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Abstract In this paper, we concentrate on computing several critical budgets for interdiction
of the multicommodity network flows, and studying the interdiction effects of the changes
on budget. More specifically, we first propose general interdiction models of the multicom-
modity flow problem, with consideration of both node and arc removals and decrease of their
capacities. Then, to perform the vulnerability analysis of networks, we define the function
F(R) as the minimum amount of unsatisfied demands in the resulted network after worst-
case interdiction with budget R. Specifically, we study the properties of function F(R), and
find the critical budget values, such as Ra , the largest value under which all demands can still
be satisfied in the resulted network even under the worst-case interdiction, and Rb, the least
value under which the worst-case interdiction can make none of the demands be satisfied.
We prove that the critical budget Rb for completely destroying the network is not related
to arc or node capacities, and supply or demand amounts, but it is related to the network
topology, the sets of source and destination nodes, and interdiction costs on each node and
arc. We also observe that the critical budget Ra is related to all of these parameters of the
network. Additionally, we present formulations to estimate both Ra and Rb. For the effects
of budget increasing, we present the conditions under which there would be extra capabilities
to interdict more arcs or nodes with increased budget, and also under which the increased
budget has no effects for the interdictor. To verify these results and conclusions, numerical
experiments on 12 networks with different numbers of commodities are performed.
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1 Introduction

The network interdiction problem, which aims to optimally impede network operations
through limited disruption actions, was initially studied for military applications [1], such
as delaying, disrupting or destroying enemy’s supplies with limited resources (or budget).
Recently, this problem has been studied and applied in many areas, such as reducing con-
gestion in traffic network [2], controlling of infectious disease [3], intercepting of smuggling
illegal items, for example, drugs [4], nuclear materials [5,6], etc., and many other applica-
tions, as discussed in [7].

This problem has been extensively studied since 1960s. Collado and Papp [7] summarized
a large variety of models and algorithms. Models for this problem can be classified into
several categories: interdiction on directed or undirected network, deterministic or stochastic
interdiction, arc or node interdiction, etc. In some models, the network failures are given in
a set. For example, Garg and Smith [8] studied a minimum cost survivable network design
given a random set of scenarios each consisting of the simultaneous failures of some arcs.
Liberatore et al. [9] presented a facility protection problem which is to optimally allocate
resources to minimize the worst impact by random possible losses. Johnston et al. [10]
considered a network protecting problem against random arc failures.

However, in most models, the failure scenario is determined by interdictor. Specifically, it
is assumed that the interdictor chooses to make the maximum damage to the network. Israeli
and Wood [11] studied the shortest path problem in which an interdictor tries to maximize
the shortest s–t path length by interdicting the arcs or increasing the arc length. Golden
[12] examined a similar problem but with a length constraint. Zenklusen [13] considered
a matching interdiction problem, in which the interdictor tries to minimize the maximum
weight of matchings by removing edges by limited budget. McMasters and Mustin [14]
studied a military problem, in which the strike planner tries to find a most successful way
to interdict the supply line of an enemy with a limited number of aircraft. Ghare et al. [15]
described a similar problem in which a commander determines a best policy so that the
resulted maximum flow can beminimized. Cormican et al. [16] proposed a stochastic version
of the network interdiction problem where the interdictions are binary. Washburn and Wood
[17] considered a network interdiction problem, in which the leader tries to maximize the
probability of detecting the followers’ travel. Fulkerson and Harding [18] considered the
maximum shortest path problem and reformulated it to a minimum-cost network flow form.
Recently, a stochastic minimum cost flow with arc failure uncertainty was also considered
[19].

Aside from the above network problems, one category of models for interdiction is con-
cerned with commodity flow problems. Such model involves combinatorial optimization,
stochastic programming and game theory. Phillips [20] computed a optimal fixed-charge
attack strategy to inhibit the capacity of a network to transport a commodity. Royset and
Wood [21] considered a maximum-flow network-interdiction problem with respect to two
objectives. Wollmer [2] studied a maximum flow network interdiction problem with arc
removals. Wood [22] analyzed the maximum flow problem in a capacitated network, in
which an interdictor tries to find the best way to minimize the maximum flow by interdicting
arcs. Atkinson et al. [23] examined an optimal stopping problem to place sensors to stop a
terrorist from driving a radiological weapon to a city. Lim and Smith [24] studied a network
interdiction problem on a multicommodity flow network for both discrete and continuous
interdictions. Smith et al. [25] examined a survivable network design problem in which the
designer tries to fortify a network to defend against enemy attacks in various scenarios in the
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form of a three-level two-player game. Recently, Sullivan and Smith [26] studied interdiction
problem in networks that reside in Euclidean space.

To solvemulticommodity network flow interdiction problems,many algorithms have been
developed such as dual-ascent heuristic procedure in [27] and primal-dual algorithm in [28].
Royset and Wood [29] proposed an algorithm through a sequence of single-objective prob-
lems solved using Lagrangian relaxation and a specialized branch-and-bound algorithm.
Kennington [30] surveyed some early algorithms. Wood [31] described basic theoretical
models and solution methods for bilevel network interdiction model. For binary interdiction,
Wood [22], Israeli and Wood [11] formulated the bilevel problem into a mixed-integer pro-
gram (MIP) and then solved it directly. Lim and Smith [24] studied a linearized model and
compared it with a penalty model that does not require linearization. For continuous case,
Lim and Smith [24] proposed a partitioning algorithm with a heuristic procedure to estimate
the optimal solution. Smith et al. [25] described a cutting-plane algorithm to obtain the opti-
mal interdiction. This cutting-plane algorithm requires a large amount of computational time
because many mixed-integer subproblems need to be solved and the number of subproblems
is the number of all arcs of the network.

However, in these literatures, the budget for interdiction is always assumed to be a fixed
value, and the effects of interdiction under different budgets are not analyzed. Inmost of these
bilevel network interdiction models, it is always that the second level after the worst-case
interdiction is still feasible, and duality and linearization techniques are general methods used
for solving these bilevel programming problems. However, when budget increases to certain
amount, the interdiction may cause that there is no feasible solution in the second level. For
example, in the interdiction model of multicommodity flow, if the interdiction budget is large
enough, there will be no feasible flow to satisfy all demands in the resulted network.

In this paper, we concentrate on computing several critical budgets for interdiction on the
multicommodity network flows, and studying the interdiction effects of the changes of bud-
get. The results from our study will help interdictor to decide the amount of limited resources,
and how and where to perform interdiction on networks for expected destroy effects. More
specifically, we first propose general interdiction models of the multicommodity flow prob-
lem, with consideration of both node and arc removals and decrease of their capacities. These
models are formulated as bilevel programs, with cases for continuous and binary interdic-
tions. To solve these programs, we reformulate them as mixed integer linear programs. In
order to analyze the vulnerability of networks, we define the function F(R) as the mini-
mum amount of unsatisfied demands in the resulted network after worst-case interdiction
with budget R, and perform the interdiction analysis regarding different values of budgets.
Specifically, we study the properties of function F(R), and find the critical budget values. For
example, we obtain the value Ra , which is the largest value under which all demands can still
be satisfied in the resulted network even under the worst-case interdiction, and Rb the least
value under which the worst-case interdiction can make none of the demands be satisfied.
That is, for 0 ≤ R ≤ Ra , F(R) = 0, all demands will be satisfied; for Ra < R < Rb,
only part of the demands can be satisfied; for R ≥ Rb, F(R) is equal to total demands and
no demand can be satisfied. We prove that the critical budget Rb for completely destroying
the network is not related to arc or node capacities, and supply or demand amounts, but it
is related to the network topology, the sets of source and destination nodes, and interdiction
costs on each node and arc. We also observe that the critical budget Ra that cannot make any
demand be unsatisfied is related to all of these parameters of the network. Additionally, we
present formulations to estimate both Ra and Rb. For the effects of budget increasing, we
presents conditions under which there would be extra capabilities to interdict more arcs and
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nodes with increased budget, and also under which the increased budget has no effects for
the interdictor.

The remainder of this paper is organized as follows. In Sect. 2, models for network inter-
diction of multicommodity flows are presented. Additionally, we present the approaches to
exactly solve the bilevel programs for both continuous and binary interdiction models. In
Sect. 3, we perform the vulnerability analysis for the interdiction and analyze the unsatis-
fied demand amounts under different interdiction budgets, especially we study the critical
budgets and effects of budget increasing. In Sect. 4, numerical experiments are performed
to compare the proposed models and algorithms, and to analyze the results of vulnerabil-
ity regarding different budgets. Finally, we conclude this paper in Sect. 5 with some future
research directions.

2 Models and algorithms for network interdiction problem

The network interdiction problem has been extensively studied in [24]. Here we only give a
brief introduction of the problem with both node and arc interdictions. Then we will focus
on our new approach to solve the network interdiction problem for continuous interdiction
case. These models and algorithms will provide fundamental methods for our analysis of
interdiction in Sect. 3.

Let G = (N , A) be a directed network consisting of node set N (indexed by i) and
arc set A [each arc with head j ∈ N and tail i ∈ N is denoted by (i, j)]. For any arc
(i, j) ∈ A, assume the capacity is ui j and the cost to transport one unit of flow on this arc is
ci j . Additionally, assume the capacity for each node i ∈ N is vi . In this paper, we consider
K types of commodity flows (also, K is used as the set of commodity types). For each type
k ∈ K , let S(k) denote the set of source nodes, and D(k) the set of destination nodes. The
supply amount of commodity k at source node i ∈ S(k) is ski while the demand amount
at destination node j ∈ D(k) is dkj . In the following, we assume that ski , d

k
j > 0 for all

i ∈ S(k), j ∈ D(k), k ∈ K and
∑

i∈S(k) s
k
i = ∑

j∈D(k) d
k
j for all k ∈ K .

Let continuous decision variable zki j denote the commodity flow of type k ∈ K on the

arc (i, j) ∈ A, and let z be the vector consisting of zki j ’s for all (i, j) ∈ A, k ∈ K . The
minimum-cost multicommodity network flow (MCNF) problem is to find possible flows to
satisfy all demands with minimum cost for transhipment, and it can be formulated as a linear
program in the following:

min
z

∑

(i, j)∈A

ci j
∑

k∈K
zki j (1a)

s.t.
∑

j :(i, j)∈A

zki j −
∑

j :( j,i)∈A

zkji =

⎧
⎪⎨

⎪⎩

ski , i ∈ S(k),

−dki , i ∈ D(k),

0, i /∈ {S(k), D(k)},
∀i ∈ N , k ∈ K (1b)

∑

j :(i, j)∈A

∑

k∈K
zki j ≤ vi , ∀i ∈ N (1c)

∑

k∈K
zki j ≤ ui j , ∀(i, j) ∈ A (1d)

zki j ≥ 0, ∀(i, j) ∈ A, k ∈ K (1e)
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where the objective function (1a) is to minimize the cost associated to transport all com-
modities to satisfy the demand. Constraints (1b) ensure that the required amount of demand
is shipped from each source to each destination and the flow balance is enforced for tran-
shipment nodes. Constraints (1c) enforce that the total amount of flows that come out of each
node cannot exceed the node capacity. This holds true for the flows that come into each node
implicitly, except for destination node. For destination node i , let vi be the node capacity
minus the total demand of this node, and therefore constraints (1c) also limit the total flow
through vertex i . Constraints (1d) limit the total amount of flow on each arc by its capacity.
Finally, constraints (1e) guarantee the nonnegativity requirements on the flows.

The network interdiction problem includes two roles, an interdictor and an operator. The
interdictor, with a budget R, can attack the network (by removing nodes/arcs, or reducing their
capacities) to disrupt the operation of the network, measured in terms of maximizing total
flow cost. For any way the interdictor destroys the network without exceeding the budget,
there exists an optimal commodity flow to satisfy all or a fraction of the demands in the
resulted network decided by the operator. In the network interdiction models, the interdictor
will choose the most severe way to destroy the network, in which the optimal cost is greater
than the cost of any other way. This problem is usually formulated as a bilevel program.

2.1 Models of network interdiction problem

Let xi (0 ≤ xi ≤ 1) denote the fraction of removal of node capacity vi by interdiction, and
let yi j (0 ≤ yi j ≤ 1) denote the fraction of removal of arc capacity ui j . For convenience, let
x, y be the vectors for interdictions on nodes and arcs, respectively.

The interdiction models of multicommodity network flow can be formulated as a bilevel
program in the following:

max
(x,y)∈I min

z

∑

(i, j)∈A

ci j
∑

k∈K
zki j (2a)

s.t.
∑

j :(i, j)∈A

zki j −
∑

j :( j,i)∈A

zkji =

⎧
⎪⎨

⎪⎩

ski , i ∈ S(k),

−dki , i ∈ D(k),

0, i /∈ {S(k), D(k)},
∀i ∈ N , k ∈ K (2b)

∑

j :(i, j)∈A

∑

k∈K
zki j ≤ vi (1 − xi ), ∀i ∈ N (2c)

∑

k∈K
zki j ≤ ui j (1 − yi j ), ∀(i, j) ∈ A (2d)

zki j ≥ 0, ∀(i, j) ∈ A, k ∈ K (2e)

where the objective function (2a) is to minimize the transport cost in resulted network under
the worst-case interdiction. The decision variables x, y in the outer level of maximization are
to find theworst-case interdictionwith limited budget R. The constraints for the interdictor are
denoted in the setI . Constraints (2b) ensure that the required amount of demand is shipped
from each source to each destination and the flow balance is enforced for transhipment nodes.
The flow amounts are limited in the resulted network after some disruption on some arcs or
nodes or decrease of capacities, given by constraints (2c) and (2d). Constraints (2c) present
the node capacity limits after decreasing the capacity by interdiction, and constraints (2d)
present the remaining capacity limit of each arc after the interdiction. The last constraints
(2e) are the nonnegativity requirements for all flows.
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If the set I for interdiction limitation is chosen as

Ic =
{
(x, y) ∈ R

|N |+|A| :
∑

i∈N
pi xi +

∑

(i, j)∈A

qi j yi j ≤ R,

0 ≤ xi , yi j ≤ 1, ∀i ∈ N , (i, j) ∈ A
}

, (3)

where R is total budget or resource for interdiction, and pi and qi j are the amount of budget
(or called interdiction cost) used for destroying node i ∈ N and arc (i, j) ∈ A, respectively,
and the formulation (2) becomes a continuous interdiction model. Mainly, the node and arc
capacities are lowered by interdiction.

If I is chosen as

Ib =
⎧
⎨

⎩
(x, y) ∈ {0, 1}|N |+|A| :

∑

i∈N
pi xi +

∑

(i, j)∈A

qi j yi j ≤ R

⎫
⎬

⎭
, (4)

the formulation (2) is a binary interdictionmodel. Instead of partially destroying some nodes
or arcs, the interdictor completely destroys the nodes and/or arcs. Note that the binary inter-
diction model can be considered as a special case of continuous interdiction model.

In some models, there exist arc-only interdictions (e.g., [24]), and the corresponding
constraint inIc andIb is

∑
(i, j)∈A qi j yi j ≤ R. In the following, we consider the general sit-

uation. Following the node splitting technique introduced in [32] (pp. 41, 42), the transformed
network for G = (N , A) is defined by G ′ = (N ′, A′) with node set N ′ = {i1, i2 : ∀i ∈ N }
and arc set A′ = {(i1, i2) : ∀i ∈ N }∪ {(i2, j1),∀(i, j) ∈ A}with arc transport cost c′

i1,i2
= 0

and arc capacity u′
i1,i2

= vi for any i ∈ A, and arc transport cost c′
i2, j1

= ci j and arc
capacity u′

i2, j1
= ui j for any (i, j) ∈ A. There is no node capacity or node interdiction in

the network G ′. Any source node i ∈ S(k) for all k ∈ K in G now becomes i1 in G ′, with
supply amount s′k

i1 = ski while node i2 is just a transhipment node. Any destination node

i ∈ D(k) for all k ∈ K in G now becomes i1 in G ′, with demand amount d ′k
i1 = dki while

node i2 is just a transhipment node. The interdiction cost q ′
i1,i2

in G ′ is assumed to be pi
of node i in G, and the interdiction cost q ′

i2, j1
in G ′ is assumed to be qi j of arc (i, j) in

G.
The network G ′ can give optimal flows with only arc capacities to satisfy the demand.

Also, interdiction on network G ′ is equivalent to the interdiction on network G. We have the
following property (its proof is presented in Appendix 1).

Proposition 1 For both continuous and binary interdictions, the models (2) on network
G = (N , A) with interdiction on both nodes and arcs are equivalent to corresponding
models on network G ′ = (N ′, A′) with interdiction only on arcs, with the same budget.

Intuitively, if the available budget R is large enough, all demands in the network cannot
be satisfied. On the other hand, if R is relatively small, all demands can be satisfied in the
resulted network after some node/arc removals, but the cost for transport is increased. In
the following Sect. 2.2, we assume that R is relatively small and all demands can still be
satisfied after interdiction. The solution approaches are proposed to solve formulation (2)
in both continuous and binary interdiction models. In Sect. 3, we quantitatively analyze the
effect of increasing budget, under which the demand can be partially satisfied or all demands
cannot be satisfied.
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2.2 Approaches for binary and continuous interdiction

In the binary case, the interdictor can only choose to completely destroy an arc/node or not,
instead of partially destroying the capability of the arc/node. Thus x, y are binary, and are
limited by Ib. For fixed x, y chosen in Ib, which denote an interdiction plan, we consider
the dual problem for inner problem. Let αik , for any i ∈ N , k ∈ K , be the dual variables
associated with constraints (2b) and βi , γi j , for any i ∈ N , (i, j) ∈ A, be the dual variables
associated with constraints (2c) and (2d), respectively. Let α, β, γ be corresponding vectors
formed by all αik’s, βi ’s, γi j ’s. If for any (x, y) ∈ Ic, the inner problem is feasible, we can
use strong duality and combine it with outer level to obtain the following equivalent model
for binary interdiction:

max
x,y;α,β,γ

∑

k∈K

∑

i∈S(k)

ski αik −
∑

k∈K

∑

i∈D(k)

dki αik +
∑

i∈N
vi (1 − xi )βi +

∑

(i, j)∈A

ui j (1 − yi j )γi j

(5a)

s.t. αik − α jk + βi + γi j ≤ ci j , ∀k ∈ K , (i, j) ∈ A (5b)

βi , γi j ≤ 0, ∀i ∈ N , (i, j) ∈ A (5c)
∑

i∈N
pi xi +

∑

(i, j)∈A

qi j yi j ≤ R (5d)

xi , yi j ∈ {0, 1}, ∀i ∈ N , (i, j) ∈ A (5e)

The approach is used in [24] . The nonlinear terms (1 − xi )βi , (1 − yi j )γi j are products
of one binary variable and one continuous variable. By introducing ηi = (1 − xi )βi , ζi j =
(1−yi j )γi j to replace them in the objective and adding following constraints, we can linearize
the problem:

ηi ≤ 0, ηi ≤ βi + Mxi , ηi ≥ −M(1 − xi ), ηi ≥ βi , ∀i ∈ N , (6a)

ζi j ≤ 0, ζi j ≤ γi j + Myi j , ζi j ≥ −M(1 − yi j ), ζi j ≥ γi j , ∀(i, j) ∈ A, (6b)

in which the “≥” type of constraints can be eliminated as this is a maximization problem and
they are redundant.

Consider the continuous interdiction model, i.e., I is chosen as Ic in formulation (2),
we propose an algorithm to solve this problem, and presented in the following theorem (its
proof is presented in Appendix 2).

Theorem 1 Assume that the budget R satisfies that all demands can be satisfied for any
continuous interdiction plans in Ic. formulation (2) can be formulated equivalently in the
following mixed integer program:

max
δ,δ′,σ,σ ′,α,β,γ

∑

k∈K

⎛

⎝
∑

i∈O(k)

ski αik −
∑

i∈D(k)

dki αik

⎞

⎠

+
∑

i∈N
βi

(
1 − δi − δ′

i R
′/pi

) +
∑

(i, j)∈A

γi j
(
1 − σi j − σ ′

i j R
′/qi j

)
(7a)

s.t. αik − α jk + βi/vi + γi j/ui j ≤ ci j , ∀(i, j) ∈ A, ∀k ∈ K (7b)
{
R′/pi ≤ 1 + Mi (1 − δ′

i ), ∀i ∈ N

R′/qi j ≤ 1 + Mi j (1 − σ ′
i j ), ∀(i, j) ∈ A

(7c)
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∑

i∈N
piδi +

∑

(i, j)∈A

qi jσi j + R′ = R (7d)

δi + δ′
i ≤ 1, ∀i ∈ N (7e)

σi j + σ ′
i j ≤ 1, ∀(i, j) ∈ A (7f)

∑

i∈N
δ′
i +

∑

(i, j)∈A

σ ′
i j = 1 (7g)

δi , σi j , δ
′
i , σ

′
i j ∈ {0, 1}, ∀i ∈ N , (i, j) ∈ A (7h)

R′ ≥ 0; βi , γi j ≤ 0, ∀(i, j) ∈ A, ∀k ∈ K (7i)

The terms δiβi , σi jγi j , βiδ
′
i R

′, γi jσ ′
i j R

′ in the objective (17a) in formulation (17) are non-
linear. The first two terms can be linearized by approaches introduced in (6). As R′ =
R − (

∑
i∈N piδi + ∑

(i, j)∈A qi jσi j ) in the other two terms is actually expressed by binary
variables, and thus βiδ

′
i R

′, γi jσ ′
i j R

′ actually include nonlinear terms as product of two binary
variables and one continuous variable. This type of product can be further linearized by intro-
ducing onemore binary variable as product of these two binary ones. For example, one δ′

iδ jβi
in βiδ

′
i R

′ can be converted to τi jβi [which can be linearized by approaches (6)], in which
τi j = δ′

iδ j can be linearized by adding constraints τi j ≤ δi , τi j ≤ δ′
j as the objective is to

maximize.

3 Interdiction budget analysis

Intuitively, if the budget R is large enough, all demands in the network cannot be satisfied.
On the other direction, if R is relatively small, all demands can still be satisfied in the resulted
network after some node/arc removals, but the cost for transport is increased. Therefore, there
exist two critical values Ra, Rb (Ra < Rb), such that if 0 ≤ R ≤ Ra , all demands should be
satisfied, and if R ≥ Rb, none of the demands can be satisfied. For a budget Ra < R < Rb,
only a fraction of the demands can be satisfied.

3.1 Unsatisfied demands regarding budget R

Assume that λki denotes the amount of unsatisfied demand at node i ∈ D(k) of type k

commodity. Also, let λ
′k
i denote the unused supply at node i ∈ S(k) of type k commodity.

Therefore,
∑

k∈K
∑

i∈D(k) λki denotes the total unsatisfied demand in the resulted network
after interdiction. In the following, when we analyze the critical budgets, we assume that
under any interdiction plan, the operator always tries to minimize the unsatisfied demand.
Thus, the followingmodelUD(R) can be used to find theminimum unsatisfied demand under
the worst-case interdiction with given budget R:

UD(R) :
F(R) = max

(x,y)∈I min
z,λ

∑

k∈K

∑

i∈D(k)

λki (8a)

s.t.
∑

j :(i, j)∈A

zki j −
∑

j :( j,i)∈A

zkji =

⎧
⎪⎨

⎪⎩

ski − λ
′k
i , i ∈ S(k),

−dki + λki , i ∈ D(k),

0, i /∈ {S(k), D(k)},
∀i ∈ N , k ∈ K

(8b)
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∑

j :(i, j)∈A

∑

k

zki j ≤ vi (1 − xi ), ∀i ∈ N (8c)

∑

k∈K
zki j ≤ ui j (1 − yi j ), ∀(i, j) ∈ A (8d)

0 ≤ λ
′k
i ≤ ski , ∀k ∈ K , ∀i ∈ S(k) (8e)

0 ≤ λki ≤ dki , ∀k ∈ K , ∀i ∈ D(k) (8f)

zki j ≥ 0, ∀(i, j) ∈ A, k ∈ K (8g)

where the optimal objective value F(R) is a function of the budget R for the amount of
unsatisfied demand. In formulation (8), the decision variables x, y for interdiction and z for
flows in the resulted network are the same as those in formulation (2). The objective is to
obtain the minimum unsatisfied demand under the worse-case interdiction. In constraints
(8b), ski − λ

′k
i is the amount of commodities that are successfully transported from source

node i , and dki −λki is the amount of satisfied demand at destination node i . For transhipment
node, the balance flow constraints are enforced. Constraints (8e) is to ensure the amount of
commodities that are not transported from source node i cannot exceed its supply. Similarly,
constraints (8f) guarantee the unsatisfied demand at destination node i cannot exceed its
demand. The rest constraints have the same meaning as those in formulation (2).

In formulation (8), for any interdiction (x, y) ∈ I , the inner problem to find minimum
unsatisfied demand is always feasible. To solve this problem, for binary case, we can obtain
the dual of inner problem and combine it with outer level as the method we introduced in
Sect. 2.2. Then we can introduce new variables to linearize the nonlinear terms consisting
of products of one binary variable and one continuous variable. After that, formulation (8)
becomes a mixed integer linear program. For continuous case, the conclusion in Sect. 2.2
that the condition “except one node or arc being partially interdicted, the rest interdictions
are binary” still holds, and we can use the same approach introduced in Sect. 2.2 to solve (8).

Now, for a given network G = (N , A), with node capacity vi for all i ∈ N and arc
capacity for all arc (i, j) ∈ A, sources S(k) and destinations D(k) for all commodity k ∈ K ,
supply amount ski for all i ∈ S(k), k ∈ K and demand amount dkj for all j ∈ D(k), k ∈ K ,
and interdiction cost pi for all i ∈ A and qi j for all (i, j) ∈ A, we define two critical
budgets for interdiction. The critical budget Ra is the largest value under which all demands
can still be satisfied in the resulted network even under the worst-case interdiction, and the
critical budget Rb is the least value under which the worst-case interdiction can make none
of the demands be satisfied. Therefore, for 0 ≤ R ≤ Ra , F(R) = 0; for Ra < R < Rb,
0 < F(R) <

∑
k∈K

∑
i∈D(k) d

k
i ; for R ≥ Rb, F(R) = ∑

k∈K
∑

i∈D(k) d
k
i .

As an example, we test both binary and continuous interdiction models on a network
with 8 nodes, 30 arcs, 3 commodities and show the result of binary interdiction for F(R)

regarding different interdiction budgets in Fig. 1a and result of continuous interdiction in Fig.
1b. For binary interdiction, when R ≤ 2, F(R) = 0. Thus for any interdiction under budget
R, all demands are satisfied. When R > 2, there exist unsatisfied demands. Thus R = 2
is the largest value where all demands can be satisfied and critical budget Ra = 2. When
2 < R < 8, 0 < F(R) <

∑
k∈K

∑
i∈D(k) d

k
i , only part of the demands can be satisfied. For

R ≥ 8, F(R) = ∑
k∈K

∑
i∈D(k) d

k
i , no demand can be satisfied. R = 8 is the least value of

making all demands unsatisfied, and thus critical budget Rb = 8. For continuous interdiction,
we find the critical budgets Ra = 1.2 and Rb = 8. We can observe that the critical budget Ra

for continuous interdiction is larger that that of binary interdiction, but their critical budgets
Rb are the same.
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Fig. 1 Unsatisfied demands and interdiction budgets. a Binary interdiction. b Continuous interdiction

Proposition 2 For both continuous and binary interdictions regarding different budgets R ≥
0 in formulation (8), the function F(R) has the following properties:

(i) For a budget R ≥ 0, if F(R) = 0, the inner level of corresponding interdiction (2) is
feasible for any interdiction plan x, y; otherwise, F(R) > 0, the inner level of (2) is
infeasible for some interdiction plan x, y.

(ii) For the same network and any budget R ≥ 0, the value F(R) under continuous inter-
diction is larger than or equal to the corresponding value under binary interdiction.

(iii) The function F(R) is monotonically increasing on R ∈ [0,+∞).
(iv) The function F(R) for continuous interdiction is a continuous function, while F(R) for

binary interdiction is upper semicontinuous on R ∈ [0,+∞).

For (i), if F(R) = 0 for a budget R ≥ 0, no matter how the interdictor destroys the
network, all demands will be satisfied. That is for this budget R, for any x, y ∈ I , inner level
of (2) is always feasible; otherwise, F(R) > 0, which means there exists an x, y such that
some demands will be not satisfied. That is, for some x, y ∈ I , the inner level of (2) will be
infeasible. Therefore, the approaches by duality introduced in Sect. 2.2 to solve formulation
(2) can only be applied for cases with R ≤ Ra , as when R > Ra , the inner problem of (2) is
infeasible for worst-case interdiction x, y under budget R.

For (ii), let F (b)(R), F (c)(R) be the value of F(R) for network G to be interdicted under
binary and continuous interdictions with the same budget R, respectively.With budget R, any
binary interdiction (x(b), y(b)) ∈ Ib is also feasible for continuous interdiction with same
budget, i.e., (x(b), y(b)) ∈ Ic. Thus, the worst-case binary interdiction is not necessary to be a
worst-case continuous interdiction. In the resulted network under the worst-case interdiction,
the satisfied amount under binary interdiction should be less than or equal to the amount under
continuous interdiction, i,e., F (b)(R) ≤ F (c)(R).

For (iii), the function F(R) is monotonically increasing. Because for budget constraint
in I , if budget R increases, all former interdiction plans under R are also feasible under
R+ΔR, with some possible additional disruptions on nodes and/or arcs. Thus, the unsatisfied
demands should be nondecreasing, i.e., F(R) ≤ F(R + ΔR) for any ΔR ≥ 0.

For (iv), in the continuous interdiction case, for any R0 > 0 and some ε ≥ 0, we have
F(R0) = limε→0 F(R0+ε) and also F(R0) = limε→0 F(R0−ε), which imply that F(R) is
a continuous function on R ≥ 0 with consideration of right-continuous at R = 0. Proposition
2(iv) is also discussed in Sect. 3.3. For an example of Proposition 2(ii)–(iv), we refer to Fig. 1.

For the interdictor, with a budget R ≤ Ra , whatever the interdiction plan is, there always
exists a feasible flow in the resulted network to satisfy all demands; if the budget R ≥ Rb, there
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always exists an interdiction plan (the worst-case one) that makes all demands be unsatisfied.
Thus, by increasing of budget to a value that is still under budget Ra or larger than Rb, there
are no extra benefits for the interdictor. However, for a budget R ∈ (Ra, Rb), increase of
budget may give the interdictor extra capability to destroy the network, i.e., increasing the
amount of unsatisfied demands. In the following, we first present approaches to compute the
critical budgets Ra, Rb and then study the effects when budget increases.

3.2 Computing critical budgets

From Proposition 2(iii), the curve for F(R) is monotonically increasing on R ∈ [0,+∞),
where the point Ra is largest point with F(R) = F(Ra) = 0 and Rb is smallest point with
F(R) = F(Rb) = ∑

k∈K
∑

i∈D(k) d
k
i . As the inner problem of (2) will become infeasible

for the worst-case interdiction x, y when R > Ra , and the dual problem will be unbounded.
Thus, techniques introduced in Sect. 2.2 for solving (2) can be used for obtaining Ra by
gradually increasing budget R from 0 till some value where total cost increases to an abnor-
mally large number, which should be larger than its bound (for example, one option for this
bound is

∑
i∈N max(i, j)∈A ci j

∑
k∈K

∑
i∈D(k) d

k
i ). This value of R is Ra . On the other hand,

formulation (8) can be used to obtain Ra, Rb. However, this requires heavy computations on
testing different values of R. In the following, we present properties for Ra, Rb in different
networks and some direct methods to compute them.

3.2.1 Critical budget Rb

Theorem 2 In network G = (N , A), with node capacity vi for all i ∈ N and arc capacity
for all arc (i, j) ∈ A, and sources S(k) and destinations D(k) for all commodity k ∈ K, the
critical budget values Rb under the the fixed interdiction costs pi , qi j for all i ∈ N , (i, j) ∈ A,
for both continuous interdiction and binary interdiction models are the same.

Proof Let R(b)
b , R(c)

b be the critical budget Rb for network G to be interdicted under binary

and continuous interdictions, respectively. Since R(b)
b is the critical budget, there must be

a binary interdiction (x(b), y(b)) ∈ Ib that makes all demand in the resulted network be
unsatisfied. As this plan is also feasible for continuous interdiction, i.e., (x(b), y(b)) ∈ Ic

with R = R(b)
b , the inequality R(c)

b ≤ R(b)
b holds.

On the other hand, as R(c)
c is the critical budget, for any interdiction (x(c), y(c)) ∈ Ic that

makes all demand in the resulted network be unsatisfied, we claim that (x(c), y(c)) ∈ Ib with
R = R(c)

b , i.e., we need to show that elements of x(c), y(c) are all binary. From Proposition 1,
here we only need to show the case for arc interdiction y(c). By contradiction, if there exists
one arc (i ′, j ′) with fractional interdiction, i.e., 0 < y(c)

i ′ j ′ < 1, for some ε ∈ (0, y(c)
i ′ j ′), there

exists another interdiction with less budget but same interdiction approaches on all nodes and
arcs except on arc (i ′, j ′), which is interdicted to have remaining capacity ui ′ j ′(1−(y(c)

i ′ j ′ −ε)).

This new interdiction plan has less budget than R(c)
b , thus some demand can be satisfied by

flow through arc (i ′, j ′), bounded by the capacity ui ′ j ′(1 − (y(c)
i ′ j ′ − ε)), which means that

there exists some type of commodity that its demand can be partially satisfied.
We claim that there exists one k, such that for some i ∈ S(k), j ∈ D(k), there is a flow

f from i to i ′, then through (i ′, j ′) and then j ′ to j . In fact, the resulted networks, either by
interdiction (x(c), y(c)) or same interdiction except the one on arc (i ′, j ′)which is interdicted
by y(c)

i ′ j ′ −ε, are the same except arc arc (i ′, j ′). If the flow f does not pass through arc (i ′, j ′),
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there exists the same flow from i to j in both resulted networks. This is a contradiction to
the fact the interdiction (x(c), y(c)) make all demands be unsatisfied.

Thus in the resulted network with interdiction y(c)
i ′ j ′ , there still exists a flow with amount

min{ f, ui ′ j ′(1− y(c)
i ′ j ′)} through (i ′, j ′), to satisfy some demand at node j from node i , which

is a contradiction to that no demand can be satisfied under interdiction (x(c), y(c)) ∈ Ic with
budget R(c)

c . Therefore, all elements of x(c), y(c) are all binary, that is (x(c), y(c)) ∈ Ib with
R = R(c)

b . Now the inequality R(c)
b ≥ R(b)

b holds.
Therefore, the critical budgets Rb are the same for both continuous and binary interdictions

on the same network. 
�
In the following, by Theorem 2, we do not classify the cases of continuous and binary

interdictions during studying properties of critical budget Rb.

Lemma 1 In network G = (N , A), with node capacity vi for all i ∈ N and arc capacity
ui j for all arc (i, j) ∈ A, and sources S(k) and destinations D(k) for all commodity k ∈ K,
the critical budget value Rb under interdiction costs pi , qi j for all i ∈ N , (i, j) ∈ A, is the
same for any supply amount ski and demand amount dkj , for all i ∈ S(k), j ∈ D(k), k ∈ K,
that this network can transport.

Proof Without loss of generality, we assume two networks G1 and G2 are constructed based
on G = (N , A) with same topology structure, capacities and S(k), D(k) for all k ∈ K sets,
but G1 has supply/demand amounts s(1)k

i , d(1)k
j and G2 has s

(2)k
i , d(2)k

j for all i ∈ S(k), j ∈
D(k), k ∈ K , where all demands can be met in both networks. We claim that G1 and G2

have the same critical budget Rb if values of pi , qi j for all i ∈ N , (i, j) ∈ A in G1 are the
same as those corresponding ones in G2.

Let R(1)
b be the critical budget Rb for network G1 and R(2)

b for network G2. We claim that

R(1)
b = R(2)

b . Otherwise, we have cases

– R(1)
b > R(2)

b . The budget R(2)
b is not large enough to destroy network G1 to make all

demands be unsatisfied. However, R(2)
b is the critical budget Rb for G2, then there must

exist an interdiction x(2), y(2) which can destroyG2 to make all d(2)k
j be unsatisfied. If the

budget R(2)
b is used to destroy G1 in the way of x(2), y(2), as R(1)

b > R(2)
b , the interdiction

is not complete and there exists a flow from some source i ∈ S(k) to destination j ∈ D(k)
for some k. The resulted networks destroyed by R(2)

b are the same, there exists a same
flow in G2, which is a contradiction to the fact that no demand can be satisfied in G2 by
interdiction x(2), y(2). Therefore, R(1)

b > R(2)
b cannot hold.

– R(1)
b < R(2)

b . This can be proved similarly as above case.

Therefore, the two critical budgets of Rb forG1 andG2 are the same. For all possible choices
of ski , d

k
j ’s, we finish the proof. 
�

Lemma 2 In network G = (N , A), with node capacity vi for all i ∈ N and arc capacity
for all arc (i, j) ∈ A, and sources S(k) and destinations D(k) for all commodity k ∈ K, if
interdiction costs pi for all i ∈ N and qi j for all (i, j) ∈ A are fixed, the changes of node
and arc capacities vi , ui j do not change the critical budget Rb.

Proof Without loss of generality, we assume two networks G1 and G2 are constructed based
on G = (N , A) with same parameters, including interdiction cost pi on each node and qi j
on each arc, but with different node and arc capacities.
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First we show that G1 and G2 have the same supply and demand amounts, and have only
one arc (i, j) with different capacities, u(1)

i j in G1 and u
(2)
i j in G2 (u

(1)
i j �= u(2)

i j ). Without loss

of generality, we assume 0 < u(1)
i j < u(2)

i j , and that the critical budget Rb in G1 is R
(1)
b and

in G2 is R
(2)
b . We claim that R(1)

b = R(2)
b .

In fact, if this does not hold, we have two cases:

– R(1)
b > R(2)

b . In this case, budget R(2)
b is not large enough to destroy network G1 to make

all demands be unsatisfied. However, because R(2)
b is critical budget Rb for network G2,

we can find an interdiction way (x(2), y(2)), which can destroy G2 to make all d(2)k
j be

unsatisfied. Denote the resulted network after interdiction isG ′
2. If the budget R

(2)
b is used

to destroy G1 in the way of (x(2), y(2)), as R(1)
b > R(2)

b , the interdiction is not complete
and there exists a flow from some source i ∈ S(k) to destination j ∈ D(k) for some k.
Denote this resulted network as G ′

1. The capacities of all nodes/arcs in G ′
1, except for

(i, j), is the same as the corresponding capacities in G ′
2. Because u

(1)
i j < u(2)

i j , we have

u(1)
i j (1− y(2)

i j ) ≤ u(2)
i j (1− y(2)

i j ). That is the remaining capacity of arc (i, j) in G1 is less
than or equal to capacity of arc (i, j) in G2, and this is the only difference between G ′

1
and G ′

2. As there exists flow from s to t in G ′
1, there must exist a same flow from same

source i ∈ S(k) to destination j ∈ D(k) in G ′
2, which is a contradiction to the fact that

budget R(2)
b is critical budget Rb for network G2. Therefore R(1)

b > R(2)
b cannot hold.

– R(1)
b < R(2)

b . In this case, budget R(1)
b is not large enough to destroy network G2 to make

all demands be unsatisfied. Because R(1)
b is critical budget Rb for network G1, we can

find an interdiction way (x(1), y(1)), which can totally destroy network G1 and denote
the resulted network after interdiction is G ′

1. If the budget R
(1)
b is used to destroy G2 in

the way of (x(1), y(1)), as R(1)
b < R(2)

b in the resulted network G ′
2, the interdiction is not

complete and there exists a flow f2 from some source i ∈ S(k) to destination j ∈ D(k)
for some k in resulted network G ′

2. The capacities of all nodes/arcs in G ′
2, except for

(i, j), are the same as the corresponding ones in G ′
1. Because u

(2)
i j > u(1)

i j , the remaining
capacity of arc (i, j) in G2 is larger than the remaining capacity of arc (i, j) in G1.
The flow f2 must go through arc (i, j). Otherwise, because the only difference between
G ′

1 and G ′
2 is capacity of arc (i, j), if flow f2 in G ′

2 does not go through arc (i, j), there
must also exist the same flow in resulted network G ′

1, which is a contradiction the fact
that (x(1), y(1)) completely destroys network G1. So flow f2 must go through arc (i, j).
That is the remaining capacity of arc (i, j) in G ′

2, u
(2)
i j (1 − y(1)

i j ) > 0, which lead to the

remaining capacity of arc (i, j) in G ′
1, u

(1)
i j (1 − y(1)

i j ) > 0 .
The flow f2 in G2 consists of three parts: (1) flow from source node s to node i ; (2) flow
on arc (i, j); (3) flow from node j to node t . Let f1 = min{ f2, u(1)

i j (1 − y(1)
i j )}, as the

capacities of all nodes/arcs in G ′
1, except for (i, j), are the same as the corresponding

ones in G ′
2 and f1 ≤ f2, there also exists f1 amount of flow from node s to node i and

node j to node t in G ′
1. Then there exists f1 amount of flow from node s to node t in

G ′
1, which is a contradiction to the fact that R(1)

b is critical budget Rb for network G1.

Therefore R(1)
b < R(2)

b cannot hold.

We have proved R(1)
b = R(2)

b for G1 and G2, which have the same supply and demand
amounts, and have only one arc (i, j)with different capacities. IfG1 andG2 havem (m ≥ 2)
arcs with different capacities, we can start from G1 and change the capacity of only one arc
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Fig. 2 An example for Lemma 2
ji

ui j, qi j

so that the resulted network has m − 1 arcs with different capacities with G2. The resulted
network must have same critical budget Rb as G1. Then based on this resulted network, we
continue to change the capacity of only arc so that the resulted network has m − 2 arcs with
different capacities with G2. Repeating this steps, we must have that the critical budgets of
G1 and G2 are the same.

If G1 and G2 have different node capacities, their critical budgets Rb should also be
the same, because we can use Proposition 1 to split each node to one arc and repeat above
procedure to prove G1 and G2 have the same critical budget Rb.

Therefore, under any changes onnode/arc capacities, the critical budget Rb for this network
does not change. 
�

From Theorem 2, Lemma 1 and Lemma 2, the critical budget Rb is only related to the
network topology G = (N , A), the set of sources S(k) and destinations D(k) for all k ∈ K ,
and the interdiction costs pi , qi j for all i ∈ N , (i, j) ∈ A, but this value Rb is not related
to supply and demand amounts and capacities of nodes and arcs. For example, in a simple
graph in Fig. 2, K = 1 and node i is the source node and node j is the destination node.
Consider two cases: (1) ui j = 20, qi j = 10, (2) ui j = 40, qi j = 10. Critical budget Rb is
the budget which can just destroy the connection between i and j . For case 1, Rb = qi j = 10
and for case 2, Rb = qi j = 10. Actually, no matter what value ui j is, the critical budget
Rb is always the arc’s interdiction cost qi j because budget Rb is about destroying the whole
network. Also, it is easy to check that the supply and demand amounts have no influence on
the critical budget Rb.

In the following, we present a formulation to estimate Rb for both binary and continuous
interdiction:

max
f,μ

∑

k∈K

∑

i∈D(k)

μtk
i (9a)

s.t.
∑

j :(i, j)∈A

f ki j −
∑

j :( j,i)∈A

f kji =

⎧
⎪⎨

⎪⎩

μsk
i , i ∈ S(k),

−μtk
i , i ∈ D(k),

0, i /∈ {S(k), D(k)},
∀i ∈ N , k ∈ K (9b)

∑

j :(i, j)∈A

∑

k

f ki j ≤ pi , ∀i ∈ N (9c)

∑

k∈K
f ki j ≤ qi j , ∀(i, j) ∈ A (9d)

f ki j ≥ 0, ∀(i, j) ∈ A, k ∈ K (9e)

where decision variables include f ki j for all (i, j) ∈ A, k ∈ K (vector denoted by f ) and

μtk
i for all k ∈ K , i ∈ D(k) and μsk

i for all k ∈ K , i ∈ S(k) (vector denoted by μ). This
formulation is to find a maximum flow in the network G = (N , A) with node/arc capacity
replaced by corresponding interdiction costs.

Theorem 3 For network G = (N , A) with single commodity flow (i.e., K = 1), if source
and destination nodes are distinct, the critical budget Rb is equal to the optimal objective
value of formulation (9).
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Proof By Proposition 1, the network can be transformed into a network G ′ = (N ′, A′), with
only arc capacity and arc interdiction.

As source and destination nodes are distinct, we can add another source node connected
to all sources and also another destination connected to all destinations, which make the
network become a single flow problem with single source and single destination. If the a
budget can totally destroy the minimum cut, none of the demands in D(1) can be satisfied.
From Lemma 2, the critical budget Rb is only related to the values of interdiction cost q ′

i j on
each arc ofG ′. Therefore, the formulation for finding minimum cut regarding the interdiction
cost in G ′ can be used to find the upper bound of the critical budget Rb, and

Rb ≤ min
∑

(i, j)∈A′:i∈N ′
1, j∈N ′

2

q ′
i j ,

where N ′
1, N

′
2 is a partition of node set N

′ such that sources are in N ′
1 and destinations are in

N ′
2. By taking duality of this minimum cut problem with strong duality property, the optimal

objective value of formulation (9) in case of K = 1 can be obtained to give an upper bound
for Rb.

Now, we claim that the optimal objective value of formulation (9) gives an lower bound
for Rb. In fact, let G ′′ be a network with same parameters as G ′ except the capacity u′′

i j = q ′
i j

for each arc. The two networks G ′ and G ′′ have the same critical budget Rb, as proved by
Lemma 2. Next, we compute the critical budget Rb of network G ′′.

As destroying one unit of capacity on any arc can make at most one unit of demand
unsatisfied. Assume that the maximum flow in the network G ′′ is fmax units under capacities
u′′
i j ’s. Therefore, at most fmax units of flow can be satisfied. The least number of units of

capacities should be destroyed in the network is fmax in order to make none of demands be
satisfied. For an arc (i, j) ∈ A′′, the corresponding cost for destroying one unit of capacity
is q ′

i j/u
′′
i j = 1. Assume the flow on this arc is f ′′

i j , and the corresponding cost to destroy this
flow is f, bounded by u′′

i j = q ′
i j . Therefore, in the problem of finding maximum flow in G ′′,

assume that each arc has an associated cost f ′′
i j bounded by q

′
i j , the objective of this problem

gives the cost for destroying the maximum flow.
Now, by transforming the problem on G ′′ back to G with node capacity, the optimal

objective value of formulation (9) is the cost for destroy of the maximum flow, which gives
an lower bound for Rb.

Therefore, as the optimal objective value of formulation (9) gives both lower and upper
bound for Rb, it is equal to Rb. 
�

Theorem 3 presents an approach for computing the critical budget Rb. However, this
approach cannot be generalized to a multicommodity flow case, even if each type of com-
modity has only a single source and a single destination. For example, consider a similar
case from [33] in the following Fig. 3. There are four types of commodities, each with one

Fig. 3 maximum flow is less
than Rb s2/t3s1/t2

s3/t4s4/t1
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source node and one destination node. All arcs/nodes interdiction costs are fixed to 1 and all
capacities of arcs and nodes are fixed to 1. The critical budget Rb is 2 and corresponding
interdiction plan is removing two nonadjacent arcs. But the formulation (9) is to get the total
maximum flow from each si to each ti , i = 1, 2, 3, 4 and the maximum flow is 4/3, with
flow from each si to each ti , i = 1, 2, 3, 4 to be 1/3.

In general multicommodity flow networks, the critical budget Rb is related to the multi-
commoditymaximumflow in the network. There have been considerable research on this, for
example [34]. Therefore we only investigate the relation between the two.We have following
two theorems to obtain the critical budget Rb. In the networkG = (N , A)with node capacity
vi for any i ∈ N , arc capacity ui j for any (i, j) ∈ A, interdiction costs pi for all i ∈ N and
qi j for all (i, j) ∈ A, and sources S(k) to destinations D(k) for any k ∈ K , the disconnect set
is union of a subset of node set of N and a subset of arc set of A, whose removal will make
none of the demands be satisfied. Theminimum disconnect set is the one with minimum total
capacity of vertices and arcs among all possible disconnect subsets. This can be considered as
a direct generalization of s–t minimum cut in a multicommodity flow network. Similarly, we
define the minimum disconnect set regarding the interdiction cost as the one with minimum
total interdiction cost of vertices and arcs among all possible disconnect subset, and this set
can be found by the following formulation:

min
∑

i∈A

piνi +
∑

(i, j)∈A

qi jξi j (10a)

s.t.
∑

i∈Pk
i j

νi +
∑

(i, j)∈Pk
i j

ξi j ≥ 1, ∀Pk
i j ∈ Ωk

i j , k ∈ K , i ∈ S(k), j ∈ D(k) (10b)

νi , ξi j ∈ {0, 1}, ∀i ∈ N , (i, j) ∈ A (10c)

where Pk
i j is a path from i to j , and Ωk

i j is the set of all possible paths from one source to one
destination of type k. Both decision variables νi , ξi j ∈ {0, 1} are defined to indicate whether
node i and arc (i, j) are chosen into the disconnect set or not. The constraints in (10b) ensure
that every path from i to j will be disconnected after removal of at least one node or one arc
on this path.

Theorem 4 For the network G = (N , A) with node capacity vi for any i ∈ N and arc
capacity ui j for any (i, j) ∈ A, the critical budget value Rb under values pi , qi j , is equal to
the optimal objective value of formulation (10).

Proof If the a budget can totally destroy the disconnect set, none of the demands in D(k) for
any k ∈ K can be satisfied. Now we consider the equivalent graph G ′ with only arc capacity
and arc interdiction by Proposition 1. From Lemma 2, the critical budget Rb is only related
to the values of interdiction cost p′

i j on each arc of G ′. Therefore, the formulation (10) for
finding the minimum disconnect set consisting of only arcs regarding the interdiction cost in
G ′ can be used to find the upper bound of the critical budget Rb, and

Rb ≤ min
∑

(i, j)∈A′′
q ′
i j ,

where A′′ is a disconnect cut set such that in the graph G ′′ = (N ′, A′ \ A′′), no demand of
any type can be satisfied. Now transforming this graph to G from G ′, we now have that the
optimal objective value of formulation (10) presents an upper bound for Rb.

On the other hand, assume that one interdiction (x, y) is corresponding to critical budget
Rb that can make all demand be unsatisfied. By Theorem 2, we assume that this interdiction

123



J Glob Optim (2017) 67:495–525 511

(x, y) is a binary interdiction on G. These removed nodes and arcs by (x, y) make none of
the demands be satisfied, and by definition, the set formed by them is a disconnect set. Their
corresponding value for interdiction Rb should be larger than or equal to the disconnect set
with minimum interdiction cost, that is Rb is larger than or equal to the optimal objective
value of formulation (10).

Therefore, the critical budget Rb is equal to the optimal objective value of formulation
(10). 
�

Theorem 4 presents an approach to compute the value for Rb. However, the formula-
tion (10) requires to find all possible paths of different types of commodities from sources
to destinations. In [33], a special case with single source and single destination has been
considered, and cutting plane algorithm and branch-and-cut algorithm is used to find the
minimum disconnect subset. For the same case, an implicit enumeration algorithm and an
arc-chain algorithm are presented in [35]. Generally, when K ≥ 3, this problem of finding
minimum disconnect set is NP-complete (see [36]).

In the following, we present another approach which can give a lower bound for Rb by
solving a linear program. This is summarized in the following theorem and its proof is similar
to the second part of the proof in Theorem 3.

Theorem 5 For the network G = (N , A) with node capacity vi for any i ∈ N and arc
capacity ui j for any (i, j) ∈ A, the critical budget value Rb under values pi , qi j , has a lower
bound given by the optimal objective value of formulation (9).

3.2.2 Critical budget Ra

Theorem 6 In network G = (N , A), with node capacity vi for all i ∈ N and arc capacity for
all arc (i, j) ∈ A, sources S(k) and destinations D(k) for all commodity k ∈ K, and supply
amount ski for all i ∈ S(k), k ∈ K and demand amount dkj for all j ∈ D(k), k ∈ K, the
critical budget value Ra under the same interdiction costs pi , qi j of continuous interdiction
is less than or equal to the corresponding value of binary interdiction.

Proof Let R(b)
a , R(c)

a be the critical budget Ra for network G to be interdicted under binary
and continuous interdictions, respectively.

Since R(c)
a is the critical budget, any continuous interdiction (x(c), y(c)) ∈ Ic with this

budget cannot make any demand in the resulted network be unsatisfied. A binary interdic-
tion (x(b), y(b)) ∈ Ib under budget R(c)

a is also feasible for continuous interdiction, i.e.,
(x(b), y(b)) ∈ Ic. Thus, any binary interdiction (x(b), y(b)) also cannot make any demand in
the resulted network be unsatisfied.

The critical budget Ra is defined as the largest budget that all demand in the resulted
network are still satisfied after interdiction. Therefore, the inequality R(c)

a ≤ R(b)
a holds. 
�

In network G = (N , A) with sources S(k) and destinations D(k) for any commodity
k ∈ K , let

Z =
{
z ∈ R

|A|×K : constraints (1b) − (1e)
}

,

where z is a vector consisting of zki j , for any (i, j) ∈ A, k ∈ K , denote all feasible flows in
network G. The residual network Gz = (N , A) corresponding to a flow z ∈ Z has node
capacity vzi = vi − ∑

j :(i, j)∈A
∑

k z
k
i j for any i ∈ N and arc capacity uzi j = ui j − ∑

k z
k
i j for

any (i, j) ∈ A.
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For each type k ∈ K commodity and each destination node t ∈ D(k), let ρkt be a vector
consisting of flows ρ

(kt)
i j on all arc (i, j) ∈ A, supply ŝ(kt)

i for all i ∈ S(k) (vector denoted by

ŝ(kt)) and demand d̂(kt), under the case of type k commodity and one destination t ∈ D(k)
in the residual network of flow z. Therefore, ρ(kt) is limited by the following constraints in
the set

P(z, k, t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρ(kt), ŝ(kt), d̂(kt)

)
∈ R

|A|+|S(k)|+1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j :(i, j)∈A ρ

(kt)
i j − ∑

j :( j,i)∈A ρ
(kt)
j i =

⎧
⎪⎨

⎪⎩

ŝ(kt)i , i ∈ S(k)

−d̂(kt),

0, i /∈ {S(k), t}, ∀i ∈N
∑

j :(i, j)∈A ρ
(kt)
i j ≤ vzi , ∀i ∈N

0 ≤ ρ
(kt)
i j ≤ uzi j , ∀(i, j) ∈ A

ŝ(kt)i ≥ 0, ∀i ∈ S(k)

d̂(kt) ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Theorem 7 In network G = (N , A), if the interdiction cost pi = vi for any i ∈ N and
qi j = ui j for any (i, j) ∈ A, the critical budget Ra for continuous interdiction has a lower
bound given by the optimal objective value of the following problem:

max
z∈Z min

k∈K , t∈D(k)
max

(ρ(kt),ŝ(kt),d̂(kt))∈P(z,k,t)
d̂(kt) (11)

In formulation (11), under a feasible flow z to satisfy all demands, in the residual network of
this flow z, for each type k ∈ K commodity and each destination node t ∈ D(k), a maximum
flow is to be determined from all possible sources i ∈ S(k). When pi = vi , qi j = ui j for
any i ∈ N , (i, j) ∈ A, one unit of budget can destroy one unit of capacity, or finally at most
one unit of commodity demand. Therefore, a budget R(kt) that can make demand at node
t ∈ D(k) be unsatisfied must be at least equal to maximum flow. Then through all types of
commodities and all destination nodes, the minimum of R(kt)’s for any k ∈ K and t ∈ D(k)
determines a budget Rz under flow z such that any additional budget on Rz will make some
destination’s demand be unsatisfied. Consider all possible flows z ∈ Z to satisfy all original
demands, the maximum budget of Rz’s is related to the critical budget Ra . In the following,
we formally prove this theorem.

Proof Assume the optimal objective value to formulation (11) is R∗
a . We claim Ra ≥ R∗

a ,
otherwise Ra < R∗

a , which implies that with budget Ra +ε (0 < ε < R∗
a −Ra), by definition

of Ra , there exists an interdiction such that there is one commodity whose demand cannot
be totally satisfied in resulted network.

As pi = vi , qi j = ui j for any i ∈ N , (i, j) ∈ A, one unit of budget can destroy one unit
of capacity, or finally at most one unit of commodity demand. Because R∗

a is the optimal
solution to formulation (11), which implies at least R∗

a amount of budget is needed in order to
make some commodity’s demand unsatisfied, which is a contradiction to the fact that budget
Ra + ε can make some commodity’s demand unsatisfied. Therefore we have Ra ≥ R∗

a . 
�
The formulation (11) is a tri-level optimization problem. To solve this problem, we

introduce η = mink∈K ,t∈D(k) max
(ρ(kt),ŝ(kt),d̂(kt))∈P(z,k,t) d̂

(kt). Then the formulation (11)
is equivalent to the following linear program:

max
z∈Z η (12a)

s.t. η ≤ d̂(kt), ∀t ∈ D(k), k ∈ K (12b)

(ρ(kt), ŝ(kt), d̂(kt)) ∈ P(z, k, t), ∀t ∈ D(k), k ∈ K (12c)
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Fig. 4 Example for critical
budget Ra s1 t1

i1 j1

s2 t2

i2 j2

s3 t3

us1,t1 = 2

ui1, j1 = 2

ui2, j2 = 2

us3,t3 = 2

In Theorem 7, we assume that pi = vi for any i ∈ N and qi j = ui j for any (i, j) ∈ A.
That is, it takes one unit budget to interdict one unit of capacity. If pi = Cvi and qi j = Cui j ,
where C is a positive constant, the lower bounded for Ra is the optimal objective value of
(11), multiplied by C .

The formulation (11) can find the lower bound for Ra , but it cannot obtain the value for
Ra in a multicommodity network directly. For example, in Fig. 4, there are three types of
commodities, and each one has single source sk and destination tk (k = 1, 2, 3) with supply
amount as 1 on each si and the demand as 1 on each t j . The capacities for 4 arcs are given in
this figure, and all other arcs have capacity as 100. We consider only arc interdiction, and the
interdiction cost for each arc is equal to its capacity. Assume the amount of flow on arc (s1, t1)
of commodity 1 is z1, on arc (i1, j1) of commodity 2 is z2 and on arc (s3, t3) of commodity
3 is z3. Thus to satisfy all demands, the flow of commodity 1 on arc (i1, j1) is 1 − z1, and
commodity 2 on (i2, j2) is 1− z2, and commodity 3 on (i2, j2) is 1− z3. Then in the residual
network, additional maximum flow of commodity 1 is 2− z1 + (2− (1− z1)− z2) = 3− z2,
additionalmaximumflowof commodity 3 is 2−z3+(2−(1−z2)−(1−z3)) = 2+z2. Thus the
optimal objective value of formulation (11) is at most max0≤z2≤1 min{3− z2, 2+ z2} = 2.5.
However, the critical budget Ra is 3. Therefore, formulation (11) can only obtain a lower
bound for Ra .

However, for a single commodity flow problem, we have the following corollary to obtain
critical budget Ra in continuous interdiction case.

Corollary 1 For network G = (N , A) with single commodity flow with single destination
node, if pi = vi , qi j = ui j for any i ∈ N , (i, j) ∈ A, the critical budget Ra for continuous
interdiction is equal to the optimal objective value of formulation (11).

Proof When K = 1 and there is only one destination node, optimal value of formulation (11)
R∗
a becomes the maximum flow from source nodes to destination node minus the demand

of the commodity, that is the minimum cut of the network is R∗
a + ∑

i∈D(k) di . Because
pi = vi , qi j = ui j for any i ∈ N , (i, j) ∈ A, we can use budget R > R∗

a to destroy any R
amount of capacity from the minimum cut and the resulted network cannot make all demands
be satisfied. Thus R∗

a is an upper bound of critical budget Ra . From Theorem 7, R∗
a is a lower

bound of critical budget Ra . Therefore, R∗
a = Ra . 
�

The formulation (11) cannot apply to the case for general values of pi , qi j , even for single
commodity with single destination network. For example, in Fig. 5, we show an example
with single-commodity flow with one source s with supply amount 2 and one destination t
with demand amount 2. Consider continuous interdiction on only arcs, the critical budget Ra

is 1, and the corresponding interdiction plan is to remove arc (i3, t). However, the optimal
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ts i2

i1

i3

ui1,t = 1, qi1,t = 1

ui2,t = 1, qi2,t = 1

ui3,t = 2, qi3,t = 1

ut,i1 = 10, qt,i1 = 10

ut,i2 = 10, qt,i2 = 10

ut,i3 = 10, qt,i3 = 10

Fig. 5 Example for critical budget Ra

objective value to (11) is 2, with corresponding solution as zi1,t = zi2,t = 0, zi3,t = 2, in
whose residual network, we can still send 2 units of flow via arc (i1, t) and (i2, t).

The formulation (11) cannot apply to binary interdiction case. For example, in Fig. 5, if
we change the interdiction cost of arc (i3, t) to qi3,t = 2, then pi = vi , qi j = ui j holds for
the network. Assume the supply amount and demand amount are both 1.5, then for binary
interdiction, the critical budget Ra = 3, and the corresponding interdiction plan is to remove
arc (i3, t) and (i2, t). But the optimal value of formulation (11) is 1.5. Therefore, formulation
(11) cannot be used to obtain critical budget Ra for binary interdiction.

Different from Rb, the critical budget Ra is related to parameters ski , d
k
j , vi , ui j , pi , qi j of

the network. For example, in Fig. 5, if the supply and demand amounts are 1, critical budget
Ra will be 2. Also, different vi and ui j can change the value of Ra . For example, in Fig. 5, if
ui1,t = ui2,t = 2, critical budget Ra will increase to 2. Additionally, if qi1,t = qi2,t = qi3,t =
2, Ra will be 2.

3.3 Effects of budget increasing

3.3.1 Marginal revenue for continuous interdiction

For continuous interdiction, we define the marginal revenue at R as the increased amount
of unsatisfied demands that the interdictor can create by increasing budget by 1, where we
still assume that the operator always tries to minimize the unsatisfied demand under any
interdiction.

For example, in Fig. 1b, the marginal revenue for budget R = 4.4 is positive, and thus the
total unsatisfied demands increase as R increases; while for budget R = 6.4, the marginal
revenue is 0 and the total unsatisfied demands stay the same even interdiction budget increases
until 7.2. Therefore for the interdictor with budget R = 6.4, it is not necessary to increase
the budget unless the budget can increase to more than 7.2.

Define the sum set D of demand amount set {dkj : ∀k ∈ K , j ∈ D(k)} as the set of

different summation values of all possible subsets of {dkj : ∀k ∈ K , j ∈ D(k)}. That is, the
sum set D consists of all possible values of di1 + di2 + · · · + dit , where {di1 , di2 , . . . , dit } is
a subset of {dkj : ∀k ∈ K , j ∈ D(k)}. Note that 0 is always in the sum set.

Theorem 8 In continuous interdiction on network G = (N , A), if for some budget R ≥ 0,
F(R) is not in sum set D of demand set {dkj : ∀k ∈ K , j ∈ D(k)}, the corresponding
marginal revenue at R is strictly larger than 0.

Proof When the budget R ≥ 0, because F(R) is not in sum set D of demand set {dkj : ∀k ∈
K , j ∈ D(k)}, at least at one destination node, a certain commodity k’s demand is partially
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unsatisfied. We assume that the partially unsatisfied amount λkj is on the demand dkj . By

“partially unsatisfication”, we mean that 0 < λkj < dkj for some k ∈ K , j ∈ D(k).
As node capacity and node interdiction can be transformed into corresponding arc capacity

and arc interdiction by Proposition 1, we first only consider the case for arcs. This theorem can
be implied by the following claim: if budget R makes the demand dkj partially unsatisfied,
then on any path P from S(k) to j ∈ D(k) in the resulted network, there exists at least
one arc, whose additional loss of partial capacity or complete removal strictly increases
F(R).

Assume the solution to UD(R) for (x, y, z) is (x0, y0, z0), with optimal objective value
Λ∗. Let ΔR be the minimum budget that could decrease the capacity of one arc on path P ,
to 0, in addition to current interdiction y0. In the resulted network by R, the extra ΔR can
additionally remove the remainder capacity of one arc in path P .

Then if we can prove that for any ΔR ∈ (0,ΔR), F(R+ΔR) > F(R), our claim is true.
In fact, we can prove it by the following contradiction approach.

Note F(R) is monotonically increasing, then by contradiction, we have F(R + ΔR) =
F(R) = Λ∗ if the above statement is not true, which means decrease of capacity of any arc
limited by the additional budget ΔR can not increase F(R).

Denote the path P by P = (e1, e2, . . . , em) from some node in S(k) to j ∈ D(k) in the
resulted network G(k) by interdiction y0, consisting of m arcs e1, e2, . . . , em . Then from
G(k) we continue decreasing capacity, limited by the additional budget ΔR, from the first
arc e1 in P . By this process we actually fix the outer level of UD(R), and then we call an
oracle to solve the inner level of UD(R). Denote the optimal solution by (y1, z1, λ1,Λ1) =
{y1i j , zk,1i j , λ

k,1
i ,Λ1

k : ∀i ∈ D(k),∀(i, j) ∈ A,∀k ∈ K }, where Λ1
k is the unsatisfied amount

of type k commodity, and y1i j = y0i j for all (i, j) ∈ A except y1e1 = y0e1 + ΔR
qe1

. Thus, we have
∑

k z
k,1
e1 ≤ ue1(1 − y1e1) < ue1(1 − y0e1), and then Λ1 ≥ F(R) = Λ∗. As explained above,

we have similar analysis for node capacity and node interdiction by Proposition 1, and thus
we assume x1 is the corresponding solution for node interdiction.

Then we repeat this procedure separately on each arc of e2, . . . , em on this path P and
obtain corresponding solutions (x2, y2, z2, λ2,Λ2), . . . , (xm, ym, zm, λm,Λm). As we just
explained, we have

∑
k z

k,i
ei < uei (1− y0ei ) and Λi ≥ Λ∗, for any i = 1, . . . ,m; on the other

hand, F(R + ΔR) is the optimal value for UD(R + ΔR), Λi ≤ F(R + ΔR) = Λ∗ (second
equality from the assumption of contradiction), for any i = 1, . . . ,m. Thus, Λi = Λ∗, for
any i = 1, . . . ,m.

Denote (
∑m

l=1 z
l/m,

∑m
l=1 λl/m,

∑m
l=1 Λl/m) by (z̄, λ̄, Λ̄). Then Λ̄ = ∑m

l=1 Λl/m =
Λ∗. Now we will show: (a) (x0, y0, z̄, λ̄, Λ̄) is feasible to UD(R), but (b) (x0, y0, z̄, λ̄, Λ̄) is
not optimal to UD(R).

(a) Feasibility of (x0, y0, z̄, λ̄, Λ̄) to UD(R). Each (x0, y0, zl , λl ,Λl), l = 1, . . . ,m, is
feasible to the constraints in formulation (8), as vi (1−x0i ) ≤ vi (1−x1i ) and ui j (1−y0i j ) ≤
ui j (1 − y1i j ). Thus, (x

0, y0, z̄, λ̄, Λ̄) is feasible to UD(R).

(b) Non-optimality of (x0, y0, z̄, λ̄, Λ̄) to UD(R). For each er ∈ P ,

z̄er =
m∑

l=1

∑

k∈K
zk,ler /m =

m∑

l=1,l �=r

∑

k∈K
zk,ler /m +

∑

k∈K
zk,rer /m

<

m∑

l=1,l �=r

uel
(
1 − x0el

)
/m + uer

(
1 − x0er

)
/m < uer

(
1 − x0er

)
,
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where the inequality is implied by
∑

k z
k,r
ei < uer (1− x0er ), r = 1, ...,m. This inequality

shows the residual capacity of z̄, and the residual capacity for node is similar. Thus on
path P we can still send flow from source node to destination node. That is, if network
is interdicted by (x0, y0), we can send more than flow z̄ for commodity k. Thus, the
total unsatisfied demand after interdiction (x0, y0) should be less than Λ̄ = Λ∗, and this
implies that Λ∗ is not optimal to UD(R).

Thus, F(R) < Λ∗, which is a contradiction to our assumption. Therefore, F(R+ΔR) >

F(R) is true, and this leads to our conclusion that marginal revenue is strictly larger than 0.

�

This proof also shows the continuity of F(R). In continuous interdiction, for two budgets
R1, R2 ≥ 0, if for any R ∈ [R1, R2], F(R) = F(R1) = F(R2), the curve of F(R) and
budget R between R1 and R2 is called a plateau. For example, the curve in range [6, 7] of
Fig. 1b is a plateau. Nowwe present a corollary regarding the number of plateaus in the curve
of unsatisfied demand F(R)with respect to R. Let |D | denote the number of elements in sum
setD of demand set {dkj : ∀k ∈ K , j ∈ D(k)}. It is bounded by 2n , where n = ∑

k∈K |D(k)|
and |D(k)| denotes the number of destination nodes for commodity k ∈ K .

Corollary 2 In continuous interdiction, the number of plateaus in the curve of unsatisfied
demand F(R) is at most |D |.
Proof From Theorem 8, we have that in case of continuous interdiction, if for some budget
R, F(R) is not in sum set D of demand set {dkj : ∀k ∈ K , j ∈ D(k)}, F(R) will increase if
there is additional interdiction budget besides R until that F(R) increases to a value in D .
So the only case that F(R) stays unchanged is F(R) ∈ D . Then the maximum number of
plateaus in the curve of F(R) and budget R is at most the number of elements inD , bounded
by 2n . 
�

3.3.2 Effects of budget increasing for binary interdiction

Theorem 9 In binary interdiction on network G = (N , A), for some budget R ≥ 0, if the
corresponding unsatisfied demand F(R) is strictly increasing, R must be in sum set of set
{pi : ∀i ∈ N } ∪ {qi j : ∀(i, j) ∈ A}.
Proof Any two interdictions, with different budgets strictly between two adjacent elements
in ordered sum set of set {pi : ∀i ∈ N } ∪ {qi j : ∀(i, j) ∈ A}, are the same, since no partial
interdiction on arcs or nodes is allowed in this model. Thus, the objective for (8) for these
two budgets are the same. 
�

From Theorem 9, we have the following corollary. By Theorem 9 and this corollary, we
have proved the Proposition 2(iv) for binary interdiction case.

Corollary 3 In binary interdiction on network G = (N , A), for some budget R ≥ 0, if R is
not in sum set of set {pi : ∀i ∈ N } ∪ {qi j : ∀(i, j) ∈ A}, the unsatisfied demand F(R) is
equal to F(R), where R is the largest element in the sum set with R < R.

Theorem 10 In case of binary interdiction, denote C = max{pi : ∀i ∈ N }∪{qi j : ∀(i, j) ∈
A}, for some budget R ≥ 0, if F(R) is not in sum set D of demand set {dkj : ∀k ∈ K , j ∈
D(k)}, F(R + C) > F(R).

The idea of this proof is similar to the continuous case inTheorem8, by changingΔR = C .
If pi = qi j = C , for all i ∈ N , (i, j) ∈ A andC is a positive constant, for some budget R ≥ 0,
if F(R) is not in sum set D of demand set {dkj : ∀k ∈ K , j ∈ D(k)}, F(R + C) > F(R).
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4 Numerical experiments

In this section, all MIP formulations and algorithms are implemented in C++ using CPLEX
12.3 via IBM’s Concert Technology library, version 2.9. All experiments were performed on
a Linux workstation with 4 Intel(R) Core(TM)2 CPU 2.40GHz processors and 4GB RAM.

In the following, we test proposed approaches to find values for critical budgets Ra, Rb.
All 12 networks for multicommodity flows used in the following experiments are modified
based on test cases of C+ instances in [37]. For the costs and capacities on arcs and nodes,
and supply and demand amounts of commodities, we modified their values with less types
of commodities.

4.1 Numerical experiment for critical budgets

As discussed in Sect. 3.2, the critical budget Ra can be computed by formulations (2) and (8),
and theorems in Sect. 3.2.2 for different conditions, while Rb can be computed by formulation
(8) and theorems in Sect. 3.2.1.

In this section we first perform numerical experiment for solving formulation (2) under
continuous interdiction by using techniques proposed in (16). We randomly generate inter-
diction costs pi for each node between 10 and 40, and qi j for each arc between 4 to 20,
and use formulation (2) in Sect. 2.2 to calculate the minimum-cost flow under interdiction
budgets.

We test 12 different networks by gradually increasing budget R from 0 (see Table 1). If
the optimal solution is an abnormally large number, which is larger than

∑
i∈N max(i, j)∈A ci j∑

k∈K
∑

i∈D(k) d
k
i , it will be the budget with which there exists no optimal flow satisfying

all demands, and thus the dual problem of inner problem of (16) is unbounded. By checking
the optimal results, we can find the budget Ra , which is the budget from it some demand
starts to become unsatisfied.

Table 1 shows that the optimal solution to formulation (2) for continuous interdiction with
different interdiction budgets, and also the critical budget Ra in each network. From the table
we can see the optimal solution for continuous interdiction increases as budget increases.
When the interdiction budget is large enough to make the problem infeasible, the optimal
result will grow abnormally large and we use “–” and the followed empty spaces to denote it.

To test the formulation (11) in Theorem 7 for obtaining lower bound for critical budget
Ra when pi = vi , qi j = ui j and Theorem 5 for Rb, we compute the critical budgets Ra, Rb.
The results are shown in Table 2, where each network has K source nodes and K destination
nodes, one for each type of commodity. For the values of Ra , we have verified the results
obtained by the approach in Theorem 7, and also the method mentioned in Table 1.

In Tables 1 and 2, comparing cases with same number of nodes and commodities but
different numbers of arcs, we can find if the number of arcs is reducing, Ra is also reduced.
This is because when this number is reduced, the network becomes sparser and less vulner-
able, the interdictor needs less budget to make commodities’ demands unsatisfied. Critical
budget Rb also changes when the number of commodities is reduced in a fixed network. We
can compare cases where the number of arcs and nodes remains the same, if the number of
commodities decreases, Ra increases. This is because when the number of commodities is
reduced, there are more optional paths for commodities’ flows.

Next, we perform numerical experiment for computing critical budgets for binary inter-
diction. First, we use formulation (8) to calculate critical budget Rb by gradually increasing
budget from 0 and check their corresponding unsatisfied demands F(R). The maximum
unsatisfied demands are total amount of all commodities’ demands. The first interdiction bud-
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Table 2 Critical budget Ra for continuous interdiction when pi = vi , qi j = ui j

|N | 8 10

|A| 30 40 50 60

K 3 4 6 3 4 6 3 4 6 3 4 6

Ra 10 10 7 30 30 10 46 46 10 26 25 25

Rb 64 74 98 101 124 149 119 178 202 110 127 182

get under which the optimal solution of formulation (8) reaches this maximum value should
be Rb. Additionally, Theorem 5 can be used to obtain the lower bound for critical budget Rb.

Table 3 presents the results for binary interdiction in 12 networks. The cases that the
interdiction budget is close to the critical budget are included (the dots in Table 3 denote
those cases we do not include here). We have verified that the critical budgets Rb from
Theorem 5 is the same as the one obtained by using formulation (8). Actually, in all these
cases, the maximum flow obtained from formulation (9) is equal to the minimum disconnect
set from formulation (10).

From Table 3, comparing cases with same number of nodes and commodities but different
numbers of arcs, we can find that if the number of arcs is reducing, Rb will decrease. With
less arcs, Rb decreases because less arcs need to be removed. On the other hand, we can find
cases with same number of nodes and arcs, Rb decreases when K decreases. This is because
for a same network, number of nodes and arcs that are needed for shipping commodities is
reducing as K decreases.

4.2 Numerical experiment for effects of budget increasing

In this section, we perform numerical experiment for the effects of budget increasing. We
test on network where |N | = 8, |A| = 30, K = 3. There is only one destination node for
each commodity, and the demand amounts are 5,7,9. The sum setD as discussed in Sect. 3.3
is D = {0, 5, 7, 9, 12, 14, 16, 21}.

For the continuous interdiction casewith pi = 1 for all i ∈ N and qi j = 1 for all (i, j) ∈ A
(Ra = 1.2, Rb = 8 in this case), we gradually increase budget R from 0 to 9 with step 0.2
and use (8) to calculate the amount of unsatisfied demands. The result for values of F(R)

are pictured in Fig. 1b in Sect. 3.1. Theorem 8 for marginal revenue in this test case can be
verified. From Fig. 1a in Sect. 3.1, if F(R) /∈ D , the marginal revenue is positive. Also, the
curve F(R) has 7 plateaus, which is less than |D | = 8, a conclusion from Corollary 2.

For the binary interdiction case, we also test the same network with the same values for
interdiction costs. Note as values for pi , qi j are integers, we just need to compute F(R)when
budget R is an integer (implied by Theorem 9 and Corollary 3). Thus, we gradually increase
budget from 0 to 9 by step 1 and use formulation (8) to calculate the amount of unsatisfied
demands under each budget. The result for values of F(R) is pictured in Fig. 1a in Sect. 3.1.

5 Conclusions

In this paper, we have proposed the general interdiction models of the multicommodity
flow problem, with consideration of both node and arcs removals and decrease of their
capacities. We first proposed reformulation techniques to solve these models in both binary
and continuous interdiction cases. Next, we defined the function F(R) as the minimum
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Table 3 Critical budgets for binary interdiction

|N | 8

|A| 30 40

K 3 4 6 3 4 6

R F(R) R F(R) R F(R) R F(R) R F(R) R F(R)

10 0 10 0 4 0 21 0 21 0 8 0

11 0 11 0 5 0 22 0 22 0 9 0

12 0 12 0 6 0 23 0 23 0 10 0

13 5 13 5 7 1 24 2 24 6 11 5

14 5 14 5 8 1 25 2 25 6 12 5

15 5 15 5 9 1 26 7 26 7 13 5
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49 16 55 22 73 35 73 16 84 22 107 37

50 16 56 22 74 35 74 16 85 22 108 37

51 21 57 27 75 40 75 21 86 27 109 40

52 21 58 27 75 40 76 21 87 27 110 40

53 21 59 27 75 40 77 21 88 27 111 40

Ra 12 12 6 23 23 10

Rb 51 57 75 75 86 109

|N | 8 10

|A| 50 60

K 3 4 6 3 4 6

R F(R) R F(R) R F(R) R F(R) R F(R) R F(R)

29 0 29 0 8 0 14 0 14 0 14 0

30 0 30 0 9 0 15 0 15 0 15 0

31 0 31 0 10 0 16 0 16 0 16 0

32 6 32 6 11 5 17 3 17 3 17 3

33 6 33 6 12 5 18 4 18 4 18 4

34 6 34 6 13 5 19 4 19 4 19 4
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96 17 129 24 162 37 72 18 91 28 121 44

97 17 130 24 163 37 73 18 92 28 122 44

98 17 131 24 164 37 74 19 93 28 123 44

99 20 132 27 165 40 75 23 94 32 124 48

100 20 133 27 166 40 76 23 95 32 125 48

101 20 134 27 167 40 77 23 96 32 126 48

Ra 31 31 10 16 16 16

Rb 99 132 165 75 94 124

amount of unsatisfied demands in the resulted network after worst-case interdiction with
budget R. The function can be obtained by solving a series of similar problems as interdiction
models. As a major contribution, we studied the propositions of this functions, including two
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types of critical budgets, and effects of budget increasing. The analysis of this function will
help the interdictor to decide the better use of limited resources for destroying enemy’s
supplies, controlling of infectious decease, and many other applications. Also, for solving
general bilevel programming problems, our proposed information from critical budgets can
help to decide when the strong duality property can be applied.

The future research directions include designing efficient algorithm for solving the con-
tinuous interdiction case by combining column generation algorithm with our proposed
formulation, and studying approaches to find critical budgets in networks with special struc-
tures to reduce the computational complexity. Another research direction is to redesign a
new network based on the worst interdiction scenarios. Additionally, potential applications
can be found for vulnerability analysis of power grids, telecommunication networks, water
infrastructures, social networks, etc.

Appendix 1: Proof of Proposition 1

Proof By the construction process of network G ′ from G, the objectives in (2) are the same
for both networks, as c′

i1,i2
= 0 for any i ∈ N and c′

i2, j1
= ci j for any (i, j) ∈ A.

Let z′ki1,i2 for i ∈ A and z′ki2, j1 for (i, j) ∈ A be commodity flow of type k ∈ K in network

G ′. Similarly, let y′k
i1,i2 for i ∈ A and y′k

i2, j1 for (i, j) ∈ A be corresponding interdiction
variables on arcs of G ′, and let y′ denote the vector of all these interdiction variables, which
is limited by I with the budget R and interdiction costs q ′

i1,i2
, q ′

i2, j1
are only on arcs. The

budget constraint
∑

i∈N pi xi + ∑
(i, j)∈A qi j yi j ≤ R becomes

∑
(i, j)∈A′ q ′

i j y
′
i j ≤ R.

Constraints (2b) and (2e) are equivalent for both networks G and G ′ (see [32] for expla-
nations). In model (2), except the source and destination nodes, node-capacity constraints∑

j :(i, j)∈A
∑

k∈K zki j ≤ vi (1 − xi ) can be equivalently transformed into arc-capacity con-

straints
∑

k∈K z′ki1,i2 ≤ u′
i1,i2

(1 − y′
i1,i2

) in G ′, while constraints
∑

k∈K zki j ≤ ui j (1 − yi j )

in G become
∑

k∈K z′ki2, j1 ≤ u′
i2, j1

(1 − y′
i2, j1

) in G ′. Additionally, node-capacity con-

straint
∑

j :(i, j)∈A
∑

k∈K zki j ≤ vi (1 − xi ) for source node i ∈ G is equivalent to
∑

k∈K z′ki1,i2 ≤ u′
i1,i2(1 − y′

i1,i2) on arc (i1, i2) in G ′, where u′
i1,i2 = vi . Node-capacity

constraint
∑

j :(i, j)∈A
∑

k∈K zki j ≤ vi (1 − xi ) for destination node i ∈ G now becomes
∑

k∈K z′ki1,i2 ≤ u′
i1,i2(1 − y′

i1,i2) on arc (i1, i2) in G ′, where u′
i1,i2 = vi . Thus, the node

interdiction on i in G is equivalent to the interdiction on arc (i1, i2) in G ′, which eventually
reduces the out flow of i2. For any other arc (i2, j1), for any (i, j) ∈ A, in A′, the arc-capacity
constraints in (2d) become

∑
k∈K z′ki j ≤ u′

i j (1− y′
i j ). Thus, the arc interdiction on arc (i, j)

in G is equivalent to the interdiction on arc (i2, j1) in G ′.
Therefore, we have proved the equivalence between model (2) for G with interdiction on

both nodes and arcs and model (2) for G ′ with interdiction only on arcs. 
�

Appendix 2: Proof of Theorem 1

Proof Formulation (2) can be formulated equivalently as follows:

max
x,y;α,β,γ

∑

k∈K

⎛

⎝
∑

i∈S(k)

ski αik−
∑

i∈D(k)

dki αik)+
∑

i∈N
vi (1 − xi )βi +

∑

(i, j)∈A

ui j (1−yi j

⎞

⎠ γi j (13a)

s.t. αik − α jk + βi + γi j ≤ ci j , ∀k ∈ K , (i, j) ∈ A (13b)
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βi , γi j ≤ 0, ∀i ∈ N , (i, j) ∈ A (13c)
∑

i∈N
pi xi +

∑

(i, j)∈A

qi j yi j ≤ R (13d)

0 ≤ xi , yi j ≤ 1, ∀i ∈ N , (i, j) ∈ A (13e)

By the assumption of R such that all demands can be satisfied for any interdiction plans
in Ic, the inner problem is always feasible. Through strong duality for the multicommodity
flow in the resulted network, the above formulation (13) under this assumption is equivalent
to formulation (2) with I = Ic for continuous interdiction.

Assume that the set Ic has L extreme points, in the set ext (Ic) = {(x (1), y(1)), . . . ,

(x (L), y(L))}. As the constraints of formulation (13) can be divided into two parts: constraints
(13b) and (13c) are only related to α, β, γ while constraints (13d) and (13e) (i.e., Ic) are
only related to x, y, the objective function (13a) can be reformulated as

max
α,β,γ

max
x,y

∑

k∈K

⎛

⎝
∑

i∈S(k)

ski αik −
∑

i∈D(k)

dki αik

⎞

⎠ +
∑

i∈N
vi (1 − xi )βi +

∑

(i, j)∈A

ui j (1 − yi j )γi j

(14)

which is a linear program for any fixed α, β, γ , and the corresponding optimal x, y should
be obtained at some extreme point ofIc, and vice versa. Therefore, (14) can be equivalently
rewritten by considering constraints in (13) as follows:

max
α,β,γ ;(x,y)∈ext (Ic)

∑

k∈K

⎛

⎝
∑

i∈S(k)

ski αik −
∑

i∈D(k)

dki αik

⎞

⎠ +
∑

i∈N
vi (1 − xi )βi

+
∑

(i, j)∈A

ui j (1 − yi j )γi j (15a)

s.t. αik − α jk + βi + γi j ≤ ci j , ∀k ∈ K , (i, j) ∈ A (15b)

βi , γi j ≤ 0, ∀i ∈ N , (i, j) ∈ A (15c)

As explained in [24] based on the Dantzig’s theorem in [38], the following conclusion is
used for finding solutions of x, y:

For each extreme point (x(l), y(l)) (l = 1, . . . , L) of the polyhedral set Ic, there exists
a single basic variable in the vector (x(l), y(l)) taking value in the interval [0, 1], while all
other variables of (x(l), y(l)) are nonbasic variables taking values of either 0 or 1.

Therefore, the continuous interdiction model is corresponding to the model where only
one node or arc is partially interdicted, the rest interdictions are binary. Let δi , σi j ∈ {0, 1}
associated with xi , yi j denote whether xi , yi j take 1 if δi = 1, σi j = 1, or xi , yi j take 0 if
δi = 0, σi j = 0, respectively. Let δ′

i , σ
′
i j ∈ {0, 1} associated with xi , yi j denote whether

xi , yi j take binary values if δ′
i = 0, σ ′

i j = 0 or xi , yi j take any value in [0, 1] if δ′
i =

1, σ ′
i j = 1, respectively. By the conclusion above, the choices of δ′

i ’s and σ ′
i j ’s should satisfy∑

i∈N δ′
i +

∑
(i, j)∈A σ ′

i j = 1. Therefore, decision variables x, y can be replaced by δ, δ′, σ, σ ′
(vectors formed correspondingly), and we have the following equivalent formulation for
continuous interdiction through the reformulation of (15) as follows:

max
δ,δ′,σ,σ ′ min

z

∑

(i, j)∈A

ci j
∑

k∈K
zki j (16a)

s.t. constraints in (2b) (16b)
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{∑
j :(i, j)∈A

∑
k z

k
i j/vi ≤ 1 − δi − δ′

i R
′/pi , ∀i ∈ N

∑
k∈K zki j/ui j ≤ 1 − σi j − σ ′

i j R
′/qi j , ∀(i, j) ∈ A

(16c)

{
R′/pi ≤ 1 + Mi (1 − δ′

i ), ∀i ∈ N

R′/qi j ≤ 1 + Mi j (1 − σ ′
i j ), ∀(i, j) ∈ A

(16d)

∑

i∈N
piδi +

∑

(i, j)∈A

qi jσi j + R′ = R (16e)

δi + δ′
i ≤ 1, ∀i ∈ N (16f)

σi j + σ ′
i j ≤ 1, ∀(i, j) ∈ A (16g)

∑

i∈N
δ′
i +

∑

(i, j)∈A

σ ′
i j = 1 (16h)

δi , σi j , δ
′
i , σ

′
i j ∈ {0, 1}, ∀i ∈ N , (i, j) ∈ A (16i)

R′ ≥ 0; zki j ≥ 0, ∀(i, j) ∈ A, k ∈ K (16j)

The interdiction constraint (16e) limits the budget for all binary interdictions with con-
straint R′ ≥ 0, where R′ = R − (

∑
i∈N piδi + ∑

(i, j)∈A qi jσi j ) is the remaining budget for
a partial disruption of a node or an arc. Constraints (16f) and (16g) indicate that a node and
an arc can be either binary interdicted or partially interdicted or not interdicted, respectively.
Constraint (16h) limits that only one node or one arc is partially interdicted. The first set of
constraints in (16c) include cases for node interdiction: (i) δi = 1, δ′

i = 0, node i is com-
pletely interdicted; (ii) δi = 0, δ′

i = 0, node i is not interdicted, and this set of constraints
limits the node capacity; (iii) δi = 0, δ′

i = 1, node i is partially interdicted, and this set of
constraints limits the capacity after partially interdicted. Similarly, the second set of con-
straints in (16c) are for arc interdiction. The parameters Mi and Mi j in (16d) are relatively
large positive constants. The first set of constraints in (16d) ensures that the budget spent on
partially interdicted node should be limited by corresponding node interdiction cost, while
second set limits the amount for budget spent on partially interdicted arc. The objective
function and all other constraints have the same meanings as those in formulation (2).

Let αik, βi , γi j be the dual variables associated with constraints in (16b) and (16c), under
certain R, the formulation (16) is equivalent to :

max
δ,δ′,σ,σ ′,α,β,γ

∑

k∈K

⎛

⎝
∑

i∈O(k)

ski αik −
∑

i∈D(k)

dki αik

⎞

⎠

+
∑

i∈N
βi

(
1 − δi − δ′

i R
′/pi

) +
∑

(i, j)∈A

γi j
(
1 − σi j − σ ′

i j R
′/qi j

)
(17a)

s.t. αik − α jk + βi/vi + γi j/ui j ≤ ci j , ∀(i, j) ∈ A, ∀k ∈ K (17b)

constraints in (16d) − (16i) (17c)

R′ ≥ 0; βi , γi j ≤ 0, ∀(i, j) ∈ A, ∀k ∈ K (17d)

This completes the proof. 
�
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