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Abstract

Significant research efforts have been made to scale and improve vision-language
model (VLM) training approaches. Yet, with an ever-growing number of bench-
marks, researchers are tasked with the heavy burden of implementing each proto-
col, bearing a non-trivial computational cost, and making sense of how all these
benchmarks translate into meaningful axes of progress. To facilitate a systematic
evaluation of VLM progress, we utilize UniBench: a unified implementation of
50+ VLM benchmarks spanning a comprehensive range of carefully categorized
capabilities from object recognition to spatial awareness, counting, and much more.
We measure progress by evaluating nearly 60 publicly available vision-language
models, trained on scales of up to 12.8B samples. We find that while scaling train-
ing data or model size can boost many vision-language model capabilities, scaling
offers little benefit for reasoning or relations. Surprisingly, we also discover today’s
best VLMs struggle on simple digit recognition and counting tasks, e.g. MNIST,
that can be solved with much simpler networks. Where scale falls short, we find
that more precise interventions, such as data quality or tailored-learning objectives
offer more promise. For practitioners, we also offer guidance on selecting a suitable
VLM for a given application.

1 Introduction

Pre-training visual models with language supervision, as demonstrated by CLIP Radford et al.
[2021a], has become a powerful and accessible method for multimodal representation learning.
VLMs have shown remarkable flexibility, excelling in zero-shot classification, transfer learning
Radford et al. [2021a], text and image retrieval Goel et al. [2022], Cui et al. [2022], Radenovic et al.
[2023], robustness Yun et al. [2023], and understanding compositional relationships Yuksekgonul
et al. [2023], Thrush et al. [2022], Hsieh et al. [2024]. Despite these successes, the field still lacks a
unified dataset to evaluate VLM performance across a wide array of benchmarks and model types.
This fragmentation makes it difficult for researchers to draw clear conclusions about the best practices
for further advancing VLM capabilities. Therefore, there is a pressing need for a comprehensive
evaluation framework to address this gap and guide future research and development in visual
representation learning.

To help shed light into the landscape of VLMs, we evaluate nearly 60 openly available vision-language
models spanning a range of architectures, model sizes, training dataset scales, and learning objectives
with scales of up to 12.8B samples and 1B parameters. Those 59 evaluated on 53 benchmarks,
these benchmarks cover a range of VLM capabilities from standard object recognition to spatial
understanding, counting, geographic robustness, domain-specific medical and satellite imagery, and
many others. With such a comprehensive set of benchmarks, we shine a light on the blind spots in the
strengths and weaknesses of the model. Next, to ensure that the research community can translate the
many resulting metrics into meaningful axes of progress, we categorize these benchmarks into seven
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types and seventeen finer-grained capabilities. Researchers can quickly pinpoint model strengths and
weaknesses in a comprehensive, apples-to-apples fashion.

We find that scaling, model size, or training data is a powerful lever for many axes of performance,
but offers little benefit for visual relations and reasoning. We also find today’s best VLMs struggle
with simple benchmarks involving numerical comprehension, even with the right training data, on
tasks such as character recognition or counting—including decades old benchmarks such as MNIST
and SVHN [LeCun et al., 1998, Netzer et al., 2011]. Where scale falls short, we find tailored learning
objectives and training data quality are promising levers for relations and reasoning. Finally, we
provide practical recommendations on which models practitioners should select. For example, we
find large open models such as Eva ViT-E/14 to be a good choice for a general-purpose VLM while
models such as NegCLIP excel at specialized tasks such as visual relations.

2 Evaluation Setup

Here we describe the benchmarks, protocols, and axes of progress that comprise UniBench as well
as the VLMs evaluated.

2.1 VLMs Considered

We evaluate 59 openly available VLMs across a range of model sizes, pre-training dataset sizes,
learning objectives, and architectures (full list in Appendix Table 5). For traning dataset size, we
include models trained and/or fine-tuned with datasets ranging from 13 million to 12.8 billion samples;
including DataComp [Gadre et al., 2023] (small, medium, large, and extra-large), LIAON [Schuhmann
et al., 2022] (400M, 2B, 5B), MetaCLIP [Xu et al., 2023] (400M and 2.5B), Flickr [Young et al.,
2014], PMD [Singh et al., 2022], and COCO [Lin et al., 2015]. For model size and architecture, we
categorize models based on the number of parameters and whether these models are convolutional or
transformer-based models, ranging from ResNet50 [He et al., 2016] with 38 million parameters to
EVA02 ViT E [Fang et al., 2023b] with 4.3 billion parameters.

Evaluation Procedure We evaluate performance of zero-shot classification benchmarks similar
to [Radford et al., 2021b], by contrasting the representations of class labels (averaged across prompts
as defined by Cherti et al. [2022]) with the image representations and using the class with the highest
probability as the predicted class. For relation benchmarks, we follow the standard protocol of
contrasting correct and incorrect captions with image representations.

3 Gauging progress in Vision Language Modeling

We show the overall median performance of the nearly 60 VLMs we examined on 53 benchmarks in
Figure 1 ranked by their zero-shot classification performance. The results suggest that, while VLMs
perform remarkably well on many tasks, for others, VLM performance is near or below random
chance level. These results highlight the need for a unifying pipeline to systematically surface model
limitations.

3.1 Scaling improves many benchmarks, but offers little benefit for reasoning and relations

Scaling training dataset size hardly helps for reasoning and relations. While scaling training
dataset size improves performance across many tasks, this trend does not hold for benchmarks
assessing relation understanding and reasoning capabilities. To control for other confounding factors,
we fix the model and only vary the training data size in Figure 2. The results suggest despite increasing
the training dataset size by a factor of 1000×, relational and reasoning benchmarks performance is
fairly flat compared to the significant boost in performance on other tasks. We observe a similar trend
overall when we include all 59 models in Appendix Figure 6. We specifically pinpoint capabilities
such as Depth Estimation, Spatial Understanding, Counting, Scene and Text Recognition, as the
underlying capabilities where scale does not lead to improvements as shown in Figure 3.

Scaling model size also offers little to no benefit for reasoning or relations. When we scale
models’ size from 86 million parameters to 1 billion parameters, we also find that models struggle to
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Figure 1: Median performance of all 59 VLMs on 53 benchmarks, illustrating that despite
advancements, VLMs still struggle on several benchmarks. Benchmarks that barely exceed
chance-level performance include Winoground, iNaturalist, DSPR, Small Norb, dmlab, Clevr, PCam,
Renderedssst2, and Kitti. Blue bars represent the median zero-shot performance of the models, while
grey bars indicate the chance-level for each benchmark.

scale on similar proportions on relation and reasoning tasks as shown in Figure 2. While for other
benchmark types including object recognition, robustness, etc. performance improves by 17.4% as
model size scales by 11×, relations and reasoning improve by a modest 3.41% with a fairly flat
scaling curve. Similar to scaling training dataset size, scaling model size also offers little benefit for
capabilities such as Depth Estimation, Spatial Understanding, Counting, Scene and Text Recognition
as shown in Figure 3.

3.2 A Case Study: Digit Recognition and Counting are notable limitations for VLMs even
with the right training data

A surprising aspect of VLMs is their poor performance on benchmarks that are traditionally considered
straightforward, such as MNIST, CIFAR-10, and CIFAR-100, as shown in Figure 1. For example, a
simple 2-layer MLP achieves 99% accuracy on MNIST [Wan et al., 2013] significantly outperforming
all 59 VLMs we studied. To delve deeper into this unexpected result, we controlled for several
variables:

1. VLM confusions go beyond top-1: To further understand the performance results on
MNIST, we compute more generous top-2,-3,-4, and -5 accuracy measures to understand
whether models confuse similar digits. We show in Appendix Figure 8 that even when
we compute top-5 accuracy (with 50% being chance), VLMs barely reach 90% accuracy
suggesting poor performance is not due to minor confusions among digits.

2. Prompt engineering isn’t enough for good performance: To ensure that the poor perfor-
mance was not an artifact of the prompts used, we tested multiple hand-crafted prompts that
included detailed descriptions of the image characteristics Appendix Figure 5. Despite these
tailored prompts, which explicitly described the black-and-white nature and content of the
images, the performance still lagged significantly behind simpler models.

3. Training data contains ample samples with digit concept: We investigated whether the
subpar performance could be attributed to a lack of training images containing digit concepts
by analyzing the popular LAION 400M dataset. Our findings reveal a substantial number
of captions with both word digits (100k-2M) and integer digits (15M-48M) in the training
captions, suggesting that the poor performance is not merely due to insufficient training data
(see Figure 9 for exact counts by digit).
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Figure 2: The effect of scaling model and training dataset size using a fixed architecture and
learning paradigm. Zero-shot performance of models on various benchmark types. We investigate
the impact of training dataset size (left), and model size on various benchmark types (right). To
isolate the effect of scale, we fix the architecture, learning paradigm, model size (for right panel), and
training dataset size (for left) by using the same CLIP ViT-B/32 model and LAION 400M dataset,
respectively.We observe a similar trend when measured across all 59 models as shown in Appendix
Figure 6

Figure 3: The effect scaling of training dataset (left) and model size (right) across capabilities
for all models. Accuracy is the difference in performance between the most scaled and the least
scaled model across capabilities relative to ImageNet performance.
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Figure 4: Performance of 59 VLMs on MNIST, showing despite progress, VLMs still struggle on
MNIST. Blue bars represent zero-shot performance of models, grey bars represent the chance-level
for MNIST, and green bar shows performance for a 2-Layer MLP.

Figure 5: Median performance of 59 VLMs on MNIST while varying prompts and labels. Blue
bars represent the median zero-shot performance of models and dashed-grey line represents the
chance-level for MNIST.

4. VLMs struggle on other digit benchmarks: To further explore whether the poor perfor-
mance on MNIST is indicative of broader issues in number comprehension, we extend our
investigation to other benchmarks such as SVHN, CountBench, and ClevrCount (Appendix
Figure 10). We find across all benchmarks VLMs struggled with number recognition and
counting tasks.

Takeaway Despite training on vast datasets, even leading VLMs can struggle with simple tasks
solved trivially by much smaller models, including tasks involving basic number comprehension.
These findings highlight the need for a comprehensive evaluation pipeline that includes so called,
simpler benchmarks, to uncover VLM limitations.
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Benchmark Type
Mean

Performance Top Top vs Worst Scale Worst

Model Performance Training
Dataset Size Model Size Performance Model

Corruption 46.2 EVA02 ViT E 14 74.3 153× 50× 2.4 DataComp ViT B 32
Non-Natural Images 54.1 EVA02 ViT E 14 74.6 153× 50× 16.1 DataComp ViT B 32
Object Recognition 55.0 CLIPA ViT G 14 71.1 98× 21× 12.1 DataComp ViT B 32
Reasoning 14.9 OpenCLIP ViT g 14 19.0 133× 18× 10.6 OpenCLIP ResNet101
Relation 46.7 NegCLIP ViT B 32 66.8 30× 1× 33.2 DataComp ViT B 32
Robustness 52.1 EVA02 ViT E 14 72.8 153× 50× 3.8 DataComp ViT B 32
Texture 53.5 MetaCLIP ViT H 14 72.5 192× 7× 5.4 DataComp ViT B 32

Overall 46.1 EVA02 ViT E 14 61.2 153× 50× 12.1 DataComp ViT B 32

Table 1: List of all evaluated dataset types with their corresponding mean performance across models,
the best and worst performing models. The Top vs. Worst Scale shows the proportion difference
between the worst and best model on the training dataset size and the model size.

3.3 What contributes to better model performance?

We have shown both the promise and limitations of scale for VLM performance. We now examine
what other levers can overcome the limitations of scale. In particular, we examine other promising
factors, such as data quality and learning objectives for improving relational understanding and
reasoning.

Data quality matters more than data quantity. Among the 59 VLMs we evaluated, there are
models trained from 12.8 million samples to 12.8 billion samples. While the quantity of data is often
highlighted as a key driver for improving model performance, the quality of the data can be even
more critical. For instance, among all models in Appendix Tables 1 and 4, the top performing models
are generally the ones trained on 2 billion samples, which use more strict CLIP score filtering as
described in Gadre et al. [2024]. This observation suggests that beyond a certain threshold, simply
adding more data does not necessarily translate to better performance. Instead, the composition
and quality of the data set become paramount. Models trained on such data are better equipped to
generalize from their training environments to real-world applications, demonstrating that strategic
curation of data can be more valuable than the sheer volume of data collected.

Tailored learning objectives can help where scale does not. The learning objectives defined
during model training phase are pivotal in steering the model’s learning process and ultimately its
performance on various tasks. A notable example is NegCLIP [Yuksekgonul et al., 2022], with
a tailored learning objective for capturing relations via hard-negatives seems to substantially aid
NegCLIP’s performance on relational understanding (Appendix Tables 1 and 4). As shown in the
original paper NegCLIP’s performance isn’t simply the result of finetuning with additional data (see
Table 6 of Yuksekgonul et al. [2022]), but is thanks to a tailored learning objective involving hard
negatives. NegCLIP, with only 86M parameters, significantly outperforms models up to 50× larger
with an overall performance of 70.4%, compared to only 50.5% for the largest EVA ViT-E/14 model
with 4.3B parameters. Similarly, Paiss et al. [2023] tailored learning objective for VLMs can have
significantly improve performance on counting tasks.

3.4 Which model should I use?

Finally, we provide recommendations for practitioners to select the most suitable openly available
VLM. For an overall high-performing model across the axes we measured, models with large ViT
encoders trained on large datasets exhibit the highest overall performance, with Eva-2 ViT-E/14
leading the way. For relations, counting, or related capabilities, we rank the top and worst performing
models in Appendix Table 4.
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A Appendix

A.1 UniBench Implementation Details

We have developed UniBench to be easy-to-run library to allow researchers to systemati-
cally compare and contrast exsisting (n=59 ) and new VLMs on 53 benchmarks. To eval-
uate new VLMs that expand beyond the already implemented 59 VLMs, users need to fol-
low Code Snippet 1. Users would need to create a class that inherent from ClipModel from
uni_bench.models_zoo with get_image_embeddings and get_text_embeddings methods
implemented. get_image_embeddings and get_text_embeddings methods takes images and
captions as input, respectively, and returns a tensor of encoded representations.

1 from uni_bench.models_zoo import ClipModel
2 import uni_bench
3

4 class CustomModel(ClipModel):
5

6 @torch.no_grad ()
7 # Output tensor of final layer of image encoder
8 def get_image_embeddings(self , images):
9 ...

10

11 @torch.no_grad ()
12 # Output tensor of final layer of text encoder given captions
13 def get_text_embeddings(self , captions):
14 ...
15

16

17 evaluator = uni_bench.Evaluator () # Initialize Evaluator class
18 new_model = CustomModel () # Initialize new model
19 evaluator.add_model(new_model) # add new model to the evaluation

pipeline
20 evaluator.evaluate () # run the evaluation

Code Snippet 1: Custom Model Example

A.2 Gauging progress in Vision Language Models

Scaling improves many benchmarks, but offers little benefit for reasoning and relation. Ap-
pendix Figure 6 shows that despite increasing the training dataset size by a factor of 1000× and model
size by a factor of 11×, relational and reasoning benchmarks performance is fairly flat compared
to the significant boost in performance on other tasks. We further pinpoint capabilities such as
Depth Estimation, Spatial Understanding, Counting, Scene and Text Recognition, as the underlying
capabilities where scale does not lead to improvements as shown in Figure 7.

A.3 Impact of Prompts on MNIST Performance

The MNIST dataset, featuring handwritten digits, was subjected to various prompting strategies to
evaluate their impact on model performance. Our findings reveal a distinct hierarchy in performance
based on the type of prompts used. The benchmark was tested with both numeral formats ("zero-nine"
and "0-9") and different prompt styles (specialized word prompts, specialized digit prompts, and a
basic prompt) (Figure 5).

A.3.1 Hierarchy of Prompt Performance

The performance of the MNIST model varied significantly across different prompt types and formats,
arranged here from best to worst performing setups: 1. Word digits ("zero-nine") with specialized
word prompts 2. Word digits ("zero-nine") with basic prompt 3. Word digits ("zero-nine") with
specialized digit prompts 4. Digits ("0-9") with specialized digit prompts 5. Digits ("0-9") with basic
prompt 6. Digits ("0-9") with specialized word prompts
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Figure 6: The effect of scaling model and training dataset size on all models. Median zero-shot
performance of models on various benchmark types. We investigate the impact of training dataset
size (left), and model size on various benchmark types (right).

Figure 7: Benchmark capabilities performance does not scale with dataset and model size
Median zero-shot performance of models on various benchmark capabilities. We investigate the
impact of dataset size (left), and model size on various benchmark capabilities (right). We isolate the
effect of training data size keeping other factors such as architecture, learning objective, and model
size fixed only using ViT B32 (left). For right panel subfigure, we isolate the effect of model size
keeping other factors such as architecture, learning objective, and training data size fixed only using
LIAON 400M (right).
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A.3.2 Specialized Word Prompts

These prompts provided detailed descriptions and contexts, significantly enhancing the model’s
ability to recognize and interpret the digits accurately. Examples include:

• "showcasing the digit {}, is this image."

• "this number {} is represented in a handwritten form."

• "the numeral {} is captured in this snapshot."

• "the digit {} is depicted visually in this image."

• "this image is a graphical representation of the number {}."

• "this is an illustration of the digit {}."

• "this image represents the digit {} in a handwritten form."

• "the number {} is sketched as a digit in this image."

• "this is a photograph of the digit {}."

• "the number {} is drawn as a digit in this image."

A.3.3 Specialized Digit Prompts

These prompts explicitly mention the format or style of the digit, aiding in recognition but to a lesser
extent compared to specialized word prompts. Examples include:

• "A photo of the number: ’{}’."

• "A digit drawing of the number: ’{}’."

• "A digit sketch of the number: ’{}’."

• "A handwritten digit image of: ’{}’."

• "A digit illustration of: ’{}’."

• "A graphical representation of the number: ’{}’."

• "A visual depiction of the digit: ’{}’."

• "A snapshot of the numeral: ’{}’."

• "A handwritten representation of the number: ’{}’."

• "An image showcasing the digit: ’{}’."

A.3.4 Basic Prompt

The basic prompt used:

• "a photo of the number: ’{}’."

This structured analysis clearly demonstrates how the specificity and relevance of the prompt signifi-
cantly influence the performance of VLMs. We investigated whether the subpar performance could
be attributed to a lack of training images containing digit concepts by analyzing the popular LAION
400M dataset. Our findings reveal a substantial number of captions with both word digits (100k-2M)
and integer digits (15M-48M) in the training captions, suggesting that the poor performance is not
merely due to insufficient training data (see Figure 9 for exact counts by digit). To further understand
the performance results on MNIST, we compute more generous top-2,-3,-4, and -5 accuracy measures
to understand whether models confuse similar digits. We show in Appendix Figure 8 that even when
we compute top-5 accuracy (with 50% being chance), VLMs barely reach 90% accuracy suggesting
poor performance is not due to minor confusions among digits.
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Figure 8: Median performance of 59 VLMs on MNIST while varying accuracy measure from
top-1 to top-5. The following further shows that VLMs’ performance on MNIST is not due mismatch
between top-1 and top-5 guesses. Blue bars represent the median zero-shot performance of models
and red bars represents the chance-level for benchmarks.

Figure 9: Frequency of different digits in LAION-400M, showing substantial frequency of digits
in visual diet of VLMs. Left panel counts the number of words of the digits i.e. [zero-nine] and right
panel counts the number of digits in LAION-400M.
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Figure 10: Median performance of 59 VLMs on counting and character recognition benchmarks,
showing MNIST performance is not an isolated instance and VLMs generally sruggle with
these tasks. Blue bars represent the median zero-shot performance of models and gray bars represent
random chance-level.

A.4 Correlation of ImageNet with Other Benchmarks

ImageNet, often considered a cornerstone in the field of computer vision, has been widely used
as a benchmark to evaluate the performance of image recognition models. Its extensive dataset
and challenging classification tasks have set a standard for algorithm development and comparison.
However, while ImageNet correlates well with many benchmarks, it does not exhibit a universal
correlation across all tasks. Our analysis reveals that for a significant number of benchmarks,
specifically 18 out of the 53 benchmarks analyzed, the performance on ImageNet is poorly or
negatively correlated. This is illustrated in Appendix Figure 11, which provides a detailed comparison
of benchmark performances. This finding suggests that success on ImageNet does not necessarily
translate to proficiency in all visual tasks.

A.5 A Practical Subset of Benchmarks

While ideally, evaluating VLMs across all 53 benchmarks would provide the most comprehensive
insights, the computational demands and complexity of parsing such extensive data can be over-
whelming (6 million images to evaluate; 2+ hours for one model on an A100 GPU). To streamline
evaluation, we distill the full set of benchmarks in UniBench into seven benchmark types and 17
capabilities. These categorizations were deraved based on benchmarks that correlate strongly with
other benchmarks for each benchmark type and capability (Tables 2 and 3).
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Figure 11: Correlation matrix of models’ performance across all benchmarks.

Benchmark Type Most Correlated
Benchmark

Correlation
Value

Object recognition ImageNet-1k 0.82
Reasoning (Counting) CountBench 0.76
Reasoning (Spatial) DSPR Position 0.29
Relation VG Attribution 0.57
Texture DTD 1
Non-Natural Images Resisc45 0.72
Robustness ImageNet-v2 0.81
Corruption ImageNet-c 1

Table 2: Evaluate on a curated list of benchmark types, rather than the full set, to save time.
The list includes benchmarks that correlate strongly with other benchmarks for each benchmark type.
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Capabilities Most Correlated
Benchmark Correlation Value

standard object recognition food101 0.85
counting countbench 0.76
spatial understanding dspr y position 0.29
relations vg attribution 0.57
geographic diversity dollar street 0.89
specifies classification flowers102 0.7
depth estimation dmlab 0.42
pose detection smallnorb azimuth 0.57
texture detection dtd 1
satellite eurosat 0.95
character recognition mnist 0.88
imagenet imagenet1k 1
natural transformations imagenet9 0.99
rendition imagenetr 0.97
challenging imagenet imagenetv2 0.65
corruption imagenetc 1
medical retinopathy 0.64
scene recognition sun397 0.99

Table 3: Evaluate on a curated list of capabilities, rather than the full set, to save time. The list
includes benchmarks that correlate strongly with other benchmarks for each capability.

Benchmark Type
Mean

Performance Top Top vs Worst Scale Worst

Model Performance Training
Dataset Size Model Size Performance Model

Challenging Imagenet 47.8 EVA02 ViT E 14 64.4 153 50 5.0 DataComp ViT B 32
Character Recognition 54.8 CLIPA ViT G 14 74.3 85 48 20.5 OpenCLIP ResNet50
Corruption 46.1 EVA02 ViT E 14 74.3 153 50 2.3 DataComp ViT B 32
Counting 31.4 OpenCOCA ViT L 14 53.1 153 3 11.5 DataComp ViT B 32
Depth Estimation 20.4 DataComp ViT B 16 27.6 0.6 0.1 12.4 OpenCLIP ViT H 14
Geographic Diversity 33.8 CLIPA ViT G 14 46.8 98 21 5.3 DataComp ViT B 32
Imagenet 65.7 OpenCLIP ViT H 14 83.1 384 7 3.9 DataComp ViT B 32
Medical 43.3 MetaCLIP ViT L 14 68.6 0.3 3 26.8 DataComp ViT B 16
Natural Transformations 56.2 CLIPA ViT G 14 81.7 98 21 2.5 DataComp ViT B 32
Pose Detection 3.9 OpenCLIP ViT B 32 4.7 5 0.9 3.3 OpenCLIP ConvNext
Relations 46.7 NegCLIP ViT B 32 66.7 30 1 33.2 DataComp ViT B 32
Rendition 63.7 CLIPA ViT G 14 84.2 98 21 3.8 DataComp ViT B 32
Satellite 55.2 EVA02 ViT E 14 75.7 153 50 12.3 DataComp ViT B 32
Scene Recognition 53.0 OpenCLIP ViT H 14 61.7 384 7 6.3 DataComp ViT B 32
Spatial Understanding 9.1 MetaCLIP ViT L 14 11.3 1 3 6.3 CLIP ResNet50x4
Specifies Classification 51.7 OpenCLIP ViT H 14 68.9 384 7 2.8 DataComp ViT B 32
Standard Object Recognition 60.0 CLIPA ViT G 14 77.1 98 21 13.8 DataComp ViT B 32
Texture Detection 53.4 MetaCLIP ViT H 14 72.4 192 7 5.3 DataComp ViT B 32

Overall 44.2 EVA02 ViT E 14 58.0 153 50 11.3 DataComp ViT B 32

Table 4: List of all evaluated capabilities with their corresponding mean performance across models,
the best and the worst performing models. The Top vs. Worst Scale shows the proportion difference
between the worst and best model on the training dataset size and the model size.
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Model Dataset size Model size Learning objective Architecture Model name

blip_vitB16_14m Li et al. [2022] 14 86 BLIP vit BLIP ViT B 16
blip_vitL16_129m Li et al. [2022] 129 307 BLIP vit BLIP ViT L 16
blip_vitB16_129m Li et al. [2022] 129 86 BLIP vit BLIP ViT B 16
blip_vitB16_coco Li et al. [2022] 129 86 BLIP vit BLIP ViT B 16
blip_vitB16_flickr Li et al. [2022] 129 86 BLIP vit BLIP ViT B 16
blip_vitL16_coco Li et al. [2022] 129 307 BLIP vit BLIP ViT L 16
blip_vitL16_flickr Li et al. [2022] 129 307 BLIP vit BLIP ViT L 16
eva02_vitE14_plus_2b Fang et al. [2023b] 2000 4350 Pure Contrastive vit EVA02 ViT E 14
eva02_vitE14_2b Fang et al. [2023b] 2000 4350 Pure Contrastive vit EVA02 ViT E 14
eva02_vitL14_2b Fang et al. [2023b] 2000 307 Pure Contrastive vit EVA02 ViT L 14
eva02_vitB16_2b Fang et al. [2023b] 2000 86 Pure Contrastive vit EVA02 ViT B 16
eva01_vitG14_plus_2b Fang et al. [2022] 2000 1011 Pure Contrastive vit EVA01 ViT g 14
eva01_vitG14_400m Fang et al. [2022] 400 1011 Pure Contrastive vit EVA01 ViT g 14
clipa_vitbigG14 Li et al. [2023a] 1280 1843 Pure Contrastive vit CLIPA ViT G 14
clipa_vitH14 Li et al. [2023a] 1280 633 Pure Contrastive vit CLIPA ViT H 14
clipa_vitL14 Li et al. [2023a] 1280 307 Pure Contrastive vit CLIPA ViT L 14
siglip_vitL16 Zhai et al. [2023] 10000 307 Contrastive (sigmoid) vit SigLIP ViT L 16
siglip_vitB16 Zhai et al. [2023] 10000 86 Contrastive (sigmoid) vit SigLIP ViT B 16
openclip_vitB32_metaclip_fullcc Xu et al. [2023] 2500 86 Pure Contrastive vit MetaCLIP ViT B 32
openclip_vitB16_metaclip_400m Xu et al. [2023] 400 86 Pure Contrastive vit MetaCLIP ViT B 16
openclip_vitB32_metaclip_400m Xu et al. [2023] 400 86 Pure Contrastive vit MetaCLIP ViT B 32
openclip_vitB16_metaclip_fullcc Xu et al. [2023] 2500 86 Pure Contrastive vit MetaCLIP ViT B 16
openclip_vitL14_dfn2b Fang et al. [2023a] 2000 307 Pure Contrastive vit OpenCLIP ViT L 14
openclip_vitL14_metaclip_400 Xu et al. [2023] 400 307 Pure Contrastive vit MetaCLIP ViT L 14
openclip_vitL14_metaclip_fullcc Xu et al. [2023] 2500 307 Pure Contrastive vit MetaCLIP ViT L 14
openclip_vitH14_metaclip_fullcc Xu et al. [2023] 2500 633 Pure Contrastive vit MetaCLIP ViT H 14
openclip_vitH14_dfn5b Fang et al. [2023a] 5000 633 Pure Contrastive vit OpenCLIP ViT H 14
openclip_convnext_base Ilharco et al. [2021] 400 88 Pure Contrastive conv OpenCLIP ConvNext
openclip_vitB32_datacomp_s Gadre et al. [2023] 13 86 Pure Contrastive vit DataComp ViT B 32
openclip_vitB32_datacomp_m Gadre et al. [2023] 128 86 Pure Contrastive vit DataComp ViT B 32
openclip_vitB32_datacomp_xl Gadre et al. [2023] 12800 86 Pure Contrastive vit DataComp ViT B 32
openclip_vitB16_datacomp_xl Gadre et al. [2023] 12800 86 Pure Contrastive vit DataComp ViT B 16
openclip_vitB16_datacomp_l Gadre et al. [2023] 1280 86 Pure Contrastive vit DataComp ViT B 16
openclip_vitH14 Ilharco et al. [2021] 2000 633 Pure Contrastive vit OpenCLIP ViT H 14
xvlm_flickr Zeng et al. [2022] 16 86 XVLM Swin XVLM Swin B
flava_full Singh et al. [2022] 70 86 Other vit FLAVA ViT B 32
openclip_vitL14_400m Ilharco et al. [2021] 400 307 Pure Contrastive vit OpenCLIP ViT L 14
openclip_vitL14_datacomp_xl Gadre et al. [2023] 12800 307 Pure Contrastive vit DataComp ViT L 14
openclip_vitL14_2b Ilharco et al. [2021] 2000 307 Pure Contrastive vit OpenCLIP ViT L 14
clip_vitL14 Radford et al. [2021b] 400 307 Pure Contrastive vit CLIP ViT L 14
xvlm_coco Zeng et al. [2022] 16 86 XVLM Swin XVLM Swin B
openclip_vitB32_400m Ilharco et al. [2021] 400 86 Pure Contrastive vit OpenCLIP ViT B 32
openclip_vitB32_2b Ilharco et al. [2021] 2000 86 Pure Contrastive vit OpenCLIP ViT B 32
openclip_vitG14_2b Ilharco et al. [2021] 2000 1011 Pure Contrastive vit OpenCLIP ViT g 14
openclip_vitbigG14_2b Ilharco et al. [2021] 2000 1843 Pure Contrastive vit OpenCLIP ViT G 14
openclip_vitB16_2b Ilharco et al. [2021] 2000 86 Pure Contrastive vit OpenCLIP ViT B 16
openclip_vitB16_400m Ilharco et al. [2021] 400 86 Pure Contrastive vit OpenCLIP ViT B 16
opencoca_vitL14_2b Yu et al. [2022], Ilharco et al. [2021] 2000 307 Other vit OpenCOCA ViT L 14
opencoca_vitB32_2b Yu et al. [2022], Ilharco et al. [2021] 2000 86 Other vit OpenCOCA ViT B 32
negclip_vitB32 Yuksekgonul et al. [2023] 400 86 Negative CLIP vit NegCLIP ViT B 32
clip_vitB16 Radford et al. [2021b] 400 86 Pure Contrastive vit CLIP ViT B 16
clip_resnet50 Radford et al. [2021b] 400 38 Pure Contrastive conv CLIP ResNet50
openclip_resnet101_yfcc Ilharco et al. [2021] 15 56 Pure Contrastive conv OpenCLIP ResNet101
openclip_resnet50_yfcc Ilharco et al. [2021] 15 38 Pure Contrastive conv OpenCLIP ResNet50
openclip_resnet50_cc Ilharco et al. [2021] 12 38 Pure Contrastive conv OpenCLIP ResNet50
clip_resnet101 Radford et al. [2021b] 400 56 Pure Contrastive conv CLIP ResNet101
clip_resnet50x4 Radford et al. [2021b] 400 87 Pure Contrastive conv CLIP ResNet50x4
clip_resnet50x16 Radford et al. [2021b] 400 167 Pure Contrastive conv CLIP ResNet50x16
clip_resnet50x64 Radford et al. [2021b] 400 420 Pure Contrastive conv CLIP ResNet50x64
clip_vitB32 Radford et al. [2021b] 400 86 Pure Contrastive vit CLIP ViT B 32

Table 5: List of all the models used in evaluations with their corresponding dataset size, model size
(number of parameters), learning objective, and architecture.
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Benchmark Measure Benchmark Type Capability Curated Object Centric Number of
Classes

caltech101 [Fei-Fei et al., 2004] zero-shot object recognition standard object recognition False True 102
cars [Krause et al., 2013] zero-shot object recognition standard object recognition False True 196
cifar10 [Krizhevsky et al., 2009] zero-shot object recognition standard object recognition False True 10
cifar100 [Krizhevsky et al., 2009] zero-shot object recognition standard object recognition False True 100
clevr count [Johnson et al., 2017] zero-shot reasoning counting True False 8
clevr distance [Johnson et al., 2017] zero-shot reasoning spatial understanding True False 6
coco order [Yuksekgonul et al., 2023] relation relation relations False False 5
countbench [Paiss et al., 2023] zero-shot reasoning counting False False 10
country211 [Radford et al., 2021a] zero-shot object recognition geographic diversity False False 211
cub [Wah et al., 2011] zero-shot object recognition specifies classification False False 200
dmlab [Zhai et al., 2019] zero-shot reasoning depth estimation True False 6
dollar street [Gaviria Rojas et al., 2022] zero-shot object recognition geographic diversity False True 60
dspr orientation [Matthey et al., 2017] zero-shot reasoning pose detection True False 40
dspr x position [Matthey et al., 2017] zero-shot reasoning spatial understanding True False 32
dspr y position [Matthey et al., 2017] zero-shot reasoning spatial understanding True False 32
dtd [Cimpoi et al., 2014] zero-shot texture texture detection True False 47
eurosat [Helber et al., 2019, 2018] zero-shot non-natural images satellite False False 10
fashion mnist [Xiao et al., 2017] zero-shot object recognition character recognition True True 10
fgvc aircraft [Maji et al., 2013] zero-shot object recognition standard object recognition False True 100
flickr30k order [Yuksekgonul et al., 2023] relation relation relations False False 5
flowers102 [Nilsback and Zisserman, 2008] zero-shot object recognition specifies classification False True 102
food101 [Bossard et al., 2014] zero-shot object recognition standard object recognition False True 101
gtsrb [Stallkamp et al., 2012] zero-shot object recognition standard object recognition False True 43
imagenet1k [Deng et al., 2009] zero-shot object recognition imagenet False True 1000
imagenet9[Xiao et al., 2020] zero-shot robustness natural transformations True True 1000
imagenet sketch [Wang et al., 2019] zero-shot non-natural images rendition True True 1000
imageneta [Hendrycks et al., 2021b] zero-shot robustness challenging imagenet True True 200
imagenetc [Hendrycks and Dietterich, 2019] zero-shot corruption corruption True True 1000
imagenete [Li et al., 2023b] zero-shot robustness natural transformations True True 1000
imageneto [Hendrycks et al., 2021b] zero-shot robustness challenging imagenet True True 200
imagenetr [Hendrycks et al., 2021a] zero-shot non-natural images rendition True True 200
imagenetv2 [Recht et al., 2019] zero-shot robustness challenging imagenet True True 1000
inaturalist [Van Horn et al., 2018] zero-shot object recognition specifies classification False True 5089
kitti distance [Geiger et al., 2012] zero-shot reasoning depth estimation False False 4
mnist[LeCun et al., 1998] zero-shot object recognition character recognition True True 10
objectnet [Barbu et al., 2019] zero-shot robustness natural transformations False True 113
pcam [Veeling et al., 2018] zero-shot non-natural images medical True False 2
pets [Parkhi et al., 2012] zero-shot object recognition specifies classification False True 37
places365 [Zhou et al., 2017] zero-shot object recognition scene recognition False False 365
pug imagenet [Bordes et al., 2023] zero-shot object recognition standard object recognition False True 151
renderedsst2 [Radford et al., 2021a] zero-shot object recognition character recognition True True 2
resisc45[Cheng et al., 2017] zero-shot non-natural images satellite False False 45
retinopathy [Wang and Yang, 2018] zero-shot non-natural images medical False False 5
smallnorb azimuth [LeCun et al., 2004] zero-shot reasoning pose detection True False 18
smallnorb elevation [LeCun et al., 2004] zero-shot reasoning spatial understanding True False 9
stl10 [Coates et al., 2011] zero-shot object recognition standard object recognition False True 10
sugarcrepe [Hsieh et al., 2024] relation relation relations False False 2
sun397 [Xiao et al., 2010] zero-shot object recognition scene recognition False False 397
svhn [Netzer et al., 2011] zero-shot object recognition character recognition False True 10
vg attribution [Yuksekgonul et al., 2023] relation relation relations False False 2
vg relation [Yuksekgonul et al., 2023] relation relation relations False False 2
voc2007 [Everingham et al.] zero-shot object recognition standard object recognition False True 20
winoground [Thrush et al., 2022] relation relation relations False False 2

Table 6: List of all the benchmarks used in evaluations with their corresponding dataset type,
capability, number of classes, whether they are curated and whether they are curated object centric.
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