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Abstract
Multiple Instance Learning (MIL) has been increasingly adopted to mitigate the
high costs and complexity associated with labeling individual instances, learning
instead from bags of instances labeled at the bag level and enabling instance-level
labeling. While existing research has primarily focused on the learnability of MIL
at the bag level, there is an absence of theoretical exploration to check if a given
MIL algorithm is learnable at the instance level. This paper proposes a theoretical
framework based on probably approximately correct (PAC) learning theory to
assess the instance-level learnability of deep multiple instance learning (Deep
MIL) algorithms. Our analysis exposes significant gaps between current Deep
MIL algorithms, highlighting the theoretical conditions that must be satisfied by
MIL algorithms to ensure instance-level learnability. With these conditions, we
interpret the learnability of the representative Deep MIL algorithms and validate
them through empirical studies.

1 Introduction
The performance of supervised learning models is greatly influenced by the amount of labeled data [1].
While various models utilizing large-scale datasets have achieved excellent performance, the cost
and time of labeling have emerged as issues, especially in domains requiring expert knowledge. For
example, in the case of pathology images, detailed labeling requires a significant amount of expert
time [2].

To address these issues, multiple instance learning (MIL) techniques have been introduced. MIL
encompasses all methodologies that learn to predict the labels of instances by learning from the labels
of bags composed of instances [3, 4, 5, 2, 6, 7, 8, 9, 10]. This approach allows for detecting disease
areas in pathology images through whole-image labeling without requiring the labeling of regions
within the image. This can significantly reduce overall labeling costs and maximize the efficiency
of the method [2, 9]. As illustrated in Figure 1, if at least one instance in a bag is positive, the bag
is positive, and if all instances are negative, the bag is negative in MIL. To achieve instance-level
learning, it was necessary first to confirm that learning at the bag level could be performed at a high
level. Therefore, traditional MIL research focused primarily on the feasibility of learning at the bag
level rather than the instance level [11, 12, 13, 14], and some studies validated instance-level learning
only for specific algorithms [15].

Figure 1: The data structure consisting of multi-instances (Blue: Negative, Red: Positive) [16].

Recently, with the advancement of deep learning technologies, traditional MIL has evolved into
Deep MIL, enabling more effective extraction of features from individual instances and consideration
of interactions between instances, leading to significant improvements in prediction performance.
Despite these advancements, MIL research still predominantly focuses on learning at the bag level,
with a lack of exploration into the feasibility of instance-level learning [10, 17, 18].
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In this study, we propose a new framework to theoretically validate that Deep MIL can learn at the
instance level, overcoming the aforementioned issues. The contributions of this study are summarized
as follows:

1. The proposed theoretical framework derives conclusions about the instance-level learnability
of Deep MIL algorithms, assuming that MIL algorithms are learnable at the bag level
(Assumption 1).

2. Utilizing the probably approximately correct (PAC) learning theory, we divide the hypothesis
space of the dataset into two cases: 1) each instance being statistically independent and 2)
the general case without any constraints on instance distributions, including statistically
dependent instances. We theoretically derive the necessary and sufficient conditions for
learnability in each hypothesis space (i.e., Condition 4 and Condition 7).

3. By applying the derived conditions to the existing representative types of Deep MIL, we
verify their instance-level learnability.

4. Through Theorem 10 and Theorem 11, we show that additional information (e.g., positional
information of each time point in time series, medical records provided alongside pathology
images for better disease diagnosis) beyond the features directly extracted from the original
data must act as weights in the independent hypothesis space of each instance.

This paper is organized as follows. Section 2 defines the problem. Section 3 outlines the conditions
for Deep MIL to be instance learnable and provides theoretical proof. Section 4 evaluates existing
Deep MIL algorithms and validates the results through experiments. Finally, Section 5 concludes the
paper.

2 Problem Definition
Notation 1 (MIL domain spaces) Given the feature space for an instance Xinsti ⊂ Rd and the
feature space for N instances X := {Xinst1 ,Xinst2 , ...,XinstN }, along with the label space Y :=
{1, ..., k}, we can define the joint distribution DXY on X × Y . Here, Xinsti ∈ Xinsti , X :=
(Xinst1 , Xinst2 , ..., XinstN ) ∈ X , and Y ∈ Y are random variables. The MIL instance domain
DXinsti

Y represents the joint distribution of individual instances and their respective labels. The
MIL bag domain DXY is the joint probability distribution composed of multiple instance domains
DXinsti

Y . Here, the term “domain” refers to these joint distributions.

Based on Notation 1, the MIL Problem can be defined as in Definition 1.

Definition 1 (MIL problem) Given a training dataset S := {((x1
1, ..., x

1
n), y

1), ..., ((xm
1 , ..., xm

n )
, ym)} drawn IID from the joint distribution DXY , the goal of MIL is to learn a classifier fbag for
the data and (finst1 , ..., finstn) such that for any arbitrary bag random variable x := (x1, ..., xn)
drawn from the marginal distribution DX : 1) It should be able to classify the class corresponding to
the bag x. 2) It should be able to classify the class corresponding to the ith instance xi of the bag.
Here, a random sample (x, y) := ((x1, ..., xn), y) of the training data represents a bag consisting of
n instances drawn from DXY , with a total of m bags. The training data for the ith instance is given
by Sinsti := {(x1

i , y
1), ...(xm

i , ym)}. □

The MIL problem defined in Definition 1 is performed within the following MIL hypothesis spaces.

Notation 2 (MIL hypothesis spaces) 1) The bag hypothesis space Hbag ⊂ {hbag : X → Y } is a set
of hypothesis functions hbag that classify bags with the correct labels. Here, hbag = f(X), where
f ∈ Fbag . 2) The ith instance hypothesis space Hinsti ⊂ {hinsti : Xinsti → Y } is a set of hypothesis
functions hinsti that classify the ith instance with the correct labels using the feature space of the
ith instance. Here, hinsti = f(Xinsti ), where f ∈ Finsti . Here, Fbag and Finsti are sets of functions
that take a bag or the ith instance as input and generate the corresponding labels.

According to Notations 1, 2, and Definition 1, the risk for a bag in MIL is defined as in Definitions 2
and 3.

Definition 2 (Bag Risk) If the loss for a bag in the MIL algorithm is given by ℓbag(hbag(x), y), the
risk for a bag is defined as follows:
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Rbag = E(x,y)∼DXY
ℓbag(hbag(x), y) (1)

Definition 3 (Instance Risk) If the loss for the ith instance in the MIL algorithm is given by
ℓinsti(hinsti(xi), y), the risk for the ith instance is defined as follows:

Rinsti = E(xi,y)∼DXinsti
Y
ℓinsti(hinsti(xj), y) (2)

Based on the definitions of bag risk and instance risk in Definition 2 and 3, the learnability for bags
and instances can be defined as in Definition 4 and Definition 5.

Definition 4 (PAC Learnability of Bag) Given the domain space DXY and the bag hypothesis space
Hbag ⊂ {hbag : X → Y}, the MIL algorithm A is said to be learnable on Hbag with respect to DXY

if, for all domains DXY ∈ DXY , the following condition is satisfied:

PS∼Dm
XY

[|Rbag(A(S))− inf
h∈Hbag

Rbag(h)| ≤ ϵ] ≥ 1− δ (3)

Here, ϵ represents the acceptable error between the learning algorithm and the actual optimal
hypothesis. In contrast, δ represents the confidence level that the learning algorithm will return
accurate results within a certain error range. Both ϵ and δ have a range of 0 < ϵ, δ < 1.

Definition 5 (PAC Learnability of Instance) When given the ith instance domain space DXinsti
Y

and instance hypothesis space Hinsti ⊂ {hinsti : X → Y }, the algorithm A is said to be learnable
over Hinsti from DXinsti

Y if it satisfies the following for all domains DXinsti
Y ∈ DXinsti

Y :

PSinsti
∼Dm

Xinsti
Y
[|Rinsti(A(Sinsti))− inf

h∈Hinsti

Rinsti(h)| ≤ ϵ] ≥ 1− δ (4)

Based on the relationship between Definitions 4 and 5, according to Theorem 1, if a MIL algorithm is
not learnable with respect to bags, it is not learnable with respect to instances.

Theorem 1 If MIL algorithm A satisfies Condition 1, then this algorithm is not PAC learnable for
any instance domain space DXinsti

Y and instance hypothesis space Hinsti ⊂ {hinsti : X → Y }.

P

[
n⋃

i=1

|Rinsti(A(Sinsti))− inf
h∈Hinsti

Rinsti(h)| > ϵ

]
> δ (5)

Condition 1 The MIL algorithm A is not PAC learnable for the given domain space DXY and bag
hypothesis space Hbag ⊂ {hbag : X → Y }:

P
[
|Rbag(A(S))− inf

h∈Hbag

Rbag(h)| > ϵ

]
> δ (6)

Proof: The proof of Theorem 1 is conducted in Appendix C.1.

According to Theorem 1, MIL algorithms that are not learnable for bags do not guarantee learnability
for instances. Therefore, in this study, we discuss the learnability of instances under Assumption 1.

Assumption 1 The MIL algorithm is PAC learnable for bags.

Based on the definitions, theorem, and assumption above, we can formulate the definition of when
the proposed Deep MIL is learnable for instances as follows:

Definition 6 If the MIL algorithm satisfies Condition 2, it is learnable for instances.
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Condition 2 The Deep MIL algorithm A must exhibit equivalent PAC learnability for bags and
instances:

P

[
|Rbag(A(S))− inf

h∈Hbag

Rbag(h)| ≤ ϵ ∧
n⋂

i=1

|Rinsti(A(Sinsti))− inf
h∈Hinsti

Rinsti(h)| ≤ ϵ

]
≥ 1−δ

(7)

Definition 6 under Assumption 1 ensures that if Condition 2 is satisfied, the algorithm is guaranteed to
be learnable for instances. On the other hand, MIL algorithms that do not satisfy Condition 2 cannot
guarantee learnability for instances, even if they successfully learn for bags. Therefore, Condition 2
becomes a necessary and sufficient condition for MIL algorithms to be learnable for instances.

3 Proposed Theoretical Framework
In this study, we propose a theoretical framework to verify whether a given MIL algorithm satisfies
Condition 2 according to Definition 6. For some Deep MIL algorithms [5, 6], instances are assumed
to belong to independent bag domain spaces. Therefore, we address the problem by distinguishing
between the independent bag domain space DInd

XY and the general bag domain space DGen
XY . 1) DInd

XY

refers to bag domain spaces where all instances within a bag are statistically independent. 2) DGen
XY

refers to a bag domain space that includes both DDep
XY , where interactions or dependencies exist

among instances within a bag, and DInd
XY . That is, DInd

XY ∪ DDep
XY = DGen

XY .

3.1 Overview

Figure 2 shows the final summary of the definitions, relationships, and results of the theorems that
comprise the theoretical framework proposed in this study.

Figure 2: Relationships between theorems: Blue arrows indicate that the pooling methods are learnable
when our proposed conditions are satisfied; Red arrows indicate that they are not learnable when the
conditions are not satisfied.

3.2 PAC Learnability for Independent Bag Domain Spaces

The definition of DInd
XY is provided in Definition 7.

Definition 7 The independent Bag Domain Space DInd
XY is defined as a domain Space that encom-

passes all instance spaces while satisfying Condition 3:
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Condition 3 For each Instance Space DXinsti
Y within DInd

XY , there must exist a corresponding bag
domain space DXY ∈ DInd

XY , which should be determined as the union of each instance domain
space, as follows:

DInd
XY :=

N⋃
i=1

DXinsti
Y ∈ DInd

XY (8)

Since DInd
XY satisfies Condition 3, implying independence among instances, the hypothesis space for

each instance is unaffected by other instances. In this case, for MIL algorithms to be learnable for
instances, they must satisfy Condition 4 according to Theorem 2.

Theorem 2 If a MIL algorithm satisfies Condition 4 in DInd
XY , it is learnable for instances.

Condition 4 The risk of the optimal hypothesis for DInd
XY must ensure that it equals the sum of the

risks of the optimal hypotheses for individual instance spaces within DInd
XY :

inf
h∈H

RDInd
XY

=

N∑
i=1

inf Rinsti (9)

Consequence: If Condition 4 is satisfied, then Condition 2 is also satisfied. Hence, Condition 4
becomes a necessary and sufficient condition for learnability for instances in DInd

XY .

Proof: The proof of Theorem 2 is provided in Appendix C.2.

3.3 PAC Learnability for General Bag Domain Spaces

The definition of DGen
XY is provided in Definition 8.

Definition 8 The general bag domain space DGen
XY is defined as a domain space that encompasses

all instance spaces while satisfying Condition 5 and 6:

Condition 5 For every instance space DXinsti
Y within DGen

XY , there exists a corresponding bag
domain space DXY ∈ DGen

XY , determined as the sum of each instance domain space.

Condition 6 DGen
XY is formed using weights αi ∈ (0, 1) to reflect the importance of relationships

among instances. Each instance domain space DXinsti
Y should be defined along with its weight αi

as follows:

DGen
XY =

N∑
i=1

αiDXinsti
Y ∈ DGen

XY such that
N∑
i=1

αi = 1, 0 ≤ αi ≤ 1 (10)

Since DGen
XY satisfies Condition 5 and Condition 6, implying the existence of relationships among

instances, the hypothesis space for each instance is influenced by other instances. In this case, for
MIL algorithms to be learnable for instances, they must satisfy Condition 7 according to Theorem 3.

Theorem 3 If a MIL algorithm satisfies Condition 7 in DGen
XY , it is learnable for instances.

Condition 7 The risk of the optimal hypothesis for DGen
XY must ensure that it equals the weighted

sum of the risks of the optimal hypotheses for individual instance spaces within DGen
XY :

inf
h∈H

RDGen
XY

=

N∑
i=1

αi inf Rinsti such that
N∑
i=1

αi = 1, 0 ≤ αi ≤ 1 (11)

Consequence: If a MIL algorithm satisfies Condition 7, it also satisfies Condition 2. Hence, Condi-
tion 7 becomes a necessary and sufficient condition for MIL algorithms to be learnable for instances
in DGen

XY .

Proof: The proof of Theorem 3 is provided in Appendix C.3.
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4 Theoretical Verification of Existing Deep MILs
4.1 Classifications of Existing Deep MIL Methodologies

The Deep MIL algorithms proposed so far are primarily categorized based on 1) whether they perform
Aggregation at the Embedding-level [5, 6, 2, 19, 20] or at the Instance-level [5, 21, 22, 23, 9, 8, 10, 24].
Additionally, they can be further classified into 5 types of pooling techniques according to 2) whether
they do not use an attention mechanism [5, 21, 22, 6], perform Aggregation by multiplying attention
weights at the embedding-level [2, 19, 20], or perform aggregation by multiplying attention weights
at the instance-level [23, 9, 10, 24], as shown in Table 1.

Table 1: Classification of existing Deep MIL methodologies.
Instance
-pooling [5, 21]

Embedding
-pooling [5, 6]

Attention
-pooling [2, 19]

Additive
-pooling [9]

Conjunctive
-pooling [23, 10, 24]

Aggregation-level Instance Embedding Embedding Instance Instance
Attention-target None None Embedding Embedding Instance

A detailed explanation of the pooling techniques is provided in Appendix A.2.

4.2 Theoretical Verification

4.2.1 Relationship between Attention Mechanism and Learnability for Bag
The application of an attention mechanism to MIL algorithms depends on the range of the domain
space that the MIL algorithm can learn from. This implies that the feasibility of PAC learning for
bags may vary depending on whether attention is applied or not.

Theorem 4 In DInd
XY , the MIL algorithm is PAC learnable for bags.

Proof: The proof of Theorem 4 is conducted in Appendix C.4.

Theorem 5 In DGen
XY , MIL algorithms that aggregate independent hypothesis spaces for each instance

must utilize attention satisfying Condition 8 to be PAC learnable for bags.

Condition 8 The hypothesis space Hbagatt
of Attention MIL should be equal to the sum of indepen-

dent hypothesis spaces hinsti multiplied by attention weights Atti:

Hbagatt
=

{
hbagatt

| hbagatt
=

n∑
i=1

Atti · hinsti , where 0 < Atti < 1,

n∑
i=1

Atti = 1

}
(12)

Proof: The proof of Theorem 5 is conducted in Appendix C.5.

Validation: Experimental validation is performed in Section 4.4.1.

Consequence: Theorems 4 and 5 are not direct theorems about the learnability of MIL for instances.
However, the learnability for bags is a prerequisite for MIL algorithms to be able to learn from
instances. According to Theorem 4, in PAC learnable DInd

XY , all MIL algorithms satisfy Assumption 1
regardless of the presence of attention mechanisms. On the other hand, in DGen

XY , according to
Theorem 5, the application of attention mechanisms satisfying Condition 8 becomes a necessary
condition for MIL algorithms to be learnable for instances.

4.2.2 Verification Learnability for Instances by MIL Pooling Method
The type of pooling technique used in Deep MIL algorithms becomes a determining factor in whether
they are learnable for instances when they are learnable for bags. In this case, to verify whether a Deep
MIL algorithm is learnable for instances, a definition of Lemma 1 should be established in advance,
extending Condition 4 to ensure that no additional hypothesis space is included for instances.

Lemma 1 Condition 9 serves as a necessary condition for the learnability of instances, when the
hypothesis space for the ith instance of a MIL algorithm is Hinsti ∪Haddi . Here, Hinsti represents
the hypothesis space for the ith instance, and Haddi denotes the hypothesis space for the ith instance
generated through elements outside the ith instance.
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Condition 9 Haddi must be a subset of Hinsti :

Hinsti ⊃ Haddi
:= {haddi

: Xaddi
→ Y} (13)

Proof: The proof of Lemma 1 is conducted in Appendix C.6.

In the case of instance-pooling, as attention mechanisms are not utilized, Condition 8 is not satisfied.
Therefore, in DGen

XY , the algorithm is not learnable for bags, and consequently, not learnable for
instances either. However, according to Theorem 6, the algorithm is learnable for instances in DInd

XY .

Theorem 6 In DInd
XY , MIL algorithms that perform instance-pooling are PAC learnable for instances.

Proof: The proof of Theorem 6 is conducted in Appendix C.7.

Unlike Instance-Pooling, where the hypothesis for bags is combined from instance-level hypotheses,
Embedding-Pooling does not combine bag hypotheses from instance-level hypotheses. As a result, it
does not satisfy Condition 9, leading to a scenario similar to Theorem 7.

Theorem 7 MIL algorithms that perform Embedding-Pooling are not learnable for instances.

Proof: The proof of Theorem 7 is conducted in Appendix C.8.

Consequence: In DInd
XY , Deep MIL algorithms exhibit reproducibility when they avoid overfitting

to easy information at the bag-level and effectively learn positive instances at the instance-level.
Reproducibility in this context refers to the learnability of positive instances. They demonstrated
experimentally that Deep MIL algorithms using Instance-Pooling, such as mi-Net [5] and Causal
MIL [21, 22], exhibit reproducibility, while those using Embedding Pooling, such as Mi-Net [5],
do not. However, Raff et al. [18] failed to provide a theoretical explanation for these results. In
contrast, this study theoretically demonstrated that Instance-Pooling is learnable for instances while
Embedding-Pooling is not, through Theorems 6 and 7. This provides theoretical support for the
experimental findings of Raff et al. [18].

To compute the attention applied to each instance’s features in Attention Pooling and Additive
Pooling, the bag’s features X are used as input. Multiplying attention weights to the features at the
feature level results in additional hypothesis space haddi formed by the attention operations on each
instance. As a consequence, since Condition 9 is not satisfied, according to Theorem 8, the algorithm
becomes not PAC Learnable for instances.

Theorem 8 If the MIL algorithm does not adhere to Condition 10, it is not learnable for instances.

Condition 10 The risk Rinsti for the ith instance should be as follows:

Rinsti = E(xinsti
,y)∼DXinsti

Y
ℓinsti(h, y) , where h ∈ Hinsti ∪Hbag−leveli (14)

Here, Hbag−leveli denotes the hypothesis space for the ith instance generated through bag-level
features, and Hbag−leveli := {hbag−level : X → Y}.

Consequence: Attention-Pooling and Additive-Pooling multiply attention weights to each instance’s
feature-level. As a result, the hypothesis space for the ith instance includes, in addition to Instance-
Pooling, hbag−level = {h | h = f(Xbag), f ∈ Fbag}. In other words, it incorporates the hypothesis
space for bag-level features into the prediction for the ith instance. This, according to Theorem 8,
renders it not learnable for instances.

Proof: The proof of Theorem 8 is conducted in Appendix C.9.

Validation: Experimental verification of Theorem 8 is demonstrated in Section 4.4.2.

On the other hand, Conjunctive-Pooling does not multiply attention at the feature level of instances,
but rather at the prediction level of instances. Therefore, predictions are made based on individual
features of instances, resulting in Hbag−leveli = ∅, satisfying Condition 10. Additionally, Theorem 9
demonstrates that Conjunctive-Pooling operates in a manner that is learnable for instances.

Theorem 9 When MIL algorithms use Conjunctive-Pooling for aggregation in DGen
XY , they are

learnable for instances.
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Consequence: According to Theorem 9, Conjunctive-Pooling becomes the unique pooling technique
learnable for instances in DGen

XY . Specifically, since DGen
XY includes DInd

XY by definition, Conjunctive-
Pooling becomes a methodology that satisfies all cases.

Proof: The proof of Theorem 9 is conducted in Appendix C.10.

Validation: Experimental validation for Theorem 9 is presented in Section 4.4.2.

Javed et al.[9] demonstrated that the contribution of instances in MIL algorithms performing Additive-
Pooling is proportional to the shapley value[25]. However, their proof contained an error where
the feature multiplied by attention was mistakenly assumed to be the feature of the ith instance.
Our theoretical framework identifies that when attention is applied to features, it fails to satisfy
Condition 10, leading to the algorithm being not learnable.

In this study, we confirmed that the error causing failure to satisfy Condition 10 also appears in studies
proposing MIL based on Conjunctive-Pooling [23, 10]. Details on this are explained in Section 4.3.1.

4.3 Additional Considerations

4.3.1 Rethinking Position Dependencies of Instances on Deep MILs
Text data and time series data exhibit temporal dependencies, while image data often has spatial
dependencies. Therefore, research in relevant fields has utilized neural networks capable of capturing
dependencies, such as RNNs and CNNs [26, 27, 28, 29, 30, 31], or additional positional encoding on
extracted features to enhance performance [32, 33, 34, 35, 36, 37]. Following this trend, Deep MIL
studies have also employed RNN-based neural networks or positional encoding during the feature
extraction process to capture temporal dependencies of instances for performance enhancement [23,
19, 10]. However, as per Theorem 10 and Theorem 11, these approaches render the models unable to
learn from instances.

Theorem 10 If the MIL algorithm extracts features of instances through RNN-based neural networks
for aggregation, it is unable to learn from instances.

Proof: The proof for Theorem 10 is conducted in Appendix C.11.

Validation: The experimental validation for Theorem 11 is presented in Section 4.4.3.

Theorem 11 If the hypothesis space HPos−Encodei generated through positional encoding values
for the i-th position of the MIL algorithm is not a subset of Hinsti , then the algorithm is not PAC
learnable for instances.

Proof: If HPos−Encodei ̸⊂ Hinsti , the algorithm fails to satisfy Condition 9, rendering it not
learnable for instances.

Validation: Experimental validation for Theorem 10 is shown in Section 4.4.3.

Consequence: According to Theorem 11, using values outside of an instance’s features in the
prediction process makes it unlearnable. Therefore, positional encoding should not be used in the
process of predicting instances.

According to the investigation conducted in this study, it was observed that existing Deep MIL research
using Conjunctive-Pooling, such as MILNET [23] and MILLET [10], all utilized RNN-based neural
networks for feature extraction or performed positional encoding on instance features. Therefore,
they failed to satisfy Condition 9, making them unable to learn about instances. Furthermore, these
theoretical findings provide a basis for the ablation study conducted by Early et al.[10] on time series
data classification problems, where Conjunctive-Pooling and positional encoding were applied to
predict the class at each time step. In essence, Early et al.[10] demonstrated that while positional
encoding contributed to improving prediction performance at the bag level, it acted as a detrimental
factor in predicting instances. When utilizing external information such as positional dependencies
through supplementary weighting factors like attention operations alone, Condition 9 may be satisfied,
thereby enabling learnability concerning instances.

4.3.2 Learnability for Instances in Each Dimension for Multidimensional Deep MILs
In the real world, data is often composed of bags consisting of multi-dimensional instances rather
than simple instances of uniform dimensions. For instance, in video data, each frame(images)
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is composed of patches in multi-dimensional structures for each frame dimension. Similarly, in
multivariate time series data, each timestamp is composed of multivariate data points. In the case of
multi-dimensional instances, Multi-dimensional Deep MIL (MD-MIL) methodologies have emerged
to perform predictions on lower-level instances based solely on labels at the top level of the bag.
These methodologies apply aggregation recursively, performing aggregation on data in the first
dimension and sequentially on subsequent dimensions. Existing MD-MIL approaches have employed
Embedding-Pooling or Attention-Pooling for each dimension’s instances. However, these pooling
methods have been shown by Theorems 7 and 8 to be incapable of learning about instances. Therefore,
existing MD-MIL methodologies are not suitable for learning from multi-dimensional instances.

Therefore, to design methodologies capable of learning from multi-dimensional data, it is essential
to use aggregation techniques that are capable of learning about instances, based on Theorem 6
or 9. Additionally, to ensure learnability from the top-level bag and bags in each dimension, the
attention operation’s results should be set to be within the instance’s hypothesis space based on
whether the relationships among instances in each dimension are independent or dependent. Through
the experiments in Appendix E.2, we confirmed that Conjunctive-Pooling can capture the relation-
ships between instances across different bags in an MD-MIL architecture, leading to performance
improvements. These findings confirm that our proposed theoretical framework serves as a valuable
guide in designing learnable models.

4.4 Experimental Validation

In this section, we conduct the following experimental validations to demonstrate whether existing
Deep MIL approaches are learnable for instances based on the theorems: 1) (Theorem 5): Demon-
strating the learnability of the attention mechanism for bags in DGen

XY . 2) (Theorem 8, 9): Showing
that multiplying attention at the feature level is not learnable for instances. 3) (Theorem 10, 11):
Demonstrating that inputting position-related values into instance positions is not learnable for in-
stances. As this study assumes an environment where bags are PAC Learnable, we preprocess the
MNIST dataset to match the difficulty level of each experiment. For the validation of Theorem 10 and
11, we use the WebTraffic dataset from Early et al. [10], which is a synthetic time-series classification
dataset. Detailed experimental settings can be found in Appendix D.

4.4.1 Experimental Validation of Theorem 5

To validate Theorem 5, we conducted experiments on MIL algorithms [5, 21, 38, 2, 39, 40, 19, 9, 10]
representing each pooling technique. Table 2 compares prediction performance on the synthetic
datasets, detailed in Appendix D.1. This reveals that Instance-Pooling based MIL algorithms [5, 21,
38], which do not apply weights to the hypothesis space, degraded learning performance for bags
in DGen

XY . In contrast, the other algorithms [2, 39, 40, 19, 9, 10] that apply weights to the hypothesis
space through the attention mechanism demonstrate superior performance, which is even comparable
to a none-pooling-based method that, by using fully connected layers, preserves all instance-level
information without any loss during prediction. This experimentally validates Theorem 5.

Table 2: Prediction performance of Deep MIL on Bags in DGen
XY .

Pooling Methods Deep MIL Algorithms Macro-F1 Micro-F1 Weighted-F1

Instance-Pooling mi-Net [5] 0.3286 0.5548 0.4550
Causal MIL [21] 0.2341 0.3577 0.2645
MIREL [38] 0.3623 0.5318 0.4372

Attention-Pooling Attention MIL [2] 0.7652 0.7683 0.7583
Loss-Attention [39] 0.7935 0.7832 0.7753
SA-AbMILP [40] 0.7540 0.7619 0.7562
TransMIL [19] 0.7834 0.7711 0.7738

Additive-Pooling Additive MIL [9] 0.5314 0.6341 0.5732

Conjunctive-Pooling Conjunctive MIL [10] 0.7544 0.7701 0.7683

None-Pooling Fully Connected 0.7704 0.7724 0.7714
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4.4.2 Experimental Validation of Theorems 8 and 9
To assess whether the algorithm [2, 39, 40, 19, 9, 10] is learnable for instances when weights from an
attention mechanism that satisfies Condition 8 are multiplied at the feature level, we compared the
predictive performance on instances by adjusting the variance of attention weights.

Table 3 shows the results on the synthetic dataset, which details in Appendix D.2. Attention-Pooling
based [2, 39, 40, 19] and Additive-Pooling based [9] MIL algorithms, where attention weights are
multiplied at the feature level and aggregation is performed, showed significantly lower predictive
performance for instances compared to bags. In particular, SA-AbMILP [40] and TransMIL [19],
which perform iterative attention operations, show a significant performance gap between bag-level
predictions and instance-level predictions. This demonstrates that the Attention-Pooling process does
not guarantee the learnability of MIL. In contrast, Conjunctive-Pooling based MIL algorithms [10]
exhibited a much smaller difference in predictive performance between bags and instances than other
algorithms. This validates, in accordance with Theorem 9, that Conjunctive-Pooling is learnable for
instances. Additionally, experiments adjusting the variance of attention to determine its impact on the
discrepancy between bag and instance performance are detailed in Appendix E.1.

Table 3: Prediction performance comparison of MIL algorithms on bags and instances.
Performance for bags (PBag) Performance for Instances (PInst) PInst − PBag

Deep MIL Algorithms Macro-F1 AUROC Macro-F1 AUROC Macro-F1 AUROC

Attention MIL [2] 0.8434 0.9516 0.3215 0.7317 -0.5219 -0.2199
Loss-Attention [39] 0.8228 0.9574 0.4797 0.7951 -0.3431 -0.1623
SA-AbMILP [40] 0.7692 0.9552 0.3340 0.5464 -0.4352 -0.4088
TransMIL [19] 0.8515 0.9622 0.2192 0.5369 -0.6323 -0.4253

Additive MIL [9] 0.4776 0.9181 0.2320 0.8092 -0.2456 -0.1089

Conjunctive MIL [10] 0.7916 0.9463 0.6430 0.9516 -0.1486 +0.0053

4.4.3 Experimental Validation of Theorems 10 and 11
Table 4 compares the performance of Conjunctive MIL under various conditions, reflecting infor-
mation on positional dependency: 1) Applying attention and prediction on features extracted via
Positional Encoding or a GRU-layer (All), 2) Using positional information only for attention opera-
tions (Att), 3) Using positional information only for prediction (Predict), and 4) The baseline model
without any positional adaptations (Default).

Comparative results on the WebTraffic dataset’s instance prediction performance reveal that configu-
rations All and Predict, which provide additional positional information to features as in Theorem 10
and 11, showed poorer prediction performance than Default. Particularly, RNN, which reflects more
additional information than positional encoding, was found to significantly degrade performance.
However, the Att configuration, which utilized positional information solely for attention operations,
achieved better performance than Default. This demonstrates that incorporating helpful information
such as positional data, into MIL should be selectively applied to attention computations only.

Table 4: Test positional dependencies for WebTraffic datasets [10].
Default PE (All) PE (Att) PE (Predict) RNN (All) RNN (Att) RNN (Predict)

AOPCR 13.041 12.372 14.555 12.256 9.011 17.502 12.21
NDCG@n 0.676 0.665 0.727 0.642 0.620 0.714 0.523

5 Conclusions
In this study, we proposed a novel framework to theoretically validate that deep MIL can learn
at the instance level, overcoming the aforementioned issues. The proposed theoretical framework
derived conclusions about the instance-level learnability of deep MIL algorithms, assuming that
MIL algorithms are learnable at the bag level. Utilizing the PAC learning theory, we theoretically
derived the necessary and sufficient conditions for learnability in each hypothesis space. This provides
theoretical guidance for building learnable MIL models in various domains. The practical application
of our proposed framework to real-world MIL scenarios is presented in Appendix F. Limitations and
future work are explained in Appendix G.
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A Related Works

A.1 Multiple Instance Learning

Multiple Instance Learning (MIL), a type of weakly supervised learning, is a methodology where
labels are assigned to a bag of instances rather than individual instances, allowing for predictions
about individual instances based on the bag’s label. MIL was first introduced in the field of chemistry
to identify active molecules and has since been applied to various domains, including medical image
analysis, text data processing, time-series data analysis, and video anomaly detection [3, 4, 41, 2, 9,
42, 23, 43, 44, 10, 45, 7, 8].

In medical image analysis, accurate labeling of cancer cell locations requires significant time and
effort. However, it is possible to use MIL to predict cancer cell locations with labels for the entire
image. In text data, documents or reviews are treated as a single bag, and MIL allows for more
detailed analysis by predicting the attributes of each instance within a document or review. MIL is
also effectively used in time-series data and video anomaly detection for cause analysis and anomaly
detection.

A.2 Type of Pooling in Multiple Instance Learning

Deep MIL methodologies can be broadly classified based on the pooling mechanism into the following
categories: 1) Instance-Pooling, 2) Embedding-Pooling, 3) Attention-Pooling, 4) Additive-Pooling,
and 5) Conjunctive-Pooling.

The functional architecture of MIL incorporates several key components designed for processing
instances within a bag. The feature extraction function for the ith instance is denoted by fi(Xi).
Furthermore, we utilize classifier functions to make predictions based on these features: pi(Xi)
targets the features of the ith instance, while p(X) handles features aggregated at the bag level.
The attention weight assigned to the ith instance is expressed as Ai. Additionally, the aggregation
function, pivotal for our pooling techniques, is represented by g(X). The various pooling methods
utilized in our framework are described as follows:

(Instance-Pooling)

Instance-pooling performs predictions for each instance individually and then uses the max or mean
operator to aggregate the results:

gmax−pooling(X) =
N

max
i=1

(pi ◦ fi)(Xi)

gmean−pooling(X) =
1

N

N∑
i=1

(pi ◦ fi)(Xi)

(Embedding-Pooling)

Embedding-pooling obtains features for each instance and then uses the max or mean operator to
aggregate these features to obtain a feature representation for the bag, on which predictions for the
bag are made:

gmax−pooling(X) = p(
N

max
i=1

fi(Xi))

gmean−pooling(X) = p(
1

N

N∑
i=1

fi(Xi))

(Attention-Pooling)

Attention-pooling multiplies the features of each instance by attention weights and then performs
embedding-pooling using the summation operator on the weighted features:
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g(X) = p(

N∑
i=1

Aifi(Xi))

(Additive-Pooling)

Additive-pooling multiplies the features of each instance by attention weights, obtains individual
predictions for each instance, and then performs a summation operation to make predictions for the
bag:

g(X) =

N∑
i=1

(pi ◦Aifi)(Xi)

(Conjunctive-Pooling)

Conjunctive-pooling multiplies the individual predictions of instances by attention weights and
performs aggregation through a weighted sum:

g(X) =

N∑
i=1

(Aipi ◦ fi)(Xi)

A.2.1 Attention Mechanism

In early deep MIL, the role of the deep network was to better extract the features of instances and to
accurately predict instances through pooling operations in an end-to-end manner [5, 21, 22, 6, 46, 47,
48].

Early deep MIL models had the limitation that the bag-level prediction does not accelerate the
instance-level prediction because predictions for instances were performed separately from predictions
for the bag. To overcome this limitation, attention mechanisms have been used in various MIL
methodologies [2, 23, 19, 9, 10, 20]. In other deep learning research [32, 35, 49, 50, 51], attention
mechanisms have shown significant performance improvements by capturing relationships within
the data. Due to these characteristics, attention weights, based on the features of all instances, assign
higher weights to important instances for bag predictions, making them useful for instance-level
predictions as well [2, 19, 20]. These weights have been shown to improve the prediction performance
of instances [23, 9, 10].

A.2.2 Level of Aggregation

Deep MIL requires aggregating the values of instances to perform predictions for the bag. Early deep
MIL models performed individual predictions for instances and then aggregated these predicted values
using differentiable pooling operators [5]. However, the approach of making individual predictions
for instances was not effective in improving the prediction performance for the bag. To enhance bag
prediction performance, new methods were proposed that perform pooling operations on features
extracted from each instance to obtain a feature representation for the bag and then learn the bag.
These methods apply the classifier used for the bag to instances [5] or cluster the features of instances
to find similar instances [6].

In the case of deep MIL utilizing the attention mechanism, early methods enhanced performance by
multiplying the features of each instance by attention weights, performing mean pooling to extract a
feature representation for the bag, and using that feature to train the bag [2, 19, 20]. This approach
suggested that instances with higher attention weights contributed more to the bag’s prediction.
However, while feature-level aggregation allowed for effective bag predictions, it did not facilitate
detailed predictions for individual instances. Conversely, applying attention and aggregating the
prediction results for instances achieved high performance [9, 10]. Due to this trend, recent research
prefers aggregating the prediction results for instances.
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A.3 Theoretical Study of Multiple Instance Learning

According to Babenko et al. [14], early theoretical research on MIL focused on simple algorithms
such as axis-aligned rectangles, which facilitated the derivation of theoretical results [11, 12]. Blum et
al. [13] proposed an algorithm that illustrated the relationship between supervised learning and MIL,
showing that if a supervised learning algorithm can learn a concept space, MIL can also learn within
that space. Sabato et al. [17] addressed the limitations of previous MIL research, which often derived
theoretical results for specific domains or simple hypothesis classes, by presenting a generalized
theoretical framework applicable to various hypothesis classes and complex data structures. This
framework allowed the evaluation of learnability for bags without being limited to specific algorithms.
Raff et al. [18] argued that deep MIL algorithms do not adhere to standard MIL assumptions and are
unsuitable for real-world environments. They proposed an algorithm unit test to verify adherence to
these assumptions, ensuring that models can accurately predict bags in real-world scenarios.

However, all theoretical research proposed on MIL thus far has focused solely on whether MIL can
learn bags as effectively as supervised learning without addressing the primary purpose of MIL-
predicting individual instances. Therefore, to address this issue, this study proposes a theoretical
framework that can universally evaluate whether an algorithm is learnable at the instance level.

B Notations

The key notations used in Definitions, Theorems, Conditions, and Proofs in this study are summarized
in Table 5.

Table 5: Notations.
Notations Description

Feature Spaces
X bag-level feature space, X := {Xinst1 ,Xinst2 , ...,XinstN−1 ,XinstN }
Xinsti the feature of the ith instance in the bag

label Spaces
Y bag label space Y := {1 , ...k}
Yinsti instance label space Y := {1 , ...k}
Domains
DXY joint distribution on X × Y , DXY :=

⋃N
i=1 DXinsti

Y

DXinsti
Y joint distribution on Xinsti × Y

Domain Spaces
DXY the set space composed of DXY

DInd
XY the bag domain space with mutually independent domains for all instances

DDep
XY the bag domain space with mutually dependent domains for all instances

DGen
XY the entire bag domain space, DInd

XY ∪ DGen
XY

Hypothesis Spaces
Hbag bag hypothesis Space
Hinsti ith instance Hypothesis Space, Hinsti = {hi : hi(Xi) → Yi}
Haddi extra hypothesis space from external values for ith instance

Risks
Rbag risk corresponding to bag domain DXY

Rinsti risk corresponding to instance domain DXinsti
Y

RD risk corresponding to domain D
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C Theoretical Proofs

C.1 Proof of Theorem 1

Theorem 1 If MIL algorithm A satisfies Condition 1, then this algorithm is not PAC learnable for
any instance domain space DXinsti

Y and instance hypothesis space Hinsti ⊂ {hinsti : X → Y }.

P

[
n⋃

i=1

|Rinsti(A(Sinsti))− inf
h∈Hinsti

Rinsti(h)| > ϵ

]
> δ

Condition 1 The MIL algorithm A is not PAC learnable for the given domain space DXY and bag
hypothesis space Hbag ⊂ {hbag : X → Y }:

P
[
|Rbag(A(S))− inf

h∈Hbag

Rbag(h)| > ϵ

]
> δ

Proof The performance of MIL algorithms on bags directly depends on the performance of the
instances composing those bags. Therefore, the probability that a bag’s performance does not reach
the optimal hypothesis is greater than or equal to the probability that each individual instance does
not reach the optimal hypothesis:

P

[
n⋃

i=1

|Rinsti(A(Sinsti))− inf
h∈Hinsti

Rinsti(h)| > ϵ

]
≥ P

[
|Rbag(A(S))− inf

h∈Hbag

Rbag(h)| > ϵ

]

If Condition 1 is satisfied, the probability that the bag’s performance does not reach the optimal
hypothesis can be expressed as follows:

P
[
|Rbag(A(S))− inf

h∈Hbag

Rbag(h)| > ϵ

]
> δ

Ultimately, if the bag is not learnable, then one or more instances become unlearnable.

P

[
n⋃

i=1

|Rinsti(A(Sinsti))− inf
h∈Hinsti

Rinsti(h)| > ϵ

]
> δ

C.2 Proof of Theorem 2

Theorem 2 If a MIL algorithm satisfies Condition 4 in DInd
XY , it is learnable for instances.

Condition 4 The optimal hypothesis for DInd
XY must be equal to the sum of optimal hypotheses for

each individual instance space within DInd
XY :

inf
h∈H

RDInd
XY

=

N∑
i=1

inf Rinsti

Proof First, let’s assume that the MIL algorithm satisfies Condition 4 in DInd
XY . Based on this

assumption, we apply Definition 4 to verify the learnability of MIL in the independent bag hypothesis
space.

The learnability in the independent bag hypothesis space means that the algorithm is likely to return
predictions within an acceptable error margin from the true optimal hypothesis:

PS∼Dm
XY

[
|RD(A(S))− inf

h∈Hbag

RD(h)| ≤ ϵ

]
≥ 1− δ
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Here, S represents the training data, and A(S) denotes the predictions returned by the MIL algorithm.
RD(h) represents the actual risk of hypothesis h. Now, this probability is expanded as follows:

PS∼Dm
XY

[
|RD(A(S))− inf

h∈Hbag

RD(h)| ≤ ϵ

]
= PS∼Dm

XY

[
RD(A(S)) ≤ inf

h∈Hbag

RD(h) + ϵ

]
Now, this probability can be expressed as follows:

PS∼Dm
XY

[
RD(A(S)) ≤ inf

h∈Hbag

RD(h) + ϵ

]
=

N∑
i=1

PS∼Dm
Xinsti

Y

[
RD(A(S)) ≤ inf

h∈Hinsti

RD(h) + ϵ

]

In the above equation, N represents the number of instances.

This equation implies that the learnability of bags and instances becomes equivalent. Since we
assumed that bags are learnable according to Assumption 1, Condition 4 becomes a necessary and
sufficient condition for the learnability of instances.

C.3 Proof of Theorem 3

Theorem 3 If a MIL algorithm satisfies Condition 7 in DGen
XY , it is learnable for instances.

Condition 7 The optimal hypothesis for DGen
XY must guarantee that it is equal to the weighted sum of

optimal hypotheses for each individual instance space within DGen
XY :

inf
h∈H

RDGen
XY

=

N∑
i=1

αi inf Rinsti s.t.
N∑
i=1

αi = 1, 0 ≤ αi ≤ 1

Proof To demonstrate that the learnability of bags is equivalent to the learnability of instances, we
need to show that the following conditions are satisfied:

P

[∣∣∣∣∣inf RDGen
XY

−
N∑
i=1

αi inf Rinsti

∣∣∣∣∣ > ϵ

]
≤ δ

This equation represents that the weighted sum of risks for bags and instances exceeds the permissible
error ϵ with probability δ or less. Therefore, if this equation is satisfied, the learnability of bags and
instances becomes equivalent.

In other words, it indicates that the probability that the difference between the risk for each instance
and the weighted sum of the entire bag risks is within the permissible error ϵ

N is at least 1− δ.

P
[
∀i,
∣∣∣inf RDGen

XY
− αi inf Rinsti

∣∣∣ ≤ ϵ

N

]
≥ 1− δ

Through the inequality for the risk of each instance, we can obtain the following:∣∣∣αi inf Rinsti − inf RDGen
XY

∣∣∣ ≤ ϵ

N
, ∀i

To prove this, let’s define the random variable Xinsti as the difference in risk for each instance:

Xinsti = inf RDGen
XY

− αi inf Rinsti

Let’s set the range of each Xinsti to [−M,M ], and define ci as the mean of Xinsti . ci becomes 0
due to cancellation between E[inf RDGen

XY
] and E[αi inf Rinsti ].
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ci = E[Xinsti ] = 0

Let’s define the function f(Xinst1 , Xinst2 , . . . , XinstN ) as the optimal risk over the general bag
domain DGen

XY :

f(Xinst1 , Xinst2 , . . . , XinstN ) = inf RDGen
XY

In this setup, the instances within the bag are not independent; instead, they interact and contribute
collectively to the overall bag risk. To capture the effect of each instance on the bag’s optimal risk,
we introduce weights αi that represent the contribution of each instance’s risk to the total risk. This
allows us to define the expected value of f as the weighted sum of the optimal risks of each instance
domain:

E[f(Xinst1 , . . . , XinstN )] =

N∑
i=1

αi inf Rinsti

This expression reflects the dependencies and interactions between instances, allowing us to represent
the general bag risk as a function of each instance’s weighted risk.

In the general bag domain space, where one or more instances may have dependent relationships, we
apply the Azuma-Hoeffding inequality.

P [|f(Xinst1 , . . . , XinstN )− E[f(Xinst1 , . . . , XinstN )]| > t] ≤ 2 exp

(
−2t2∑N
i=1 c

2
i

)

Since f(Xinst1 , Xinst2 , . . . , XinstN ) represents the risk of the bag as stated earlier, the equation can
be written as follows:

P
[
| inf RDGen

XY
− E[inf RDGen

XY
]| > t

]
≤ 2 exp

(
−2t2∑N
i=1 c

2
i

)

The t term in | inf RDGen
XY

−E[inf RDGen
XY

]| represents the deviation from the expected value, so it can
be replaced by the permissible error ϵ for learnability, yielding the following:

P
[
| inf RDGen

XY
− E[inf RDGen

XY
]| > ϵ

]
≤ 2 exp

(
−2ϵ2∑N
i=1 c

2
i

)

Finally, it can be expressed as follows:

P

[∣∣∣∣∣inf RDGen
XY

−
N∑
i=1

αi inf Rinsti

∣∣∣∣∣ > ϵ

]
≤ 2 exp

(
−2ϵ2∑N
i=1 c

2
i

)

ci represents the mean of errors. Since Deep MIL algorithms are trained to minimize the mean error,∑N
i=1 ci ≃ 0.

P

[∣∣∣∣∣inf Rbag −
N∑
i=1

αi inf Rinsti

∣∣∣∣∣ > ϵ

]
≤ δ

This ensures that the sum of ci values remains within a certain range, guaranteeing that it is smaller
than the probability of being trained within the permissible error range ϵ, denoted as δ.
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2 exp

(
−2ϵ2∑N
i=1 c

2
i

)
≤ δ ⇔ 1∑N

i=1 c
2
i

≥ 1

2ϵ2
log

2

δ

Therefore, under the assumption of successful learning, Condition 2 is satisfied. Thus, a well-trained
MIL model becomes learnable for instances.

C.4 Proof of Theorem 4

Theorem 4 In DInd
XY , the MIL algorithm is PAC learnable for bags.

Proof The PAC learnability of DInd
XY implies that every concept space CDInd

XY
can be approximated by

hypothesis spaces HDInd
XY

.

CDInd
XY

⊆ HDInd
XY

Since DInd
XY assumes that predictions for all instances are independent, predictions for bags become

the union of predictions for instances.

HDInd
XY

=

n⋃
i=1

Hinsti

The hypothesis space Hbagnon−att
for Non-Attention MIL algorithms, which do not use Attention, is

also the union of predictions of instances:

Hbagnon−att
=

n⋃
i=1

Hinsti

Thus, Hbagnon−att becomes equivalent to the hypothesis space HDInd
XY

of PAC Learnable DInd
XY :

HDInd
XY

= Hbagnon−att

Therefore, in the case of PAC Learnable scenarios, Non-Attention MIL is learnable.

The hypothesis space Hbagatt
of Attention MIL encompasses the hypothesis space Hbagnon−att

of
Non-Attention MIL:

Hbagnon−att
⊆ Hbagatt

Thus, if DInd
XY is PAC Learnable, Attention MIL is also learnable.

Ultimately, if DInd
XY is PAC Learnable, then all MIL algorithms can learn from bags.

C.5 Proof of Theorem 5

Theorem 5 In DGen
XY , MIL algorithms that aggregate independent hypothesis spaces for each instance

must utilize attention satisfying Condition 8 to be PAC learnable for bags.

Condition 8 The hypothesis space Hbagatt
of Attention MIL should be equal to the sum of indepen-

dent hypothesis spaces hinsti multiplied by attention weights Atti:

Hbagatt
=

{
hbagatt

| hbagatt
=

n∑
i=1

Atti · hinsti , where 0 < Atti < 1,

n∑
i=1

Atti = 1

}

Proof The PAC Learnability of DGen
XY implies that all concept spaces CDGen

XY
of DGen

XY can be approxi-
mated by the hypothesis space HDGen

XY
of DGen

XY :
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∀HDGen
XY

∈ CDGen
XY

HDGen
XY

represents the union space of hypotheses HGen
insti

with dependencies within the same bag.

The optimal hypothesis within each instance space can be expressed as:

inf RGen
insti = inf

hGen
insti

∈HGen
insti

RGen
insti

Combining these optimal hypotheses yields:

n⋃
i=1

inf RGen
insti =

n∑
i=1

inf RGen
insti

From previous proofs, it’s shown that the Azuma-Hoeffding inequality satisfies:

P

[∣∣∣∣∣inf RDGen
XY

−
N∑
i=1

αi inf R
Gen
insti

∣∣∣∣∣ > ϵ

]
≤ δ

Thus, the hypothesis space HGen
bag for DGen

XY can be expressed as:

HDGen
XY

=

{
hDGen

XY
| hDGen

XY
=

n∑
i=1

αi · hinsti , where 0 < αi < 1,

n∑
i=1

αi = 1

}

In proving the learnability of bags for DGen
XY , it’s shown that the hypothesis space for Non-Attention

MIL algorithms is:

Hbagnon−att =

n⋃
i=1

Hinsti

The hypothesis space HDGen
XY

extends beyond the range of hypotheses that can independently predict
all instances, incorporating dependencies with weighted hypotheses αi:

Hbagnon−att
⊆ HDGen

XY

HDGen
XY

̸⊆ Hbagnon−att

Thus, Non-Attention MIL Algorithms are not learnable from DGen
XY .

However, according to Condition 8, the hypothesis space of Attention MIL Algorithms is:

Hbagatt
=

{
hbagatt

| hbagatt
=

n∑
i=1

Atti · hinsti , where 0 < Atti < 1,

n∑
i=1

Atti = 1

}

Here, replacing Atti with αi makes Hbagatt identical to HDGen
XY

:

Hbagatt
= HDGen

XY

Thus, Attention MIL is learnable from DGen
XY in terms of bags.
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C.6 Proof of Lemma 1

Lemma 1 Condition 9 serves as a necessary condition for the learnability of instances, when the
hypothesis space for the ith instance of a MIL algorithm is Hinsti ∪Haddi

. Here, Hinsti represents
the hypothesis space for the ith instance, and Haddi

denotes the hypothesis space for the ith instance
generated through elements outside the ith instance.

Condition 9 Haddi
must be a subset of Hinsti :

Hinsti ⊃ Haddi
:= {haddi

: Xaddi
→ Y}

Proof

When Hinsti ̸⊂ Haddi := {haddi : Xaddi → Y}, the hypothesis space Hbag for bags is as follows:

Hbag =

N⋃
i=1

Hinsti ∪Haddi

In this case, using the Azuma-Hoeffding Inequality to compare the deviation between Rbag and each
Rinsti , we get:

P

(∣∣∣∣∣ 1N
N∑
i=1

Rinsti −Rbag

∣∣∣∣∣ ≥ ϵ

)
≤
∑N

i=1 Var[Rinsti ]

N2ϵ2

If haddi
is not a subset of hinsti , additional hypothesis space exists, resulting in a deviation between

the risk of the Bag-level hypothesis and the risks of each Instance.

Hence, the deviation between Rbag and Rinsti is greater than or equal to 0:

inf
h∈H

Rbag ≤
N∑
i=1

inf Rinsti

Therefore, it fails to satisfy the necessary and sufficient condition for the learnability of instances in
DInd

XY . The independent bag domain space implies that all weights in the general bag domain space
are equal, thus the relation is as follows:

DInd
XY ⊂ DGen

XY

Hence, if it’s not learnable in the independent bag domain space, it means it’s not learnable in the
general bag domain space. Therefore, through the proposed theoretical framework, Condition 7
becomes a necessary condition for MIL.

Thus, Condition 9 becomes a necessary condition for learning instances in MIL.

C.7 Proof of Theorem 6

Theorem 6 In DInd
XY , MIL algorithms that perform instance-pooling are PAC learnable for instances.

Proof

First, the learnability of MIL algorithms on instances in DInd
XY means the algorithm satisfies Condi-

tion 4:

inf
h∈H

RDInd
XY

=

N∑
i=1

inf Rinsti
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Performing Instance-Pooling means forming bag-level hypotheses by independently combining
hypotheses at each instance level. The error at the bag level derived from instance-level pooling can
be defined as follows:

RDInd
XY

(hbag) = ES∼DInd
XY

[ℓ(hbag(X), Y )]

We can express the error at each instance level as:

inf Rinsti = inf
hi∈Hinsti

RDInd
Xinsti

Y

Now, comparing the two errors, we have:

inf
h∈H

RDInd
XY

(h) = inf
h∈H

ES∼DInd
XY

[ℓ(h(X), Y )]

= E(X,Y )∼DInd
XY

[
inf
h∈H

ℓ(h(X), Y )

]
= E(X,Y )∼DInd

XY

[
N∑
i=1

inf
hi∈Hinsti

ℓ(hi(Xinsti), Yinsti)

]

=

N∑
i=1

ES∼DInd
Xinsti

Y

[
inf

hi∈Hinsti

ℓ(hi(Xinsti), Yinsti)

]

=

N∑
i=1

inf
hi∈Hinsti

E(Xinsti
,Yinsti

)∼DInd
Xinsti

Y
[ℓ(hi(Xinsti), Yinsti)]

=

N∑
i=1

inf
hi∈Hinsti

RDInd
Xinsti

Y

Thus, performing pooling on instance predictions satisfies Condition 4.

This proves that MIL algorithms can learn from instances in DInd
XY .

C.8 Proof of Theorem 7

Theorem 7 MIL algorithms that perform Embedding-Pooling are not learnable for instances.

Proof

In Embedding-pooling, features of each instance are combined using an aggregation function g:

F (X) = g(f1(X1), f2(X2), . . . , fn(Xn))

Here, fi(Xi) represents the feature of each ith instance, and g is a function that integrates features to
generate a single vector. Consequently, Haddi includes hypotheses based on F (X), making Haddi

dependent on the features of all instances, f1(X1), f2(X2), . . . , fn(Xn):

Haddi = {h : F (X) → Y }

On the other hand, Hinsti produces results dependent solely on the ith instance feature:

Hinsti = {hi : hi(Xi) → Yi}

A function h ∈ Haddi
using F (X) cannot belong to Hinsti . This is because functions in Hinsti

only use Xi as input, while h is based on F (X), i.e., the combined result of all Xi features. Since
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functions in Haddi have more complex dependencies beyond the scope of Hinsti , the following
inequality holds:

Hinsti ̸⊃ Haddi

Therefore, MIL algorithms using Embedding-pooling fail to satisfy Condition 9, rendering them
incapable of learning from instances.

C.9 Proof of Theorem 8

Theorem 8 If the MIL algorithm does not adhere to Condition 10, it is not learnable for instances.

Condition 10 The risk Rinsti for the ith instance should be as follows:

Rinsti = E(xinsti
,y)∼DXinsti

Y
ℓinsti(h, y) , where h ∈ Hinsti ∪Hbag−leveli

Proof

If hbag−level is not empty, then the following holds:

∀δ > 0,∃h ∈ Hbag : Rbag(h) >

N∑
i=1

Rinsti(hinsti) + δ

For every δ > 0, there exists at least one predictor belonging to hbag−level that can make the
lower bound of Rbag greater than the sum of the lower bounds of

∑N
i=1 Rinsti . This implies that if

hbag−level is not empty, it fails to satisfy Condition 9. Thus, hbag−level must be empty for Condition 4
to hold.

As a result, Condition 10 also becomes a necessary condition for MIL algorithms to be learnable
from instances.

C.10 Proof of Theorem 9

Theorem 9 When MIL algorithms use conjunctive pooling for aggregation in DGen
XY , they are learnable

for instances.

Proof

Condition 7 being satisfied implies learnability from instances:

inf
h∈H

RDGen
XY

=

N∑
i=1

αi inf Rinsti

Here, αi represents the weight for the ith instance, satisfying the following conditions:

αi ∈ (0, 1),

N∑
i=1

αi = 1

Given Assumption 1 where the MIL algorithm is assumed to be PAC learnable for bags, Rbag becomes
the lower bound of prediction error for bags, and Rinsti becomes the lower bound of prediction error
for each instance. Thus, Condition 7 can be expressed as:

inf
h∈H

Rbag =

N∑
i=1

αi inf Rinsti

For Conjunctive Pooling, the optimal hypothesis hbag for bags is:
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hbag =

N∑
i=1

αihinsti

The lower bound for the optimal hypothesis hinsti for the ith instance is:

inf Rinsti = R(hinsti)

Therefore, the lower bound of prediction error for the optimal hypothesis hbag for bags is:

inf
h∈H

Rbag = R(hbag)

= R

(
N∑
i=1

αihinsti

)

= inf
h∈H

E(x,y)∼DGen
XY

[
ℓ

(
N∑
i=1

αihinsti(x), y

)]

=

N∑
i=1

αi inf Rinsti

Ultimately, MIL algorithms using Conjunctive Pooling satisfy Condition 7 and are learnable from
instances.

C.11 Proof of Theorem 10

Theorem 10 If the MIL algorithm extracts features of instances through RNN-based neural networks
for aggregation, it is unable to learn from instances.

Proof When extracting features through an RNN, the hypothesis space of the ith instance’s features
includes not only the hypothesis spaces based on the ith instance’s information but also those based
on the information of preceding instances up to the ith one:

Hinsti−rnn =

i⋃
j=1

Hinstj

Therefore, when extracting features of instances through neural networks like RNNs, if Hinsti :=
{hinsti : Xinsti → Y }, then Hbag−level(x) := {hbag−level : X → Y} ≠ ∅:

Rinsti = E(xinsti
,y)∼DXinsti

Y
ℓinsti(h, y) where h ∈ Hinsti ∪Hbag−level

= E(xinsti
,y)∼DXinsti

Y
ℓinsti(h, y) where h ∈ Hinsti ∪Hinsti−rnn,Hinsti−rnn ̸= ∅

This means that when performing MIL using features extracted through RNNs, it fails to satisfy
Condition 10, a necessary condition for learning from instances. Hence, it becomes incapable of
learning from instances.

Therefore, it fails to satisfy Condition 10.

As a side note, in the case of extracting features through bidirectional RNNs, the size of the hypothesis
space would be:

Hinsti−birnn =

N⋃
j=1

Hinstj

So, the same conclusion applies.
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D Experimental Setting

D.1 Experimental Validation of Theorem 5

Theorem 5 explains that Instance pooling MIL, which aggregates instance hypothesis spaces indepen-
dently, does not satisfy Condition 8 and thus is not learnable with respect to DGen

XY . In contrast, the
Conjunctive Pooling model, which multiplies weights by the hypothesis space of instances to reflect
the relationships among them, is learnable.

To validate this, we conduct comparative experiments on the following synthetic datasets, assuming
DGen

XY outside of DInd
XY . Each bag in the dataset is labeled based on the relationships between the ten

instances constituting the bag, and one of four labels is assigned accordingly.

• Label 1: If the bag contains both 3 and 5, the bag’s label is 1.
• Label 2: If the bag contains 1 but not 7, the bag’s label is 2.
• Label 3: If the bag contains 1 and also contains 7, the bag’s label is 3.
• Label 0: Any bag that does not meet the criteria for other labels is assigned the negative

label 0.

Under these labeling assumptions, the MNIST dataset’s training data is split into training and testing
datasets in an 8:2 ratio. Then, ten images are randomly selected to form a bag, and labeling is
performed according to the assumptions.

Figure 3: Examples of synthetic dataset to verify Theorem 5.

To extract features of the synthetic dataset, which assumes each MNIST image as an instance,
all models use the feature extractor structure described in Table 6. First, mi-Net [5], Attention
MIL [2], Additive MIL [9], and Conjunctive MIL [10] performed Aggregation through basic Instance,
Attention, Additive, and Conjunctive-pooling operations, respectively. We used the same classifier
structure used to perform the pooling operations described in Appendix A.2. The employed attention
mechanism is the gated attention mechanism, which is commonly used in MIL research [2]. Second,
Causal MIL [21], MIREL [38], Loss-Attention [39], SA-AbMILP [40], and TransMIL [19] performed
additional tuning on pooling for performance improvement. We implemented them using the official
code provided by each respective paper23456. Third, for MIREL [38], although the prediction modules

2https://github.com/WeijiaZhang24/CausalMIL?utm_source=catalyzex.com
3https://github.com/liupei101/MIREL
4https://github.com/xsshi2015/Loss-Attention
5https://github.com/gmum/Kernel_SA-AbMILP
6https://github.com/szc19990412/TransMIL
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for the bag and the instances operate separately, the validation is adjusted to fit the nature of MIL.
Specifically, the bag-level prediction module is not used, and instead, the pooled instance predictions
are used for bag-level evaluation. Fourth, for Conjunctive MIL [10] and TransMIL [19], while each
original paper utilizes positional information that affects the predictions, this factor is excluded from
our experiments, as it does not influence the outcomes in our setup.

The operational processes and theoretical validation for Causal MIL [21], MIREL [38], Loss-
Attention [39], SA-AbMILP [40], and TransMIL [19] are performed in Appendix F.

Table 6: The architecture of the instance feature extractor.
Layer Type

1 conv(3,1,1)-32 + ReLU

2 maxpool(2,2)

3 conv(3,1,1)-64 + ReLU

4 maxpool(2,2)

5 flatten

6 fc-128 + ReLU

The hyperparameter settings for the models used in the experiments are shown in Table D.

Table 7: Hyper parameter setting.
Optimizer Learning rate Cost funtion Epochs

Adam 0.0001 NLL loss function 20

Since the labels for the bags are multi-class, we used macro-F1 score (Macro-F1), micro-F1 score
(Micro-F1), and weighted-F1 score to measure multi-class classification performance. To ensure
generalized results, each algorithm was trained ten times with different initializations, and the average
performance was measured. All experiments conducted in this study were performed on an Intel(R)
Xeon(R) Silver 4210R 40 Core CPU @ 2.40 GHz, 32GB RAM, and NVIDIA RTX A5000.

D.2 Experimental Validation of Theorems 8 and 9

Theorem 8 and Theorem 9 demonstrate that Attention MIL [2] and Additive MIL [9], which perform
attention multiplication on instance features, are not capable of learning at the instance level, whereas
Conjunctive MIL is capable of instance-level learning.

To empirically validate this, it is necessary to compare the prediction performance of a Deep MIL
model on bags with its performance on instances. Therefore, experiments should be conducted on
datasets that have labels for both bags and instances. In this study, we use the labeling criteria for the
synthetic dataset explained in Appendix D.1.

The feature extractor and hyper-parameter settings followed the model structure used in Appendix D.1.
The performance measurement method also adhered to the approach specified in Appendix D.1.
However, due to the nature of MIL, which involves learning whether a specific instance is positive
for each class, we also calculated the average AUROC performance for each class and measured the
overall AUROC.

To analyze the impact of the attention mechanism, we adjusted the temperature parameter (τ ) used
in the attention operations to three values: 0.5, 1, and 2. This process was repeated ten times to
calculate the average performance. The average performance of each algorithm for the bag and the
average performance difference between the bag and instances are discussed in Section 4.4.3. The
performance analysis based on the adjustment of τ is detailed in Appendix E.1.
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Figure 4: Example synthetic dataset to verify Theorem 8, 9.

D.3 Experimental Validation of Theorems 10 and 11

Theorem 10 and Theorem 11 demonstrate that using an RNN layer to capture positional dependencies
or performing positional encoding can act as factors that hinder the learnability of instances.

To experimentally validate this, we use the WebTraffic dataset [10], which provides label information
for each time point in a time-series sliding window data. Both the model structure and hyperparameters
are set identical to those in Early et al. [10], and models are configured based on the extent to which
features with positional encoding and RNN are used, as following four models7:

1. A model that does not use features with positional encoding and RNN for instance prediction
and attention operations (Default)

2. A model that uses features with positional encoding and RNN for both instance prediction
and attention operations (All)

3. A model that uses features with positional encoding and RNN only for attention operations
(Att)

4. A model that uses features with positional encoding and RNN only for instance prediction
operations (Predict)

All experiments conducted in this study were performed on an Intel(R) Xeon(R) Silver 4210R 40
Core CPU @ 2.40 GHz, 32GB RAM, and NVIDIA RTX A5000.

To evaluate the instance-level prediction performance of deep MIL models, we used the normalized
discounted cumulative gain (NDCG@n) and the area under the perturbation curve with random
orderings (AOPCR) metrics, as employed by Early et al. [52, 10]. To reliably measure the performance
of each model, we repeated the evaluation 10 times and calculated the average performance. AOPCR
assesses the interpretability of time-series data by measuring the decrease in model predictions based

7https://github.com/JAEarly/MILTimeSeriesClassification

29

https://github.com/JAEarly/MILTimeSeriesClassification


on the importance of time points. Starting from the most important time point, the time series is
rearranged in order of importance. AOPC is then calculated by removing instances one by one from
the most important time points and evaluating how the predictive performance changes.

AOPC(Xi,Oi,c) =
1

t− 1

t−1∑
j=1

Fc(Xi)− Fc(MoRF (Xi,Oi,c, j)),

Here, the MoRF function removes time points in the given order of importance. Instead of removing
each time point individually, time points are grouped into blocks corresponding to 5% of the total
time series, and perturbations are applied until 50% of the time series is removed, limiting the number
of model calls to a maximum of 10. Finally, AOPCR is calculated by comparing the average AOPC
value for the given order of importance to the average AOPC value for random orderings to achieve
normalization:

AOPCR(Xi,Oi,c) =
1

T

T∑
r=1

(
AOPC

(
Xi,Oi,c)−AOPC(Xi,R

(r)
i

))
.

Here, T represents the number of repetitions of random orderings. In this study, T is set to 3 following
the settings of Early et al. [10].

NDCG@n is a metric used to evaluate instance predictions by comparing them to the ground truth
ordering for a specific class. Instances within a bag are classified as supporting instances, neutral
instances, or refuting instances based on their labels. The ideal prediction order for instances should
be supporting instances, neutral instances, and then refuting instances for the given class. NDCG@n
is calculated by ranking the instance predictions {ϕ1, . . . , ϕk} for the given class from highest to
lowest importance and comparing this order to the ground truth order as follows:

NDCG@n =
1

IDCG

n∑
i=1

rel(i)
log2(i+ 1)

Here, IDCG is the ideal discounted cumulative gain, which normalizes the score based on the value
of n, where n is the number of instances with a positive label.

D.4 Experimental Validation of MD-MIL

In this section, we conduct additional experiments in an extended scenario of Video Anomaly
Detection (VAD) to demonstrate that the framework proposed in this study assists in designing
optimal algorithms for realistic MD-MIL scenarios. The traditional VAD problem has been addressed
as a type of 1D-MIL problem, as shown in Figure 5 (a), where the objective is to detect anomalous
snippets based on labels for the entire video. In this context, each snippet should reflect temporal
dependencies.

Moreover, the conventional VAD problem can be extended as an MD-MIL problem, as depicted in
Figure 5 (b). The problem aims to detect both anomalous snippets and anomalous patches within each
snippet based on labels for the entire video. In this case, the patches that constitute a snippet must
not only reflect relationships with other patches within the same snippet but, much like multivariate
time series data [53, 54], also account for temporal dependencies with corresponding patches in other
snippets. Therefore, the VAD problem in an MD-MIL context requires consideration of relationships
not only among instances within the same bag but also with instances at the same position across
different bags.

To design a model that is capable of learning about instances while reflecting relationships under this
complex problem setting, the following requirements must be satisfied:

1. The VAD problem in MD-MIL should reflect relationships among complex multi-dimensional
instances. Therefore, this should be addressed by a learnable MIL method (i.e., Conjunctive-pooling)
on DGen

XY .
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(a) The video data structure consisting of 1-
dimensional-instances.

(b) The video data structure consisting of
multi-dimensional-instances.

Figure 5: The video data structure consisting of 1-dimensional and multi-dimensional-instances (Blue:
Negative, Red: Positive) [55].

2. Additional information about relationships between instances, such as position encoding, should be
used in the attention computation process. This ensures learnability about instances and can improve
performance, as demonstrated in Section 4.4.3. Based on this, attention operations should incorporate
this information to reflect temporal relationships with patches at the same position in other snippets
for each patch detection.

To validate these requirements, we measure and compare the performance between the following
three types of MD-MIL models:

1. None-Attention: This model predicts for higher-dimensional bags through Instance-pooling in each
dimension. It independently models the relationships between snippets composing a video and patches
composing the same snippet.

2. Attention: This model predicts for higher-dimensional Bags by performing Conjunctive-Pooling
based on attention weights calculated within each dimension (same bag). Through this structure, it
can make predictions reflecting the relationships between snippets composing a video and patches
composing the same snippet.

3. Cross-Attention: To reflect the temporal dependencies of patches at the same position in different
snippet bags, this model computes attention weights based on features of each patch computed
through a bidirectional GRU-layer and performs Conjunctive-pooling. Through this structure, it can
make predictions reflecting the relationships between snippets composing a video, patches composing
the same snippet, and patches at the same position in different snippets.

All models are trained using anomaly labels at the video level. The encoder structure for computing
instances is identical across models, as shown in the Table 8, with differences only in pooling and
attention operations.

The hyperparameter settings for the models used in the experiments are presented in the following
Table 9.

For this study, we utilized the ShanghaiTech dataset [55, 56], a well-established benchmark dataset
for Video Anomaly Detection (VAD). As illustrated in Figure 5 (b), each snippet was pre-divided
into four patches. To extract features from these patches, we employed a pre-trained I3D-ResNet
model 8. This model was used to extract snippet features for each patch, which were then utilized in
our experiments.

8https://github.com/Tushar-N/pytorch-resnet3d
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Table 8: The architecture of the instance feature extractor in the MD-MIL model.
Layer Type

1 fc-1024 + ReLU

2 LayerNorm(1024)

3 fc-1024 + ReLU

4 LayerNorm(1024)

5 fc-1024 + ReLU

6 LayerNorm(1024)

7 fc-1024 + ReLU

8 LayerNorm(1024)

Table 9: Hyper parameter setting.
Optimizer Learning rate Cost funtion Epochs

Adam 0.0001 NLL loss function 100

E Additional Experimental Results

E.1 Experimental Validation of Theorems 8 and 9

The results of adjusting the variance of attention by applying τ in the softmax operation to determine
how much attention affects the error between bag prediction performance and instance performance in
deep MIL are presented in Table 10. While all Attention-pooling MIL models show high performance
for bags, they exhibit low learning performance for instances. Conjunctive-pooling MIL, satisfying
Theorem 9, shows very little error between bag performance and instance performance, with instances
sometimes even outperforming bags. However, in the case of Additive-pooling MIL, as τ increases
and the variance among instances decreases, AUROC between bags and instances decreases. This
result suggests that for Additive-pooling MIL to be learnable for instances, the strength of the attention
must be weak. In other words, the closer the structure is to instance predict-level pooling, the more
likely it is to be learnable for instances.

E.2 Experimental Validation of MD-MIL

The experimental results indicate that the Cross-Attention method achieved the best performance,
followed by the Attention-driven model, while the None-Attention-driven model showed the least
favorable performance. These results demonstrate that 1) attention weights are necessary to capture
the relationships between video snippets and patches within the same snippet, and 2) when learning
relationships between patches in different snippets (i.e., bags) are required, Cross-Attention-driven
model, which utilizes such information only during attention computation, is desired.

F Interpretation of MIL Algorithms through Our Theoretical Framework

In this section, we demonstrate how the proposed theoretical framework can interpret actual existing
MIL algorithms. To further validate our framework’s capability to assess instance-level learning in
MIL algorithms, we extended our analysis beyond the basic pooling techniques discussed earlier.
We additionally selected five MIL algorithms that apply additional tuning to the existing pooling
methods for performance improvement. These algorithms were chosen to demonstrate how our
framework can generalize to MIL approaches that enhance standard pooling operations through
additional optimization techniques.

1. Causal MIL [21]: This algorithm utilizes the bag-level features as external variables to identify
independent latent variables directly related to the prediction of each instance’s feature. It then
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Table 10: Performance differences for bags vs. instances in the MIL model.
τ 0.5 1 2

Attention-Pooling Bag Macro-F1 0.8115 0.8486 0.8703
Micro-F1 0.8152 0.8497 0.8710
Weighted-F1 0.8163 0.8497 0.8710
AUROC 0.9567 0.9427 0.9555

Instance Macro-F1 0.2912 0.3316 0.3418
Micro-F1 0.2982 0.3407 0.3519
Weighted-F1 0.2928 0.3368 0.3517
AUROC 0.7173 0.7224 0.7555

Performance differences Macro-F1 0.5202 0.5170 0.5285
Micro-F1 0.5170 0.5090 0.5191
Weighted-F1 0.5235 0.5128 0.5193
AUROC 0.2394 0.2203 0.2000

Additive-Pooling Bag Macro-F1 0.4867 0.4523 0.4938
Micro-F1 0.5894 0.5560 0.5907
Weighted-F1 0.5364 0.4904 0.5367
AUROC 0.9232 0.9133 0.9177

Instance Macro-F1 0.2265 0.2387 0.2307
Micro-F1 0.2709 0.1636 0.2777
Weighted-F1 0.2575 0.0775 0.2713
AUROC 0.7666 0.8076 0.8533

Performance differences Macro-F1 0.2602 0.2136 0.2631
Micro-F1 0.3185 0.3924 0.3129
Weighted-F1 0.2789 0.4130 0.2654
AUROC 0.1567 0.1058 0.0644

Conjunctive-Pooling Bag Macro-F1 0.7956 0.7855 0.7937
Micro-F1 0.7973 0.7867 0.7962
Weighted-F1 0.7999 0.7880 0.7995
AUROC 0.9470 0.9442 0.9476

Instance Macro-F1 0.6393 0.6422 0.6476
Micro-F1 0.7664 0.7644 0.7702
Weighted-F1 0.7977 0.7954 0.8012
AUROC 0.9503 0.9509 0.9537

Performance differences Macro-F1 0.1563 0.1433 0.1461
Micro-F1 0.0309 0.0223 0.0260
Weighted-F1 0.0022 -0.0074 -0.0017
AUROC -0.0033 -0.0067 -0.0061

Table 11: Predicted performance for Snippets (i.e., bags) and patches (i.e., instances) of MD-MIL.
None-Attention Attention Cross-Attention

Snippet (Bag) 0.87 0.88 0.91
Patch (Instance) 0.85 0.85 0.91

performs instance-pooling based on these latent variables. Since Causal MIL derives predictions
using individual instance features and performs instance-pooling based on these values, it can be
learnable on instances under the space DInd

XY .

2. Multi-Instance Residual Evidential Learning (MIREL) [38]: This algorithm is composed of two
primary modules: 1) a module that predicts the bag label using the average feature of the instances
that constitute the bag and 2) a module that performs predictions on individual instances based on
their features. MIREL calculates the residual between the bag prediction and the instance predictions,
which is indirectly used to perform instance-pooling. The instance prediction module of MIREL
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operates based on the instance features themselves without applying weighted aggregation through
additional information. Thus, it can be learnable on bag predictions under the space DInd

XY :

(a) The loss function of MIREL can be expressed as the sum of two loss terms generated by the bag
and instance prediction modules:

• Lbag = ℓbag(ŷbag, ybag), Linst =
∑N

i=1 ℓinst(ŷi, yi)
• Ltotal = Lbag + λLinst, where λ is a weighting factor.
• ŷbag is the prediction made by the bag prediction module; ybag is the true label for the bag;
ŷi is the label predicted by the instance prediction module; yi is the label inferred for each
instance based on ŷbag and residual evidence.

(b) The risks for the bag, instance, and total can be defined as follows:
• Rbag = E(X,Y )∼DInd

XY
[ℓbag(ŷbag, ybag)]

• Rinsti = E(X,Y )∼DInd
Xinsti

Y
[ℓinst(ŷi, yi)]

• Rtotal = Rbag + λ
∑N

i=1 Rinsti

(c) Since our theoretical framework evaluates instance learnability under Assumption 1, we can
express this as follows:

• inf Rtotal = inf Rbag + λ inf
∑N

i=1 Rinsti

• Rbag is learnable under DInd
XY . Therefore, infh∈H RDInd

XY
= inf Rbag holds.

• inf
∑N

i=1 Rinsti is learnable with respect to the instance labels generated by the bag predic-
tion module. Therefore, infh∈H RDInd

XY
= λ inf

∑N
i=1 Rinsti .

• λ is a constant, infh∈H RDInd
XY

= inf
∑N

i=1 Rinsti . Therefore, Condition 4 holds.

Therefore, the algorithm is learnable for instances.

3. Loss-based Attention for Deep Multiple Instance Learning (Loss-Attention) [39]: This algorithm
directly connects the attention mechanism with the loss function to simultaneously learn instance
weights, instance predictions, and bag predictions. Specifically, Instance weights are calculated based
on the loss function. The parameters of the fully connected layer for bag prediction are shared with the
instance weight calculation. A regularization term consisting of instance weights and cross-entropy
functions is introduced to improve instance recall. A consistent cost is added to smooth the learning
process. Through this approach, Loss-Attention can more effectively learn the importance of instances
and improve bag classification performance compared to existing attention-based MIL methods.
Loss-Attention [39] aims to simultaneously optimize the hypothesis spaces for both instances and
bags by sharing parameters between them during the learning process. However, in DGen

XY , according
to Condition 8, while the Loss-Attention algorithm is learnable for bags, it is not learnable for
instances.

4. Self-Attention Attention-based MIL Pooling (SA-AbMILP) [40]: This algorithm enhances the
reflection of relationships between instances compared to traditional Attention MIL [2] by employing
a self-attention mechanism to compute instance features, which are then used for attention-pooling.
Since SA-AbMILP uses transformed instance features that reflect relationships with other instances
via self-attention for prediction and attention-pooling, it does not satisfy Condition 10 and is not
learnable for instances.

5. Transformer-based MIL (TransMIL) [19]: This algorithm employs a Transformer module to
better capture the relationships between instances. The Transformer module extracts a cls token
feature based on the information of instances that reflect their relationships with other instances.
TransMIL performs prediction on the bag using the cls token feature, a form of attention-pooling.
Since TransMIL uses positional encoding features, its learnability for instances cannot be guaranteed
by Theorem 11. Moreover, its attention-pooling does not satisfy Condition 10 and is not learnable for
instances.

G Limitations and Future works

According to the MIL survey by Carbonneau et al. [57], recent major issues in MIL have been
defined as label ambiguity [58], label noise [59, 60], complex bag composition [61, 62, 63], and
handling non-i.i.d. data [64, 65]. This study has only addressed the learnability of instances and did
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not cover the applicability of these issues. In future work, we plan to utilize the theoretical framework
developed in this study to devise countermeasures for issues such as label ambiguity and label noise,
aiming to enhance the performance of MIL algorithms through theoretical research. Furthermore,
we will seek solutions for problems like complex bag composition and handling non-i.i.d. data
based on the theoretical framework of MIL algorithms. Additionally, noting that existing MD-MIL
algorithms [6, 20] have extended non-learnable MIL algorithms to multi-dimensional cases, we
will devise new MD-MIL methodologies based on the learnable MIL algorithms by our proposed
theoretical framework.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contributions of the paper are presented in the abstract and introduc-
tion.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have shown the Limitation and Future work in Appendix G.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The Theorems and Lemmas proposed in the paper are derived from the
Definitions and Assumptions defined through Notation. Detailed proofs for each Theorem
are provided in the Appendix.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In this study, to validate several final Theorems derived from the initial Theo-
rems, we created appropriate experimental environments for each Theorem and conducted
experiments. The results from these experiments provided empirical validation for the
Theorems.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In this study, experiments were conducted using the open datasets MNIST
and the WebTraffic dataset [10]. For MNIST, since it was used to create synthetic datasets
tailored to the experimental environment, we submit the code for data preprocessing and
model training. For the WebTraffic dataset [10], as experiments were conducted by swapping
models in the code published by Early et al. [10], we submit the code related to the model
structures.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified the experimental setting and test details in Appendix D.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: Although we did not include error bars, we ensured the reliability of the exper-
iments by repeating each experiment 10 times and taking the average of the performance
results. This approach was taken to enhance the statistical reliability of our results.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We specified the sentence ’All experiments conducted in this study were
performed on an Intel(R) Xeon(R) Silver 4210R 40 Core CPU @ 2.40 GHz, 32GB RAM,
and NVIDIA RTX A5000.’ in the section describing the experimental settings.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research proposes conditions that must be theoretically guaranteed for
the MIL model to be learnable on instances. This study poses no ethical issues; rather, it is
expected to ensure the reliability of MIL algorithms.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our research proposes conditions that must be theoretically guaranteed for the
MIL model to be learnable on instances. Since MIL research is utilized in fields requiring
reliable predictions, such as pathological image diagnosis and video anomaly detection,
satisfying these conditions is essential. In this regard, our research has a positive societal
impact.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our research proposes a theoretical framework to evaluate whether MIL
algorithms are learnable on instances, which is not associated with such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: For experiments extending existing research, we have cited the respective
studies and provided the GitHub link in the section describing the experimental settings.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the code for dataset preprocessing, model training, and the model
itself as additional submissions.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: This study did not involve crowdsourcing.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This study did not involve crowdsourcing or research with human subjects.
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