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ABSTRACT

Principal component analysis (PCA) is a ubiquitous tool for dimensionality re-
duction and exploratory data analysis. However, most theoretical and empirical
studies implicitly assume that noise is light-tailed. When data are corrupted by
heavy-tailed noise, as is increasingly common (e.g. in omics or brain connectivity
data), standard PCA techniques can fail dramatically. While recent work in robust
statistics has addressed this problem in certain contexts, many existing methods
remain sensitive to extreme outliers, performing poorly under truly heavy-tailed
distributions. Furthermore, many of the methods which have been designed for
heavy-tailed distributions do not scale well to large data sizes. In this work, we
propose a novel algorithm for PCA that is designed for extremely heavy-tailed
noise and which is computable for even very large data matrices. Our approach
is designed to reduce sensitivity to such deviations while recovering informative
low-rank structure. In the case of very heavy-tailed data with a large number of
observations, we demonstrate significant improvements over classical PCA and
existing robust PCA variants.

1 INTRODUCTION

Principal Component Analysis (PCA) is a fundamental technique in data analysis, extensively used
for dimensionality reduction, data visualization, and feature extraction across a variety of scientific
and engineering domains (Fan et al.,|2018). Standard PCA, including modern variants as appearing
in [Ledoit & Wolf] (2020), however, is fundamentally based on eigendecomposition of the empir-
ical covariance matrix, implicitly relying on light-tailed assumptions regarding noise distribution.
Under such conditions, PCA exhibits desirable theoretical properties, including consistency and ro-
bustness to moderate perturbations (Benaych-Georges & Nadakuditi, [2012). Nonetheless, real data
increasingly challenge these assumptions, particularly in high-dimensional settings like genomics
and finance, where heavy-tailed distributions are common (Fan et al.| 2021} [Ke et al.,|2019).

Heavy-tailed data are characterized by extreme ‘outlier’ deviations from the mean, which severely
affect the eigendecomposition of the sample covariance matrix (Soshnikov, 2002;|Auffinger & Tang,
2016). Consequently, classical PCA methods tend to produce highly inaccurate estimates of prin-
cipal directions, as these are disproportionately influenced by outliers or extreme values. This phe-
nomenon severely undermines PCA’s applicability to modern datasets, necessitating robust method-
ologies explicitly designed for heavy-tailed noise.

In recent years there have been a small number of PCA methods designed to deal with heavy-tailed
noise; see for instance |[Ke et al.| (2019). These have mostly been validated (either theoretically or
empirically) for specific classes of distributions or under conditions such as finite fourth moments
which, despite being much more flexible than standard PCA contexts, is nonetheless restrictive
relative to the context we consider here. Our interest is in extremely heavy-tailed noise, allowing
(for instance) infinite variance.

In the following section, we introduce a novel PCA algorithm. It is motivated by an empirical ob-
servation specific to heavy-tailed data, namely that population-level principal components are dis-
tributed over low-dimensional subspaces spanned by sample principal components. The framework
of our method is based on repeated subsampling and projections onto principal component sub-
spaces, exploiting the consistent geometric alignment of principal directions within these subspaces.
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The geometric strategy is exceedingly simple, but we find that it is sufficient to improve on the accu-
racy of other methods. Furthermore, our method depends on three hyperparameters N, P, R, but we
demonstrate that the performance of our algorithm is largely insensitive to these choices, the only
key being that R is sufficiently large.

We validate our method on synthetic heavy-tailed data sets, demonstrating improved performance
for extremely heavy-tailed data, such as under infinite variance. We also show that our method
shows an improved ability to find self-consistent signal directions in real-world transcriptomic and
synaptic connectivity data sets. Although our method is motivated by the problem of PCA for heavy-
tailed data, it also works well in the light-tailed case. The only situation in which we have found our
method to suffer relative to alternatives is when the number of observations is small.

Although not part of the design, our algorithm is well adapted to large data sizes. Other methods
either depend on convex optimization over spaces of matrices, which become very slow for large
matrix sizes, or depend on a number of computations which grows prohibitively with the number
of observations. Our method uses only standard linear-algebraic computations and (in terms of
computation time) is insensitive to the number of observations. Unlike the other available methods,
ours appears to be both readily computable and accurate for data sets with thousands of features or
observations.

2 HEAVY-TAILED PRINCIPAL COMPONENT ANALYSIS

The celebrated “BBP phase transition” discovered by |Baik et al.| (2005) and extended by Benaych-
Georges & Nadakuditi| (2012)) says that, for data generated by certain (light-tailed) random matrix
models, the leading eigenvectors of the sample covariance matrix are at a deterministic angle from
the leading eigenvectors of the population covariance matrix. This applies in the theoretical asymp-
totic limit of an infinite number of observations and infinitely many observations, although it can be
empirically seen to a high level of accuracy for reasonably large matrices (for instance, 100 x 500).
According to this asymptotic theory, PCA based directly on the sample covariance matrix will have
a predictable defect as an estimator of the principal components of the population-level covariance.

This can be contrasted with the case of heavy-tailed distributions, which presents different phenom-
ena, as established initially in|Soshnikov|(2002)) and taken to a higher level of generality in/Auffinger
& Tang| (2016). In the simplest case of a heavy-tailed ‘pure noise’ matrix Z (i.e. one with i.i.d. en-
tries following a heavy-tailed distribution), the leading eigenvectors of the sample covariance ZZT
are, with high probability, close to coordinate vectors. The coordinates in question are governed by
the loci of the most extreme ‘outliers’ in Z, i.e. the largest entries in absolute value.

We note here, somewhat informally, that this extends to more realistic random matrix models than
those generated as pure noise. Consider the information-plus-noise model X = P + Z, where P
is a ‘signal matrix’ and Z is a ‘noise matrix’ as in the previous paragraph. Under the heavy-tailed
assumption, Z will contain extremely large entries, so that the matrix norm of Z will be very large
relative to that of P. As such, on the scale of P, the data matrix X can be treated as a small
perturbation of Z, so that the leading eigenvectors of the sample covariance X X' will be small
perturbations of the leading eigenvectors of ZZ7T. (See [Kato| (1995) for the relevant perturbation
theory.) That is, they will be approximately coordinate vectors and hence approximately orthogonal
to true population-level principal components.

Our interest in this paper is the classical PCA problem of estimating the leading eigenvectors of
the population covariance matrix. According to the BBP phenomena and related work, the sample
covariance matrix is of limited utility in the light-tailed case. According to the previous paragraph,
it is essentially useless in the heavy-tailed case. This highlights the need for novel PCA algorithms
in the heavy-tailed case. We present our algorithm below, and briefly review some other algorithms
from the literature in the subsequent section.

2.1 OUR ALGORITHM

In the light-tailed case, the BBP phenomena asserts that for certain data matrix models, the leading
eigenvector u of the population covariance matrix is nontrivially (and predictably) correlated with
the leading eigenvector v; of the sample covariance matrix. Our algorithm is motivated by the
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Table 1: Projection of the population-level principal component u onto sample eigenvectors
V1,02, ...

Light-tailed model Heavy-tailed model
(u-v)® 30 (u-w)? (w-v)* 30 (u-w)?
0.9986  0.9986 0.0157  0.0157
0.0001 0.9986 0.0599  0.0757
0.0000  0.9986 0.2166  0.2923
0.0000  0.9986 0.0015 0.2938
0.0000  0.9986 0.1006  0.3944
0.0000  0.9986 0.5203 0.9146
0.0001 0.9987 0.0264  0.9410
0.0000  0.9987 0.0006  0.9416
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empirical observation that, in the heavy-tailed case, u is instead nontrivially correlated with the first
several eigenvectors vy, vz, ... of the sample covariance. This is illustrated in Table [T} where we
consider the data model

) 1
=(u uy -+ u e —
X ( 2 100) d1ag(20, 1, s l)V =+ mZ
which is an instance of the information-plus-noise model detailed later in our section on synthetic
experiments. Here u,us, ..., u100 are random orthonormal vectors in R'°° and V is a random
orthogonal 200 x 200 matrix, while the noise matrix Z € R!00%200 hag i i.d. entries. In the ‘light-
tailed’ part of Table[T] the entries of Z are drawn from the Student distribution with 100 degrees of
freedom (df), while in the ‘heavy-tailed’ part we use the Student distribution with 1.5 df.

Here, for heavy-tailed noise, it is clear that the population-level principal component u is not well-
approximated by any of the leading sample eigenvectors vy, ve, . . ., but that a reasonably good ap-
proximation can be found inside the span of the first eight eigenvectors. This is very unlike the BBP
phenomena found for light-tailed noise, where the leading eigenvector of the population covariance
has some (in this case, quite large) correlation with the leading sample eigenvector and random
(small) correlation with all of the others.

Based on this observation, we hypothesize the existence of a positive integer P such that the
population-level principal component w is likely to be contained in the span of the leading P eigen-
vectors of the sample covariance. By subsampling the data matrix X € RP*™ to p x N submatrices,
it is possible to generate many P-dimensional linear subspaces of R” which are likely to (nearly)
contain u. We identify our estimate of u as the unit vector which comes the closest to being con-
tained in each of these subspaces.

This can be quantified as follows. Given a linear subspace II of RP with orthonormal basis
v1,...,Vp, the orthogonal projection of u € RP onto P is Zil(vi - u)v;, and so the (Euclidean)
distance from w to IT is ||u — Zle(vi -u)v;||. Given linear subspaces IT!, . .., TI%, with v, ... v%

an orthonormal basis of II®, our quantitative interpretation of “the vector which is the closest to
being contained in each I1*” is the minimizer of

R P
L) =Y Jlu=D (v -u)of
a=1 i=1
over unit vectors v € RP. This can be reformulated by viewing each v{, ..., v% as an orthogonal

matrix V¢ € RP*P (ie. VE(V)T = Ipy p). Now (V) TV € RP is the vector Zle(v? “u)v,
so the above “loss function” can be rewritten as
R R
L(w) = flu—(V)Voul> = (u— (V)VU) (u— (V)V%).
a=1 a=1

or equivalently as

R
L(u) = R||u||* — Z ut (V) TV,
a=1
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Figure 1: Use of weighted selection. If we were to use uniform weighting to select our submatrices
X, our PCA estimate would depend in an unstable way on the choice of R. Using a non-uniform
weighting stabilizes the estimate and allows us to simply choose R > 1. See also Figure 2(a) for
further illustrations of stability.

Subject to the unit-vector constraint on u, the first term can be ignored, and minimization of the
above function is equivalent to finding the leading eigenvector of

R

Z (Va )Tva ,

a=1
according to the well-known variational interpretation of the first eigenvalue and eigenvector of a
symmetric matrix.

We summarize our algorithm as follows:

Hyperparameters: positive integers N, R, P with N < nand P < p

Given: data matrix X € RP*"

Set W = 0 € RP*P, Repeat R times:
Randomly choose N of the columns of X to get X e RpxN
Compute the P leading (orthonormal) eigenvectors of X XT ¢ RELF
Arrange them into a matrix V' € RP>*? and add VTV to W.

The leading eigenvector of W is the estimate of the leading principal component.

However, the methodology of the random choice of columns is also important. Our selection of N
columns is not done uniformly at random, but is instead based on a weighted distribution so that
columns with large Euclidean norm (i.e. those with outlying entries) are less likely to be selected.
This makes it unlikely for outlying entries to consistently enter into the subselected X, making the
computed V' minimally distorted by outliers. Our choice of weight is so as to be proportional to
the inverse of the Euclidean norm of a column. As shown in Figure [I] the use of non-uniform
selection is key to the success of our algorithm. Without it, the hyperparameter choice discussed in
the following section would be significantly more complicated.

Our algorithm can be viewed as a Monte Carlo method. This is especially convenient to state

in the case P = N. One is given data points x1,...,x, € RP. Consider the random linear
map L : R? — RP given by orthogonal projection onto the span of the randomly-drawn subset
Ziy,--.,Tiy of data points. Our PCA estimate is a Monte Carlo estimate of the leading eigenvector

of the expectation E[L]. No matter how heavy-tailed the distribution generating the data points may
be, this is a reasonable Monte Carlo problem, since the random linear map L is strongly bounded,
valued as it is in the compact space of orthogonal projections. As such, this perspective sheds some
partial light on the robustness of our method. Moreover, it is strongly reflective of our parameter
choice R > 1, as R represents the number of Monte Carlo iterates.
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Figure 2: Effect of parameter choices on performance

2.2 PARAMETER SELECTION AND COMPUTABILITY

In our algorithm, there are three hyperparameters P, R, N that need to be chosen. However, in prac-
tice we find that, subject to minor constraints, the dependence of performance on these parameters
is not very significant. Figure[J(a) shows the result of changing R; each curve corresponds to a fixed
data matrix, with P = N = 50. Since each curve levels out quickly, optimal and stable performance
is achieved by taking R suitably large. In practice, we usually take R = 500 or R = 1000. As noted
above, this is why our non-uniform selection is key. Figure [2{b) shows the effect of changing N.
We enforce the constraint N > P since a P-dimensional principal subspace has to be computed
for a p x N matrix, so that N < P could only introduce randomness into the subspace. Although
the effect is not terribly strong, it appears that increasing N has a slightly negative effect on per-
formance, so in practice we choose N = P. Figure [JJc) shows the minimal effect of changing P.
Here, each point along each curve corresponds to the 20-fold average performance of our algorithm
with R = 500 and N = P. It is visually apparent that changing P has only a negligible effect on
performance, and not with any clear trend. However, if P is selected too large (such as P = p),
performance will be significantly degraded. See the Supplement for similar plots with different
parameter values.

In addition to the above motivation, the choice N = P strongly aids the computability of our
algorithm. If N > P, it is necessary to compute (R many times) an orthogonal projection onto the
span of the P leading eigenvectors of a p x N matrix. When N = P, this is equivalent to computing
(R times) the orthogonal projection onto the column space of a p x N matrix. Thus is it unnecessary
to compute eigendecompositions and the QR decomposition suffices.

Unless specified otherwise, our default choice of parameters will be P = N = £ and R = 1000.

2.3 RELATED WORK

Several approaches have been proposed to address the challenges of PCA and covariance estima-
tion posed by heavy-tailed data. The “linear eigenvalue shrinkage” estimator from [Ledoit & Wolf]
(2004) is perhaps the best known covariance matrix estimator. More recently, [Ledoit & Wolf] (2020)
have identified a nonlinear eigenvalue shrinkage estimator which is proved to be optimal in various
situations. We emphasize here that, optimality as covariance matrix estimators notwithstanding, the
matrices estimated by a “shrinkage” approach such as Ledoit—Wolf’s or[Nadakuditi| (2014) have the
strong constraint of having the same eigenvectors as the sample covariance matrix. For this reason,
they are not of any greater (direct) use for PCA than the sample covariance matrix.

Beginning with Maronna| (1976) and Tyler| (1987)), there have been many works in the robust statis-
tics literature which deal with estimation of the covariance matrix for specifically heavy-tailed data.
The most common context is that of elliptically contoured distributions, which are affine-linear
transformations of spherically symmetric distributions that may be either light- or heavy-tailed.
Many of these works deal with a small number of features, such as bivariate data, but big-data prob-
lems have also been considered; see |Goes et al.| (2020) for recent work and further references, and
Ke et al.| (2019) for a survey. Han & Liu| (2018)) introduced Elliptical Component Analysis (ECA),
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in which the data matrix is used to compute the multivariate Kendall’s tau statistic. In the case of
infinite data sampled from elliptically contoured distributions, it is shown that the eigenvectors of
the tau statistic coincide with the population-level PCA directions.

Candes et al.| (2011)) and |(Chandrasekaran et al.| (2011)) studied “Robust PCA” algorithms based on
decomposing a data matrix as the sum of a sparse matrix and a low-rank matrix, principal com-
ponent estimates being computed via the latter matrix. Although not apparently designed with
heavy-tailedness in mind, these algorithms appear to be relevant since a heavy-tailed noise matrix is
approximately sparse when viewed on the scale of its largest entries.

Modeled on Huber’s median of means estimator from univariate robust statistics, [Minsker (2015])
estimates the covariance matrix as the geometric median of the sample covariance matrices of a
partition of the data matrix into subsamples. There are some schematic similarities between this
algorithm and our own, principally in being divide-and-conquer algorithms based on subsampling
the data. However, Minsker’s subsampling amounts to a single random partition of the observations
into some set number of groups. By contrast, we perform (in principle) arbitrarily many subsamples,
each chosen randomly by a preferential (non-uniform) selection which appears to be key to the
success of our algorithm. More broadly, the fundamental difference between these algorithms is
that Minsker’s algorithm is a convex optimization based on the sample covariance matrices of data
subsamples while ours is direct linear algebra based only on leading principal eigenspaces.

We briefly mention some other related works which cannot be compared directly to ours. [Roy
et al.|(2024) considers a “robust PCA” algorithm which is based on fitting an elliptically contoured
distribution to data. However, the key functional degree of freedom in such a distribution is assumed
to be known in advance, making this unsuitable as a general PCA algorithm. Since the robust PCA of
He et al.|(2023) is in fact a kernel PCA based on the characteristic function (Fourier) transform, it can
be used for dimension reduction but not for the problem of estimating principal components. Lastly,
Mohammadi et al.| (2015) and Mohammadi| (2022) fit multivariate stable distributions to data. This
is naturally viewed as the heavy-tailed generalization of fitting multivariate Gaussians to data; see
Nikias & Shao|(1995) or|Samorodnitsky & Taqqu|(1994) for information on the stable distributions.
However (unlike the special case of Gaussians) the parameters of multivariate stable distributions
possess infinitely many degrees of freedom and the interpretation of principal components therefrom
does not appear straightforward.

Lastly, we note that Lemma 6 of [Fan et al.| (2019) is essentially the same as the “quantification”
paragraph of the previous section. However, the problem addressed by that paper is distinct. There,
different observations of a data matrix are stored in different locations, and the problem is to “ag-
gregate” the PCA estimates of each such data submatrix into a single PCA estimate (otherwise
unavailable) for the whole matrix. By contrast, we actively break apart the data matrix and then
aggregate PCA estimates in order to obtain an improved PCA estimate. Moreover, heavy-tailedness
does not appear to have any role in their work.

3 SYNTHETIC EXPERIMENTS

3.1 GENERATIVE MODEL

Our data-generating model is often called the information-plus-noise model in the literature. Here
we consider the case of a unidimensional signal and noise drawn from a Student distribution; the
parameters are the number of features (p), the number of observations (n), the degrees of freedom
of the Student distribution (), and the signal strength (k). The p x n data matrix is

X =UDV +n" Y27

where U € RP*P and V' € R™*"™ are random orthogonal matrices drawn from the Haar (i.e. uni-
form) distribution on the orthogonal group, Z € RP*™ has pn i.i.d. entries drawn from the Student
distribution with « degrees of freedom, and D € RP*™ is a matrix with D;; = 0if ¢ # j and
D;; =1if¢ > 2 and Dy, = k. In this model (assuming always x > 1), the first column of U is the
population-level principal component and is the object of estimation. We estimate this vector, u, by
unit vectors 7, and measure the error by 1 — (u - @)2. Zero error corresponds to @ = =-u.

We note that o governs the heavy-tailedness of our data model, with smaller values of « corre-
sponding to heavier-tailed distributions. When o« > 2, the data-generating model has finite variance
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Figure 3: The left figure shows the 5-fold average computation time for data matrices of varying
sizes with n = 5p. The right figure shows the corresponding error in the PCA estimate. Here
o = 1.5 and the signal strength is 10. Note the decrease in Robust PCA computation time maps to a
severe increase in error. Standard PCA based on the sample covariance matrix is extremely fast but
inaccurate.

and the population-level covariance matrix is UDDTUT, from which it is clear that v is indeed
the population-level principal component. When o« < 2, the model has infinite variance and the
population-level covariance matrix is undefined. However, even in this case, u represents the direc-
tional structure in the model (just as in the o > 2 case), so we still refer to it as a population-level
principal component.

3.2 COMPARISON ALGORITHMS AND COMPUTATION TIME

We compare the performance of our algorithm against the following alternatives: standard PCA
using the sample covariance matrix, the elliptical component analysis (ECA) of |[Han & Liu (2018)),
Robust PCA (RPCA) from [Candes et al.| (2011), and the geometric median method from |Minsker,
(2015).

As described above, standard PCA is not useful for heavy-tailed data; we include it here only to es-
tablish an absolute baseline. ECA is simple to implement and requires no hyperparameter selection,
but it is costly to run when there are a large number of observations. Minsker’s algorithm, in its
version using the thresholded geometric median, depends on a hyperparameter 0 < v < 1 as well
as the selection of k, denoting how many groups to partition the observations into. In our numerical
experiments, we have selected v = 0.5 and k = 10 in accordance with the experiments in Minsker’s
paper. Minsker’s algorithm and Robust PCA both rely on convex optimization, which becomes
computationally expensive for large data sizes. For the latter we use the implementation available at
https://github.com/dganguli/robust-pcal Computation times are reported in Fig-
ure [3) which demonstrates that ECA and our algorithm achieve competitive errors, but that ours is
faster by an order of magnitude. The discrepancy increases for larger p. For example, in the case
of a 500 x 2500 matrix, ECA takes around 15 minutes to run while ours takes around 10 seconds.
For much larger matrices, such as the transcriptomic and synaptic connectivity data sets appearing
in Section 4, ECA appears to be completely impractical.

We also compare against the simple-minded but practical method of using standard PCA after delet-
ing some set number of ‘corrupted’ observations from the data matrix. Here, we delete the 50
observations of the highest Euclidean norm. This is an arbitrary choice, but it is noteworthy that in
many cases it already improves upon other methods. The problem of adaptively choosing how many
observations to delete is an interesting and natural problem which, to the best of our knowledge, has
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Figure 4: Comparison of PCA algorithms on synthetic data. Each point on a curve represents an
average performance, with fixed parameters, over 20 runs. In (a) and (c¢) we fix the signal strength
x at 10 and vary « from 1 to 3; in (b) and (d) we fix « at 1.5 and vary the signal strength from 1 to
100.

not been considered in the literature. We note that this method is as fast to compute as the “Sample
Cov.” method as reported in Figure 3]

3.3 NUMERICAL SIMULATION

In Figure[d]we show the parameter dependence of all six algorithms in question, using the parameters
detailed above. For our algorithm we use P = N = 50 and R = 1000. We note especially the poor
performance of Robust PCA, in some cases being indistinguishable from direct use of the sample
covariance matrix.

As expected, increasing o (making the data more light-tailed) has a positive effect on the perfor-
mance of each algorithm. We note in particular the markedly superior performance of our algorithm
in the extremely heavy-tailed case of & ~ 1. (We note that o > 1 is the cutoff point where the data
generating model has finite expectation.) In subfigures (b) and (d), each curve necessarily starts at
an error of 1, since a signal strength of 1 corresponds to an absent signal. The key behavior is how
quickly each curve departs from this value as the signal strength is increased.

It is notable that increasing n from 300 to 1000, which amounts to the inclusion of extra data,
actually has a deleterious effect on the performance of RPCA, while it does not appear to help the
performance of Minsker’s algorithm. By contrast, as should be expected, the inclusion of additional
data does improve the performance of our algorithm and ECA.

4 TRANSCRIPTOMIC AND SYNAPTIC CONNECTIVITY APPLICATIONS

4.1 DROSOPHILA TRANSCRIPTOMIC DATA SET

RNA sequencing data has the distinguishing and challenging characteristics of both high sparsity
and heavy tails (Fan et al.| 2021). Although a complete analysis remains elusive, since sparsity
is not one of the considerations of our algorithm, we find signs of improvements when using our
algorithm for analysis.

We use a data set consisting of single-cell transcriptomes of developing and adult olfactory receptor
neurons in Drosophila, from McLaughlin et al.| (2021). This contains count data of 17,807 genes
across 1,371 cells, interpreted as 1,371 observations in a 17,807-dimensional feature space. To
(partially) address the effects of sparsity, we remove all genes from the data set which are nontrivially
expressed in fewer than 100 cells, thereby removing 12,252 genes and leaving a 5555 x 1371 matrix.

Since we lack ground-truth principal components for this data, we measure the self-consistency of
a PCA algorithm by split-half reproducibility. Here we randomly divide the 1,371 observations
into one group of 685 and a complementary group of 686, forming submatrices X € R?555%685
and X' € R5%55%686 of the data set constructed in the previous paragraph. The leading principal
components vy, v} are computed (as unit vectors), and their consistency is measured by 1— (v -v7)?.
If the PCA algorithm in question is self-consistent, this should be close to zero. If instead it is close
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to one, it is evident that the result of the PCA algorithm depends strongly on which observations
happen to be part of the data set.

We found it to be beneficial to additionally preprocess the data by normalizing each gene by mean
and standard deviation, so that we are effectively doing PCA with the sample correlation matrix.
Without this additional step, the split-half reproducibility error is extremely small, but with found
eigenvectors which are very close to coordinate vectors. We speculate that this could be related to
the sparsity of the data matrix, or to the nonnegativity of its entries, both of which pose problems
for interpretation and which do not presently have any counterpart in our synthetic models. This is
a clear question for future research.

With this normalization, across 20 runs, the average error of our algorithm with parameter choice
P = N = 30 and R = 500 is 0.105, with principal components not close to coordinate vectors
(the typical largest-magnitude entries thereof being around 0.07 or 0.08). We interpret this as a sign
that our algorithm is finding a self-consistent and nontrivial signal.

4.2 MICRONS SYNAPTIC CONNECTIVITY DATA

Neuronal connectivity in the brain is often characterized by heavy-tailed degree and weight distribu-
tions, with a small number of highly connected “hub” cells or strong synapses dominating network
structure. These characteristics violate assumptions of light-tailed or Gaussian-distributed inputs
that underlie classical dimensionality reduction techniques like standard PCA. To better capture
dominant low-dimensional structure in such data, we apply our heavy-tailed PCA. In particular, we
evaluate our HT-PCA on a synaptic connectivity matrix: a directed sparse matrix of 50, 594 neurons
and approximately 2.6 million nonzero connection weights (see Supplement for details).

To identify the most non-Gaussian and heavy-tailed subnetworks, we estimated an «-stable tail
exponent for each row of the matrix, fitting to the largest 5% of outgoing weights using maximum
likelihood (using scipy.stats.levy_stable.fit). Among rows with > 100 nonzero entries, we selected
the 1, 500 neurons with lowest estimated « and extracted the 1, 500 x 1, 500 induced submatrix used
for all downstream analysis. The resulting distribution of « values confirmed the presence of heavy-
tailed structure (a: mean = 0.97, median = 0.13). This extremely non-Gaussian submatrix serves
as a highly challenging benchmark for our comparison of our algorithm and Minsker’s method. By
randomly splitting the columns of the 1, 500 x 1, 500 synaptic connectivity matrix to yield 1, 500 x
750 heavy-tailed submatrices (10 times, using the same random indices for each comaprison of our
algorithm with Minsker’s; see Supplement), our algorithm (parameters P = N = 50; R = 100)
showed significantly higher split-half reproducibility (mean cosine similarity = 0.569, SD = 0.304)
than Minsker’s geometric median estimator, which produced near-zero cosine similarity (mean =
0.0049, SD = 0.0055), indicating that our algorithm was better able to discover conserved patterns
of projection (or “globally conserved projection motifs”) in this sample.

5 CONCLUSION AND LIMITATIONS

We presented a new model-free PCA algorithm tailored to very heavy-tailed data, where classical
and existing robust methods often fail. By aggregating principal subspaces from weighted subsam-
ples, our approach avoids covariance estimation, scales efficiently, and remains robust even when
variance is infinite. Across synthetic benchmarks and challenging biological datasets, it consistently
outperforms other comparable estimators, while showing minimal sensitivity to hyperparameters.
These results show our method to be a practical step forward in robust, scalable dimensionality
reduction for modern high-dimensional, heavy-tailed data.

Still, our study is primarily empirical. While we provide extensive evidence that our estimator per-
forms well under very heavy-tailed noise, a theoretical analysis explaining the phenomena in Table
[l or the parameter dependence in Figure [2] remains open. Further in cases with a small number
of observations, our algorithm performs strikingly worse than the alternatives (see Supplement).
Interestingly, because our method builds on standard PCA as an intermediate step, there is a nat-
ural opportunity to combine it with other robust PCA techniques for potentially greater accuracy.
Exploring such hybrid approaches and expanding formal guarantees are important future directions.
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A APPENDIX

A.1 OPEN ACCESS TO DATA AND CODE

All data in the paper was generated or is publicly available (The Drosophila data may be found here:
https://pubmed.ncbi.nlm.nih.gov/33555999/; the MICrONS data can be loaded us-
ing the code we provide using the CAVEclient Python library, and are atht tps: //www.nature.
com/articles/s41586-024-07765-7). We make our code to reproduce the above results
available as open source under the MIT license on GitHub: [link will appear here; for now see code
provided in ZIP file].

A.2 HARDWARE REQUIREMENTS

All experiments were conducted on MacBook Pro laptops equipped with 16GB of RAM. Training
times varied depending on model complexity and dataset size, with smaller experiments completing
within minutes and the largest experiments requiring a few hours. The computational setup demon-
strates that our proposed methods are accessible and do not require specialized high-performance
computing infrastructure, even on larger data, making them readily reproducible by the broader
research community.

A.3 LACK OF SENSITIVITY TO MINSKER’S PARAMETER

In our simulations, we have found that Minsker’s algorithm is not very sensitive to the parameter v.
This is illustrated in Figure [5] which replicates the context of Figure 4(a) of the paper for varying
choices of v. (However, here, for simplicity, we report only single outcomes, not 20-fold averages.)
For this reason, we consistently take v = 0.5 in our simulations.

11


https://www.tandfonline.com/doi/abs/10.1080/03610918.2020.1764035
https://www.tandfonline.com/doi/abs/10.1080/03610918.2020.1764035
https://pubmed.ncbi.nlm.nih.gov/33555999/
https://www.nature.com/articles/s41586-024-07765-7
https://www.nature.com/articles/s41586-024-07765-7

Under review as a conference paper at ICLR 2026

1.0 A

0.8 1

0.6 1

Error

0.4 1

0.2 1

0.0

T T T T T T T T T
1.00 1.25 1.50 1.75 2.00 225 2.50 275 3.00
Alpha

Figure 5: Dependence of Minsker’s algorithm on parameter v

A.4 FURTHER PLOTS ON PARAMETER DEPENDENCE

Here we present further plots like those of Figure 2 of the main text. Figure [ shows multiple plots
like those of Figure 2(a). Each of the nine plots shows the results of five simulations with exactly
the same parameters. It can be seen that the dependence on R is highly stable, and that an optimal
error is reached well before our choice of R = 500.

Figure|/|shows the dependence of our algorithm on the choice of P, extending Figure 2(c) from the
case 100 x 160 to the matrix sizes 100 x 400, 200 x 400, and 400 x 800. Here we additionally show
standard deviations in our 10-fold averages. (Accordingly, for visual clarity, we here show fewer
choices of P.) As can be seen from these plots, our algorithm is not sensitive to the choice of P,
unless it is chosen as an extreme value. For example, when P is chosen to be 100 for a 100 x 400
matrix, the leading P-dimensional principal subspace of any subselected data matrix is simply the
entire space R1%°, and no information can be gleaned. In this case, the significant jump from P = 90
to P = 100, illustrated in Figure[7} should be noted.

A.5 MICRONS DATA PREPROCESSING AND AND BENCHMARK CONSTRUCTION

We constructed our heavy-tailed synaptic benchmark from the publicly available MICrONS Phase 1
dataset (“minnie65_public”) using the CAVEclient Python API (version 5.4.5). Following Elabbady
et al.| (2023)), we restricted our analysis to neurons located within a cortical band spanning 18,000
to 25,000 nm in depth. Using the “proofreading_status_neurons” and “synapses_pni_2” tables, we
filtered for neurons classified as excitatory or inhibitory and included only synaptic edges where
both the pre- and post-synaptic partners were located within the specified depth band and labeled as
neurons. This yielded a sparse, directed synaptic connectivity matrix containing 50,594 neurons and
approximately 2.6 million nonzero connection weights.

To identify a challenging, heavy-tailed subnetwork for evaluation, we estimated an «-stable tail
exponent for the outgoing weights of each neuron. For each row with at least 100 nonzero
entries, we fit a symmetric a-stable distribution to the top 5% of outgoing weights using the
scipy.stats.levy_stable.fit Python function, fixing location and scale parameters (floc=0, fscale=1).
The resulting distribution of o values was heavy-tailed, with mean o = 0.97 and median o = 0.13,
indicating the presence of extreme non-Gaussian structure. From this distribution, to make compu-
tation reasonable we selected the 1,500 neurons with the lowest estimated « values and extracted
the induced 1,500 x 1,500 submatrix for all downstream evaluations.
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Figure 7: Dependence on P, cf. Figure 3(c). These plots

standard deviations.
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To assess reproducibility, we generated 10 independent split-half samples by randomly partitioning
the columns of this submatrix into two equal-sized sets of 750 columns each. All comparisons
between our HT-PCA method and Minsker’s geometric median estimator used the same random
column partitions for each trial. We then computed cosine similarity between subspaces recovered
on each half-sample to evaluate consistency. For HT-PCA, we used subsample size P = N = 50
and number of subsamples R = 100. Minsker’s method was implemented using the cvxpy convex
optimization package in Python, with parameters v = 0.5 and k£ = 3. All analyses were conducted
using Python 3.10, with NumPy, SciPy, and scikit-learn, and took under 1 hour to run. Additional
implementation details and code are available in the accompanying code.

A.6 FURTHER PLOTS ON ALGORITHM COMPARISON

Here we include further plots like Figure 4 of the main text, for a greater range of parameter values.
As there, we show 20-fold averages; here we additionally represent the standard deviation (truncated
to remain between 0 and 1) via the shaded regions. Figure [§] shows the results for various matrix
sizes and signal strength 10; Figure [9] shows various matrix sizes and «w = 1.5. For our algorithm,
the parameter values are R = 1000 and P = N = [§]; for Minsker’s algorithm, the parameter
values are k = 10 and v = 0.5.

A.7 LICENSES FOR EXISTING ASSETS

All models and code are original or are clearly imported and indicated as such (as open source
Python packages). All data in the paper were generated or are publicly available. We will make our
code available as open source under the MIT license.

A.8 BROADER IMPACT

This work develops theoretical and algorithmic advances for principal component analysis under
heavy-tailed distributions, a fundamental problem in multivariate statistics and machine learning.
Heavy-tailed data naturally arises in many domains including finance (asset returns, risk modeling),
network analysis (degree distributions, traffic patterns), climate science (extreme weather events),
and genomics (gene expression with outliers). Our robust PCA method could improve analysis in
these areas, potentially leading to better risk assessment, more reliable dimensionality reduction
for downstream tasks, and improved handling of datasets with natural outliers or measurement er-
rors. While the contributions are primarily methodological, the generality of our approach means it
could be applied to sensitive domains involving personal data. Although PCA itself is often used for
privacy-preserving dimensionality reduction, practitioners should remain mindful of privacy impli-
cations when applying any dimensionality reduction technique to personal or sensitive datasets.
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