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Abstract

We propose using machine learning models for the direct synthesis of on-chip
electromagnetic (EM) passive structures to enable rapid or even automated designs
and optimizations of RF/mm-Wave circuits. As a proof of concept, we demonstrate
the direct synthesis of a 1:1 transformer on a 45nm silicon on insulator (SOI)
process using our proposed neural network model. Using pre-existing transformer
s-parameter files and their geometric design training samples, the model efficiently
predicts target geometric designs based on desired circuit specification.

1 Introduction
RF/mm-Wave circuits are often governed by the design/performance form factor of the passive
components/networks used. Passives are extensively used for impedance matching, scaling, tuning,
filtering, power combining/splitting, and signal .

generation (Figure[T). Therefore, maximizing passive '_'
structures’ performance while minimizing their form L.
factor is critical for RF/microwave designs. This  mpedance Maiching,
process is very iterative and requires extensive EM Scaling
design background to arrive at a faster, optimal

—
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solution. The fundamental reason of this existing
iterative and computationally inefficient design flow
is that most existing EM simulation software suites
only act as “analysis tools” (Figure [Z). These
software suites (such as ANSYS’s HFSS) take

long simulation time, yet only analyze EM passive - T e
stru%:tures with given gZometri}:es andythen yierl)d their w‘q Bower Spliting )
circuit performance parameters. The designers are Figure 1: Genera} uses of transformers in
required to do multiple remodeling before optimal RF/mm-Wave Design

geometry is found, with time spent and number of geometrical parameters increase exponentially as
the complexity of the passive structure increases. Instead, designers need "synthesis tools" which
could directly generate the passive geometries based on the required circuit specification (i.e., inverse
engineering of the circuit specification for circuit geometries).
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Figure 2: Comparison of the existing iterative cycle for designers in which they iteratively tune their
passive structures’ geometry based on EM simulations and our neural network predictive model
which gives the optimal geometry based on the desired circuit parameters.
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2 EM Passive Structure Design Flow

On-chip transformers are used extensively in RF/mm-Wave designs, particularly for the upcoming
5Gcommunication. Specifically, 1:1 transformers are often used at mm-Wave due to their compact
form factor, large achievable coupling, and broadband impedance transformation properties [7].
Therefore, we propose a machine learning based predictive model (Figure [2) for the direct EM
synthesis of 1:1 transformers, which will generate the desired transformer design parameters,
including the coil radiuses (rg and ry), widths (Wpa and Wog), ground spacing (gq), and
input/output feed length (¢¢), based on the targeted circuit parameters including the self-resonance
frequency (SRF), primary and secondary inductance (L, and Ly), coupling coefficient (k), and
primary/secondary quality factor (@, and ;). See Figure 4] for the synthesized transformer structure,
input parameters, and output geometrical parameters.

Our EM predictive model is built upon residual network architectures. Neural networks are known
for their predictive power: they can k-th layer (k + 2)-th layer
provide a highly close fit to new data after
training. Empirical results also suggest that
overparameterized neural networks (the number
of free parameters exceeds that of training data
points) are easy to train, and surprisingly retain
appealing predictive performance. More recently,
residual networks [3]] further ease the training,
and enhance the prediction by allowing direct
interactions between inputs and outputs. We train
the model using a limited number of transformers
s-parameter ﬁflges and their geometric designs. the k-th layer is directly added to the input of the
We use s-parameter files instead of measuring (k + 2)-th layer.

fabricated transformers since doing so would only verify the accuracy of the EM simulator instead of
our algorithm. When given targeted electrical parameters, the neural network outputs geometric
designs which act as a starting point to close in on an optimal solution, hence acting as the “EM
synthesis tool”. Thus, the designers only need very few additional EM simulations to verify and fine
tune the design parameters, which circumvents the tedious and resource intensive, iterative process.

Shortcut Connection (k, k + 2) o(+) = max{0,-}
F(@) = 0(Wit20 (T + Wig10(Wi)))

Figure 3: Illustration of residual block with
shortcut connection (k,k + 2). The input of

3 Residual Network Architecture and Training

The residual network architecture consists of a series of residual blocks. Each residual block is built
upon a feedforward neural network by adding shortcut connections across layers. Figure[3]illustrates a
residual block with a shortcut connection bypassing two hidden layers. Residual neural networks can
be viewed as an ensemble of feedforward neural networks containing varying and adaptive numbers
of layers. This largely improves the modeling ability of residual networks. More importantly, for
general feedforwad neural networks, simply stacking layers does not promise a performance boost.
One of the major reasons is that the vanishing/exploding gradient issue arises which makes the
network very difficult to train [1]]. However, the residual network architecture mitigates this error
through the shortcut connections across layers with additional performance boosts.

Upper Layer Ground Lower Layer

Electrical Parameters (EM) Definition Electrical Parameters (EM) Definition

k Coupling Coefficient To Radius of Lower Coil
L, Inductance of Lower Coil 1 Radius of Upper Coil
Ly Inductance of Upper Coil d> Woa Width for Lower Layer

SRF Self Resonant Frequency Wos Width for Upper Layer
Qp Quality Factor of Lower Coil Tgnd Ground Spacing
Qs Quality Factor of Upper Coil Ly Feed Length

Figure 4: Transformer with corresponding input circuit parameters and output geometrical parameters.

The training of neural networks can be written as minimizing the following penalized empirical loss:

ming L(6) = @p ({fo(x:), y:}iza) + 116113, 1)
where fp(x;) is the predicted output of neural network models, i.e., 1:1 transformer’s geometric
parameters, in this case. Here 6 denotes the weight parameters, ®,, is a properly chosen loss function
and the subscript n emphasizes the dependence on n samples, and R = %||0|3 is a penalty to avoid
overfitting with the tuning parameter w > 0. Here (z;,y;)’s are samples with z; denoting input
(circuit parameters) and y; denoting targeted response (geometric parameters), and n is the sample size.
In practice, ®,, are often chosen as an average of empirical errors, e.g., ®, = % S (fo(wi) — yi)?
corresponds to the mean squared error. We apply the SGD-type algorithm to solve (]JD
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4 1:1 On-chip Transformer Direct Synthesis Demonstration

e Experiment Setup. We evaluate our predictive models on a 1:1 transformer design task using
three residual network architectures. We also compare the predictive models with three baseline
methods: linear regression (LR), gradient boosting (GB) [2], and feedforward neural network (FN).
The network configurations are listed in Table[I] Note that feedforward neural network models FN;
and residual network models N; for i = 5, 6, 7 have the same total number of parameters.

Table 1: Feedforward and Residual Neural Network Architecture

Model || Width of Hidden Layers | Shortcut Connections
FN; [[{2048 x ¢},i=2,...,7 NA
Ns {2048 x 5} (1,5)
Ns {2048 x 6} (1,6)
N7 {2048 x 7} (1,3), (3,5), (5,7)

During the training, geometric and circuit parameters of randomly selected pre-solved on-chip 1:1
transformer designs are used as the input data, which we standardize before feeding to the neural
networks. We use Adam [4] as our optimizer, one of the most widely used SGD type algorithms for
training neural networks. Adam enjoys faster convergence in practice by using adaptive learning rate
and momentum acceleration. In our experiments, we randomly select 16 samples from the training
set at each iteration to form our mini-batch.

e Model Comparisons. We perform extensive comparisons on the prediction accuracy of different
models. We use EM simulators to obtain 6400 pairs of 1:1 physical transformer parameters and their
corresponding circuit parameters. We randomly select a testing set consisting of 1200 samples, and
vary the size of training set in {600, 1200, 2400, 4800}.

We use two different training loss metrics: 1) Scaled Mean Squared Error (SMSE)

Ui o —Ts s 2
SMSE(f) = ﬁ 2ic1 Z?:l (yw yiy,:J(e)) ' @
2) Scaled Dimensional Mean Squared Error (SDMSE) (6]
PO SR 2
SDMSE(D) = + Y4, 1/ X0, (2522 G

In the above, 4(6) = fo(z;) denotes the predicted geometrical parameters (totally k& parameters).
Note that SMSE minimizes the relative error of each prediction, which accounts for the different
scales of physical parameters and stabilizes the training. Moreover, SDMSE puts additional emphasis
on balancing the prediction error across testing samples. Our training objective L(6) is (I, where

©,, takes SMSE or SDMSE defined before.  mp1e 2. performance of Predicting Geometrical

We observe that residual networks consistently Parameters using Circuit Parameters

outperform other models on both evaluation SMSE Loss SDMSE Loss

criteria, when varying the size of training | Model 5 -

set. We summarize the experimental results SMSE R SMSE R
LR 0.0358 | 0.5620 || 0.0358 | 0.5620

corresponding to using 2400 training samples
in Table 2l GB 0.0199 | 0.7468 || 0.0199 | 0.7468

) FNy 0.0114 | 0.7553 || 0.0054 | 0.9070
For all neural network models, using SDMSE FNs 0.0070 1 0.8457 |1 0.0040 | 0.9360

as training loss improves the testing accuracy
compared to SMSE. It is shown that residual E§4 gggg? 8241%2 88833 833(3)(1)
5 . . . .

neural networks yield superior performance

compared to feedforward neural networks FNg 0.0079 | 0.8040 || 0.0036 | 0.9432
consisting of the same number of weight FN7 0.0080 | 0.8061 || 0.0037 | 0.9051
parameters: consistently better prediction Ns 0.0051 | 0.8846 || 0.0030 | 0.9535
accuracy and less sensitivity to the training Ns 0.0049 | 0.8868 || 0.0031 | 0.9553
loss we choose. In addition, adding more N+ 0.0043 | 0.9243 || 0.0030 | 0.9586
layers to the feedforward network does not
improve the prediction accuracy. The feedforward network FN7 shows substantial performance
degradation compared to its shallow counterparts FN5 and FNg. These observations indicate that
shortcut connections play a crucial role in the superior performance of residual networks.

We also observe that N7 consistently achieves the highest prediction accuracy. It is worth mentioning
that the performance gap between residual networks N7 and N5 or Ny are more significant when
we use SMSE as the training loss. Note that N5 and N both contain only one shortcut connection
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linking the input layer directly to the output layer, while N7 is equipped with more sophisticated
shortcut connections. This observation indicates that a careful design of shortcut connections in Ng
can achieve a significant performance boost.

o Further Experiments on Residual Networks. We further present more comprehensive experi-
mental results for the residual  Typle 3: Performance of A~ using Different Training Sizes

network A7. As we have observed

in Table 2] using SDMSE as | Training Size \SVl\l/il;geed L;:;Qgth \SVI\I/}}SKI)EM Feed Iée;lgth

the training loss improves the

prediction accuracy compared to 600 0.0090 | 0.8940 || 0.0028 0.9217

SMSE. Thus, we focus on SDMSE 1200 0.0052 | 0.9337 || 0.0024 0.9433

loss with weight decay. 2400 0.0033 | 0.9586 || 0.0016 0.9593
4800 0.0022 | 0.9666 || 0.0018 0.9670

The results of using different sizes
of training set are summarized in Table[3] We see that as the size of the training set increases, the
prediction accuracy of N7 also improves.

Moreover, we evaluate the prediction power of the residual network N7 on each geometrical parameter.
Table @ reports the SMSE for predicting each geometrical parameter in , when using a training size of
2400 and SDMSE as the training loss.

It can be seen that the SMSE for predicting the feed length (¢) well exceeds those for predicting
other geometrical parameters. This observation is consistent across different training sizes and both
SMSE and SDMSE training loss. The low correlation between the circuit parameters and the feed
length well matches theory, since feed length only influences the inductance of the primary/secondary
coils. In addition, its choice is largely independent of the transformer geometric design, whereas
highly relies on the physical layout of the RF/mm-Wave circuit.

Table 4: SMSE for Predicting Each Geometrical Parameter

Geometrical Parameter || Woa | Wop 0 r1 Tgnd 2
SMSE 0.0017{0.0038 {0.0003|0.0007|0.0012|0.0123

Therefore, we further test using A7 to predict all the geometrical parameters except the feed length
(4¢). The results are summarized in the rightmost two columns of Table By removing the feed length
parameter, N7 enjoys a performance boost especially using a small number of training samples. This
result is inspiring and suggests that N7 is indeed efficient in capturing the informative correspondence
between circuit and geometrical parameters.

e Validation Examples of the Direct Synthesis. We demonstrate an example of using the trained
predictive model NV to directly synthesize geometrical parameters given a randomly selected set of
desired circuit parameters. The obtained geometrical parameters are shown in Table[5] Then, we
run one EM simulation using the predicted geometry to verify the prediction. We observe that the
synthesized circuit parameters closely match the desired parameters.

Table 5: Predicting Geometrical Parameters using Circuit Parameters

Circuit Prameters || L,(pH) |Ls(pH)| k& |[SRF(GHz)| @, | Qs
I Targeted 142.25 [163.60[0.55| 97.00 [22.20(20.52
Synthesized || 142.91 [164.41]0.56| 96.50 [22.39(20.42
I Targeted 173.30 | 188.44[0.48| 99.00 [21.81(23.59
Synthesized || 168.48 [184.43[0.47| 99.00 [21.89(24.36
I Targeted 226.89 [242.25[0.70] 66.30 [22.38(21.44
Synthesized || 236.02 [252.69(0.69| 65.00 [22.79(21.80
v Targeted 111.26 [128.72]0.59| 95.80 |23.25[19.97
Synthesized || 111.93 [129.380.59| 96.20 [24.03(20.00
v Targeted 245.09 [294.890.62| 7870 |21.79]16.73
Synthesized || 243.21 [293.00(0.62| 79.00 [21.78|16.84

5 Conclusion

We propose a neural network based model for the direct synthesis of RE/mm-Wave EM passive
structures. A proof of concept is demonstrated on a 1:1 transformer. Our trained residual network
model generates near perfect predictions on transformer’s geometrical parameters for given target
circuit performance, and outperforms widely used machine learning baseline methods. Our proposed
model can be further extended to more complex EM passive structures and revolutionize the design
procedure and automation of RF/mm-Wave circuits.
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