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Abstract

In the twenty years since Dr. Leo Breiman’s incendiary paper Statistical Modeling:
The Two Cultures was first published, algorithmic modeling techniques have gone from
controversial to commonplace in the statistical community. While the widespread adoption
of these methods as part of the contemporary statistician’s toolkit is a testament to Dr.
Breiman’s vision, the number of high-profile failures of algorithmic models suggests that
Dr. Breiman’s final remark that “the emphasis needs to be on the problem and the data”
has been less widely heeded. In the spirit of Dr. Breiman, we detail an emerging research
community in statistics — data-driven decision support. We assert that to realize the full
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potential of decision support, broadly and in the context of precision health, will require
a culture of social awareness and accountability, in addition to ongoing attention towards
complex technical challenges.

Keywords: Precision health, Decision Support, Machine Learning, Two Cultures

1. Introduction

As we mark the twentieth year anniversary of Dr. Leo Breiman’s Two Cultures (Breiman
et al., 2001), it is clear that the statistics cultural landscape has and continues to be shaped
by Dr. Breiman’s writing. There is a reason why ‘two cultures’ is a shorthand for differing
meta-statistical frameworks for the practice of statistics. Right or wrong, in full agreement,
half agreement, or outright rejection of Dr. Breiman’s claims, the bold contrasts that Dr.
Breiman delineated between what he labeled the data modeling and algorithmic modeling
cultures, the deep assumptions of each culture, and the consequences of those cultures for
the future are, in our opinion, what continues to attract interest and stimulate spirited
discussion of his work.

It is undeniable that Dr. Breiman was writing in a very different statistical landscape
than the one that statisticians encounter today. Among many changes since the publication
of Two Cultures, we have experienced the rise of “big data” and the technological advances
in collecting, storing, and processing those data (Hilbert and Lopez, 2011). Massive ad-
vances in computing hardware and software and accompanying theoretical advancements
have accelerated developments in computational statistics; in parallel, advances have come
in the application and development of statistical methodology to fields such as genetics and
neuroscience (Bielza and Larranaga, 2020; Balding and Bishop, 2001; Bottou et al., 2018;
Gentle et al., 2012). Beyond the types of data routinely used and the technologies to analyze
it, the statistician’s toolbox has changed too; machine learning, along with continued devel-
opment of its theoretical underpinnings and cultural acceptance, is now a vital statistical
approach (Hastie and Tibshirani, 2009). Perhaps the most pertinent to Two Cultures is the
work that has been done to mediate the trade-offs that Dr. Breiman described, modeling
that is both interpretable and accurate (Rudin, 2019).

The very future we can imagine for statistics has changed too. We have previously
argued that data-driven decision support is an exciting frontier for statisticians and the
field at large (Sperger et al., 2020). Data-driven decision support is fundamentally different
from the tasks of prediction and attribution that characterized the world that Dr. Breiman
described. As we detail later, data-driven decision support modeling is causal, dynamic
and potentially continuously learning, and decision support tools interface with and impact
society in profound ways. In the spirit of Dr. Breiman, we look to this future. We articulate
the characteristics of the statistical culture we hope to cultivate for the decision support re-
search community, a culture that aims for social awareness and accountability. We focus on
decision support in the context of precision health, a paradigm for individualized treatment
selection, but our observations and call to action apply to decision support contexts more
broadly. We begin by describing statistical decision support and offering concrete examples
of current work in the field. We then highlight two cultural elements that we hope will
characterize the statistical culture around decision-support and reflect on the evolving role
of statisticians in the decision support research community.
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2. Data-driven decision support

In Two Cultures, Dr. Breiman delineated two goals of regression: prediction and [the
extraction of] information. Dr. Bradley Efron, reflecting on Dr. Breiman, identified the
three fundamental aims of regression: prediction, estimation, and attribution (Efron, 2020).
In light of our own work in precision health, we suggest an addition to Dr. Efron’s list:
decision-making or decision support.

Decision-making is a fundamentally causal exercise, requiring us to consider the “what-
if” scenarios that could result from our actions. Dr. Breiman concisely visualized regression
data as a vector of inputs that is transformed by nature into a response. Building on
Dr. Breiman’s abstraction, we can think of the data generated from a decision-making
problem as the result of nature taking a vector of input variables x and an action a to
produce a response y (Figure 1). Breaking the action a out from the other input variables
x emphasizes what distinguishes causal inference and formal statistical decision support
from other statistical tasks — a is manipulable. Breaking out a also changes how we think
about the response. Often formalized through potential outcomes (Rubin, 1978, 2005;
Hernán and Robins, 2010), the responses we consider are what we would observe if we were
to take action a and denote the potential response for a particular action a as y(a). Of
course, potential outcomes are precisely that, potential. While we have the potential to
observe any one of the potential outcomes before an action is taken, only one action can be
taken and thus at best only one potential outcome can be observed.

nature

x

a

y

(a) Observed

nature

x

Take action a

y(a)

(b) Potential

Figure 1: Data Generation

One compelling statistical formulation of data-driven decision support comes from the
precision health literature. In the field of health sciences and public health research, pre-
cision health is a shift away from the traditional one-size-fits-all approach of comparing
averages across individuals who did or did not receive a treatment and seeks to leverage pa-
tient heterogeneity in a causally valid framework by using data to determine which patients
should receive which treatment to optimize key health outcomes (Kosorok and Laber, 2019).
It is formalized through dynamic treatment regimes (DTRs), a sequence of decision rules,
one for each key decision point, that maps patient features to a treatment recommendation;
an optimal dynamic treatment regime is a DTR that optimizes patient outcomes on aver-
age across the target population. Dynamic in this context can refer to differences among
patients, decisions that take place sequentially over time, or both. DTRs are often learned
through reinforcement learning. One special benefit of the reinforcement learning approach
is the ability to account for the long term effects of treatments and synergies between treat-
ment sequences while learning optimal DTRs. Depending on the precision health problem,
reinforcement learning may be done online or offline and the problem may be finite horizon
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Research Question Statistical Goal

What is Patient X’s 5-year survival probability based on their individual char-
acteristics (including age at diagnosis) and current treatment regimen?

Prediction

How does age at diagnosis impact 5-year survival across the population of pa-
tients with lung cancer?

Attribution

What treatment regimen (e.g. chemotherapy versus radiation therapy) should
Patient X receive to maximize likelihood of 5-year survival, based on their indi-
vidual characteristics?

Decision Support

Table 1: Statistical goals and illustrative research questions

or infinite horizon. The resulting optimal DTR can be used to help individuals, medical
providers, and communities make decisions that are tailored to individualized health care
needs.

Considering a few simplified research questions will help illuminate the distinction be-
tween decision support and other statistical goals, and Table 1 provides examples of research
problems tied to the goals of prediction, attribution, and decision support. When the goal
is prediction, there are potentially many factors that may improve prediction and none of
them need to be factors that we think are causal in nature. When the goal is attribution,
such as estimating the effect of age at cancer diagnosis on 5-year survival, the problem
may sound like a causal problem but is not; age is a non-modifiable risk factor from an
interventional perspective. While these prediction and attribution research questions can
be potentially practice changing questions, they fall outside the purview of decision support.
In contrast to prediction and attribution, consider the question of which treatment(s) to
start for an individual lung cancer patient based on their clinical characteristics such as
age, cancer stage, and specific genetic or phenotypic biomarkers. For this decision-making
problem, there is an embedded causal question: what would happen under each potential
treatment regimen? This question inherently recognizes the existence of heterogeneity be-
tween patients and rather than seeking to answer “Which treatment?” seeks to answer
“Which treatment for whom?”. Notably, this question also suggests another distinction:
predicting the response is not necessary for decision-making (though it is often of separate
scientific interest); estimating the difference in outcome under the potential interventions
while treating the variables that affect the outcome as nuisance parameters is enough pro-
vided the outcome appropriately incorporates benefits and costs. This insight has been
leveraged by methods like advantage learning (Murphy, 2003).

Statistical decision support, as we have described it, can manifest as tools for augmenting
human decision-making or fully-automated decision-making systems. This covers a wide
range of tools from simple checklists to automated insulin delivery systems, better known
colloquially as the “artificial pancreas” (Dassau et al., 2013). We will take an expansive view
of decision support to include both types of tools; while they vary widely in complexity,
in each case their success depends on attending to the context and consequences of the
decision in addition to statistical concerns. For this reason, we believe it is important to
explicitly define the challenges of decision support and name the cultural elements that must
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be cultivated to address those challenges; this exercise may guide future work in decision
support research.

3. Real-world examples of decision support

Using observations from his own practice of statistics in industry and academia, Dr. Breiman
described the ‘two cultures’ of statistical modeling. Like Dr. Breiman, we will use examples
from our research group to illustrate the challenges of statistical decision support. Our
hope is that these examples will convey the variety of applied research problems in decision
support and highlight the most salient considerations for the emerging decision support
research community.

3.1 Type 1 Diabetes

Type 1 diabetes (T1D) is an autoimmune disease whereby the body attacks and destroys
its insulin-producing beta cells, resulting in lifelong insulin dependency and a demanding
self-management routine (Daneman, 2006). The prevalence of obesity and overweightness in
individuals with T1D has recently increased and now parallels that of the general population
(Liu et al., 2010; DuBose et al., 2015). Unfortunately, T1D is associated with a greater risk
of cardiovascular disease and excess adiposity futher compounds this risk (Corbin et al.,
2018).

The management of T1D itself can be a barrier to exercise and weight loss due to chal-
lenges with blood glucose management including the increased risk of and fear of potentially-
deadly episodes of hypoglycemia, the state of having low blood sugar and needing rapid
carbohydrate consumption (Zaharieva et al., 2020). Although there are clinical guidelines
for blood glucose management around exercise (Riddell et al., 2017), significant inter- and
intra-individual heterogeneity exists, complicating management on a day-to-day or even
minute-to-minute basis (Riddell et al., 2019; Zhao et al., 2013). As a result, individuals
with type 1 diabetes must try to accurately estimate insulin needs and dosing in considera-
tion of future activities such as exercise, due to the delayed effect of exogenous insulin and
the body’s rapidly changing glucose needs during and after physical activity.

Suppressing the dependence on time and returning to our notation from the previous
section, we now describe how we formalized the T1D decision problem. The available
predictors x included the history of blood glucose level (real-time using continuous glucose
monitoring), physical activity (real-time based on accelerometer data), and insulin doses
logged by an insulin pump. The actions a that could be recommended included all possible
combinations of food consumption, additional boluses of insulin, increase or decrease in
insulin doses, increase in physical activity, and no action at this time. The outcome y was a
severity-weighted sum of glycemic events over the 60 minutes preceding and following time
t that captures excursions outside the normal blood glucose range aligned with their clinical
importance and risk to the individual.

Using data from a pilot study with 31 adolescent patients with type 1 diabetes to address
the need for individualized, real-time strategies, we developed a decision support tool based
on a Markov decision process and estimated dynamic treatment regimes using a V-learning
approach that models the minute-to-minute (infinite horizon) decision-making required by
diabetes management (Luckett et al., 2019). V-learning models the state-value function;
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nature

x = (blood glucose level, food, ac-
tivity, and insulin dosing history)

a ∈ {eat, exercise, insulin,
exercise & insulin, . . .}

blood glucose level(a)

Figure 2: T1D Data

linear, polynomial, and Gaussian basis function approximations were used with different
discount factors to find the optimal model.

The algorithm is currently being developed into a mobile health (m-health) application
that will collect an individual’s history of food intake, exercise, and insulin dosing to provide
individual-specific real-time recommendations. The application under development gener-
ates real-time decision support recommendations that are highly tuned to individual goals,
physiology, and real time data, the goal of which is to offer exercise autonomy for people
with diabetes by utilizing data already collected as part of their existing care. The process of
developing the tool has and continues to demonstrate what makes decision support unique
from other statistical tasks. For example, the question of what should be included directly
into the optimization problem versus accounted for qualitatively was a critical question in
the development process. The tool optimizes for glycemic control, but other objectives such
as weight loss were considered and may be of interest to integrate later. Moreover, because
the recommendations to users are not mediated through a health care professional, inter-
pretability, trust, and acceptability of the tool continue to be important guideposts in the
development process, necessitating waves of end-user and other stakeholder engagement.

3.2 Knee Osteoarthritis

Knee osteoarthritis (KOA) is one of the leading causes of pain and disability in adults
worldwide (Cross et al., 2014). Weight loss and exercise are known to reduce pain and
improve function, but there is substantial heterogeneity in the amount of benefit; there are
concerns that patients who are extremely overweight may be harmed by exercise until they
bring their weight below a certain threshold. Identifying who to recommend diet alone,
exercise alone, or diet & exercise to may provide clinical benefit to KOA patients over a
blanket recommendation of diet & exercise.

The Intensive Diet and Exercise for Arthritis (IDEA) trial randomized 343 participants
to one of three interventions: exercise alone, diet alone, or diet & exercise to determine
whether diet & exercise was more effective than diet alone or exercise alone for treating
KOA patients (Messier et al., 2013). While it was not designed with decision support in
mind, the trial’s rich data set of baseline covariates and outcome data, multiple actions, and
suspected heterogeneity in treatment response made the study a promising candidate for
applying precision health thinking and techniques. In this light, the challenge is to identify
who should be recommended exercise alone, diet alone, and diet and exercise in combination
based on a set of 76 baseline covariates x that included demographic and clinical information
with measures of pain, functioning, stiffness, and physical activity. The situation was
complicated by seven relevant outcomes including pain, function, a biomarker Interleukin-
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6, and stiffness. These outcomes may involve trade-offs; for example, a treatment that
decreases pain could do so at the expense of functioning. One could choose to try to
improve a single outcome or use methods that can accommodate multiple outcomes.

A variety of methods were compared including penalized regression methods, list-based
methods, random forests, and deep learning for single and multiple outcome cases. For
weight loss, the estimated optimal decision rule assigned diet alone to patients with a
baseline weight above 109 kilograms and a waist circumference above 90 centimeters while
everyone else was assigned to diet and exercise. One exception was made to this rule:
everyone with a history of heart attack was assigned to diet and exercise. The result
was a modest clinical improvement in weight loss of 1.4 kilograms at 18 months that was
statistically significant (p = .01) (Jiang et al., 2020). While this level of improvement may
be relatively modest, the simplicity of the treatment rule would make it easy to implement
in clinical practice, and it could have an important impact at the population level.

Because of the nature of the data available, the action set considered was limited to
exercise alone, diet alone, and exercise and diet in combination. In a more general analysis,
it may be desirable to consider a larger action set. Here we see the impact of data realities
and early data collection decisions on decision support. Future work on this problem may
also want to include patient preferences for outcomes and the feasibility of the interventions
across the heterogeneous patient population. Still, this precision health problem showcases
the promise of individualized decision support and points to how to improve the way we
approach decision support research.

4. Towards a unified culture for decision support

While we are excited about statistical decision support and its potential for improving
human lives, we are fully cognizant of the challenges it presents and the potential for
unintentional harm. A number of examples of decision support gone awry, ranging from
Amazon’s failed attempt to automate hiring decisions to a racially biased risk calculator
used to identify patients with complex health needs, can be found in academic literature
and the popular press (Dastin, 2018; Obermeyer et al., 2019). Fortunately, the emerging
community of researchers around statistical decision support and its application areas have
recognized the potential for decision support tools to cause unintended consequences (Cathy
O’Neil, 2016; Zarsky, 2016; Doshi-Velez and Kim, 2017; Crawford, 2017).

At the core of the ‘two cultures’ that Dr Brieman described was a difference in fundamen-
tal assumptions and approaches to statistical problems, and how the consequences of those
assumptions are borne out in statistical modeling. In the context of decision-support, we
too believe that researchers’ beliefs and their manifestation in the scientific process directly
influence the quality and impact of the resulting work. Grounded in our experiences and the
thoughtful reflections of the research community engaging in decision support research, we
endeavor to characterize two cultural elements that we believe the decision support research
community has begun to and should continue to nurture:

• Social awareness — approach statistical modeling with an eye to fairness, interpretabil-
ity, and understanding of the context in which the decision support will be employed
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• Accountability — be transparent during all steps of research, and develop tools and
procedures so that decisions can be justified and their provenance known

Unlike Dr. Breiman, whose discussion was framed as trade-offs and inherent tensions
between the ‘two cultures’, in the following, we frame our discussion in the need for and
importance of a unified, forward-facing culture for decision support modeling. We also
envision an expanded role for statisticians as a bridge in this culture between stakeholders
and the decision support development process.

4.1 A culture of social awareness

We believe that applying decision support tools to real world decisions should bring us closer
to an ideal world, not farther. Doing this requires a deep understanding of and accounting
for the context in which decisions are made and the broad implications of those conse-
quences throughout the development process, including statistical modeling. A number of
conceptual models from a variety of fields and with various use-cases in mind have been de-
veloped to represent the wide perspective needed when thinking about decision making and
its consequences. For example, the socio-ecological model of health conceptualizes health
as a result of a combination of and interplay between intra- and interpersonal, institutional,
community, and policy factors (Bronfenbrenner, 1977, 1992). Extending this rationale to
decision support, any decision support tool implemented necessarily interacts, affects, and
is affected by each level highlighted in the socio-ecological model. For decision support tool
developers, this means that modeling considerations and assessments of performance should
proactively take in account end users and their communities as well as society as a whole.
More recent work has also called for the use of multidisciplinary complex adaptive system
theory and other system dynamics-based methods to model complex societal context for
machine learning problems (Martin Jr et al., 2020b).

Designing decision support with this perspective is a broad charge. We do not con-
tend to have an optimal or universal algorithm to recommend how to develop socially
conscious decision support tools. Nonetheless, we do believe that good decision support be-
gins with social awareness and that prioritizing the context and consequences of decisions
throughout the decision support development and implementation process is essential for
the future success of the field and for decision support to reach its potential at improving
human lives (Robinson et al., 2019). Consider the decision support development life-cycle:
it demands data collection, storage, model or tool development, and cross-disciplinary en-
gagement for implementation and on-going evaluation. At each step, because of structural
barriers, systemic biases, barriers to change, cost constraints, and plain unintentional mis-
takes, disadvantaged groups are at greater risk of harm. Because of expense or difficulty in
sampling, they may be under-represented in data collection. Upstream under-representation
has downstream implications for the decision support performance and some groups may
disproportionately bear the burdens of bad decision support. Failure to include a diverse,
representative group of stakeholders can yield decision support that after a long develop-
ment process is not acceptable to certain communities. Moreover, some groups may not
have a voice in whether they are subjected to interventions aided by a decision support tool,
may not have a say in what outcomes are maximized, or may not bear the benefit of decision
support because it is not implemented in their communities. For all of these reasons, what
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we are calling social awareness–engaging with stakeholders throughout the entire decision
support development process and integrating context-specific needs into decision support
tools–is essential for giving decision support developers the best chance at avoiding social
harm, identifying and fixing problematic decision support tools early in the process, and
building trust with decision-makers and their communities.

As statisticians, we believe that a starting place for bringing social awareness to sta-
tistical practice is interpretable modeling and fairness. We start with interpretability. An
interpretable model is desirable not only because it can be easier to explain to and be
accepted by users (Rudin and Ustun, 2018) but also because it is easier for users to remem-
ber when they apply the knowledge in their practice and can provide insights for future
studies (Zhang et al., 2018). Although there is no universal mathematical definition of
interpretability, a deep literature exists that explores model interpretability, model explan-
ability, and real and perceived tensions with model accuracy (Rudin, 2019; Ribeiro et al.,
2016; Lundberg and Lee, 2017). In the context of decision support modeling, the inter-
pretability of a model is not decided by developers but by users. Notably, the background
of decision support tool developers and the background of users can be very distinct; what
is interpretable to a model developer may not be interpretable to the end user. Making
decision recommendations and the processes by which those recommendations are made
interpretable is important for building trust with end users, especially for those users who
have been harmed historically by less socially-grounded algorithmic decision tools. Incom-
plete, misleading, or non-transparent information can lead to faulty decision support and
can harm decision makers and the decision support field severely. Efforts have been made in
the field to build models that are both accurate and interpretable in more general settings,
such as interpretable dynamic treatment regimes, which produces a simple rule as a list of
“if. . . then. . . ” statements (Zhang et al., 2018); and Risk-Calibrated Supersparse Linear
Integer Models (RiskSLIM), which perform as effectively as the best black-box algorithm
on recidivism prediction (Rudin and Ustun, 2018).

Closely related to interpretable models is the notion of fairness. While interpretability
is concerned with the form of the model be it a decision list or a more complicated form,
fairness relates to the decision rules learned and outputted by a model. Interpretability
may help us assess why or why not a model is or is not fair, but interpretability does not
guarantee fairness. Multiple definitions of fairness have been offered to different aspects
of fairness in statistical modeling. Corbett-Davies and Goel (2018), in addition to offering
their own standard of fairness, delineated between different definitions of fairness in ma-
chine learning and showed that each definition has drawbacks and how striving for fairness
by one definition may yield discriminatory results by another definition. Despite the dif-
ficulties in defining objectively fair models, model transparency and deep interrogation of
decision support outputs can help ensure that decision support tools do not worsen existing
structural inequalities among those affected by algorithmic decision aids and tools. To this
end, new areas of research are exploring approaches to ensure stakeholder-engaged prob-
lem representation and mitigate bias in algorithm development and deployment, including
community based system dynamics (Martin Jr et al., 2020b,a).

Interpretability and fairness are only a starting place for socially aware, context-informed
decision support. We also recognize that sometimes interpretability will need to be sacrificed
to better performing but less interpretable black box-like approaches, at least temporarily,
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to ensure optimal (health) outcomes, but fairness should never be sacrificed. Integrating
interpretability and fairness together into modeling along with concerns from the level of
the decision maker to the level of society and the environment are important future areas
of exploration for statisticians and their collaborators engaged in decision support research.

4.2 A culture of accountability

Statisticians working in decision support must cultivate responsibility for both the techni-
cal aspects of their work and, as the preceding section has hopefully made clear, the wider
social implications of their work. This kind of responsibility is not new in statistics, and
broad guidelines have been codified by professional organizations like the American Statis-
tical Association and the Royal Statistical Society (Committee on Professional Ethics of the
American Statistical Association, 2018; Royal Statistical Society, 2014), but the immediacy
of decision support requires greater transparency, community involvement, and oversight
compared to other applied statistical endeavors. Nowhere is this more important than m-
health, and consumer-directed mobile applications generally, because the recommendations
are not filtered through an expert intermediary such as a physician. Accountability extends
beyond meeting legal requirements to ensuring that actions are justifiable and fair and in-
cludes being able to track the provenance of a decision recommendation. We will first review
the challenges of accountability with decision support and discuss how transparency will be
key to addressing these challenges. Afterwards, we will look at how these considerations are
playing out in the context of health care in the United States as a reference model. While
every industry will need to define its own standards for accountability commensurate to the
impact of the decisions made in the field based on these principles, the high-stakes nature of
the decisions in medicine have already prompted regulatory changes in the US through the
21st Century Cures Act as well as international recognition that regulatory agencies need
to continue developing new approaches to meet the evolving challenges of decision support.

Evolving decision support tools, especially those involving automated decision-making,
present an emerging challenge for both governmental and study-level oversight. While
decision support tools have existed for decades, the FDA has recognized the need for mod-
ernizing its approach to regulating software-based decision support systems and recently
issued draft guidance about its planned approach to regulating clinical decision support
systems (FDA, 2019a). Decision support systems can evolve over time as they accumulate
data, and their performance can change over time even if the tool remains static. Concept
drift, in which previous data is no longer representative of new data, can render a batch-
learned model biased. Though online learning methods that continuously update the model
as data accumulates can remedy this issue, they present their own challenges. In online
learning, the decision-making algorithm can evolve without a single line of code changing in
the software and the performance and sensibility of the model must be regularly evaluated.
The ability to trace the provenance of a recommendation will be critical for navigating
these challenges, but as Dr. Michael Jordan (Jordan, 2019) noted recently, trying to track
down the provenance of many medical recommendations is challenging for researchers, let
alone the general public. Other challenges particularly salient in decision support include
the extent to which a decision is explainable and whether the tool is directed at patients or
health care providers.
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While regulation is important, accountability is about more than meeting governmental
regulations. Transparency plays a fundamental role in enabling accountability, and this
transparency must cover all aspects of the model development and deployment process. In
practice this means that the reasons for a decision should be communicated at an appro-
priate level of detail, and that the underpinnings should be both explainable and traceable,
including: what data was used to train the model and how was it collected, what inputs
does the model use and how does it weight them, how well does the model perform, what
was explicitly optimized, and what important considerations may have been left out of the
optimization and left as qualitative considerations. We will focus on some of the challenges
that are unique or heightened for decision support, but will quickly note that many of the
concerns with modern statistical and machine learning applications like privacy (Harman
et al., 2012; Papernot et al., 2016) that have been covered extensively elsewhere are also
concerns here. In a decision support analysis, the set of potential actions and the out-
come(s) of interest must be explicitly specified, and rarely are all of the relevant outcomes
or potential actions included directly in an optimization problem for decision support. By
itself, this is not necessarily an issue; many considerations may be more amenable to qual-
itative or individual consideration than formal optimization, and certain actions and data
may be too costly or involve ethical concerns. The choice of what to include can become
problematic if there is not clear communication about what the decision-making algorithm
considers and what important factors are omitted, or if the exclusions are motivated by
ethically or scientifically wrong reasons. We are also limited in what is under our control,
while an outcome of interest may be effected by actions from many actors from individuals
to doctors to families and peer groups all the way up to the government. The choice of
model is typically under our control as statisticians, and whether black-box methods should
be used for high-stakes decisions is being contentiously debated (Rudin, 2019).

To see how the issues of explainability, fairness, and ongoing monitoring are playing
out in a regulatory setting, we will briefly look at how the FDA is approaching these is-
sues. The FDA’s draft guidance on clinical decision support software considers both the
intended audience (physician or patient) and the level of explainability in the determina-
tion of whether the application is tightly regulated, technically regulated but currently not
enforced at the agency’s discretion, or whether it is outside of the agency’s purview (FDA,
2019a). The FDA does not regulate physician-targeted tools when the “logic and inputs”
are available to the physician, while for patient-targeted tools the decision of whether they
plan to enforce compliance depends on the risk-level of the condition. Maintaining a bright
line between what is explainable and what is not may prove challenging (Evans and Os-
sorio, 2018), and we hope that the FDA emphasizes that interpretability is ultimately an
empirical question about how physicians use and understand it, not a fundamental property
of a model. Regardless of whether the FDA changes tack in future guidance, researchers
involved in developing decision support systems must carefully investigate whether their
tools are actually correctly understood by the people using them and not be content with
simply having applied an interpretable method.

The FDA has also begun to examine how other big data sources like electronic health
record and claims data (linked and unlinked) can be used in decision support. In doing so
they have started to build a framework for “real world evidence”(RWE), a newly coined
termed representing evidence outside of clinical trials (Schurman, 2019). While clinical
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decision support systems are not mentioned explicitly in connection with their RWE pro-
gram, this kind of evidence may be critical for both the FDA and researchers to evaluate
decision support systems in a way that better reflects their usage in practice. In contrast
to the explainability consideration, the draft guidance does not explicitly address fairness
or ongoing monitoring. Instead, the FDA requires that developers create requirements for
continued monitoring that their products are safe and effective because quality standards
are context-specific (FDA, 2019b). In the context of decision support, it is clear that mon-
itoring both ongoing performance and fairness should be part of quality standards even
when the method is not explicitly considering subgroups.

4.3 Final reflections from real-world examples

Our experience with the T1D m-health app and its ongoing development has required us to
navigate social awareness and accountability to multiple stakeholders in decision support
research. Accountability to patients is both a priority and an ongoing process. Our first
goal was to elicit and explore the needs of patients by undertaking a qualitative study to
characterize the patient-perceived experience and barriers to weight management among
youth and adolescents, including exercise (Kahkoska et al., 2018). Although individuals in
the study indicated that they were already adjusting glucose management behaviors when
exercising, they reported frustration with differences in day-to-day outcomes and reported
struggling with episodes of high and low blood sugar despite repeating strategies that had
previously worked. Youth in the study explicitly expressed a desire for individualized rec-
ommendations to avoid low or high blood sugar levels, including before, during, and after
exercise sessions. These findings were then replicated in a young adult population (Ad-
dala et al., 2019). Together, the qualitative data were formative in conceiving the decision
support tool; an understanding of lived patient experiences revealed that a real-time, indi-
vidualized recommendation to optimize blood glucose around planned exercise could help
to reduce the risk of exercise-induced hypoglycemia and facilitate safe and effective exer-
cise for this population, thereby reducing cardiovascular risk, improving weight status, and
promoting overall physical and mental well-being.

Development of the m-health app is ongoing, and accountability continues to be a key
consideration as we move forward. Additional studies will be needed to engage individuals
with type 1 diabetes and improve the m-health system in terms of future usability and
performance, revise or develop additional functionality, and further improve the user inter-
face. Once acceptability has been determined, there are additional, critical steps required
to validate the safety of the model’s patient-specific analysis and treatment recommenda-
tions, requiring input from endocrinologists and other care providers, as well as regulatory
approval by the FDA and ongoing evaluation. Sharing the tool across academic and in-
dustry communities may generate new feedback to further improve the tool. Specific and
thorough training materials will be necessary to ensure that users can successfully on-board
and understand how to safely use the tool, including reconciling strategies against their
personal judgement or medical advice when it may conflict.
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5. Conclusion

Dr. Breiman framed the goal of statistics as “us[ing] data to solve problems”. The decision
support problems we have described through our examples and exposition are complicated,
but they represent direct applications of statistics to solve problems. Decision support
warrants both a broad and deep understanding of the context in which the decision support
tool will be deployed, including outcomes of interest, their underlying determinants, related
outcomes, the mediators of changes in outcomes, and the potential for unanticipated effects.
The potential impacts of algorithms directly recommending human actors to take actions
they may not otherwise take requires strategies for oversight and accountability that evolve
in tandem with the field. Moreover, decision support modeling can not only propagate but
intensify existing disparities if care is not taken to identify where these patterns may occur.

These challenges, coupled with the complexity of each stage of developing and launching
a decision support tool, ensure no one individual can bring all of the expertise and insight
required. We believe that decision support modeling should be considered a team activity
grounded in a scientific culture characterized by, but perhaps not exclusively by, the common
goals of social awareness and accountability. On these teams, we foresee a new, evolving
role for statisticians as the hub for collaboration. From this perspective, statisticians are the
central translator of personal, community, social, and environmental insights into concrete
model choices. Statistical training will need to reflect this shift, emphasizing both the deep
technical skills required to solve decision support problems as well as the leadership and
communication skills needed to excel in this role.

Assumptions about model form, as Dr. Breiman so clearly pointed out, are mani-
festations of our beliefs about the world and how the data we learn from are generated.
Concretely for statisticians in the decision support field, the act of translating beliefs to
models will include mapping domain knowledge and multiple simultaneous social imper-
atives to objective functions that reward for good decisions, capture contextual nuance
among heterogeneous decision makers, and budget for real world constraints. It will include
approaching model selection with technical performance metrics as well as metrics of social
fairness and community specific needs. Throughout, interpretability and transparency in
the modeling development and evaluation process will be key. Inevitably, these models will
need to be constructed, scrutinized, and constructed again.

In the spirit of Dr. Breiman, we believe that statistical culture is crucial infrastructure
for the future of the field. On a cultural foundation of social awareness and accountability,
we believe that data-driven decision support can be elevated to reach its highest potential.
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