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ABSTRACT

Multi-agent corporations struggle to efficiently sustain grounded communications
with specific task goal. Existing approaches are limited in their simple task set-
tings and single-turn communications. This work describes a multi-agent com-
munication scenario via emergent language in navigation task. This task involves
two agents with unequal abilities: the tourist (agent A) who can only observe its
surroundings and the guide (agent B) who has the holistic view but does not know
the initial position of agent A. They communicate with the emerged language
grounded through the environment and a common task goal: help the tourist find
the target place. We release a new dataset of 3000 scenarios that involve such
visual and language navigation. We also seek to address the multi-agent emergent
communications by proposing a collaborative learning framework that enables the
agents to generate and understand emergent language and solve task. The frame-
work is trained with reinforcement learning by maximizing the task success rate
in an end-to-end manner. Results show that the proposed framework achieves
competing performance in both accuracy of language understanding and in task
success rate. We also discuss the explanations of the emerged language.

1 INTRODUCTION

Communication is a crucial factor for multiple agents to cooperate. While most recent works are
focused on the interactions between the artificial agent with humans, there still are some research
efforts made on communication between artificial agents. However, most of these works are focused
on single-turn communication with a unidirectional message pass and the evolvement of natural
language or some specific properties of the emergent language like compositionality, interpretability,
and so on. But the multi-turn conversation is more analogous to human language. In a natural
conversation, language generation and understanding should be mutual rather than unidirectional.
Therefore, we provide a framework for agents to generate multi-turn dialogues including two agents.

To prove the feasibility of our framework, we provide a scenario for agents to generate multi-turn
conversations. We propose a new task adapted from the vision-language navigation(VLN) task
coming from the human-machine communication area where the guide should communicate with
the tourist to give guidance and help it find the target location. Different from traditional VLN tasks,
in our settings, the tourist(agent A) and the guide(agent B) are both machines, rather than the original
human-machine settings. Besides, we suppose that the guide does not know the initial position of
the tourist, so the guide not only has to give guidance to the tourist but also confirm the location of
1t.

Our contributions can be summarized as follows:

1. From the view of emergent language, we study the language with multiple turns. To give
a suitable scenario for multi-turn conversations, we provide a navigation task adapted from
the vision-language navigation(VLN) task.

2. Compared with methods with agents speaking the natural language, ours is cheaper with
no expensive annotation, making it a more practical way for agents to communicate.

3. As far as we know, We are the first to propose a VLN-like task in a two-agent cooperation
scenario. And we also provide a benchmark for it, which gives a possible solution to this
kind of task.
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2 RELATED WORK

Vision Language Navigation(VLN) Navigation tasks with vision and natural language information
have attracted much attention in the last few years. Generally, this task involves humans, an artificial
agent, and the environment. The agent communicates with humans in natural language. The agent
may receive requests or instructions and ask for more guidance from the human. It can navigate and
interact with the environment to get more information or complete corresponding task requested by
the human. While humans should give requests or guidance to help the agent complete the task.

Generally, the goal of these VLN tasks is to help the agent find the target place known only by the
human side. |Anderson et al.| (2017) proposes a VLN dataset called Room-to-Room (R2R) based on
matterport3d|Chang et al.|(2017) data and provides a benchmark for this task first. (Chen et al.[(2018)
proposes a dataset Touchdown and applies the VLN task to the outdoor environment. Still, some
scenarios where agents need to interact with objects in the environment are proposed. Narayan-Chen
et al.[(2019) put the task into the Minecraft game and instruct the agent to complete building tasks.

From the view of language format, we can divide those tasks into three categories|Gu et al.|(2022)):

* Initial instructions: The agent is given instructions for the whole navigation episode. In
some of those works, the instructions are very detailed|/Anderson et al.| (2017));/Chang et al.
(2017);Jain et al.|(2019); Krantz et al.| (2020). For example, "Walk down one flight of stairs
and stop on the landing”. While in other works, some coarse-grained instructions are given
Zhu et al.| (2021). However, this kind of work only gives the instructions at the beginning,
so multi-turn communication can not be generated.

* Oracle guidance: In the process of navigation, the agent can request additional natural
language guidance to get more information (Chi et al.|(2019). But in most cases, the oracle
can only respond with simple words like "turn left” and “’turn right”.

* Dialogue: Dialogue is given as a supervised signallde Vries et al.|(2018)); Thomason et al.
(2019). But the fixed dialogue constrains the flexibility of policy.

By putting the VLN task into multi-agent settings, the problems listed above can be alleviated or
solved. To our knowledge, talk-the-walk |de Vries et al.| (2018) is the only work applying the VLN
task with multiple agents and is very similar to our task settings. However, talk-the-walk only
focuses on the localization part, where the guide finds where the tourist is. But ignore the guidance
part, in which the guide makes a route plan and gives guidance to the tourist, and the tourist makes
corresponding actions. Talk-the-walk models this part with a random walk and only implements a
minimal baseline, making the VLN task with multi-agent settings incomplete.

Emergent Language Emergent language is an unplanned language that comes up in interactions
between the students, and/or the teacher and the students. From the perspective of agents’ relation-
ships, most of the works are focused on fully cooperative tasks like referential games|Lazaridou et al.
(2018) adapted from the Lewis signaling game. In the referential game, there are two roles: speaker
and listener. The speaker has to give instructions to the listener so that it can select the target picture
from the candidates successfully. Some navigation tasks are proposed [Kalinowska et al.| (2022));
Kajic et al.| (2020), however, those works can only be applied in limited environments, with 2 and
4 cases respectively. Some semi-cooperative tasks are also proposed, like the negotiation game |Cao
et al.[(2018)), in which two agents have to negotiate to get more scores for themselves. There are also
some fully-competitive cases like a circular-based sender-receiver game Noukhovitch et al.| (2021
where the sender tries to make the receiver choose the position closer to its own target position rather
than the receiver’s. Most of those part of works are studying single message pass, with one agent
only having a language generation part, and the other one having a language understanding module.
Still, there are some works putting attention to the multi-turn form|Cao et al.|(2018); [Evtimova et al.
(2017). But the former study focuses on a semi-cooperative case rather than a fully cooperative one
like us, while the latter one uses the bag of words, and generates 0 or 1, with 1 indicating this token
is in the generated sentence. This method makes that the latter token does not rely on the former
ones, making it not a sentence from general views.
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Figure 1: The navigation task involves three components: the tourist (agent A), the guide (agent
B), and the environment. Agent A and B have unequal abilities. While agent A can only see its
surroundings and describe them to B, agent B has the global perspective, can make a route plan, and
give instructions to A. Agent A and B cooperate to lead A to the target place.
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Figure 2: Navigation Case. The navigation task consists of three sub-tasks: Localization, Route
Plan, and Guidance. At every turn, agent A first gives a description of its surroundings in the room
it is located. With the current messages and the history messages given by A, agent B tries to guess
where A is using the topological structure of the rooms. Then, based on this guess, agent B makes

a route plan for A to get to the target place, and gives an instruction to A describing the next step A
should take.

o0 00



Under review as a conference paper at ICLR 2023

3 NAVIGATION TASK

This task is inspired by a real-world scenario where two agents with unequal abilities, agents A and
B, cooperate to help agent A find the target place. As pictured in Figure[I] agent A can only see the
objects around it, while agent B has the floor plan and the target place but doesn’t know where A
is. To win this game, they have to cooperate to help A reach the target place with limited rounds.
Otherwise, this task fails.

Here, we divide the navigation task into three steps: First, localization. Agent B needs to find where
A is, according to the message given by A describing the objects around it. Second, route plan.
Having the position of A and the target place, agent B has to find the shortest path for A to get there.
Third, guidance. Agent B gives instructions to A, helping it follow the route plan. All three steps
above are executed iteratively until A reaches the target place or the steps run out.

Formally, this navigation task is constructed as follows:

There are houses, containing rooms R = {rg,r1,...,7n } each. Every time, one house is randomly
chosen from those K candidates. Then two rooms are drawn from the selected house, and one
of them is the target room r,, and the other is the start room rs. Every room has several gates
D; = {d;j,j € Neighbor(i)}. There is a graph for each house, to model the relationship between
rooms. We use G = (R, D) to denote a house, where R is the vertex set, and D is the edge set.
There are two players called agent A, and agent B parameterized by 64, 05 separately. The inputs
and outputs are different with different tasks.

* In the localization task, agent A takes in the room’s vector where it is and gives out the
messages of step t consisting of M tokens m; = {vg,v1,...,var},v; € V. While agent B
collects history dialogue h; = (mg, m1,..,m;) and tries to guess where A is.

* In the route plan task, agent B uses the room graph G, the guessed position of A
argmax(6p(h:, G)), and the target position r, to get the next step A should take
argmax(04(hir1, D)).

e The only difference between guidance and localization task is that the guidance task
switches the role of agents A and B, and agent A does not require the graph G.

A case is shown in Figure[2] where Agent A starts from room 0 and wants to get to room 5.

4 MODEL

Figure 3[shows the model structure for the localization task. This model includes an encoder encod-
ing the surroundings of A, a route encoder embedding the neighbor information by sampling routes
ended with the target room, a language generation module in agent A implemented with GRU, and
a language understanding module in agent B used for guessing the position of A.

Firstly, the information about the house containing features of a set of rooms (7, 71, .., ) is given.
Agent A encodes the target room information 7, including objects and gates and then uses the en-
coded vector to generate corresponding emergent language with its language generation module
€2 = GRU(MLP(r,)). With the message coming from agent A in this turn, and the history
sentences from A, agent B makes its guess by making use of the topological structure of rooms
05 (h:, G). In this topological graph, every room is represented with a node, and every door con-
necting neighbor rooms is represented with an edge between these rooms. For node k, we sample T'
routes with the same length of history movement length ¢ ended with this node route?. Node £ has

representation e’ = % ZZT G RU (route!) including topological structure information.

And B encodes the history sentences with another GRU and computes the similarity between this
encoded history e,,, with each node representation ¢ calculated above to find the most possible
position of agent A. Similarly, the model for the guidance task also includes an encoder, a language
generation, and a language understanding module used for giving instructions to agent A about its
next step.

Considering the non-differentiability of the discrete messages passing between agents, those models
are trained with REINFORCE algorithm. We use the Floyd algorithm for the route plan task to find
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Figure 3: Model Structure. There are three sub-modules here, including localization, route plan, and
guidance. In the localization part, by calculating the similarity score between messages given by A
and room feature embeddings incorporating structural information, agent B tries to find where A is.
Then we use the Floyd algorithm to find the shortest path between the guessed place and the target
one. And in the guidance module, A could find its path with history dialogue with B and its own
observations.

the shortest paths. Losses in localization and guidance tasks can be calculated with the following
equations:

1

M
VN Jlocalization = E[MR() Z \YAN IOg WA(U'L‘SA)]

Vs Jlocalization = E[R() Vos IOg WB(T|SB)] (1)

M
1
VF)B Jguidance = E[MR() Z VGB IOg TB (Ul‘SB)]

AN Jguidance = E[R() \YN IOg WA(d‘SA)]

Finally, we put those sub-tasks together to complete the navigation task. In the training process,
the input of the localization part is the surroundings of agent A, and the output of it is the guessing
position made by agent B. However, the input of the route plan part in the next timestep is the
actual position of A, instead of the guessing one, preventing the error from localization influencing
other modules. While in the testing process, the input of the route plan module comes from the last
localization module.

5 EXPERIMENT

5.1 DATASET
We construct the dataset with 6 rooms for each navigation task. And every object in this dataset has

3 optional colors and 3 optional shapes. Also, some features not relevant to this task are added, like
the gate color which we suppose to be the same among all rooms in the same house.

5.2 DISCRETE VAE

Rolfe| (2016) proposes discrete VAE. By solving the problem of backpropagation through discrete
variables, discrete VAE successfully constructs the semantic representation of pictures.



Under review as a conference paper at ICLR 2023

Localization

Navigation

accuracy
o ° <} o ° o o
w FS « o < @ ©

o
N

accuracy

0.9 A

0.8 4

o
~

o4
o

0.5 4

0.4

o
=

0

2500

5000

7500 10000 12500 15000 17500 20000
epoch

200

400

600
epoch

800

1000

1200

(a) (b)

Figure 4: The change of accuracy over epoch in different tasks. (a) localization task. (b) navigation
task
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Figure 5: The reward changes of the training set and the validation set. The rewards tend to be stable
over epochs, proving the effectiveness of our framework.

We apply the discrete VAE as a comparable model here by replacing the room encoder and gate en-
coder together with the language generation part. Fixing the discrete VAE part, train other modules,

then we get a comparable model.

5.3 RESULTS

Figure[d]and Figure5|show the accuracy change in the validation set and the reward change over the
epoch separately. In this experiment, the length of messages passing between agents A and B is 3,
and there are 20 candidate tokens in the localization task and 40 candidate tokens in the navigation
task. It is worth noting that, since it is trained from scratch, there is no initial meaning for those

candidate tokens.

Table [T] gives some comparisons between the model adapted from discrete VAE and our model. It
should be noted that the adapted discrete VAE already has the initial meaning of each token before
training on the specific tasks. Considering that the presentations of room and routes are trained based
on the reconstruction task in the discrete VAE model, making the discrete presentations contain more
redundant information. With the limitations of the message length and vocabulary size in discrete
communication scenarios, discrete VAE may communicate less useful information compared with
our model. We also show the case when agents can pass continuous messages, giving us a ceiling
performance when the communication channel is not restricted.
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Model Task Accuracy P purity
continuous Localization 0.96 - -
continuous Navigation 0.89 - -

discrete VAE | Localization 0.81 -0.0113 | 0.556/0.667 /0.148
ours Localization 0.84 0.4775 | 0.407/0.457 /0.235
discrete VAE | Navigation 0.69 - -

ours Navigation 0.86 - -

Table 1: Comparison between adapt discrete VAE and our model. p is the topographic similarity,
the purity scores are calculated when labeled with object color/shape/direction
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Figure 6: The effect of (a) sentence length and (b) the shortest route length between the start and
target places on the task performance

To evaluate the generated language, we use topographic similarity and purity. We suppose that good
language tends to give similar expressions describing a similar object. So we use topographic sim-
ilarity p as our metric, which is the Spearman correlation between the message similarity sequence
and the room vector similarity sequence. And our method outperforms the discrete VAE largely.
To make the emergent language more interpretable and give some more hints about the information
it encoded, we calculate the purity score with the following procedure: First, we only change the
color, shape, and direction attributes of the object and fix other features. Then, we cluster those
rooms with the generated message. Labeled these rooms with their objects’ color, shape and direc-
tion separately, we get the corresponding purity. And the purity score can tell us the information that
the emergent language encoded. From the table, we can tell that compared with discrete VAE, our
model focus more on the direction and less on color and shape which is reasonable because there
are only 3 choices for color and shape which makes it less useful for disguising the target room from
others, comparing with the direction with 8 possible value.

We also investigate factors that may affect task performance[6] Countering with our intuitions that,
as the sentence length grows, the model has a much more powerful expression ability, so the perfor-
mance should grow, but localization accuracy grows first and then drop. When the sentence length
is enough for expression, much more tokens may increase the difficulty for the model to tackle.
The shortest route length between the start positions and the target ones can also affect the task
performance, but it does not follow an exponential drop when the shortest route length grows.

6 CONCLUSION

In this work, we propose a navigation task in an emergent communication scenario. This task
is adapted from the vision-language navigation task proposed in human-machine communication.
However, compared with the traditional VLN task, the application of multi-agent communication
in the VLN task makes the communication policy more flexible and can generate a more complex
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dialogue format. Our method proves the feasibility of applying multi-agent communication to the
VLN task, and also gives a benchmark for this task.
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