurons with descending importance score
so that all the preceding neurons will be processed before it. A description of the pseudo code of the
augmented knapsack solver is provided in Algo. 1 (a detailed explanation is provided in Appendix A).
The augmented solver is required to make sure that the latency cost is correct.

3.3 Neuron Grouping

Considering each neuron individually results in burdensome computation during pruning. We next
explore grouping neurons so that a number of them can be jointly considered and removed enabling
faster pruning [69]. Neuron grouping helps exploit hardware-incurred channel granularity guided
by the latency, speeds up knapsack solving of Eq. 7, and yields structures that maximize the GPU
utilization, keeping as many parameters as possible under the similar latency. In addition, neuron
grouping simplifies the knapsack problem that scales linearly with the number of candidates under
consideration (see Line 3 of Alg. 1), thus speedups the solver as we’ll discuss later.

We refer to the difference of neuron counts between two latency cliffs of the staircase-patterned
latency as the latency step size. In our method, we group s channels in a layer as an entirety, where
the value of s is equal to the latency step size. The neurons are grouped by the order of importance.
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Then we aggregate the importance score and latency contribution for the grouped entity. For skip
connections in ResNet and group convolutions in MobileNet, we not only group neurons within a
layer, we also group the neurons sharing the same channel index from the connected layers [11, 39].
For cross-layer grouping, as the latency step size for different layers might be different, we use the
largest group size among the layers. Latency-aware grouping enables additional performance benefits
when compared to a heuristic universal grouping, as we will later show in the experiments.

3.4 Final HALP Regime

With all aforementioned steps, we formulate the final HALP as follows. The pruning process takes
a trained network as input and prunes it iteratively to satisfy the requirement of a given latency
budget C. We perform one pruning every r minibatches and repeat it k pruning steps in total. In
particular, we set k milestones gradually decreasing the total latency to reach the goal via exponential
scheduler [10], with C

1
> C

2
> · · · > C

k , Ck = C. The algorithm gradually trims down neurons
using steps below:

• Step 1. For each minibatch, we get the gradients of the weights and update the weights as during
the normal training. We also calculate each neuron’s importance score as Eq. 3.

• Step 2. Over multiple minibatches we calculate the average importance score for each neuron
and rank them accordingly. Then we count the number of neurons remaining in each layer and
dynamically adjust the latency contribution as in Eq. 6.

• Step 3. We group neurons as described in Sec. 3.3 and calculate group’s importance and latency
reduction. Then we get the nearest preceding group for each layer.

• Step 4. We execute the Algo. 1 to select the neurons being remained with current latency
milestone. Repeat starting from the Step 1 until k milestones are reached.

Once pruning finishes we fine-tune the network to recover accuracy.

4 Experiments

We demonstrate the efficacy and feasibility of the proposed HALP method in this section. We
use ImageNet ILSVRC2021 [53] for classification. We first study five architectures (ResNet50,
ResNet101, VGG16 and MobileNet-V1/V2) on different platforms and compare our pruning results
with the state-of-the-art methods on classification task. All the main results are obtained with our
latency-aware grouping. We then study the impact of grouping size s on the pruned top-1 accuracy
and the inference time to show the effectiveness of our grouping scheme. Finally, we further show the
generalization ability of our algorithm by testing with object detection task. We introduce the details
of experimental setting in appendix Sec. B and provide pruning results on CIFAR10 [29] in appendix
Sec. C. We apply HALP targeting latency reduction on multiple platforms to show the scalability of
our method: NVIDIA TITAN V GPU, Jetson TX2, Jetson Xavier and Intel CPU. All the latencies are
measured with batched images to take advantage of computation capacities. We include experimental
results for batch size 1 inference in the appendix, which also show the efficacy of our algorithm.

4.1 Results on ImageNet

ResNets. We start by pruning ResNet50 and ResNet101 and compare our results with state-of-the-art
methods in Tab. 1 on TITAN V. In order to have a fair comparison of the latency, for all the other
methods, we recreate pruned networks according to the pruned structures they published and measure
the latency. Those methods showing ‘-’ in the table do not have pruned structures published so we
are unable to measure the latency. For our method, by setting the percentage of latency to remain
after pruning to be X , we get the final pruned model and refer to it as HALP-X%. We report FPS
(frames per second) in the table and calculate the speedup of a pruned network as the ratio of FPS
between pruned and unpruned models.

From the results comparison in Table. 1 we can find that for pruned networks with similar FLOPs
using different methods, our method achieves the highest accuracy and also the fastest inference
speed. This also shows that FLOPs do not correspond 1:1 to the latency. Among these methods for
ResNet50 comparison, EagleEye [32] yields the closest accuracy to ours, but the speedup is lower
than ours. In Table. 1, for the pruned ResNet50 network with 3G FLOPs remaining, our method
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Table 1: ImageNet structural pruning results. We compare HALP for ResNet50 with two different
dense baselines (left), ResNet101 and VGG16 (right up), MobileNet-V1 and MobileNet-V2 (right
bottom) pruning experiments, with detailed comparison to state-of-the-art pruning methods over vary-
ing performance metrics. More comparisons and CIFAR10 experiments can be found in Appendix C.

METHOD
FLOPS TOP1 TOP5 FPS SPEEDUP(G) (%) (%) (IM/S)

RESNET50
NO PRUNING 4.1 76.2 92.87 1019 1⇥
THINET-70 [40] 2.9 75.8 90.67 - -
AUTOSLIM [72] 3.0 76.0 - 1215 1.14⇥
METAPRUNING [36] 3.0 76.2 - - -
GREG-1 [63] 2.7 76.3 - 1171 1.15⇥
HALP-80% (OURS) 3.1 77.2 93.47 1256 1 .23⇥
0.75⇥ RESNET50 [21] 2.3 74.8 - 1467 1.44⇥
THINET-50 [40] 2.1 74.7 90.02 - -
AUTOSLIM [72] 2.0 75.6 - 1592 1.56⇥
METAPRUNING [36] 2.0 75.4 - 1604 1.58⇥
GBN [71] 2.4 76.2 92.83 - -
CAIE [66] 2.2 75.6 - - -
LEGR [8] 2.4 75.6 92.70 - -
GREG-2 [63] 1.8 75.4 - 1414 1.39⇥
CHIP [57] 2.1 76.2 92.91 - -
CHIP [57] 2.2 76.4 93.05 1345 1.32⇥
HALP-55% (OURS) 2.0 76.5 93.05 1630 1 .60⇥
0.50⇥ RESNET50 [21] 1.1 72.0 - 2498 2.45⇥
THINET-30 [40] 1.2 72.1 88.30 - -
AUTOSLIM [72] 1.0 74.0 - 2390 2.45⇥
METAPRUNING [36] 1.0 73.4 - 2381 2.34⇥
CAIE [66] 1.3 73.9 - - -
GREG-2 [63] 1.3 73.9 - 1514 1.49⇥
CHIP [57] 1.0 73.3 91.48 2369 2.32⇥
HALP-30% (OURS) 1.0 74.3 91.81 2755 2 .70⇥

RESNET50 - EAGLEEYE [32] BASELINE
NO PRUNING 4.1 77.2 93.70 1019 1⇥
EAGLEEYE-3G [32] 3.0 77.1 93.37 1165 1.14⇥
HALP-80% (OURS) 3.0 77.5 93.60 1203 1 .18⇥
EAGLEEYE-2G [32] 2.1 76.4 92.89 1471 1.44⇥
HALP-55% (OURS) 2.1 76.6 93.16 1672 1 .64⇥
EAGLEEYE-1G [32] 1.0 74.2 91.77 2429 2.38⇥
HALP-30% (OURS) 1.2 74.5 91.87 2597 2 .55⇥

METHOD
FLOPS TOP1 FPS SPEEDUP(G) (%) (IM/S)

RESNET101
NO PRUNING 7.8 77.4 620 1⇥
TAYLOR-75% [45] 4.7 77.4 750 1.21⇥
HALP-60% (OURS) 4.3 78.3 847 1.37⇥
HALP-50% (OURS) 3.6 77.8 994 1.60⇥
TAYLOR-55% [45] 2.9 76.0 908 1.47⇥
HALP-40% (OURS) 2.7 77.2 1180 1.90⇥
HALP-30% (OURS) 2.0 76.5 1521 2 .45⇥

VGG-16
NO PRUNING 15.5 71.6 766 1⇥
FBS-3⇥ [18] 5.1 71.2 - -
HALP-30% (OURS) 4.6 72.3 1498 2.42⇥
FBS-5⇥ [18] 3.0 70.5 - -
HALP-20% (OURS) 2.8 70.8 1958 5.49⇥

METHOD
FLOPS TOP1 FPS SPEEDUP(M) (%) (IM/S)

MOBILENET-V1
NO PRUNING 569 72.6 3415 1⇥
METAPRUNING [36] 142 66.1 7050 2.06⇥
AUTOSLIM [72] 150 67.9 7743 2.27⇥
HALP-42% (OURS) 171 68.3 7940 2 .32⇥
0.75⇥ MOBILENETV1 325 68.4 4678 1.37⇥
AMC [22] 285 70.5 4857 1.42⇥
NETADAPT [68] 284 69.1 - -
METAPRUNING [36] 316 70.9 4838 1.42⇥
EAGLEEYE [32] 284 70.9 5020 1.47⇥
GDP [19] 287 71.3 - -
HALP-60% (OURS) 297 71.3 5754 1 .68⇥

MOBILENET-V2
NO PRUNING 301 72.1 3080 1⇥
HALP-60% (OURS) 183 70.4 5668 1.84⇥
HALP-75% (OURS) 249 72.2 4110 1.33⇥
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Figure 3: Pruning ResNet50 on the ImageNet dataset with NVIDIA Jetson TX2 (left), Intel CPU
Xeon E5 (middle) and NVIDIA Xavier (right). The latency on Jetson TX2 and CPU is measured
using PyTorch; on Xavier is measured using TensorRT FP32. Top-left is better.

achieves a .4% higher top1 accuracy and slightly (.04⇥) faster inference. It is expected that the
advantage of our method for accelerating the inference is more obvious when it comes to a more
compact pruned network, which is 14% (or .20⇥) additionally faster for a 2G-FLOPs network while
increasing accuracy by .2%, and .17⇥ faster with .3% higher accuracy compared to EagleEye-1G.
We analyze the pruned network structure in detail in the supplementary material (Appendix Sec. Q).
We plot the results comparison in Fig. 2, where we also add the results of training our pruned network
with a teacher model RegNetY-16GF (top1 82.9%) [50]. With knowledge distillation, our model is
2.70⇥ faster than the original model at 1% accuracy drop.

Scalability to other networks. We next experiment with three other models: VGG [56], Mo-
bileNetV1 [24] and MobileNetV2 [54]. Same as pruning on ResNets, in Tab. 1, we perform pruning
with different latency constraints and compare with prior art. As shown, among these methods, the
proposed HALP performs significantly better with higher accuracy and larger inference speedup.

Scalability to other platforms. Our approach is not limited to a single platform. In this section, we
conduct the same ResNet50 experiments on three new platforms: NVIDIA Jetson TX2, NVIDIA
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Table 2: HALP acceleration of ResNet50 on GPUs with TensorRT (version 7.2.1.6)
MODEL ACC DROP

TITAN V GPU RTX3080 GPU

FP32 FP16 FP32 FP16 INT8 (ACC DROP)

EAGLEEYE-3G �0.90% 1.14⇥ 4.26⇥ 1.06⇥ 3.09⇥ 6.31⇥ (�0.84%)
HALP-80% (OURS) �1.25% 1.24⇥ 4.70⇥ 1.18⇥ 3.32⇥ 6.40⇥ (�1.02%)

EAGLEEYE-2G �0.18% 1.54⇥ 5.10⇥ 1.35⇥ 3.68⇥ 7.46⇥ (0.27%)
HALP-55% (OURS) �0.35% 1.80⇥ 6.36⇥ 1.68⇥ 4.45⇥ 9.14⇥ (0.13%)

EAGLEEYE-1G 2.02% 2.73⇥ 7.81⇥ 2.29⇥ 5.61⇥ 12.29⇥ (2.55%)
HALP-30% (OURS) 1.76% 2.91⇥ 9.61⇥ 2.56⇥ 6.44⇥ 14.12⇥ (2.38%)

Xavier, and Intel CPU Xeon E5, and compare the results in Fig.3. As shown, our approach consistently
outperforms the other methods with more speedup and higher accuracy, as HALP leverages the latency
characteristics of the platform to achieve a better accuracy-efficiency trade-off. Specifically, on these
platforms, HALP yields up to relative 1.27⇥ speedup with slightly increment in top-1 accuracy
compared to EagleEye [32], and 1.72⇥ faster than the original model. From these results, we can
conclude that our method generalizes well to different platforms.

4.2 HALP Acceleration on GPUs with TensorRT

To make it closer to the real application in production, we also export the models into onnx format
and test the inference speed with TensorRT. We run the inference of the model with FP32, FP16 and
also INT8. For INT8, we quantize the model using entropy calibration with 2560 randomly selected
ImageNet training images. Since the INT8 TensorCore speedup is not supported in TITAN V GPU,
we only report the quantized results on RTX3080 GPU. The accelerations and the corresponding top1
accuracy drop (compared to PyTorch baseline model) are listed in Tab. 2. We include more pruning
results specifically for INT8 quantization in Appendix.N.

4.3 Design Effort for Pruning

Table 3: Comparison of extra computation required by prun-
ing methods on ImageNet. Our approach is around 4.3⇥
faster than the next best method. Sub-network selection tim-
ing is approximated as running on same device (a NVIDIA
V100).

METHOD
EVALUATE AUXILIARY NET SUB-NETWORK

PROPOSALS? TRAINING? SELECTION (RESNET50)

NETADAPT [68] Y N ⇠ 195h (GPU)
THINET [40] Y N ⇠ 210h (GPU)

EAGLEEYE [32] Y N 30h (GPU)
AUTOSLIM [72] Y Y �

METAPRUNING [36] Y Y �
AMC [22] N Y �

HALP (OURS) N N 6.5h (GPU) + 0.5h (CPU)

In addition to noticeable performance
boosts, HALP in fact requires less
design effort compared to prior art,
as summarized in Tab. 3 (details in
Appendix O). NetAdapt [68] and Au-
toSlim [72] generate many proposals
during iterative pruning. Then evalu-
ations of the proposals are needed to
select the best candidate for the next
pruning iteration. EagleEye [32] pre-
obtains 1000 candidates before prun-
ing and evaluates all of them in order
to get the best one. Such pruning can-
didate selection is intuitive but causes a lot of additional time costs. The computation cost for
MetaPruning [36] and AMC [22] can be even higher because they need to train auxiliary network to
generate the pruned structure.

Compared to these methods, our method does not require auxiliary network training nor sub-network
evaluation. The latency contribution in our method can be quickly obtained during pruning by the
pre-generated latency lookup table. Although creating the table for the target platform might cost
time, we only do it once for all pruning ratios. Solving the augmented knapsack problem brings extra
computation, however, after neuron grouping, it only takes around additional 30 minutes of CPU time
in total for ResNet50 pruning and less than 1 minute for MobileNetV1, which is negligible compared
to the fine-tuning process or training additional models. Moreover, this is significantly lower than
other methods, for example the fastest of them EagleEye [32] requires 30 GPU hours.

4.4 Efficacy of Neuron Grouping

We then show the benefits of latency-aware neuron grouping and compare the performance under
different group size settings.
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Performance comparison. As described in Sec. 3.3, we group s neurons in a layer as an entirety so
that they are removed or kept together. Choosing different group sizes leads to different performances,
and also different computation cost on the augmented knapsack problem solving. In our method, we
set an individual group size for each layer according to each layer’s latency step size in the look-up
table. We name the grouping in our method as latency-aware grouping (LG). For instance, for a
ResNet50, using this approach we set the individual group size of 23 layers to 32, of 20 layers to 64,
and 10 layers to 128. Layers closer to the input tend to use a smaller group size. Another option for
neuron grouping is to heuristically set a fixed group size for all layers as literature does [69].

Fig. 4 shows the performance of our grouping approach compared to various fixed group sizes for a
ResNet50 pruned with different constraints.
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Figure 4: Performance comparison of different
group size settings for ResNet50 pruning on Im-
ageNet. We compare to heuristic-based group se-
lection studied by [69]. LG denotes our proposed
latency-aware grouping in HALP that yields con-
sistent latency benefits per accuracy.

As shown, using small group sizes yields the
worst performance independently of the latency
constraint. At the same time, a very large group
such as 256 do also harm the final performance.
Intuitively, a large group size averages the con-
tribution of many neurons and therefore is not
discriminative enough to select the most impor-
tant ones. Besides, large groups might promote
pruning the entire layer in a single pruning step,
leading to performance drop. On the other hand,
small group sizes such as 2 promote removing
unimportant groups of neurons. These groups
do not significantly improve the latency, but can
contribute to the final performance. In contrast,
our latency-aware grouping performs the best,
showing the efficacy of our grouping scheme.

Algorithm efficiency improvement. Setting
the group size according to the latency step size not only improves the performance, but also reduces
computation cost on knapsack problem solving for neuron selection since it reduces the total number
of object N to a smaller value. In our ResNet50 experiment, except for the first convolution layer,
the group size of other layers varies from 32 to 128. By neuron grouping, the value of N can be
reduced to 215, which takes around one minute on average at each pruning step to solve the knapsack
problem on CPU. We have 30 pruning steps in total in our experiments, thus the time spent on neuron
selection is around 30 minutes in total, which can be negligible compared to training time.

4.5 Generalization to Object Detection
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RetinaNet-RN50 77.27

70.10

76.72

75.69

75.83

77.98 65.56

46.09

31.44 122.28

128.85

SSD512-RN50, base model 68.24

76.49

16.23

FasterRCNN-VGG16

15.38 132.57

FLOPs FPSmAP

106.50 36.92

91.23 29.21

77.42SSD512-RN50-HALP

SSD512-RN50-HALP (Ours)

Table 4: HALP for object detection on the PASCAL VOC
dataset. Detailed numbers in the Appendix H.

To show the generalization abil-
ity of our proposed HALP algo-
rithm, we also apply the algorithm
to the object detection task. In
this experiment we take the pop-
ular architecture Single Shot De-
tector (SSD) [35] on the PASCAL
VOC dataset [13]. Following the
“07+12” setting in [35], we use the
union of VOC2007 and VOC2012
trainval as our training set and use
the VOC2007 test as test set.We
pretrain a SSD512 detector with
ResNet50 as the backbone. The de-
tails of the SSD structure are elab-
orated in the appendix. Same to
classification task, we prune the
trained detector and finetune after-
wards. We only prune the backbone
network in the detector. The results
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in Fig. 4 show that the pruned detector maintains the similar final mAP but reduce the FLOPs and
improve the inference speed greatly, with 77% FLOPs reduction and around 1.94⇥ speedup at the
cost of only 0.56% mAP drop. We compare the pruned detector to some other commonly-used
detectors in the table. The results show that pruning a detector using HALP improves performance in
almost all aspects.

5 Conclusion

We proposed hardware-aware latency pruning (HALP) that focuses on pruning for underlying
hardware towards latency budgets. We formulated pruning as a resource allocation optimization
problem to achieve maximum accuracy within a given latency budget. We further proposed a
latency-aware neuron grouping scheme to improve latency reduction. Over multiple neural network
architectures, classification and detection tasks, and changing datasets, we have shown the efficiency
and efficacy of HALP by showing consistent improvements over state-of-the-art methods. Our work
effectively reduces the latency while maintaining the accuracy, which could significantly impact
applications in resource-constrained environments, such as autonomous vehicles or other mobile
devices.
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(b) Did you describe the limitations of your work? [Yes] Please see the Section M about

the discussion of latency lookup table.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] Please see
Section 4 of main paper and Section I of supplementary material. The link to the code
is available in the abstract.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Please see Section 4 and more details in appendix Sec. B.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [No] We observed quite stable final performance of the
pruning.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please see Section 4 and more
details in appendix Sec. B.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Please see Section 4.
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Code will be released. The link to the code is provided in the abstract.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] The ImageNet [53] and PASCAL VOC [13] dataset are open
source and available for non-commercial academic research.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The ImageNet [53] and PASCAL VOC [13]
dataset are open source and available for non-commercial academic research.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15


	Introduction
	Related work
	Method
	Objective Function
	Augmented Knapsack Solver
	Neuron Grouping
	Final HALP Regime

	Experiments
	Results on ImageNet
	HALP Acceleration on GPUs with TensorRT
	Design Effort for Pruning
	Efficacy of Neuron Grouping
	Generalization to Object Detection

	Conclusion
	Algorithm 1 explanation
	Experimental settings
	More pruning results on CIFAR10 and ImageNet
	Efficacy of neuron grouping on MobileNet
	Ablation study of pruning step k
	Comparison with EagleEye on ImageNet
	Pruning results for small batch size
	Pruning results on object detection
	Implementation details
	FLOPs-constrained pruning
	FLOPs vs. latency
	Different choice of importance calculation
	Latency look-up table creation and calibration
	Pruning for INT8 quantization
	Breakdown of the algorithm execution time
	Difference with prior work
	Detailed configuration of pruned models
	Discussion on the augmented knapsack solver

