
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A DENSE SUBSET INDEX FOR
COLLECTIVE QUERY COVERAGE

Anonymous authors
Paper under double-blind review

ABSTRACT

In traditional information retrieval (IR), corpus items compete with each other to
occupy top ranks in response to a query. In contrast, in many recent retrieval
scenarios such as multi-hop question answering (QA), table QA, or text-to-SQL,
items are not self-complete: they must instead collaborate, i.e., information from
multiple items must be combined to respond to the query. In the context of modern
dense retrieval, this need translates into finding a small collection of corpus items
whose contextual word vectors collectively cover the contextual word vectors of
the query. The central challenge is to retrieve a near-optimal collection of covering
items in time that is sublinear in corpus size. By establishing coverage as a sub-
modular objective, we enable successive dense index probes to quickly assemble
an item collection that achieves near-optimal coverage. Successive query vectors
are iteratively ‘edited’ to account for current coverage, and the dense index is built
using random projections of a novel, lifted dense vector space. Beyond rigorous
theoretical guarantees, we report on a scalable implementation of this new form
of vector database. Extensive experiments establish the empirical success of our
method, in terms of the best coverage vs. query latency tradeoffs.

1 INTRODUCTION

In traditional information retrieval (IR), the relevance score of an item (passage or document), given
a query, is computed independent of other items (Manning et al., 2008), and top-K items presented.
The underlying assumption is that a relevant item is self-complete, and can satisfy the information
need by itself. Therefore, different items are alternatives or competitors. The basic premise that
items are competitors is invalid for many modern retrieval applications. In a multi-hop question
answering (QA) setting (Yang et al., 2018), given the query “Which computer scientist from Cla-
mart was an editor of Algorithmica?” the following Wikipedia passages collaboratively provide the
answer — a competitive comparison of their relevance scores against each other is pointless.

Mohammad T. Hajiaghayi, Computer scientist at the University of Maryland, was recently chosen
to serve as editor-in-chief of Algorithmica

Algorithmica: Editor’s foreword; Bernard Chazelle. This special issue of Algorithmica is devoted
to computational geometry.

Bernard Chazelle: Bernard Chazelle is a French computer scientist. Chazelle was born in Clamart.

Crucially, there may be no single passage with both Clamart and Algorithmica in it. Thus, iso-
lated ranking can mislead (first passage), and reasoning over item subsets is essential for full query
coverage. Similar challenges arise in knowledge graph QA (Kosten et al., 2023), table QA (Chen
et al., 2021; Zhao et al., 2022b; Chen et al., 2025b), and schema retrieval for text-to-SQL (Li et al.,
2023; Lei et al., 2025; Chen et al., 2025a), where evidence spans multiple corpus items. In all these
applications, a relevance score must be associated with an item subset, not individual items. Imple-
mentations often use off-the-shelf vector databases with per-item scoring functions with an inflated
K, hoping to recall a superset of the corpus items needed, then filter away the rest. This two-stage
approach can fall short because of two related reasons: top-scoring items (e.g., multiple biographies
of Chazelle) within the budget of K may be redundant, and yet fail to cover all aspects of the query.

Importance of collective query coverage These limitations point to a central lesson: beyond
relevance of individual corpus items, a retriever should promote item subsets that collectively cover
the query. Our goal is to design and implement an efficient algorithm to achieve this end.

1

https://www.umiacs.umd.edu/news-events/news/hajiaghayi-selected-editor-chief-algorithmica
https://link.springer.com/article/10.1007/BF01840355
https://en.wikipedia.org/wiki/Bernard_Chazelle

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our contributions Given the recent success of dense retrieval (Zhao et al., 2022a) and its use
with language models (Lewis et al., 2021), a new formulation for collective first-stage retrieval is
crucial, along with a scalable algorithm and an implementation recipe of this new form of a vector
database. We introduce advances on all three fronts.
— Collective retrieval as vector bag coverage: We model the query and each corpus item as a sub-
set of a universe of atoms (e.g., words from a vocabulary), mapped into bags of dense embedding
vectors via a contextual encoder (Reimers et al., 2019; Lee et al., 2019). Then, we compute the
score of a subset S of items by measuring the extent to which each atom vector q ∈ Q is ‘covered’
by some atom vector in {Xc : c ∈ S}. This allows us to represent the collective retrieval prob-
lem as maximization of facility-location (Cornuejols et al., 1977) style coverage objective, which
evaluates the extent of query coverage achieved by the selected subset. Our proposal generalizes
Chamfer based MaxSim score (Butt et al., 1998; Khattab et al., 2020; Santhanam et al., 2021;
2022) and is monotone and submodular. As a result, a greedy algorithm—where each iteration adds
the document with maximum marginal gain—enjoys an approximation guarantee, while avoiding
exponential complexity.
— Marginal gain maximization viewed as retrieval: Direct evaluation of marginal gains over all
documents is infeasible for large corpora, as it scales linearly with corpus size at each selection
round. We view this problem as a classic retrieval challenge, albeit with a more complex objective:
find the item with the highest relevance score, defined as the marginal gain.
— ANN retrieval using marginal gain approximation: Efficient retrieval requires fast indexed ac-
cess of the corpus items. However, the marginal gain is not directly amenable to indexing the corpus
items in a manner that allows sublinear-time access to items with the largest marginal utility. To get
past this blocker, we first propose a novel ‘lifted’ or augmented vector representation of query and
corpus atoms. Specifically, we encode the evolving coverage of the current set S at each iteration
into an augmented query representation, while corpus embeddings remain static. This expresses the
marginal gain as a sum of hinge functions over dot products of the ‘lifted’ representations, which,
however, still remains difficult to index. Then we design a novel random projection of the lifted
representations, yielding a form that is finally amenable to indexing. We give an end-to-end proba-
bilistic approximation guarantee of the whole method, which we call DISCO (Dense Index for Set
Coverage). (Here “dense” means the embedding vectors are dense and not sparse, e.g., in discrete
token space.)
— Implementation and experiments: We implement DISCO as a multi-vector dense retrieval ar-
chitecture optimized for I/O and computational efficiency, and balancing query latency against sub-
set selection quality. Experiments across standard benchmarks demonstrate that DISCO achieves
superior query coverage at a given rank, with significantly better latency–quality tradeoffs—often
exceeding 100× speedups over greedy baselines.

2 PRELIMINARIES

Notation We define [N] =
{
1, . . . , N

}
, and [·]+ = max

{
·, 0
}

as the ReLU or hinge function.
Given a vocabulary of atoms (which can be words, tokens, or other elementary components) V ,
A query is modeled as a set or sequence of atoms (q1, . . . , qM) ⊂ VM . Similarly, we write a
corpus item as (x1, . . . , xL) ⊂ VL. We write q• ∈ Rd and x• ∈ Rd as the contextual dense
embeddings vectors of q• and x•. If queries and items are sets of atoms, we can convert them to
sets of vectors, one per atom, using a set transformer (Lee et al., 2019). If queries and items are
sequences, a transformer-based language model (Reimers et al., 2019) can convert them to sets of
vectors, one per atom. Contextualization lets us represent the query as a set of dense embeddings
Q =

{
q1, . . . , qM

}
, and similarly the corpus item as X =

{
x1, . . . ,xL

}
. Given the indices of the

corpus items C = [N], we write Xc to denote one corpus item, indexed with c ∈ C. Throughout, we
assume ∥q∥ = ∥x∥ = 1 for all q ∈ Q and x ∈ X .

Monotonicity and submodularity Given the set of corpus items {Xc | c ∈ C}, we consider a
query dependent set function F (•, Q) : 2C → R. For a subset S ⊂ C, we denote the marginal gain
of c beyond S as F (c |S,Q) = F (S ∪ {c}, Q)− F (S,Q). Given a query Q, the function F (•, Q)
is called monotone if F (c |S,Q) ≥ 0 whenever S ⊂ C and c ∈ C\S; and, F is called submodular if
F (c |S,Q) ≥ F (c |T,Q) for S, T ⊂ C and c ∈ C\T (Edmonds, 1970).

MaxSim (or Chamfer) score (Khattab et al., 2020; Santhanam et al., 2021; 2022; Dhulipala
et al., 2024) MaxSim(Q,X) is a relevance score between a query Q and a single document X .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Informally, it measures the extent to which a corpus item X ‘covers’ the atoms/words of a query Q.
For each atom vector q ∈ Q, MaxSim identifies the most similar atom vector in X , then aggregates
these maximum similarities across all query atoms. Formally,

MaxSim(Q,X) =
∑

q∈Q maxx∈X q⊤x (1)
Note that multiple query atoms may be covered by a single atom in a corpus item. The distance
analogue of this similarity is the well-known Chamfer distance (Borgefors, 1988; Butt et al., 1998;
Ma et al., 2010; Feng et al., 2025).

Independent top-K retrieval Current late-interaction retrievers, such as ColBERT (Khattab et al.,
2020) and its variants (Santhanam et al., 2021; 2022), rank documents independently using the
MaxSim score (1). Retrieving the top-K items under this scoring is equivalent to solving the opti-
mization problem: maxS⊂C:|S|=K

∑
c∈S MaxSim(Q,Xc), which simply selects the K documents

with the largest individual MaxSim scores. In other words, this optimization reduces to indepen-
dently scoring all documents and returning the K highest scorers, without accounting for redundancy
or interaction among the selected items.

To support efficient search for top-K independent items, ColBERT and its variants design index-
ing and pruning techniques tailored to MaxSim. In particular, they employ an inverted file index
(IVF) (Douze et al., 2024), where atom/word vectors x ∈ Xc from all corpus item are clustered
into centroids. At query time, for each query atom/word vector q ∈ Q, the index retrieves candidate
corpus items associated with nearby centroids, followed by successive filtering and pruning stages
that approximate the final MaxSim score while maintaining efficiency.

Limitations of top-K retrieval for complex queries The top-K retrieval problem, discussed
above, seeks K corpus items from C such that each item individually covers the query Q, indepen-
dent of any other item in the top-K list. However, for a class of complex queries, this approach is
suboptimal, as can be seen from our running example. No single passage may cover all atoms/words
in the query, but multiple passages may cover most query atoms/words and contain enough infor-
mation to answer the question.

Overview of our approach To tackle the above challenges, we avoid retrieving top-K indepen-
dent items based on MaxSim score (1). Instead, we design a relevance measure based on soft set
coverage, which guides the selection of a subset S ⊂ C, which can collectively cover the query
Q, instead of each covering Q independently. Subsequently, we design an indexing and search
mechanism, specifically tailored to maximizing this coverage objective.

3 PROPOSED APPROACH

We design a coverage-based set utility function F (S,Q), guided by the related Facility Location
objective (Cornuejols et al., 1977; Mirchandani et al., 1990; Lin et al., 2009). We first present our
objective in the context of retrieval and describe the well-known greedy method (Nemhauser et al.,
1978), which can maximize F by iteratively searching over the entire corpus set {Xc}. Next, we
provide an approximation of the marginal gain F (c |S,Q), which is amenable for indexing and
search. Finally, we describe our multivector inverted file index (IVF) and the associated query-time
search procedure, both tailored to the coverage-based objective.

3.1 COVERAGE MAXIMIZATION

Objective Let
{
Xc | c ∈ C

}
be a large collection of corpus items. We seek to maximize a coverage

objective function F (S,Q), which quantifies how well the set S collectively covers the atom em-
beddings q ∈ Q. Given a query Q, for each atom q ∈ Q, we first compute the maximum similarity
q attains with any atom across the corpus items in S and then aggregate over all q ∈ Q. Formally,
we write our set utility F (S,Q) and coverage-based retrieval objective as:

F (S,Q) =
∑
q∈Q

max
x∈∪c∈SXc

q⊤x; maximize
S⊂C

F (S,Q) such that |S| ≤ K. (2)

In the optimization for top-K retrieval task, viz., maxS⊂C:|S|=K

∑
c∈S MaxSim(Q,Xc), it is the

outer sum, independently carried over c ∈ S, which can introduce redundancy, potentially returning
multiple documents that cover the same query atom/s. In contrast, F (S,Q) (2) does not give additive
credit for multiple document items redundantly covering the same query atom.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Monotonicity, submodularity and greedy maximization From the extensive literature on
submodular functions (Cornuejols et al., 1977; Lin et al., 2009; Krause et al., 2014), it
is easy to establish that F (S,Q) is monotone and submodular. Therefore, we can obtain

Algorithm 1 Greedy algorithm to solve (2).

1: Initialize S0 ← ∅
2: for k = 1, . . . ,K do
3: ck = argmaxc∈C\Sk−1

F (c |Sk−1, Q)

4: Sk ← Sk−1 ∪ {ck}
5: return SK

an approximate solution of the maximization prob-
lem (2), using a greedy algorithm (Nemhauser et al.,
1978). Having computed a set Sk at iteration
k ≤ K, this algorithm iteratively selects the item
having index c that has the highest marginal gain
F (c |S,Q) at each step (Algorithm 1). While
not guaranteed to find the true optimal set S∗ =
argmaxS⊂C:|S|≤K F (S,Q), it is guaranteed to find a solution that is within a constant factor of
(1− 1/e) ≈ 63% of the optimal solution. In practice, it is frequently found much closer to optimal.

Bottlenecks with greedy algorithm Despite its theoretical appeal, the greedy algorithm is pro-
hibitively expensive for large corpora, as it requires Θ(|C|) evaluations of the marginal gain
F (X |Sk−1, Q) per iteration (line 3 of Algorithm 1). For the MS-MARCO corpus (|C| ∼ 8.8 mil-
lion passages), selecting just K = 10 corpus items requires 88 million marginal gain computations.
Even at a speed of one millisecond per computation, this retrieval process would take over 24 hours
for a single query, which is prohibitive.

3.2 BRIEF DISCUSSION OF RELATED WORK

Existing variants of greedy selection For atomic (i.e., non-embedded) items, the scalabil-
ity of set cover has been extensively studied (Cormode et al., 2010). Existing alternatives
such as Lazy Greedy (Minoux, 2005), Stochastic Greedy (Mirzasoleiman et al., 2015), and
Lazier-than-lazy Greedy (Mirzasoleiman et al., 2015) offer partial efficiency gains. Lazy Greedy
reduces the number of evaluations by maintaining a heap but still relies on exhaustive scoring.
Stochastic Greedy and Lazier-than-lazy Greedy prune the corpus uniformly at random in each it-
eration, in a query-agnostic manner that degrades utility. As a result, these works do not provide a
desirable trade off between efficiency and utility.

Diversity in information retrieval Submodular set reward functions have been proposed in the In-
formation Retrieval community since at least 1998, motivated by diversity (Bennett et al., 2008) and
subtopic coverage (Zhai et al., 2003). These objectives are usually implemented as a reranking stage,
after the small subset of candidates has already been selected using a scalable first-stage retriever.
For reranking, max marginal relevance (Carbonell et al., 1998), multi-armed bandits (Radlinski et al.,
2008), determinantal point processes (Kulesza, 2012a; Chen et al., 2017), query reformulation (San-
tos et al., 2010), etc., are used. Hence, these approaches focus on scoring function computation at
the reranking stage. These reranking efforts are vulnerable to loss of recall in the first-stage.

In contrast, our focus is on coverage in the first stage itself, where we design indexing and retrieval
method tailored specifically for coverage maximization. Note that, submodular maximization has
been widely used since 1978, but our work focus on designing ANN retriever for coverage based
submodular maximization. Therefore, our work focus on indexing and search, whereas these ex-
isting works, albeit related, focus on suitable submodular scoring function computation and the
application of greedy variants to maximize it. Extensive search reveals a paucity on direct first-
stage dense retrievers that optimize a query-coverage objective. A notable exception is in the use
of pseudo-relevance feedback in dense retrieval to improve facet/subtopic coverage (Yu et al., 2021)
— like key-value memory networks (Miller et al., 2016), they also perform multi-round dense query
modification, but there are no formal coverage guarantees.

Further discussion of related work continues in Appendix E.

3.3 RETRIEVAL-ORIENTED APPROXIMATION OF MARGINAL GAIN

Marginal gain maximization from the viewpoint of ANN retrieval To address the above bot-
tlenecks, we need a method to efficiently retrieve the candidates with high marginal gain, in a query
dependent manner. In line with traditional IR, we view the task of maximizing the marginal gain
as “retrieving the corpus item c with the largest relevance score F (c |Sk−1, Q)” at each iteration k.
This requires us to design a retrieval model tailored to the relevance score F (c | Sk−1, Q), along
with compatible indexing and search techniques. However, there are two key challenges:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(1) Unlike dot-product or cosine similarity, the marginal gain F (c |Sk−1, Q) bears a complex re-
lationship between Q and Xc, which is not readily supported by standard indexing models.

(2) For each iteration k, the subset Sk depends heavily on the query Q. This poses a challenge for
indexing, which should ideally employ query-agnostic, one-time preprocessing.

To this end, we approximate the marginal gain F (c |S,Q), to make it amenable to design an ap-
proximate nearest neighbor (ANN) retrieval model. We perform this approximation in two steps:
(I) We provide an alternative representation of F (c |S,Q) using the dot products of two augmented
vectors, one depending on the query and other on corpus items. (II) We design a method, based on
random projections, to build a scalable ANN data structure.

Marginal gain computation using vector augmentation We strategically rewrite the marginal
gain F (c |S,Q) as follows:1

Proposition 1. Given the coverage objective F (S,Q) defined in Eq. (2), the marginal gain is:

F (c |S,Q) =
∑
q∈Q

max
x∈Xc

[
q⊤x−max

u∈S
max
x′∈Xu

q⊤x′
]
+

(3)

The above formula reveals that the total marginal gain of a new corpus item c is the sum, over all
query atom embeddings q ∈ Q, of the new score contribution (q⊤x) that exceeds the best score
already achieved for that atom by the current set S.

Designing indexing and search techniques for any relevance measure requires expressing the score
as a similarity between precomputable corpus representations and a query representation that is
corpus-agnostic. However, in the second term inside the hinge of Eq. (3), the corpus token em-
beddings x′ are coupled with S, which itself depends on the query Q through previously se-
lected items. To isolate x′ from S and Q, we reformulate this term as follows. We observe that
maxu∈S maxx′∈Xu

q⊤x′ = F (S, q) denotes the set coverage value for a singleton set with atom q
alone. If we define the augmented representations of the query and corpus tokens as:

q̂S := [q;F (S, q)] ∈ Rd+1, x̂ := [x;−1] ∈ Rd+1, (4)
then we express Eq. (3) as a dot product between these two augmented vectors in lifted vector space:

F (c |S,Q) =
∑
q∈Q

max
x∈Xc

[q⊤x− F (S, q)]+ =
∑
q∈Q

max
x∈Xc

[q̂⊤
S x̂]+ (5)

Here, we transfer the dependency of F on S into the query and obtain a state-dependent representa-
tion q̂S . Consequently, the corpus token representation x̂S becomes agnostic to S and Q.

Random projection for hinge-ANN The last hurdle we face is the non-linearity of the hinge
function, [•]+ in Eq. (5), which prevents direct use of a standard ANN retrieval. To address this
challenge, we approximate [q̂⊤

S x̂]+ using dot product of two vectors, obtained by projecting q̂S and
x̂ on to random hyperplanes. The key insight is to use a randomized feature map that, with high
probability, mimics the behavior of the hinge function applied to dot product between two vectors.

Let u,v ∈ Rd+1 be two vectors (e.g., u = q̂S and v = x̂); and w ∈ Rd+1 be a random vector
drawn from a standard multivariate normal distribution, i.e., w ∼ N (0, Id+1). We define a feature
map Φw : Rd+1 → R2(d+1) as follows:

Φw(u) ≜
[
u; sign(w⊤u) · u

]
/
√
2. (6)

Then, we can express [u⊤v]+ as follows.

Theorem 2. Given any two vectors u,v ∈ Rd+1, let w be a random hyperplane w ∼ N (0, Id+1),
and Φw be the transformation defined in Eq. (6). Then, we have the following result:

Φw(u)⊤Φw(v) = [u⊤v]+ with probability p ≥ 0.5. (7)
Proof sketch Note that Φw(u)⊤Φw(v) = u⊤v or 0, based on whether sign(w⊤u) = sign(w⊤v)
or not. From Charikar (2002), we can show that probability of this condition is p = 1 −
1
π arccos(u⊤v

||u||·||v||) or p = 1
π arccos(u⊤v

||u||·||v||). We use the sign of u⊤v to argue that p ≥ 0.5.

While the above relationship holds with p ≥ 1/2, we can draw more random hyperplanes wr and
perform a max aggregation of Φwr

(u)⊤Φwr
(v) to obtain a more accurate estimate of [u⊤v]+. This

gives us our approximation result as follows.

1Proofs of all technical results are in Appendix F.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ANNS

ANNS

ANNS

ANNSk= th round approximate
nearest neighbor search

Index Preprocess Corpus

Index

Index

Index

cluster
centroids

Query execution

Indexing

Posting list for each cluster with
document IDs

Figure 1: DISCO block diagram. Random vectors {wr : r ∈ [R]} are sampled. Corpus items
{xc : c ∈ [C]} are mapped to vectors Φwr (x̂c) for each r. A sub-index is built for each r. In it,
we cluster {Φwr (x̂c) : c ∈ [C]} into B clusters with centroids {obr : b ∈ [B]}. Each centroid
is associated with a posting list containing document IDs {c}. Query execution proceeds in K
rounds, while the retrieved item set grows from S0 = ∅ to SK as output. Each round executes an
approximate nearest neighbor search, labeled ANNS1 to ANNSK. Each ANNSk round consults all
R indices and chooses the next item ck in o(C) time.

Theorem 3. Suppose {w1, . . . ,wR} be R random hyperplanes with wr
i.i.d.∼ N (0, Id+1). Given

the state-dependent representation for each query token q̂S := [q;F (S, q)] and the query agnostic
representation of each corpus token x̂ := [x;−1] as defined in Eq. (4), let the randomized function
Gw1:R

be defined as:

Gw1:R
(c;S,Q) =

∑
q∈Q

max
r∈[R]

max
x∈Xc

Φwr
(q̂S)

⊤Φwr
(x̂) (8)

Then, for any c ̸∈ S, S ⊂ C and Q = {q}, a positive probability δ > 0 and R ≥ log(|Q|/δ), we
will have Gw1:R

(c;S,Q) = F (c |Q,S), with probability atleast 1− δ.

Proof sketch We note that maxwr∈Rd+1 Φwr (q̂S)
⊤Φwr (x̂) = [q̂⊤

S x̂]+. Therefore, we draw mul-
tiple samples of wr and compute an empirical maxima of the dot product between the projected
vectors which approximate [q̂⊤

S x̂]+. Then obtain the required probability using union bound.

Algorithm 2 Greedy algorithm based on
proposed approximation

1: Initialize S0 ← ∅, w1,,wR ∼ N (0, Id+1)
2: for k = 1, . . . ,K do
3: ck = argmaxc∈C\Sk−1

Gw1:R(c;S,Q)

4: Sk ← Sk−1 ∪ {ck}
5: return SK

We observe that if the number of tokens |Q| < 32
— which is a common scenario in applications —
then we need only R = 8 hyperplanes to ensure
that Gw1:R

(c;S,Q) = F (c |Q,S) with probabil-
ity at least 1 − δ = 0.875. If the query were
shorter, say, |Q| < 16, the success probability
would increase to 1 − δ = 0.94. (The union
bound is likely pessimistic in practice.) Note that
the RHS of Eq. (8) closely resembles the MaxSim score in Eq. (1), which is amenable to indexing
and search. In the next section, we develop indexing and search methods tailored to Gw1:R

.

Approximation guarantee In Algorithm 2, we replace the marginal gain in line 3 of Algorithm 1
with our approximation Gw1:R

(c;Sk−1, Q). In line 3 of Algorithm 2, we obtain an element c such
that F (c |Sk−1, Q) with probability at least 1 − δ. This algorithm can be shown to enjoy an opti-
mality guarantee (in expectation) of (1 − 1/e − δ), which is very close to Algorithm 1, even with
small value of R = 8 as discussed above.
Theorem 4 (Approximation guarantee of Algorithm 2). Let SK be the set of K corpus items selected
by Algorithm 2, and let S∗ be the optimal set for F , i.e., S∗ ∈ argmaxS:|S|≤K F (S,Q). Given
δ ∈ (0, 1], if we set the number of random projection vectors R ≥ log(|Q|/δ),

Ew1:R
[F (SK , Q)] ≥ (1− 1/e− δ) · F (S∗, Q). (9)

3.4 INDEXING AND RETRIEVAL

We complete the presentation of our system, DISCO, by designing an ANN index to implement
the search for argmaxc Gw1:R

(c, Sk−1, Q) in every round, building upon the best practices from
the ColBERT family of multi-vector ANN methods: representing each item as a multivector (a

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

set of token embeddings) (Khattab et al., 2020), storing them compactly via centroid–residual en-
coding (Santhanam et al., 2021), and accelerating candidate filtering through centroid-first prun-
ing (Santhanam et al., 2022). However, significant modifications and enhancements are needed to
support our collective objective, lifted vector space, mutating queries and multiple projections. A
block diagram of DISCO is shown in Figure 1.

Indexing Our indexing step is based on multivector IVF, adapted from Santhanam et al. (2022,
PLAID), but tailored to maximizing the relevance score measured in terms of Gw1:R

(•, Sk−1, Q).
Algorithm 3 summarizes the DISCO indexer. Corpus atom vectors are augmented in step 4, which
will support query-dependent, per-round coverage subtraction (−F (S, q) in Eq. (5)), while remain-
ing query-agnostic. R projection vectors are sampled in step 6. For each projection vector, feature
maps Φwr

(x̂) are computed in step 7. To prepare the IVF index, the feature maps are clustered

Algorithm 3 DISCO indexing stage.

1: Input: Corpus embeddings {Xc = {x ∈ Rd}}c∈C ;
#hyperplanes R; #clusters B; Quantizer (see text)

2: Output: Inverted index InvInd(r); forward index
FwdInd(r), centroids {ob,r}Bb=1 for r ∈ [R]

3: InvInd(r),FwdInd(r) ← ∅ ∀r
4: Augment: x̂← [x; −1] for all x ∈ Xc, c ∈ C (4)
5: for r = 1 to R do
6: Random sample: wr ∼ N (0, Id+1)
7: Project and prepare postings:
8: Z ←

{
(Φwr (x̂), c) | x̂ ∈ Xc, c ∈ C

}
(6)

9: Cluster: {ob,r}Bb=1 ← kmeans({Φwr (x̂)}, B)
10: for each (z, c) ∈ Z do
11: b∗← argminb ∥z − ob,r∥2 {nearest centroid}
12: ∆← Quantizer(z − ob∗,r)
13: Insert into indices:
14: InvInd(r)(b) ← InvInd(r)(b∗) ∪ {c}
15: FwdInd(r)(c) ← FwdInd(r)(c) ∪ (b∗,∆)

16: return {(wr, {ob,r}Bb=1, InvInd
(r),FwdInd(r))}Rr=1

to obtain a set of centroids in step 9. Each
Φwr (x̂) is then represented by its nearest
centroid o and a compact residual code ∆
produced by a Quantizer (Santhanam et al.,
2021; 2022) to reduce the number of bits
needed per dimension. For each sample in-
dex r ∈ [R], we return (1) the projection
vector wr, (2) cluster centroids {ob,r}Bb=1,
(3) inverted lists InvInd(r), and (4) forward
index FwdInd(r), mapping every document
c to its sequence of (b∗,∆) codes across
atoms.

Retrieval Algorithm 4 shows how the in-
dex prepared thus far is used to respond to
a query. Query processing proceeds in K
greedy rounds. In each round, each replica
r ∈ [R] contributes candidate items (docu-
ments). These are merged and pruned. We
progressively refine candidates through six
pruning stages, employing graded approxi-
mations to Eq. (8) and ultimately converging toward the “gold standard” Eq. (5). Surviving candi-
dates get their scores more accurately calculated by accessing their residuals and the cluster cen-
troids. A final reranking is performed using the ‘true’ scores to select the candidate with the best
marginal score for the current round. Then the next round commences. We elaborate on some salient
steps of Algorithm 4 below.
— Replica-level coarse filtering: For each round k and each projection r, for each query atom
vector q, we compute q̂S , then the vector Φwr

(q̂S), and use it to probe InvInd(r) to collect some
corpus items. We compute the union of these item candidate sets over all query atoms, providing
the roughest approximation to Eq. (8).
— Replica-level centroid pruning: To refine the initial candidate pools Cr,0, we assign coarse
relevance scores using query–centroid similarities. For each document item c ∈ Cr,0, the forward
index FwdInd(r) provides the atom centroids associated with c, and the score of c is re-estimated as
shows in step 11. This step moves us one step closer to Eq. (8) by aggregating across query tokens,
while still omitting the maxr∈[R] over replicas and utilizing centroids rather than the true corpus
token embeddings. Following PLAID (Santhanam et al., 2022), centroids with scores below τ are
pruned. Each replica thus retains a refined set Cr,1 of n candidates.
— Replica Pooling: We collect all the corpus items in each refined set for each replica into C1, i.e.,
C1 ←

⋃R
r=1 Cr,1.

— Fine-grained filtering: Given C1, pooled over all replicas, the score of each corpus item c ∈ C1
is refined to ∑

q∈Q

max
r∈[R]

max
o∈FwdInd(r)(c)

Φwr
(q̂S)

⊤o,

which pools information from all replicas and approximates Eq. (8) better, while still being centroid-
based. The pool is then pruned to retain roughly n/4 candidates, denoted C2, for the final refinement
stage.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

— Residual scoring: At this stage, we access residuals ∆ from forward indices FwdInd
to reconstruct document items and score them more accurately. For each candidate c ∈ C2,

Algorithm 4 DISCO query processing steps.

1: Inputs: Query Q, projections w1:R, centroids
{
ob,r

}
,

indices {(InvInd(r),FwdInd(r))} for b∈B, r∈[R]
2: Hyperparameters τ , n, n′

3: Output: Selected subset S ⊆ C of size K
4: Initialize S0 ← ∅; initialize query embedding q̂S

5: for rounds k = 1 to K do
6: for replicas r = 1 to R do
7: # Replica-level coarse filtering
8: b∗q←argmaxbΦwr(q̂S)

⊤ob,r(closest centroid)

9: Cr,0 ← ∪q∈QInvInd
(r)(b∗q)

10: # Replica-level centroid pruning
11: Compute

∑
q∈Q

max
o∈FwdInd(r)(c)

Φwr (q̂S)
⊤o, for

every corpus item in filtered set: c ∈ Cr,0
12: Discard items with scores <τ
13: Retain top n into Cr,1
14: Replica Pooling: C1 ← ∪R

r=1Cr,1
15: # Fine-grained filtering
16: Compute

∑
q∈Q max

r∈[R]
max

o∈FwdInd(r)(c)
Φwr (q̂S)

⊤o,

for c ∈ C1 and retain top n/4 into C2
17: # Residual scoring
18: For each c ∈ C2, compute Tc =

{
x̂∆ = ∆+ o

}
where (o,∆) ∈ FwdInd(r)(c)

19: Compute C3 consisting of top-n′ items from∑
q∈Q maxr∈[R] maxx̂∆∈Tc Φwr (q̂S)

⊤x̂∆

20: # Full-precision scoring+selection
21: ck ← argmaxc∈C3 F (c | S,Q);

Sk ← Sk−1 ∪ {ck}
22: Update state-dependent query representation q̂Sk

23: return SK

we obtain a set of reconstructed token
embeddings Tc = {x̂∆ = ∆ + o}
where (o,∆) ∈ FwdInd(r)(c), serv-
ing as an approximation to the original
Xc. The marginal gain of c is refined
as
∑

q∈Q maxr∈[R] maxx̂∈Tc
Φwr (q̂S)

⊤x̂,
which closely mirrors Eq. (8) while still
operating on compressed rather than full-
precision embeddings. The candidates are
reranked accordingly, and the top n′ items
retained in C3.
— Full-precision scoring+selection: C3
is small enough that we can now compute
the exact marginal gain to the coverage ob-
jective F (c |S,Q) (5) for each surviving
c ∈ C3. The gain is evaluated using the
full atom vectors in Xc, without centroid
or residual approximations. Item ck with
the largest gain is accumulated to form Sk

from Sk−1. The query representation is up-
dated as q̂S ← q̂S∪{ck}, in preparation for
the next round.

4 EXPERIMENTS

We provide a comprehensive evaluation of
DISCO using seven real datasets and show
that DISCO trades off between accuracy
and efficiency better than several baselines,
with striking improvements in efficiency.
For details, see Appendices H and I.

Datasets We perform experiments with seven large-scale datasets, viz., (1) MS-Marco,
(2) HotpotQA and (3) Fever, from the BEIR (Thakur et al., 2021) benchmark; and, (4) Pooled,
(5) Technology, (6) Writing and (7) Science from the LoTTE (Santhanam et al., 2021) benchmark.
Among them, we report results on the first four datasets in the main and rest in Appendix H. Ap-
pendix G contains details about these datasets. Since Exact Greedy is prohibitively expensive, we
use NFCorpus, a relatively smaller dataset from BEIR, to empirically evaluate the correctness of our
theoretical results in one experiment.

Baselines We compare DISCO against seven competitive baselines, viz., (1) Exact Greedy
(Nemhauser et al., 1978), (2) Lazy Greedy (Minoux, 2005), (3) Stochastic Greedy (Mirzasoleiman
et al., 2015), (4) Lazier-than-lazy Greedy (Mirzasoleiman et al., 2015), (5) PLAID (Santhanam et al.,
2022), (6) MUVERA (Dhulipala et al., 2024) and (7) WARP (Scheerer et al., 2025) Among these,
the first four methods target monotone submodular maximization, while the last three—collected
from the information retrieval (IR) domain—focus on indexing followed by independent top-K re-
trieval based on the MaxSim score in Eq. (1).

Evaluation setting, coverage and efficiency Each dataset consists of a query set Q and corpus
items C. We compute the contextual word embeddings q and x for query and corpus atoms/tokens,
using bert-base-uncased (Devlin et al., 2018).

Our primary evaluation focus is the attained coverage F (SK , Q), where SK is the retrieved subset
of size K. As motivation, fast ramp-up of coverage at small ranks is critical to economize energy
on LLM-based downstream reasoners and response generators. We measure coverage averaged
over queries, FK =

∑
Q∈Q F (SK , Q)/|Q|. Moreover, given a methodM and K, we measure the

efficiency ofM as tExact Greedy,10/tM,K , where tExact Greedy,10 is the per-query time for Exact Greedy

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

DISCo

Lazier-than-lazy Greedy

Exact Greedy

MUVERA

Lazy Greedy

WARP

Stochastic Greedy

PLAID

100 102 104

Efficiency→

24

26

28
A

v
g

F
(S

K
,Q

)
F

(S
K
,Q

)
F

(S
K
,Q

)

(a) MS-Marco

100 102 104

Efficiency→

20

25

(b) HotpotQA

100 102 104

Efficiency→

20

25

(c) Fever

100 102 104

Efficiency→

20

25

(d) Pooled

Figure 2: Trade off between efficiency and average coverage objective of DISCO and state-of-the-
art baselines on four datasets: (a) MS-Marco, (b) HotpotQA, (c) Fever, and (d) Pooled. DISCO
achieves the best trade-off, matching greedy baselines in coverage while being impressively faster
(> 100X in some cases), while consistently outperforming IR baselines in terms of average coverage
objective. Efficiency is in log-scale. Upper right corner is the best quadrant.

to retrieve S10, and t is the per-query retrieval time ofM to retrieve K items. We expect a inverse
relationship between coverage and efficiency, and wish to identify methods with the best tradeoff.

Traditional MAP, MRR, NDCG In some datasets such as HotpotQA, test gold sets with |Sgold| =
2 are identified. All these items are needed to infer the response. In such cases, we can directly study
the ranks at which these gold items appear. To condense these ranks to a single number, we can look
at the last rank, or, for more robust aggregation over queries, use a recall-sensitive measure such
as MAP. MRR is inappropriate, because it cares only about the first relevant rank, and, for larger
|Sgold|, even NDCG will not care about recalling all gold items. Additional performance measures
are discussed in Appendix I.1.

In all experiments, we choose K = 10. Both Stochastic Greedy and Lazier-than-lazy Greedy
restrict their search on a subset C′ of corpus items selected uniformly at random, with |C′| =
|C| log(1/ε′)/K. We chose ε′ = 0.5. More details are in Table 3, Figure 4 and Appendix H.7.

4.1 RESULTS

Trade-off between coverage and efficiency Figure 2 shows the trade-off between average cover-
age objective FK and the efficiency with respect to Exact Greedy, obtained by varying the subset
size K. We make the following observations: (1) DISCO trades off between the mean coverage
value FK and the average query time more effectively than all the baselines. (2) DISCO is signif-
icantly more efficient than the variants of the greedy algorithm, viz., Exact Greedy, Lazy Greedy,
Stochastic Greedy and Lazier-than-lazy Greedy. In the MS-Marco dataset, DISCO is at least 100×
faster than these variants. (3) IR baselines, e.g., PLAID, MUVERA and WARP are highly efficient,
owing to their indexing and scalable search pipeline. PLAID shows the best performance among
these IR methods, due to their multivector approach, while MUVERA performs the worst with their
single vector approach. (4) Stochastic Greedy and Lazier-than-lazy Greedy show a poor trade-off
due to query agnostic randomized pruning.

Method Error(F)(↓) MAP (↑)
Exact Greedy 0.69 0.83
Lazy Greedy 0.69 0.83
Stochastic Greedy 2.77 0.19
Lazier-than-lazy Greedy 3.09 0.14
PLAID 1.30 0.81
MUVERA 3.55 0.49
WARP 1.51 0.77
DISCO 0.68 0.84

Table 3: Comparison of DISCO with baselines on
gold labels of HotpotQA (|Sgold| = 2), in terms of
Error(F) =

∑
Q∈Q |F (Sgold, Q)−F (SK , Q)|/|Q|

with K = 2 and Mean Average Precision (MAP).
Green (Blue) shows the (second) best performer.

DISCo

Lazier-than-lazy Greedy

Exact Greedy

MUVERA

Lazy Greedy

WARP

Stochastic Greedy

PLAID

2 3 4 5
Rank of Last Relevant Item Retrieved

0

1000

2000

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

Figure 4: Histogram of the rank of the last (|Sgold|-
th) true relevant item, retrieved for queries in
HotpotQA dataset. DISCO retrieves almost all
items within 2 (sometimes 3) rounds, similar to de-
terministic greedy variants.

Does F (S,Q) reward Sgold? We evaluate the suitability of the coverage objective F (S,Q)
in relation to the annotated ground-truth relevant items Sgold in HotpotQA. In the first eval-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

uation, we report on two metrics: (1) Error(F): This is defined as the average deviation
between the coverages on the gold set Sgold and the retrieved set SK with K = 2, i.e.,
Error(F) =

∑
Q∈Q |F (Sgold, Q) − F (S2, Q)|/|Q|. (2) Mean Average Precision (MAP): We com-

pute MAP on a ranked list of retrieved items, using rank as the selection order for greedy methods
and MaxSim ranks for IR baselines. In Table 3, we summarize the results. We make the following
observations: (1) DISCO achieves the lowest Error(F) indicating that the coverage of the retrieved
sets closely approximates that of the gold set. It also achieves the highest MAP, indicating strong
alignment of its computed subset with the gold annotations. While these numbers are comparable
to Exact Greedy and Lazy Greedy, the efficiency of DISCO is significantly better (see: Figure 2).
(2) Stochastic Greedy and Lazier-than-lazy Greedy perform worst among all methods, owing to their
query-agnostic random pruning strategy.

In the second evaluation, we analyze the ranking of the last relevant item across methods by plotting
a histogram of the position of the last gold retrieved item. A low value of the rank is better as it
implies that the all items in Sgold is retrieved within a small cutoff value of K. Figure 4 shows
the results: DISCO more frequently retrieves all the gold documents within the top 2–3 positions,
similar to Exact Greedy and Lazy Greedy, whereas IR methods such as MUVERA, PLAID, and
WARP more frequently place the last relevant item at lower ranks.

Exact Greedy

#samples R=3

#samples R=1

#samples R=4

#samples R=2

#samples R=5

2 4 6 8 10
K→

20

25

A
v
g

F
(S

K
,Q

)
F

(S
K
,Q

)
F

(S
K
,Q

)

2 4 6 8 10
K→

22

24

Figure 5: Coverage with approximate marginal gain.
(left: NFCorpus, right: Writing)

DISCo

Late Pool, n'= 1

Late Pool, n'= 10

Late Pool, n'= 15

Late Pool, n'= 20

500 1000
Efficiency→

27

28

A
v
g

F
(S

K
,Q

)
F

(S
K
,Q

)
F

(S
K
,Q

)

250 500 750
Efficiency→

23

24

25

Figure 6: Ablation study: Early vs Late pooling.
(left: MS-Marco, right: Pooled)

Quality of approximate marginal gain Here, we assess the quality of Gw1:R
(c, S,Q), our pro-

posed approximation of the marginal gain F (c |S,Q) in Eq. (8). To this aim, we run Algorithm 2
and compare the corresponding coverage values against that of Exact Greedy algorithm. Figure 5
summarizes the results for different numbers of hyperplanes R. We make the following observations.
(1) Approximation quality improves with larger values of R, pushing the coverage trajectory upward.
(2) Even with a smaller value of R = 5, the coverage from Gw1:R

matches with Exact Greedy.

Ablation on early vs late pooling A natural question is whether the replica-level early pooling in
Step 14 of Algorithm 4 is at all necessary. An easier alternative of DISCO is late pooling. Here,
we process R projected queries Φwr

(q̂S) independently, each returning its own top-n′ candidates.
These are then merged and reranked to retrieve the item with the highest marginal gain, bypass-
ing the intermediate fine-grained filtering stage. Figure 6 summarizes the results. Compared to
late pooling, our current early pooling approach is superior both in terms of retrieval efficiency
and the value of the final coverage objective. Early pooling approximates the pooled objective∑

q∈Q maxr∈[R] maxo∈FwdInd(r)(c) Φwr (q̂S)
⊤o more faithfully, ensuring that the candidate set bet-

ter aligns with the marginal gains defined by Eq. (8). This early aggregation allows the method to
discard low-scoring candidates earlier, reducing unnecessary final score computations while retain-
ing documents that contribute most to the true coverage objective.

5 CONCLUSION

Our work introduces a novel framework for collective retrieval, which explicitly seeks to optimize
for coverage of query atom vectors by subsets of corpus items. Coverage maximization can be solved
in a greedy algorithm. However, here, marginal gain computation across the entire corpus is compu-
tationally expensive. To tackle this, at each iteration, we construct augmented vector representations
for both query and corpus items. Then, we apply a randomized projection method and represent the
marginal gain in an amenable form for ANN retrieval. This allows us to develop a practical, scalable
method for sublinear-time retrieval of high-coverage item subsets. Experiments demonstrate that our
method trades off between coverage and efficiency more effectively than the baselines. Future work
could explore alternative similarity functions, richer representations of query-document interactions,
adaptive subset selection strategies, weighted coverage, and dynamic updates.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work raises no specific ethical concerns. We use only publicly available datasets under their
respective licenses and introduce no new human-subject data. Our contribution is an algorithmic
method that improves collective-coverage retrieval over open-source corpora.

REPRODUCIBILITY STATEMENT

We have ensured that our results are fully reproducible. We release: (1) complete source code; (2)
configuration files specifying all hyperparameters (e.g., number of random hyperplanes R, subset
size K, pruning thresholds τ , IVF cluster count B, quantizer settings, maximum candidates per
stage, and reranking cutoffs); (3) scripts to build indices; (4) detailed environment specs; (5) random
seeds; and (6) scripts to generate all plots. We provide detailed derivations and complete proofs of
all theoretical results in the appendix.

REFERENCES

Paul N. Bennett, Ben Carterette, Olivier Chapelle, and Thorsten Joachims. Beyond binary relevance:
preferences, diversity, and set-level judgments. SIGIR Forum, 42(2):53–58, November 2008.
ISSN 0163-5840. doi: 10.1145/1480506.1480516. URL https://doi.org/10.1145/
1480506.1480516.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on Freebase from
question-answer pairs. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu,
and Steven Bethard (eds.), Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1533–1544, Seattle, Washington, USA, October 2013. Association for
Computational Linguistics. URL https://aclanthology.org/D13-1160/.

Gunilla Borgefors. Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 10(6):849–865, 1988.

Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maximizing social influ-
ence in nearly optimal time. In SODA, pp. 946–957, 2014.

M Akmal Butt and Petros Maragos. Optimum design of chamfer distance transforms. IEEE Trans-
actions on Image Processing, 7(10):1477–1484, 1998.

Stefan Büttcher, Charles LA Clarke, and Gordon V Cormack. Implementing and evaluating search
engines, 2016.

Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp. 335–336. ACM,
1998. URL http://citeseer.ist.psu.edu/carbonell98use.html.

Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pp. 380–388,
New York, NY, USA, 2002. Association for Computing Machinery. ISBN 1581134959. doi:
10.1145/509907.509965. URL https://doi.org/10.1145/509907.509965.

Laming Chen, Guoxin Zhang, and Hanning Zhou. Improving the diversity of top-n recommendation
via determinantal point process. CoRR, abs/1709.05135, 2017. URL http://arxiv.org/
abs/1709.05135.

Peter Baile Chen, Fabian Wenz, Yi Zhang, Devin Yang, Justin Choi, Nesime Tatbul, Michael Ca-
farella, Çağatay Demiralp, and Michael Stonebraker. Beaver: An enterprise benchmark for text-
to-sql, 2025a. URL https://arxiv.org/abs/2409.02038.

Peter Baile Chen, Yi Zhang, and Dan Roth. Is table retrieval a solved problem? exploring join-aware
multi-table retrieval. In ACL Conference, 2025b. URL https://arxiv.org/abs/2404.
09889.

11

https://doi.org/10.1145/1480506.1480516
https://doi.org/10.1145/1480506.1480516
https://aclanthology.org/D13-1160/
http://citeseer.ist.psu.edu/carbonell98use.html
https://doi.org/10.1145/509907.509965
http://arxiv.org/abs/1709.05135
http://arxiv.org/abs/1709.05135
https://arxiv.org/abs/2409.02038
https://arxiv.org/abs/2404.09889
https://arxiv.org/abs/2404.09889

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William Wang, and William W. Cohen. Open ques-
tion answering over tables and text, 2021. URL https://arxiv.org/abs/2010.10439.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema
Moussa, Matt Beane, Ting-Hao Huang, Bryan Routledge, and William Yang Wang. FinQA:
A dataset of numerical reasoning over financial data. In EMNLP 2021, 2022. URL https:
//arxiv.org/abs/2109.00122.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
learning. International Conference on Learning Representations (ICLR), 2020.

Graham Cormode, Howard Karloff, and Anthony Wirth. Set cover algorithms for very large
datasets. In Proceedings of the 19th ACM International Conference on Information and Knowl-
edge Management, CIKM ’10, pp. 479–488, New York, NY, USA, 2010. Association for Com-
puting Machinery. ISBN 9781450300995. doi: 10.1145/1871437.1871501. URL https:
//doi.org/10.1145/1871437.1871501.

Gerard Cornuejols, Marshall Fisher, and George L Nemhauser. On the uncapacitated location prob-
lem. In Annals of Discrete Mathematics, volume 1, pp. 163–177. Elsevier, 1977.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Laxman Dhulipala, Majid Hadian, Rajesh Jayaram, Jason Lee, and Vahab Mirrokni. Muvera: multi-
vector retrieval via fixed dimensional encodings. arXiv preprint arXiv:2405.19504, 2024.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv
preprint arXiv:2401.08281, 2024.

Mohnish Dubey, Debayan Banerjee, Debanjan Chaudhuri, and Jens Lehmann. EARL: Joint entity
and relation linking for question answering over knowledge graphs, 2018. URL https://
arxiv.org/abs/1801.03825.

S Durga, Rishabh Iyer, Ganesh Ramakrishnan, and Abir De. Training data subset selection for re-
gression with controlled generalization error. In International Conference on Machine Learning,
pp. 9202–9212. PMLR, 2021.

Jack Edmonds. Submodular functions, matroids, and certain polyhedra, combinatorial structures
and their applications, r. guy, h. hanani, n. sauer, and j. schonheim, eds. New York, pp. 69–87,
1970.

Michael D Ekstrand, Graham McDonald, Amifa Raj, and Isaac Johnson. Overview of the trec 2022
fair ranking track. arXiv preprint arXiv:2302.05558, 2023.

Dan Feldman. Core-sets: Updated survey. In Sampling Techniques for Supervised or Unsupervised
Tasks, pp. 23–44. Springer, 2020.

Ying Feng and Piotr Indyk. Even faster algorithm for the chamfer distance. arXiv preprint
arXiv:2505.08957, 2025.

Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. Splade: Sparse lexical and ex-
pansion model for first stage ranking. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 2288–2292, 2021.

Satoru Fujishige. Submodular functions and optimization, volume 58. Elsevier, 2005.

Jennifer A Gillenwater, Alex Kulesza, Emily Fox, and Ben Taskar. Expectation-maximization for
learning determinantal point processes. Advances in Neural Information Processing Systems, 27:
3149–3157, 2014.

Clinton Gormley and Zachary Tong. Elasticsearch: the definitive guide: a distributed real-time
search and analytics engine. ” O’Reilly Media, Inc.”, 2015.

12

https://arxiv.org/abs/2010.10439
https://arxiv.org/abs/2109.00122
https://arxiv.org/abs/2109.00122
https://doi.org/10.1145/1871437.1871501
https://doi.org/10.1145/1871437.1871501
https://arxiv.org/abs/1801.03825
https://arxiv.org/abs/1801.03825

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Otis Gospodnetic, Erik Hatcher, and Michael McCandless. Lucene in action. Simon and Schuster,
2010.

Alkis Gotovos, Hamed Hassani, and Andreas Krause. Sampling from probabilistic submod-
ular models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/160c88652d47d0be60bfbfed25111412-Paper.pdf.

Amit Goyal, Wei Lu, and Laks V.S. Lakshmanan. CELF++: Optimizing the greedy algorithm for
influence maximization in social networks. In WWW (Companion Volume), pp. 47–48, 2011.

Jiafeng Guo, Yinqiong Cai, Yixing Fan, Fei Sun, Ruqing Zhang, and Xueqi Cheng. Semantic models
for the first-stage retrieval: A comprehensive review. ACM Trans. Inf. Syst., 40(4), March 2022.
ISSN 1046-8188. doi: 10.1145/3486250.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. REALM: Retrieval-
augmented language model pre-training, 2020. URL https://arxiv.org/abs/2002.
08909.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 291–300,
2004.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. arXiv preprint arXiv:2011.01060,
2020.

Rishabh Iyer and Jeffrey Bilmes. Submodular Point Processes with Applications to Machine learn-
ing. In Guy Lebanon and S. V. N. Vishwanathan (eds.), Proceedings of the Eighteenth Interna-
tional Conference on Artificial Intelligence and Statistics, volume 38 of Proceedings of Machine
Learning Research, pp. 388–397, San Diego, California, USA, 09–12 May 2015. PMLR. URL
https://proceedings.mlr.press/v38/iyer15.html.

Prateek Jain, Sudheendra Vijayanarasimhan, and Kristen Grauman. Hashing hyperplane queries
to near points with applications to large-scale active learning. Advances in Neural Information
Processing Systems, 23, 2010.

S. Jegelka and J. Bilmes. Submodularity beyond submodular energies: coupling edges in graph cuts.
pp. 1897–1904, Piscataway, NJ, USA, June 2011. IEEE.

George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep learning approaches for
text-to-SQL. The VLDB Journal, 32(4):905–936, January 2023. ISSN 1066-8888. doi: 10.1007/
s00778-022-00776-8. URL https://doi.org/10.1007/s00778-022-00776-8.

Vishal Kaushal, Ganesh Ramakrishnan, and Rishabh Iyer. Submodlib: A submodular optimization
library. arXiv preprint arXiv:2202.10680, 2022.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social
network. In KDD, pp. 137–146, 2003.

Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval, pp. 39–48, 2020.

Omar Khattab, Christopher Potts, and Matei Zaharia. Baleen: Robust multi-hop reasoning at scale
via condensed retrieval. Advances in Neural Information Processing Systems, 34:27670–27682,
2021.

Krishnateja Killamsetty, Durga Sivasubramanian, Baharan Mirzasoleiman, Ganesh Ramakrishnan,
Abir De, and Rishabh Iyer. Grad-match: A gradient matching based data subset selection for
efficient learning. arXiv preprint arXiv:2103.00123, 2021a.

13

https://proceedings.neurips.cc/paper_files/paper/2015/file/160c88652d47d0be60bfbfed25111412-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/160c88652d47d0be60bfbfed25111412-Paper.pdf
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://proceedings.mlr.press/v38/iyer15.html
https://doi.org/10.1007/s00778-022-00776-8

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Krishnateja Killamsetty, Durga Subramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister: A
generalization based data selection framework for efficient and robust learning. In AAAI, 2021b.

To Eun Kim and Fernando Diaz. Towards fair RAG: On the impact of fair ranking in retrieval-
augmented generation, 2025. URL https://arxiv.org/abs/2409.11598.

Catherine Kosten, Philippe Cudré-Mauroux, and Kurt Stockinger. Spider4sparql: A complex bench-
mark for evaluating knowledge graph question answering systems. In 2023 IEEE International
Conference on Big Data (BigData), pp. 5272–5281. IEEE, December 2023. doi: 10.1109/
bigdata59044.2023.10386182. URL http://dx.doi.org/10.1109/BigData59044.
2023.10386182.

Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability, 3(71-104):
3, 2014.

Alex Kulesza. Determinantal point processes for machine learning. Foundations and Trends® in
Machine Learning, 5(2–3):123–286, 2012a. ISSN 1935-8245. doi: 10.1561/2200000044. URL
http://dx.doi.org/10.1561/2200000044.

Alex Kulesza. Determinantal point processes for machine learning. Foundations and Trends® in
Machine Learning, 5(2–3):123–286, 2012b. ISSN 1935-8245. doi: 10.1561/2200000044. URL
http://dx.doi.org/10.1561/2200000044.

Vishwajeet Kumar, Jaydeep Sen, Bhawna Chelani, and Soumen Chakrabarti. Graph representa-
tion of tables+text and compact subgraph retrieval for qa tasks. In Advances in Information
Retrieval: 47th European Conference on Information Retrieval, ECIR 2025, Lucca, Italy, April
6–10, 2025, Proceedings, Part I, pp. 164–180, Berlin, Heidelberg, 2025. Springer-Verlag. ISBN
978-3-031-88707-9. doi: 10.1007/978-3-031-88708-6 11. URL https://doi.org/10.
1007/978-3-031-88708-6_11.

Dahyun Lee, Yongrae Jo, Haeju Park, and Moontae Lee. Shifting from ranking to set selection
for retrieval augmented generation. In ACL Conference, pp. 17606–17619, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
2025.acl-long.861. URL https://aclanthology.org/2025.acl-long.861/.

Jinhyuk Lee, Zhuyun Dai, Sai Meher Karthik Duddu, Tao Lei, Iftekhar Naim, Ming-Wei Chang,
and Vincent Zhao. Rethinking the role of token retrieval in multi-vector retrieval. Advances in
Neural Information Processing Systems, 36:15384–15405, 2023.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional conference on machine learning, pp. 3744–3753. PMLR, 2019.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun, Qian
Liu, Sida Wang, and Tao Yu. Spider 2.0: Evaluating language models on real-world enterprise
text-to-SQL workflows. In ICLR, 2025. URL https://arxiv.org/abs/2411.07763.

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Na-
talie Glance. Cost-effective outbreak detection in networks. In KDD, pp. 420–429, 2007.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks, 2021. URL https:
//arxiv.org/abs/2005.11401.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C. C.
Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can llm already serve as a database
interface? a big bench for large-scale database grounded text-to-sqls, 2023. URL https:
//arxiv.org/abs/2305.03111.

14

https://arxiv.org/abs/2409.11598
http://dx.doi.org/10.1109/BigData59044.2023.10386182
http://dx.doi.org/10.1109/BigData59044.2023.10386182
http://dx.doi.org/10.1561/2200000044
http://dx.doi.org/10.1561/2200000044
https://doi.org/10.1007/978-3-031-88708-6_11
https://doi.org/10.1007/978-3-031-88708-6_11
https://aclanthology.org/2025.acl-long.861/
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Rui Li, Quanyu Dai, Zeyu Zhang, Xu Chen, Zhenhua Dong, and Ji-Rong Wen. Knowtrace: Boot-
strapping iterative retrieval-augmented generation with structured knowledge tracing, 2025. URL
https://arxiv.org/abs/2505.20245.

Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In Proceed-
ings of the 49th annual meeting of the association for computational linguistics: human language
technologies, pp. 510–520, 2011.

Hui Lin, Jeff Bilmes, and Shasha Xie. Graph-based submodular selection for extractive summariza-
tion. In 2009 IEEE Workshop on Automatic Speech Recognition & Understanding, pp. 381–386.
IEEE, 2009.

Hao Liu, Zhengren Wang, Xi Chen, Zhiyu Li, Feiyu Xiong, Qinhan Yu, and Wentao Zhang. Hoprag:
Multi-hop reasoning for logic-aware retrieval-augmented generation, 2025a. URL https://
arxiv.org/abs/2502.12442.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts, 2023. URL
https://arxiv.org/abs/2307.03172.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuxin Zhang, Ju Fan, Guoliang Li,
Nan Tang, and Yuyu Luo. A survey of text-to-sql in the era of llms: Where are we, and where are
we going? IEEE Transactions on Knowledge and Data Engineering, 2025b.

Tianyang Ma, Xingwei Yang, and Longin Jan Latecki. Boosting chamfer matching by learning
chamfer distance normalization. In European Conference on Computer Vision, pp. 450–463.
Springer, 2010.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 42(4):824–836, 2018.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information
Retrieval. Cambridge University Press, Cambridge, UK, 2008. ISBN 0521865719.

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Jason
Weston. Key-value memory networks for directly reading documents. CoRR, abs/1606.03126,
2016. URL http://arxiv.org/abs/1606.03126.

Michel Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In
Optimization Techniques: Proceedings of the 8th IFIP Conference on Optimization Techniques
Würzburg, September 5–9, 1977, pp. 234–243. Springer, 2005.

Pitu B Mirchandani and Richard L Francis. Discrete location theory. 1990.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier than lazy greedy. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In Proc. ICML, 2020.

Marco Morik, Ashudeep Singh, Jessica Hong, and Thorsten Joachims. Controlling fairness and bias
in dynamic learning-to-rank. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’20, pp. 429–438, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450380164. doi: 10.1145/
3397271.3401100. URL https://doi.org/10.1145/3397271.3401100.

Byunggook Na, Jisoo Mok, Hyeokjun Choe, and Sungroh Yoon. Accelerating neural architecture
search via proxy data. CoRR, abs/2106.04784, 2021. URL https://arxiv.org/abs/
2106.04784.

Hariharan Narayanan. Submodular functions and electrical networks, volume 54. Elsevier, 1997.

15

https://arxiv.org/abs/2505.20245
https://arxiv.org/abs/2502.12442
https://arxiv.org/abs/2502.12442
https://arxiv.org/abs/2307.03172
http://arxiv.org/abs/1606.03126
https://doi.org/10.1145/3397271.3401100
https://arxiv.org/abs/2106.04784
https://arxiv.org/abs/2106.04784

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functions—i. Mathematical programming, 14(1):265–294, 1978.

Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning diverse rankings with multi-
armed bandits. In Proceedings of the 25th International Conference on Machine Learning, ICML
’08, pp. 784–791, New York, NY, USA, 2008. Association for Computing Machinery. ISBN
9781605582054. doi: 10.1145/1390156.1390255. URL https://doi.org/10.1145/
1390156.1390255.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown,
and Yoav Shoham. In-context retrieval-augmented language models, 2023. URL https://
arxiv.org/abs/2302.00083.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia.
Colbertv2: Effective and efficient retrieval via lightweight late interaction. arXiv preprint
arXiv:2112.01488, 2021.

Keshav Santhanam, Omar Khattab, Christopher Potts, and Matei Zaharia. Plaid: an efficient en-
gine for late interaction retrieval. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pp. 1747–1756, 2022.

Rodrygo L.T. Santos, Craig Macdonald, and Iadh Ounis. Exploiting query reformulations for
web search result diversification. In Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, pp. 881–890, New York, NY, USA, 2010. Association for Com-
puting Machinery. ISBN 9781605587998. doi: 10.1145/1772690.1772780. URL https:
//doi.org/10.1145/1772690.1772780.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. Improving multi-hop question answering
over knowledge graphs using knowledge base embeddings. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 4498–4507, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.412. URL https://aclanthology.org/
2020.acl-main.412/.

Jan Luca Scheerer, Matei Zaharia, Christopher Potts, Gustavo Alonso, and Omar Khattab. Warp: An
efficient engine for multi-vector retrieval. In Proceedings of the 48th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 2504–2512, 2025.

Harsha Vardhan Simhadri, Ravishankar Krishnaswamy, Gopal Srinivasa, Suhas Jayaram Subra-
manya, Andrija Antonijevic, Dax Pryce, David Kaczynski, Shane Williams, Siddarth Golla-
pudi, Varun Sivashankar, Neel Karia, Aditi Singh, Shikhar Jaiswal, Neelam Mahapatro, Philip
Adams, Bryan Tower, and Yash Patel. DiskANN: Graph-structured indices for scalable, fast,
fresh and filtered approximate nearest neighbor search, 2023. URL https://github.com/
Microsoft/DiskANN.

Ashudeep Singh and Thorsten Joachims. Fairness of exposure in rankings. arXiv preprint
arXiv:1802.07281, 2018. URL https://arxiv.org/abs/1802.07281.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M.
Ni, Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
language model on knowledge graph. In ICLR, 2024. URL https://arxiv.org/abs/
2307.07697.

Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in near-linear time: A mar-
tingale approach. In SIGMOD, pp. 1539–1554, 2015.

16

https://doi.org/10.1145/1390156.1390255
https://doi.org/10.1145/1390156.1390255
https://arxiv.org/abs/2302.00083
https://arxiv.org/abs/2302.00083
https://doi.org/10.1145/1772690.1772780
https://doi.org/10.1145/1772690.1772780
https://aclanthology.org/2020.acl-main.412/
https://aclanthology.org/2020.acl-main.412/
https://github.com/Microsoft/DiskANN
https://github.com/Microsoft/DiskANN
https://arxiv.org/abs/1802.07281
https://arxiv.org/abs/2307.07697
https://arxiv.org/abs/2307.07697

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. Beir: A
heterogenous benchmark for zero-shot evaluation of information retrieval models. arXiv preprint
arXiv:2104.08663, 2021.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multi-
hop questions via single-hop question composition. Transactions of the Association for Compu-
tational Linguistics, 10:539–554, 2022.

Sebastian Tschiatschek, Josip Djolonga, and Andreas Krause. Learning probabilistic submodular
diversity models via noise contrastive estimation. In Artificial Intelligence and Statistics, pp.
770–779. PMLR, 2016.

Sebastian Tschiatschek, Aytunc Sahin, and Andreas Krause. Differentiable submodular maximiza-
tion. arXiv preprint arXiv:1803.01785, 2018.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. RAT-
SQL: Relation-aware schema encoding and linking for text-to-sql parsers. In ACL 2020, 2021.
URL https://arxiv.org/abs/1911.04942.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active learning.
In International Conference on Machine Learning, pp. 1954–1963, 2015.

Orion Weller, Michael Boratko, Iftekhar Naim, and Jinhyuk Lee. On the theoretical limitations of
embedding-based retrieval. arXiv preprint arXiv:2508.21038, 2025.

Haolun Wu, Yansen Zhang, Chen Ma, Fuyuan Lyu, Bowei He, Bhaskar Mitra, and Xue Liu. Result
diversification in search and recommendation: A survey, 2024. URL https://arxiv.org/
abs/2212.14464.

Diji Yang, Jinmeng Rao, Kezhen Chen, Xiaoyuan Guo, Yawen Zhang, Jie Yang, and Yi Zhang. Im-
rag: Multi-round retrieval-augmented generation through learning inner monologues, 2024. URL
https://arxiv.org/abs/2405.13021.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–
2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259/.

HongChien Yu, Chenyan Xiong, and Jamie Callan. Improving query representations for dense re-
trieval with pseudo relevance feedback. CoRR, abs/2108.13454, 2021. URL https://arxiv.
org/abs/2108.13454.

Tian Yu, Shaolei Zhang, and Yang Feng. Auto-rag: Autonomous retrieval-augmented generation for
large language models, 2024. URL https://arxiv.org/abs/2411.19443.

Meike Zehlike, Ke Yang, and Julia Stoyanovich. Fairness in ranking, part i: Score-based ranking.
ACM Computing Surveys, 55(6):1–36, 2022.

Cheng Xiang Zhai, William W. Cohen, and John Lafferty. Beyond independent relevance: methods
and evaluation metrics for subtopic retrieval. In Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Informaion Retrieval, SIGIR ’03, pp.
10–17, New York, NY, USA, 2003. Association for Computing Machinery. ISBN 1581136463.
doi: 10.1145/860435.860440. URL https://doi.org/10.1145/860435.860440.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong Wen. Dense text retrieval based on pretrained
language models: A survey. arXiv preprint arXiv:2211.14876, 2022a. URL https://arxiv.
org/abs/2211.14876.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang. MultiHiertt: Numerical reasoning over
multi hierarchical tabular and textual data, 2022b. URL https://arxiv.org/abs/2206.
01347.

17

https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/2212.14464
https://arxiv.org/abs/2212.14464
https://arxiv.org/abs/2405.13021
https://aclanthology.org/D18-1259/
https://arxiv.org/abs/2108.13454
https://arxiv.org/abs/2108.13454
https://arxiv.org/abs/2411.19443
https://doi.org/10.1145/860435.860440
https://arxiv.org/abs/2211.14876
https://arxiv.org/abs/2211.14876
https://arxiv.org/abs/2206.01347
https://arxiv.org/abs/2206.01347

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang. MultiHiertt: Numerical reasoning over
multi hierarchical tabular and textual data. In Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 6588–6600, Dublin, Ireland, May 2022c. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.454. URL https:
//aclanthology.org/2022.acl-long.454/.

Tianyi Zhou, Shengjie Wang, and Jeffrey Bilmes. Curriculum learning by dynamic instance hard-
ness. Advances in Neural Information Processing Systems, 33:8602–8613, 2020.

Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Curriculum learning by optimizing learning dynam-
ics. In International Conference on Artificial Intelligence and Statistics, pp. 433–441. PMLR,
2021.

18

https://aclanthology.org/2022.acl-long.454/
https://aclanthology.org/2022.acl-long.454/

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A Dense Subset Index for Collective Query Coverage
(Appendix)

A BROADER IMPACT

We have presented DISCO, an indexing system for collective scoring of subsets of corpus items in
response to a query. This stands in contrast to traditional retrieval, where items compete against
each other to occupy top-K positions. Applications that use traditional retrieval, yet need collective
coverage, often inflate K with the hope of including all corpus items in the optimal query cover.
Replacing that approach with DISCO may reduce query processing cost and carbon footprint, as
well as “lost in the middle” (Liu et al., 2023) distractions for downstream LLM-based reasoning and
generation modules, resulting in better end task performance as well as saved computations.

B LIMITATIONS

We have demonstrated that DISCO is a novel and performant method for collaborative subset re-
trieval. However, there are avenues for improvement. We outline these below for future exploration.

Fairness. Our proposed coverage objective does not account for notions of fairness, e.g. group
fairness or individual fairness (Zehlike et al., 2022). For benchmarks where fairness is a factor, such
as (Ekstrand et al., 2023), collaborative and fair retrieval is a challenging and promising avenue for
future work.

Diversity. As of now, we have focused only on coverage maximization. We do not incorporate
diversity explicitly in the model However, one can subtract a self-similarity term among the corpus
tokens from the coverage objective to obtain a diversity encouraged coverage optimization.

Evolving corpora. DISCO is not currently designed to handle evolving corpora. In all datasets, the
corpus is fixed, and indexing is done once, with no further updates. Handling changing corpus sets
would be an interesting follow-up.

Addressing these limitations will improve the real-world readiness and deployment capability of
DISCO.

C LLM USAGE

We used an LLM strictly and only for (1) ancillary writing support for correcting grammar, sug-
gesting alternative phrasing, and (2) very occasionally, literature search. No LLM was used to
generate ideas, design experiments, analyze data, implement algorithms, or produce results. Any
model-suggested wording, URL, or citation was reviewed and further revised by the authors.

D FURTHER MOTIVATING SCENARIOS

D.1 MULTI-HOP QA

We gave an example of collective passage retrieval for multihop QA in Section 1. In recent years,
retrieval is often followed by a large language model (LLM) that reads and encodes the retrieved
passages, then decodes the answer — in other words, such systems implement retrieval augmented
generation (RAG) (Guu et al., 2020; Lewis et al., 2021; Ram et al., 2023). It has been reported that
the end-to-end performance of the RAG search system is sensitive to the position of the answer-
bearing passages in the LLM’s input context (Liu et al., 2023). Adding irrelevant passages in the
context can also be deleterious, leading to incorrect answers. Therefore, high recall of all passages
needed to infer the answer, within a tight budget K, may enhance downstream generation. This
realization is gaining ground in the NLP community. One recent response has been to resort to an
LLM-based solution to subset selection, based on verbal instruction (Lee et al., 2025).

D.2 KNOWLEDGE GRAPH QA

QA over KGs like Wikidata take two forms: semantic interpretation (Berant et al., 2013), where a
natural language question is translated into a structured query, and subgraph retrieval and answer
generation (Saxena et al., 2020; Sun et al., 2024). To enable LLMs to deal with billion-node graphs,

19

https://wikidata.org

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Austria

birthPlace

Nikola Tesla Elon Musk

Tesla

founder founder

SpaceX

birthPlace Pretoria, SA

Figure 7: Example of KGQA taken from Dubey et al. (2018), for the query “where was the founder
of Tesla and SpaceX born?” Observe that there are two text matches with Tesla, one leading to
‘Austria’ as the (incorrect) answer, but the correct answer node must be close to both Tesla and
SpaceX. If edges are visualized as ‘passages’, a collective retrieval system must score highly the
right subgraph, but not the left one.

subgraph retrieval is a critical step in the latter approach. As Figure 7 shows, the goal is to retrieve
a subgraph that collectively contains the evidence of partial match with the question, and evidence
in favor and answer node(s) or edge(s). Allowing nodes or edges to compete at matching the whole
question would be misguided.

In the table below, the aggregate contractual principal amount of loans on nonaccrual
status and/or more than 90 days past due (which excludes loans carried at zero fair value
and considered uncollectible) exceeds the related fair value primarily because the firm
regularly purchases loans, such as distressed loans, at values significantly below the
contractual principal amounts:

($ in millions) As of December
2016 2015

Performing loans and long-term receivables
Aggregate contractual principal in excess of fair value $ 478 $ 1,330
Loans on nonaccrual status and/or more than 90
days past due
Aggregate contractual principal in excess of fair value 8,101 9,600
Aggregate fair value on loans on nonaccrual status and/or
more than 90 days past due

2,138 2,391

The table below presents information about our funding sources.
As of December

$ in millions 2018 2017
Deposits $158,257 25% $138,604 23%
Collateralized financings:
Repurchase aggrements 78,723 13% 84,718 14%
Securities loaned 11,808 2% 14,793 2%
Other secured financings 21,433 3% 24,788 2%
Total collateralized financings 111,964 18% 124,299 20%
Unsecured short-term borrowings 40,502 7% 46,922 8%
Unsecured long-term borrowings 224,149 36% 217,687 36%
Total shareholders’ equity 90,185 14% 82,243 13%
Total funding sources $625,057 100% $609,755 100%

Question: What is the sum of securities loaned in 2017 and aggregate contractual principal
in excess of fair value in 2015 (in millions)?

Figure 8: Example of table QA taken from Kumar et al. (2025). Note that the question has poor
match or coverage by any single table element, but there is a small collection S of table elements
that collectively cover large (colored) spans of the question. Current practice linearizes such tables
into text for LLMs, polluting the match scores with much extraneous noise from irrelevant parts of
the table.

D.3 TABLE QA

Another motivation comes from QA in the domain of textual tables (Chen et al., 2022; Zhao et al.,
2022c; Kumar et al., 2025), such as appear in documents for human consumption. As Figure 8
illustrates, attempting to match the whole question against the whole table would result in weak
and noisy scores. In contrast, recognizing that certain spans in the question are covered by certain
coherent table elements (that are also spatially related) results in retrieving values from cells, from
which answers can be reasoned out.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 9: Example of text2sql taken from Wang et al. (2021). Schema retrieval involves mapping
question spans to schema elements (table and column names), after which SQL can be generated.

D.4 SCHEMA RETRIEVAL FOR TEXT2SQL

Text2sql is a form of semantic interpretation where the target database is relational (Katsogiannis-
Meimarakis et al., 2023). As with text QA, KGQA and table QA, LLMs have gained use as semantic
translators and interpreters also for text2sql (Liu et al., 2025b). Enterprise schema can contain
thousands of tables and tens of thousands of columns. The schema can be represented as a graph
where nodes represent tables and their columns (Wang et al., 2021), with primary-key-foreign-key
and joinability relations connecting column nodes. Providing the full schema along with the natural
language question as context does not only tax GPU usage in modern decoder-only LLMs, but also
risks the LLM not being able to sift the schema for the relevant parts (Liu et al., 2023). As shown in
Figure 9, tables and columns have to be selected to collectively cover specific spans in the question.
Once again, individual schema elements are poor matches for the question, and it would be incorrect
to pit them for relevance against each other. Unlike in passage retrieval, the total schema size may
be small enough to formulate schema subgraph retrieval as a mixed integer linear program (Chen
et al., 2025b), but this again clearly demonstrates the importance of collective scoring.

E EXTENDED DISCUSSION OF RELATED WORK

Our work is related to submodular functions, data subset selection, ANN search, etc. In the follow-
ing, we briefly review them.

E.1 SUBMODULAR FUNCTIONS

Submodular functions are functions that satisfy the property of diminishing return– a list of classic
readings (Fujishige, 2005; Narayanan, 1997; Edmonds, 1970) provides a comprehensive discussion.
They are discrete analogue of concave functions. They are used in wide variety of applications, e.g.,
information cascade in social media (Kempe et al., 2003; Tang et al., 2015; Leskovec et al., 2007;
Goyal et al., 2011; Borgs et al., 2014), document summarization (Lin et al., 2011), product recom-
mendation (Tschiatschek et al., 2016; 2018), image processing (Jegelka et al., 2011), probablistic
modeling (Gillenwater et al., 2014; Kulesza, 2012b; Gotovos et al., 2015; Iyer et al., 2015), etc.

E.2 DATA SUBSET SELECTION

Our work is connected to traditional data subset selection problem, where the goal is to select data
subset from a large set. It has several applications, e.g., active learning (Wei et al., 2015), data
efficient learning (Mirzasoleiman et al., 2020; Killamsetty et al., 2021a; Durga et al., 2021) for
training, etc. In active learning the goal is to obtain the labels of a unlabeled data, so that the
model trained with those subset of labeled data, generalizes well (Wei et al., 2015). In data efficient
training, we are given full labeled data and the goal is go select a subset of training data, so that
we can achieve fast training with minimal accuracy loss (Killamsetty et al., 2021b;a; Durga et al.,
2021). They typically frame it as joint optimization of parameter and subset selection, where the
subset selection problem is often submodular or approximately submodular. Another line of works
adopt different heuristics for data subset selection, e.g., entropy guided data subset selection (Na
et al., 2021), use of another proxy model (Coleman et al., 2020). Zhou et al. (2020; 2021) provide
adaptive subset selection based on curriculum learning. Our work is also related to coreset selection,
where the goal is to select some subset (with or without weights) that is representative of the entire
set (Feldman, 2020; Mirzasoleiman et al., 2020; Har-Peled et al., 2004). Our work aims to select a
subset of items from a large set of items in an information retrieval setting, where the corpus is fixed
for different queries. This allows us to perform one time preprocessing of corpus items, whose cost

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

is amortized over large number of queries. The above applications, however, do not operate on this
setting and therefore, they cannot use ANN algorithm for such selection.

E.3 APPROXIMATE NEAREST NEIGHBOR (ANN) SEARCH

In a nutshell, we seek to design an ANN method for marginal gain maximization within the frame-
work of the greedy algorithm. Classical information retrieval systems used bag of words, which
used token-id level matching, followed by an inverted index with TF-IDF or BM25 term weighting.
Lucene (Gospodnetic et al., 2010) and Elastic search (Gormley et al., 2015) use similar techniques.
Subsequently, neural models have been developed to represent tokens or atoms using contextual
representations e.g., BERT (Devlin et al., 2018), T5 (Raffel et al., 2020), etc. Documents can be
represented as both single vector and multivectors of token representations. Such representations
are key to dense vector retrieval, HNSW (Malkov et al., 2018; Simhadri et al., 2023), IVF (Douze
et al., 2024), LSH (Charikar, 2002). Khattab et al. (2020); Santhanam et al. (2021; 2022) and
our current method use multivector-based indexing using IVF. DiskANN and LSH used single
vector-based indexing and retrieval. Our random projection method uses some technical results
from LSH (Charikar, 2002; Jain et al., 2010).

In contrast to the above dense retrieval, sparse retrieval uses tokenized representations to build in-
verted index. Recently Formal et al. (2021) also proposed a token expansion method for enhanced
sparse retrieval. As shown in the recent paper (Weller et al., 2025), multivector representations often
results in enhanced performance as compared to single vector representations.

The single-round retrieval of REALM (Guu et al., 2020) and RAG (Lewis et al., 2021) soon gave
way to multi-round RAG (Yang et al., 2024; Yu et al., 2024), sometimes with filtered retrieved
items progressively padded with the query (Khattab et al., 2021), and later with more sophisticated
planners extracting structured information from retrieved passages (Li et al., 2025; Liu et al., 2025a).
Despite the superficial similarity of multi-round retrieval, there are critical differences between these
and DISCO. While DISCO iteratively targets query coverage, effectively canceling out parts of the
query (which remains a fixed-length vector) already covered, these are query expansion techniques,
turning multi-hop queries into a series of exploratory document-to-document expansions.

E.4 DIVERSITY AND FAIRNESS IN SELECTION AND RANKING

Another community that needs to score item subsets rather than individual items is concerned with
the diversity and fairness of the returned responses. The need for diversity was first felt in the
retrieval community, in the face of near-duplicate documents that (necessarily) had similar relevance
to the query (Wu et al., 2024), but inspection of one document obviated the need to inspect the other.

Early methods like max marginal relevance (Carbonell et al., 1998) chose the next item based on
a combination of its relevance to the query and dissimilarity to items already selected. Other tech-
niques (Singh et al., 2018) involved solving relaxed integer linear programs with N2 variables,
where N is the number of items in the corpus, so these cannot easily be applied as a first-stage
ranking system (Guo et al., 2022).

User attention to the top-K rank positions has been instrumented by search engine providers and
found to steeply decrease with rank. A closely related concern to diversity is fairness, in the face
of such steep attention discounts, i.e., ensuring that user attention to an item is proportional to some
intrinsic utility of the item for a query, or that user exposure of any designated group does not vary
excessively across groups (Morik et al., 2020; Kim et al., 2025). These concerns are quite distinct
from our coverage motive.

We note that diversity and fairness may incidentally favor query coverage, but these are very unre-
liable indirect mechanisms. It is possible to maximize diversity and relevance, yet fail to provide
collective coverage of the query.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F PROOFS OF TECHNICAL RESULTS

F.1 F (·, Q) IS MONOTONE SUBMODULAR

Theorem 5 (Monotonicity and submodularity). The set function F (S,Q) is monotone and submod-
ular.

Proof From Proposition 1, we observe:

F (c |S,Q) =
∑
q∈Q

max
x∈Xc

[
q⊤x−max

u∈S
max
x′∈Xu

q⊤x′
]
+

(10)

Clearly the marginal gain F (c |S,Q) ≥ 0, which proves that F (S,Q) is monotone in S.

Now suppose S ⊆ T , then we have:
max
u∈S

max
x′∈Xu

q⊤x′ ≤ max
u∈T

max
x′∈Xu

q⊤x′ (11)

=⇒
∑
q∈Q

max
x∈Xc

[
q⊤x−max

u∈S
max
x′∈Xu

q⊤x′
]
+
≥
∑
q∈Q

max
x∈Xc

[
q⊤x−max

u∈T
max
x′∈Xu

q⊤x′
]
+
. (12)

From the formula of marginal again in Eq. (10), we have: F (S,Q) ≥ F (T,Q).

F.2 PROOF OF PROPOSITION 1

Proposition 1. Given the coverage objective F (S,Q) defined in Eq. (2), the marginal gain is:

F (c |S,Q) =
∑
q∈Q

max
x∈Xc

[
q⊤x−max

u∈S
max
x′∈Xu

q⊤x′
]
+

(13)

Proof We assume that c /∈ S to prove that:

F (c |S) = F (S ∪ {c}, Q)− F (S,Q)

=
∑
q∈Q

max
x∈∪u∈S∪{c}Xu

q⊤x −
∑
q∈Q

max
x∈∪u∈SXu

q⊤x (14)

=
∑
q∈Q

[
max

u∈S∪{c}

(
max
x∈Xu

q⊤x

)
−max

u∈S

(
max
x∈Xu

q⊤x

)]

=
∑
q∈Q

[
max

(
max
x∈Xc

q⊤x,max
u∈S

(
max
x∈Xu

q⊤x

))
−max

u∈S

(
max
x∈Xu

q⊤x

)]
Letting a = maxx∈Xc q

⊤x and b = maxu∈S

(
maxx∈Xu q⊤x

)
, we apply the identity max(a, b)−

b = max(0, a− b) to the term inside the summation:

=
∑
q∈Q

max

(
0, max

x∈Xc

q⊤x−max
u∈S

(
max
x∈Xu

q⊤x

))
Using the notation [z]+ = max(0, z) for the positive part of z, we arrive at the compact final form:

=
∑
q∈Q

[
max
x∈Xc

q⊤x−max
u∈S

(
max
x∈Xu

q⊤x

)]
+

(15)

F.3 PROOFS FOR RANDOM HYPERPLANE APPROXIMATION

Theorem 2. Given any two vectors u,v ∈ Rd+1, let w be a random hyperplane w ∼ N (0, Id+1),
and Φw be the transformation defined in Eq. (6). Then, we have the following result:

Φw(u)⊤Φw(v) = [u⊤v]+ with probability p ≥ 0.5. (16)

Proof We show that: p = 1 − 1
π cos−1

(
|u⊤v|

||u||·||v||

)
≥ 0.5. The equality here is tight, when

|u⊤v| = 0. We shall make use of the well known result when w is sampled from a spherically

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

symmetric distribution (Charikar, 2002):

P(sign(w⊤u) = sign(w⊤v)) = 1− 1

π
cos−1

(
u⊤v

||u|| · ||v||

)
(17)

where, sign : R→ {−1,+1} is the sign function.

Let s = Φw(u)⊤Φw(v) = 1
2 (u

⊤v + sign(w⊤u) · sign(w⊤v) · u⊤v)

Case 1: u⊤v > 0. This also implies angle between u and v is less than π/2.

In this case, [u⊤v]+ = u⊤v. Meanwhile, s = u⊤v iff sign(w⊤u) = sign(w⊤v) and s = 0
otherwise.

Pr(s = [u⊤v]+) = Pr(s = u⊤v) (18)

= P(sign(w⊤u) = sign(w⊤v)) (19)

= 1− 1

π
cos−1

(
u⊤v

||u|| · ||v||

)
(20)

≥ 1

2
(Acute angle between u and v) (21)

Case 2: u⊤v < 0. This also implies angle between u and v is more than π/2.

In this case, [u⊤v]+ = 0. Meanwhile, s = 0 if sign(w⊤u) = −sign(w⊤v) and s = u⊤v < 0
otherwise.

Pr(s = [u⊤v]+) = Pr(s = 0) (22)

= P(sign(w⊤u) = −sign(w⊤v)) (23)

=
1

π
cos−1

(
u⊤v

||u|| · ||v||

)
(24)

≥ 1

2
(Obtuse angle between u and v) (25)

Case 3: u⊤v = 0: In that case, s = 0 = [u⊤v]+ with probability one.

Combining these cases, the probability that s = [u⊤v]+ is p ≥ 1
2 . Furthermore, note that s is

always ≤ [u⊤v]+. ■

Theorem 3. Suppose {w1, . . . ,wR} be R random hyperplanes with wr
i.i.d.∼ N (0, Id+1). Given

the state-dependent representation for each query token q̂S := [q;F (S, q)] and the query agnostic
representation of each corpus token x̂ := [x;−1] as defined in Eq. (4), let the randomized function
Gw1:R

be defined as:
Gw1:R

(c;S,Q) =
∑

q∈Q maxr∈[R] maxx∈Xc
Φwr

(q̂S)
⊤Φwr

(x̂) (26)

Then, for any c ̸∈ S, S ⊂ C and Q = {q}, a positive probability δ > 0 and R ≥ log(|Q|/δ), we
will have Gw1:R

(c;S,Q) = F (c |S,Q), with probability atleast 1− δ.

Proof This relies on Theorem 2.

Given a fixed (augmented) token q̂S , let x̂ be the (augmented) token in X that maximizes q̂⊤
S x̂

(where these are (d+ 1)-dimensional augmented vectors). Then, we can write:

Φwr (q̂S)
⊤Φwr (x̂) = [q̂⊤

S x̂]+ with probability p ≥ 1

2
. (27)

Eq. (27) implies that:

max
x∈Xc

Φwr
(q̂S)

⊤Φwr
(x̂) = max

x∈Xc

max[q̂⊤
S x̂]+ with probability p ≥ 1

2
. (28)

Note that [q̂⊤
S x̂]+ is the maximum value of the approximation. Hence,

Φwr
(q̂S)

⊤Φwr
(x̂) ≤ [q̂⊤

S x̂]+ for all r ∈ [R] (29)
We note that Eq. (29) implies that:

max
x∈Xc

Φwr (q̂S)
⊤Φwr (x̂) ≤ max

x∈Xc

max[q̂⊤
S x̂]+ with probability = 1 (30)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Thus for R sampled hyperplanes, the event that maximum of the above approximations gives us the
correct value is the same as the event that atleast one of R augmentations giving the correct value.
Hence, we have:

max
r∈[R]

max
x∈Xc

(q̂S)
⊤Φwr (x̂) = [q̂⊤

S x̂]+ (31)

⇐⇒ ∃r ∈ [R], max
x∈Xc

max
x∈Xc

(q̂S)
⊤Φwr (x̂) = [q̂⊤

S x̂]+ (32)

Hence we have

Pr

(
max
r∈[R]

max
x∈Xc

(q̂S)
⊤Φwr

(x̂) = [q̂⊤
S x̂]+

)
= 1−

∏
r∈[R]

(
1− Pr

(
max
x∈Xc

(q̂S)
⊤Φwr (x̂) = [q̂⊤

S x̂]+

))

≥ 1−
(
1− 1

2

)R

= 1− 1

2R
. (33)

Finally, applying the union bound over all query tokens in Q, the probability that all tokens are
correctly approximated is ≥ 1 − |Q|/2R. Setting 1 − |Q|/2R ≥ 1 − δ gives us the condition
R ≥ log(|Q|/δ). ■

This leads to the following corollary.

Corollary 6. For a given set of items S and query Q, let Gw1:R
(· |S,Q) be as defined as in The-

orem 3 with R ≥ log(|Q|/δ). Let cG = argmaxc′∈C\S(Gw1:R
(c′ |S,Q), then for the coverage

function F ,
F (cG |S,Q) = max

c′∈C\S
F (c′ |S,Q) w.p. 1− δ (34)

Proof Let c∗ be a document that maximizes the marginal, i.e. F (c∗ |S,Q) =
maxc′∈C\S F (c′ |S,Q). Then, from Theorem 3, Gw1:R

(c∗ |S,Q) = F (c∗ |S,Q) with probabil-
ity 1− δ.

We use the fact that Gw1:R
is bounded above by F , which means that for any document c ∈ C \ S,

Gw1:R
(c |S,Q) ≤ F (c |S,Q) ≤ F (c∗ |S,Q).

As Gw1:R
(cG |S,Q) = maxc′∈C\S Gw1:R

(c′ |S,Q) ≥ Gw1:R
(c∗ |S,Q), the above two conditions

imply that the bound becomes tight with probability atleast 1−δ, i.e. F (cG |S,Q) = F (c∗ |S,Q) =
maxc′∈C\S F (c′ |S,Q). ■

F.4 PROOF OF APPROXIMATE GREEDY GUARANTEE

Theorem 4. Let SK be the set of K corpus items selected by Algorithm 2, and let S∗ be the optimal
set for F , i.e., S∗ = argmaxS F (S,Q). Given δ ∈ (0, 1], if we set the number of random projection
vectors R ≥ log(|Q|/δ),

Ew1:R
[F (SK , Q)] ≥ (1− 1/e− δ) · F (S∗, Q). (35)

Proof For notational simplicity we shall drop the subscript of the expectation. Let the set of
documents selected at each iteration of the algorithm be Sk for k = 1, . . . ,K. Let Sk+1 = Sk ∪{
ck+1

}
. Greedy choice is c̄k+1. From Lemma 7, we have:∑

a∈S∗\Sk

F (a |Sk, Q) ≥ F (S∗, Q)− F (Sk, Q) (36)

Combining this with Lemma 7:

E [F (ck+1 |Sk, Q) | Sk] ≥
(1− δ)

K
(F (S∗, Q)− F (Sk, Q)) (37)

Since F (Sk+1, Q) = F (Sk, Q) + F (ck+1 |Sk, Q), we can rewrite this as:

E [F (S∗, Q)− F (Sk+1|Q) | Sk] ≤
(
1− 1− δ

K

)
(F (S∗, Q)− F (Sk, Q)) (38)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

We make the following observation, as S0 = {} and S1, .., Sk, ..SK are defined sequentially. Thus,
for a random variable X , E[X] = E[X |S0] = E[E[· · ·E[X |SK] · · · |S1] |S0], Now we can write

E [F (S∗, Q)− F (SK) | SK−1] ≤
(
1− 1− δ

K

)
(F (S∗, Q)− F (SK−1, Q)) (39)

One more round of taking expectation gives us:

E
[
E [F (S∗, Q)− F (SK) | SK−1] | SK−2

]
(40)

≤ E
[(

1− 1− δ

K

)
(F (S∗, Q)− F (SK−1, Q)) | SK−2

]
(41)

≤
(
1− 1− δ

K

)2

(F (S∗, Q)− F (SK−2, Q)) (42)

By unrolling up to S0,

E [F (S∗, Q)− F (SK , Q)] ≤
(
1− 1− δ

K

)K

(F (S∗, Q)− F (S0, Q)︸ ︷︷ ︸
=0

) (43)

=

(
1− 1− δ

K

)K

F (S∗, Q) (44)

Rearranging terms,

E [F (SK , Q)] ≥
(
1−

(
1− 1− δ

K

)K
)
F (S∗, Q) (45)

≥
(
1− e−(1−δ)

)
F (S∗, Q) (46)

≥ (1− 1/e− δ)F (S∗, Q) (47)
The last inequality uses the fact that e−(1−δ) ≤ 1/e+ δ. This completes the proof. ■

Lemma 7. Let ck+1 = argmaxc∈C\Sk
Gw1:R

(c;Sk, Q), i.e. the item returned by the approximate
greedy algorithm 2 in the kth round for inclusion into Sk to form Sk+1. Then, the expected marginal
gain at each step satisfies:

E [F (ck+1 |Sk, Q) | Sk] ≥
(1− δ)

K

∑
a∈S∗\Sk

F (a |Sk, Q) (48)

Proof Let c̄k+1 be the document maximizing the marginal gain F (· |S,Q) in C \Sk. Our Approx-
greedy algorithm 2 chooses ck+1 = argmax

c′∈C\Sk

Gw1:R
(c′ |Sk, Q). Therefore, using Corollary 6, we

have
F (ck+1 |Sk, Q) = F (c̄k+1 |Sk, Q) w.p. ≥ 1− δ (49)

=⇒ E [F (ck+1 |Sk, Q) | Sk] ≥ (1− δ)F (c̄k+1 |Sk, Q) (50)

By the definition of c̄k+1, for any a ∈ S∗ \ Sk:
F (c̄k+1 |Sk, Q) ≥ F (a |Sk, Q) (51)

Therefore:

F (c̄k+1 |Sk, Q) ≥ 1

|S∗ \ Sk|
∑

a∈S∗\Sk

F (a |Sk, Q) (52)

≥ 1

K

∑
a∈S∗\Sk

F (a |Sk, Q) (53)

Combining these inequalities:

E [F (ck+1 |Sk, Q) | Sk] ≥
(1− δ)

K

∑
a∈S∗\Sk

F (a |Sk, Q), (54)

which completes the proof.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

G ADDITIONAL DETAILS ABOUT THE EXPERIMENTS

In this section, we provide the necessary details about the experiments. Our code is already uploaded
in supplementary material.

G.1 DATASETS

We evaluate on two widely used IR suites:

• BEIR (Thakur et al., 2021)
• Long-Tail Topic-stratified Evaluation (LoTTE) (Santhanam et al., 2021)

BEIR. BEIR comprises heterogeneous retrieval tasks spanning multiple domains. We use the
following large-corpus subsets:

Dataset (Test) Queries #Documents |{Q: |Sgold(Q)|>1}|
|Q|

|{Q: |Sgold(Q)|>1}|
|Q|

|{Q: |Sgold(Q)|>1}|
|Q| Brief Description

MS-Marco 43 8.84M 1.00 Passage retrieval from web search queries (Bing)
HotpotQA 7,405 5.23M 1.00 Multi-hop QA requiring evidence across documents
Fever 6,666 5.42M 0.12 Claim verification with Wikipedia evidence

Table 10: BEIR subsets used and their statistics. The fraction column is the proportion of queries
with |Sgold(Q)| > 1.

LoTTE. LoTTE targets out-of-domain generalization with six topic-stratified corpora constructed
from Stack Exchange communities. Each corpus provides two query sets (search and forum); we
use the forum queries derived from question titles.

Dataset Test Queries #Documents |{Q: |Sgold(Q)|>1}|
|Q|

|{Q: |Sgold(Q)|>1}|
|Q|

|{Q: |Sgold(Q)|>1}|
|Q| Subtopics (examples)

Lifestyle 2,000 119K 0.90 Cooking, Sports, Travel
Recreation 2,000 167K 0.78 Gaming, Anime, Movies
Science 2,017 1.7M 0.92 Math, Physics, Biology
Technology 2,004 639K 0.95 Apple, Android, UNIX, Security
Writing 2,000 200K 0.95 English (writing, usage)
Pooled 10,025 2.8M 0.90 Union of all above topics

Table 11: LoTTE dataset. The fraction column is the proportion of queries with |Sgold(Q)| > 1.

G.2 INDEXING STATISTICS

In Table 12, we provide statistics on index construction and memory consumption for each of the
indexing based methods. We note that the memory consumption reported for DISCO is higher than
for other methods due to the construction of R = 8 different replica indices, each housing corpus
vectors that have been augmented to approximate the maximum marginal gain.

Dataset PLAID MUVERA WARP DISCO

MS-Marco 23 GB 88 GB 81 GB 285 GB
HotpotQA 12 GB 52 GB 48 GB 172 GB
Fever 17 GB 54 GB 87 GB 240 GB
Pooled 11 GB 29 GB 70 GB 160 GB
Science 5.9 GB 18 GB 47 GB 88 GB
Technology 2.6 GB 6.4 GB 14 GB 38.9 GB
Writing 0.7 GB 2.1 GB 3.5 GB 11 GB

Table 12: Index memory consumption across methods and datasets, in gigabytes (GB).

G.3 IMPLEMENTATION DETAILS

Embedding model We use transformer models trained on standard IR tasks for embedding the
queries and corpus document. In particular, we use the embedding model from PLAID (Khattab
et al., 2020), which is a BERT-base model finetuned on the MS-Marco dataset. The model consists
of a 12-layer transformer encoder with an output dimension of 768, followed by a linear layer
that projects the output embeddings down to 128 dimensions. The architecture employs WordPiece

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

tokenization on the raw text to generate token IDs. Following the ColBERT recipe, we L2-normalize
the embeddings, and also mask out stop words in the corpus documents.

Retrieval Engine We adapt our implementation starting with PLAID engine (Santhanam et al.,
2022) to maximize the approximate marginal gain Gw1:R

which ultimately maximizes the coverage
objective (2). Note that we query in parallel the R replica indices in order to speed up the pipeline.
We expand on this below.

Next, we describe the pertinent details of our indexing and retrieval implementation.
— Embedding Storage: The mode of embedding access depends on corpus size. For smaller
corpora we support in-memory storage, which is faster, while larger corpora use a disk-based mode.
Embeddings are serialized during indexing in batch no.chunk no.pkl format, ensuring no
embedding is duplicated across chunks. Embeddings are dumped to disk as part of the indexing
process, and are then loaded either once (1) wholly in memory for memory mode, or (2) on during
search on an immediate need basis in disk mode. By immediate need basis, it is meant that we iterate
over the pickle files and retrieve only the requisite corpus token embeddings.
— Augmentation: We sample R random hyperplanes and store each in its own file to prevent ran-
dom corruption. When indexing, we generate R different folders, containing index data correspond-
ing to the given hyperplane. The augmentation process takes a batch of corpus token embeddings,
a hyperplane, and returns embeddings which are to be indexed only by the corresponding indexing
process (out of R such processes). The search procedure follows suit, in that query token embed-
dings are augmented on-the-fly and then passed on to the corresponding index for retrieval. Note
that the data returned from the augmented indices is pooled as part of an earlier stage. The final
results are returned using the non-augmented index corresponding to the given dataset.
— Parallelization: We query the R replica indices in parallel, in order to speed up our pipeline.
In the case of DISCO, we choose multi-threading as our preferred form of parallel processing. It
is known that the global interpreter lock (GIL), a data structure used to prevent parallel processing,
is active in base Python installs. This limits the parallel capability of our program. However, note
that in this setup no inter-process communication is required, and due to disk I/O being the chief
bottleneck, we found Python’s multi-threading to be faster than Python’s multiprocessing module in
our experiments.

In the case of late pooling, we resort to using the multiprocessing module, as no internal edits of the
engine code are required.
— Quantization: For quantization of the embeddings, we require that the number of embedding di-
mensions be such that number of quantization bits per dimension× number of dimensions is a mul-
tiple of 8 (so that the quantized vectors can be stored in bytes). As our embedding models produce
128-dimensional vectors by default, the augmentation procedure described in Section 3 would result
in 129-dimensional vectors. To ensure compatibility with quantization, we take the first 127 dimen-
sions of the embedding, which has a negligible impact on performance. For a fair comparison, we
use the 127 dimensional embeddings for all methods (by truncation or setting the last dimensions
to zero). We set 2 bits per dimension for quantization. We generate R = 8 replica indices. The
quantization method is the same as PLAID.
— Coverage Scoring: We perform exact scoring using efficient tensor ops. We make use of the
following property: maxS∪{c} f = max(maxS f, f(c)) for the coverage value per token q. Thus,
we can efficiently update and compute the vector [F (S, q)]q∈Q. This unreduced/partially computed
MaxSim score can be used for coverage scoring for our baselines, as well as for computing the
augmented representations [q̂S]q∈Q, which is simply the concatenation of the query embeddings
with the above vector.

Hyperparameters While indexing, DISCO sets the number of centroids (B in the indexing rou-
tine Algorithm 3) for k-means dynamically based on the number of items. k-means is computed on
a much smaller subset sampled from the entire corpus before indexing. This sample is also used to
estimate the total number of tokens over the entire corpus (, which is the size of the index.

The number of centroids for k-means is chosen as
√
16× est. size. However, rather than this exact

quantity, we instead the largest power of 2 that is less than or equal to it, considering the bitwidth of
the centroid id field. This is also the strategy used by PLAID.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

During retrieval (Algorithm 4), we probe one cell per token, and we fix n′ = 1. Subsequently, the
threshold τ is set to 0.5, and the number of documents considered after filtering is 256. These values
are based on the values used by PLAID when retrieving n′ items.

In our ablations in Section G, we also experiment with the following combinations of hyperparam-
eters for DISCO: (n′, n, τ) = (10, 256, 0.5), (15, 1024, 0.45).

We also introduce a different variant, termed Late Pool, where each replica is used for end-to-end
retrieval , which includes pruning, filtering and obtaining a top-n′. This is followed a pooling across
all replicas, and the best candidate is chosen out of these. In this case, we test the same combinations
of (n′, n, τ), namely (1, 256, 0.5), (10, 256, 0.5), (15, 1024, 0.45).

G.4 BASELINES

We use two classes of baselines (1) Submodular Optimization based solvers (2−4), and (2) Retrieval
engines based on MaxSim retrieval.

Exact Greedy (Nemhauser et al., 1978). It performs exhaustive search over the corpus items, by
computing the marginal gain F (c |SK−1, Q) for each c ∈ C for each K (line 3, Algorithm 1). In
this manner, it builds the solution set over K iterations. The brute-force evaluation of each candidate
renders it inefficient for large corpus sets. It serves as a skyline in terms of coverage performance,
and is implemented without the use of any solver for this reason.

Lazy Greedy (Minoux, 2005). This is an accelerated variation of Exact Greedy. It builds a heap
before the first iteration, which allows it to avoid exhaustive search in subsequent iterations. How-
ever, it still has to build the heap for each query, resulting in a linear time complexity. It is based on
the principle that for submodular functions, the marginal gain of an item can only diminish as the
algorithm progresses.

Stochastic Greedy (Mirzasoleiman et al., 2015). It is a variant of greedy algorithm which— instead
of probing the entire corpus C— uniformly samples a subset C′ ⊂ C at random to evaluate and select
the next candidate. The performance of this algorithm entirely depends on the size of the subset
sampled, which is in turn controlled by the ϵ′ parameter. ϵ′ presents a speed-coverage tradeoff.

Lazier-than-lazy Greedy (Mirzasoleiman et al., 2015). This variant of Exact Greedy combines
the benefits of Lazy Greedy and Stochastic Greedy together. It heapifies the randomly selected
subset before the first iteration, which speeds up the subsequent selections of K − 1 elements. The
speed benefit derived may be heavily implementation dependent. In our experience, the submodlib
library implements Lazier-than-lazy Greedy with the help of an std::set data structure, whose
underlying structure is a red-black tree. This implementation choice results in overhead during
execution.

PLAID (Santhanam et al., 2022). Here, the indexing and retrieval methods are designed for inde-
pendent top-K retrieval based on MaxSim score in Eq. (1). It offers multi-stage progressive pruning
based retrieval, using multi-vector based IVF (Douze et al., 2024), similar to DISCO. PLAID’s re-
trieval engine is designed to offer significant speedups over the earlier ColBERT v1/v2 (Santhanam
et al., 2021; Khattab et al., 2020) style retrievers. It achieves this by clustering corpus passages into
a bag of centroids and their corresponding compressed residuals.

Before doing any exact query-corpus token interactions, PLAID performs MaxSim scoring on these
centroids to obtain a large pool of corpus items, and then prunes them according to a carefully cho-
sen pruning threshold. It executes these operations using highly optimized CPU/CUDA runtimes,
leading to 42.4× CPU latency drop and 6.6× GPU latency drop.

MUVERA (Dhulipala et al., 2024). It constructs fixed-dimensional single vector encodings for
Q and X , whose inner product ϵ-approximates the MaxSim score (1), enabling single-vector based
ANN for independent retrieval of top-K items. MUVERA generates these encodings by first hashing
tokens into buckets, then performing a random projection to bring bucket vectors onto a specified
dimension, and finally repeating this random sketch R times and concatenating the vectors. As a
result, the dimension of the encoding is dFDE = B × dproj × R, where B is the number of buckets,
dproj is the random projection dimension, and R is the number of repeats. B is obtained by setting
the num simhash projections parameter, which gives us B = 2num simhash projections.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

We observe that the quality of their approximation depends on dFDE. Their experiments often use a
value of dFDE = 10, 240. In our experiments, we set to dFDE = 25 × 20 × 20 = 12, 800. The
MUVERA implementation provides an (optional) end-stage projection to control the final dimension
size, which we leverage to obtain encodings of dimension 2560. The choices of dimensions and
hyperparameters are guided by the ablation experiments in their paper.

WARP (Scheerer et al., 2025). It optimizes a variant of the MaxSim score, enabling the filtering
of corpus tokens x that are highly dissimilar to a query token q. This is followed by a two-stage
reduction process that yields substantial latency improvements over PLAID. This baseline makes
use of a finetuned T5 embedding model for its ranking, which we do not change. However, the
coverage is computed using the BERT embeddings.

WARP improves over XTR (Lee et al., 2023) by replacing XTR’s token residual reconstruction
with the following optimizations: (1) Dynamic similarity imputation, with which it estimates the
similarity scores of a large number of token-token pairs, (2) scoring using compressed residuals and
avoiding residual decompression altogether, and (3) reducing the set of candidate passages and per-
token final pairs before the last round of pooling. Additionally, the authors provide highly optimized
C++ runtimes which contribute to a 41× drop in latency.

Next, we describe our choice of submodular optimization solver in detail.
— Submodular optimization solver: For the submodular solver baselines, we use the
facilityLocation solver class of the submodlib library (Kaushal et al., 2022). submodlib-
based greedy programs adhere to a two stage framework. In the first stage, for the given query,
a full sweep across the corpus is made to obtain pairwise scores for the similarity kernel. In the
second stage, a call is made to the submodlib API with the choice of optimizer (e.g. Lazy Greedy,
Lazier-than-lazy Greedy, Stochastic Greedy), ϵ′ and the kernel matrix. Queries are processed in
batches of 100 for the similarity computation. We note that the similarity computation contributes
to a significant speed bottleneck, as seen in Figure 2, and a parallelizable algorithm for submodular
optimization would be of great interest.

During initial testing, we discovered that the solution sets returned by Lazy Greedy were not
matching with our Exact Greedy implementation. Additionally, Lazier-than-lazy Greedy and
Stochastic Greedy were unable to perform even upto the level seen in Figure 2. Upon investiga-
tion, it was found that their implementation assumes that the kernel matrix is meant to be accessed
in a column-major manner in memory. We fixed this bug by changing to the correct row-major
access style. Subsequent tallying of results passed our correctness tests.

G.5 SYSTEM CONFIGURATION

All experiments were performed on a server with seven 48GB RTX A6000 GPUs. The server
has a 96-core 1.5GHz AMD Epyc CPU running Debian13. Exact Greedy tensor operations were
performed on GPU, as were indexing and retrieval operations on PLAID based architectures,
such as WARP and DISCO. Greedy variations such as Stochastic Greedy, Lazy Greedy and
Lazier-than-lazy Greedy were implemented using the submodlib (Kaushal et al., 2022) library, and
operations were performed on CPU.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

H ADDITIONAL EXPERIMENTS

In this section, we provide results for an extensive variety of additional experiments. Specifically, we
provide additional results for the relevance of the coverage objective with respect to gold items, qual-
ity of our proposed approximation to marginal gain, the tradeoff between coverage and efficiency
with respect to Exact Greedy, the need for early pooling in DISCO, and various configurations of
the greedy algorithms. Additionally, we provide results on the tradeoff between coverage and the
number of iterations K, variation of hyperparameters in DISCO, and set-wise comparison with the
Exact Greedy solution.

Exact Greedy

#samples R=3

#samples R=1

#samples R=4

#samples R=2

#samples R=5

2 4 6 8 10
K→

20

25

A
v
g

F
(S

K
,Q

)
F

(S
K
,Q

)
F

(S
K
,Q

)

(a) NFCorpus

2 4 6 8 10
K→

22

24

(b) Writing

2 4 6 8 10
K→

10

15

20

(c) SCIFact

Figure 13: Coverage obtained with our approximate marginal gain formulation under varying num-
bers of random hyperplanes R. Our approximation of the marginal gain rapidly approaches the exact
marginal gain skyline, with only a small number of hyperplanes needed for near-optimal coverage.

H.1 QUALITY OF PROPOSED APPROXIMATION

We provide additional results on the assessment of the quality of the marginal gain function
Gw1:R

(c, S,Q). Specifically, we compare the Exact Greedy algorithm (exact marginal gain at every
iteration) to its random hyperplane–augmented counterpart under varying numbers of hyperplanes
R. Figure 13 reports the coverage achieved by each configuration. We observe that as R increases,
the quality of the marginal gain approximation improves and the coverage rapidly approaches that
of Exact Greedy, which constitutes the skyline across all datasets. Notably, only a modest number
of hyperplanes is sufficient to close this gap, thereby justifying the design choice of using limited R
in DISCO.

DISCo

Lazier-than-lazy Greedy

Exact Greedy

MUVERA

Lazy Greedy

WARP

Stochastic Greedy

PLAID

100 102 104

Efficiency→

20

22

25

A
v
g

F
(S

K
,Q

)
F

(S
K
,Q

)
F

(S
K
,Q

)

(a) Science

100 102 104

Efficiency→

20

22

25

(b) Technology

100 102 104

Efficiency→

20

25

(c) Writing

Figure 14: Analysis of tradeoff between coverage and efficiency on DISCO against state of the
art baselines, across additional datasets from the LoTTE benchmark. DISCO continues to report a
superior coverage-efficiency tradeoff compared to the baselines. X-axis is log-scale and upper right
corner is the best performing quadrant.

H.2 COVERAGE-EFFICIENCY TRADEOFF

We compare DISCO against the baselines on additional datasets from the LoTTE benchmark in
Figure 14. We make the following observations: (1) DISCO continues to trade off between mean
coverage and average query time more effectively. (2) For example, in the Technology dataset,
DISCO is at least 61× faster than the greedy variants, and at least 66× more efficient than them.
(3) Exact Greedy and Lazy Greedy continue to dominate coverage, but are prohibitively expensive
compared to the indexing based methods. (4) Query agnostic randomized pruning continues to affect
the performance of Stochastic Greedy and Lazier-than-lazy Greedy.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

DISCo

Lazier-than-lazy Greedy

Exact Greedy

MUVERA

Lazy Greedy

WARP

Stochastic Greedy

PLAID

5 10
K→

24

26

28
A

v
g

F
(S

K
,Q

)
F

(S
K
,Q

)
F

(S
K
,Q

)

(a) MS-Marco

5 10
K→

20

25

(b) Fever

5 10
K→

20

25

(c) HotpotQA

5 10
K→

20

25

(d) Pooled

5 10
K→

20

22

25

A
v
g

F
(S

K
,Q

)
F

(S
K
,Q

)
F

(S
K
,Q

)

(e) Science

5 10
K→

20

22

25

(f) Technology

5 10
K→

20

25

(g) Writing

Figure 15: Analysis of coverage in terms of the upper bound K on the size of solution set S, i.e.,
|S| ≤ K. We vary K from 1 to 10. Exact Greedy and Lazy Greedy provide skyline values, while
DISCO consistently outperforms all other baselines.

H.3 COVERAGE VS K

Here we analyze the performance of DISCO against the baselines in terms of coverage and the
value of the upper bound K on the size of the solution set S. We provide results on the MS-Marco,
Fever, HotpotQA and Pooled datasets. Note that these results are independent of the time taken by
any method. Figure 15 summarizes the results. Our observations are as follows. (1) In each of the
datasets, Exact Greedy and Lazy Greedy dominate over the rest of the methods. This is explained
by the fact that both methods maximize the exact marginal gain over the entire corpus set, minus
the already chosen items. This is in contrast to Stochastic Greedy and Lazier-than-lazy Greedy,
which sample a reduced subset of the corpus to evaluate and select the next best element at each
iteration. (2) DISCO is consistently the next best performer. It outperforms Stochastic Greedy and
Lazier-than-lazy Greedy amongst the greedy variations, and also outdoes the other indexing based
methods such as PLAID, MUVERA and WARP. (3) PLAID is able to outperform WARP on at
least three datasets, despite WARP being an extension of PLAID meant for better performance. We
conclude that WARP is optimized for independent top-K retrieval. (4) MUVERA, despite having
been developed as an efficient single-vector MIPS approximator to multi-vector search, is unable to
perform in the collaborative retrieval setting.

DISCo

Late Pool, n'= 1

Late Pool, n'= 10

Late Pool, n'= 15

Late Pool, n'= 20

250 500 750
Efficiency→

24

26

A
v
g

F
(S

K
,Q

)
F

(S
K
,Q

)
F

(S
K
,Q

)

(a) Fever

500 1000
Efficiency→

23

25

(b) HotpotQA

250 500 750
Efficiency→

23

24

25

(c) Technology

1000 2000
Efficiency→

23

24

25

(d) Writing

Figure 16: Ablation study to justify the architectural choice of early pooling. DISCO achieves a
superior coverage-efficiency tradeoff against the late pooling baselines.

H.4 ABLATION STUDY ON NEED FOR EARLY POOLING

We provide further results demonstrating the need for early pooling within the DISCO end-to-end
retrieval pipeline. In particular, we compare DISCO with its late pooling ablations on the Fever,
HotpotQA, Technology, and Writing datasets. Recall that in the late pooling variants, the R pro-
jected queries Φwr (q̂S) are processed independently via ColBERT, with each replica producing its
own top-n′ candidates–which are merged and reranked according exact marginal gain to the cov-

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

erage objective F (c |S,Q). Early pooling is the method of choice across all datasets, achieving a
superior coverage-efficiency tradeoff compared to the ablations. Figure 16 summarizes the results.
We observe that among the late pooling baselines, the variant with n′ = 20 attains the best cover-
age, while other curves converge toward this ceiling, but all remain below the performance of early
pooling.

DISCo DISCo (n'=10) DISCo (n'=15)

500 1000
Efficiency→

27

28

A
v
g

F
(S

K
,Q

)
F

(S
K
,Q

)
F

(S
K
,Q

)

(a) MS-Marco

250 500 750
Efficiency→

24

26

(b) Fever

500 1000
Efficiency→

23

25

(c) HotpotQA

250 500 750
Efficiency→

23

25

(d) Pooled

Figure 17: Ablation study on the effect of n′ on the performance of DISCO. While higher n′

provides absolute gains in coverage, this comes with a drop in efficiency. This result justifies the use
of the default setting in our experiments involving DISCO.

H.5 ABLATION STUDY ON VARYING n′ FOR DISCO

In this experiment, we vary the n′ hyperparameter for DISCO–number of top document candidates
we retain after the residual scoring step and before the full-precision scoring. We test on four
datasets, viz., MS-Marco, Fever, HotpotQA and Pooled. Figure 17 summarizes the results. It can
be observed that the default DISCO (n′ = 1) trades off coverage for efficiency. As we increase n′,
we achieve gains in coverage. In the case of Fever and HotpotQA, the default DISCO configuration
provides a better coverage-efficiency curve, while in the case of MS-Marco, n′ = 10 is the better
performing outlier.

H.6 GREEDY ALGORITHM VARIATIONS

Lazier-than-lazy Greedy, ε′ = 0.1ε′ = 0.1ε′ = 0.1

Lazier-than-lazy Greedy, ε′ = 0.5ε′ = 0.5ε′ = 0.5

Lazier-than-lazy Greedy, ε′ = 0.9ε′ = 0.9ε′ = 0.9

Stochastic Greedy, ε′ = 0.1ε′ = 0.1ε′ = 0.1

Stochastic Greedy, ε′ = 0.5ε′ = 0.5ε′ = 0.5

Stochastic Greedy, ε′ = 0.9ε′ = 0.9ε′ = 0.9

1 3 5 7 10
Efficiency→

22

25

27

A
v
g

F
(S

K
,Q

)
F

(S
K
,Q

)
F

(S
K
,Q

)

(a) MS-Marco

1 3 5 7 10
Efficiency→

20

25

(b) Fever

1 3 5 7 10
Efficiency→

15

20

25

(c) HotpotQA

1 3 5 7 10
Efficiency→

20

25

(d) Pooled

1 3 5 7 10
Efficiency→

20

25

A
v
g

F
(S

K
,Q

)
F

(S
K
,Q

)
F

(S
K
,Q

)

(e) Science

1 3 5 7 10
Efficiency→

20

25

(f) Technology

1 3 5 7 10
Efficiency→

20

25

(g) Writing

Figure 18: Analysis of coverage-efficiency tradeoffs for Lazier-than-lazy Greedy and
Stochastic Greedy for varying ϵ′.

In Figure 18, we provide insights into the performance of Lazier-than-lazy Greedy and
Stochastic Greedy across varying ϵ′. We find that Stochastic Greedy achieves the best coverage
at ϵ′ = 0.1, followed by Lazier-than-lazy Greedy at ϵ′ = 0.1. The per-query time taken by each
method is dominated by the time to compute the similarity kernel, which results in similar efficiency
tradeoffs across all methods.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

DISCo

Lazier-than-lazy Greedy

Exact Greedy

MUVERA

Lazy Greedy

WARP

Stochastic Greedy

PLAID

2 3 4 5
Rank of Last Relevant Item Retrieved

0

50

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

(a) Fever

2 3 4 5
Rank of Last Relevant Item Retrieved

0

25

50

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

(b) Science

Figure 19: Histogram of the rank of the last (|Sgold|-th) true relevant item

H.7 COVERAGE OBJECTIVE ON GOLD SET OF ITEMS

We extend the experiment on measuring and comparing the coverage objective on the given gold set
of items with solutions sets obtained by other methods. Specifically, we provide results on the Fever
and Science datasets. We operate on those queries which have at least two relevant documents in the
corresponding corpus. The gold set of corpus items for each query is capped at the top two items
according to the marginal gain obtained on our coverage function. Figure 19 summarizes the results.
We observe that across datasets, PLAID outperforms other methods at gold set retrieval. This is due
to the fact that the gold sets on these datasets are meant to be used for independent top-K retrieval.
HotpotQA is the exception, and this is because it is a multi-hop dataset amenable to collaborative
retrieval.

I ADDITIONAL EXPERIMENTS DURING REBUTTAL

Here, we provide a consolidated report of the experiments conducted during the rebuttal, as well as
any clarifications about our pipeline and the datasets.

I.1 ADDITIONAL PERFORMANCE MEASURES

In this section, we expand our evaluation in the style of HotpotQA, to two more question-answering
style datasets, namely 2WikiMultihopQA (Ho et al., 2020) and Musique (Trivedi et al., 2022). In
addition to MAP on the gold labels, we also evaluate the set selection quality using three standard
set-overlap metrics. For each query q, let S∗

q denote the ground-truth pseudo-relevant set and Sq,K

the size-K set selected by the method under budget K. We report:

Subset Recall@K, also called perfect recall at K, the fraction of queries for which the selected set
fully contains the ground-truth set: S∗

q ⊆ Sq,K .

Precision@K, the average proportion of selected items that are relevant:
|S∗

q∩Sq,K |
|Sq,K | .

Recall@K, the average proportion of relevant items recovered:
|S∗

q∩Sq,K |
|S∗

q |
.

Together, these metrics capture both strict containment performance (subset recall@K) and standard
overlap-based retrieval quality (precision@K and recall@K).

Dataset DISCo Exact Greedy Lazy Greedy PLAID WARP

2WikiMultiHopQA 0.90 0.91 0.91 0.89 0.82
Musique 0.64 0.66 0.66 0.61 0.50

Table 20: Mean Average Precision (MAP).

Dataset DISCo Exact Greedy Lazy Greedy PLAID WARP

2WikiMultiHopQA 0.26 0.27 0.27 0.22 0.19
Musique 0.09 0.10 0.10 0.08 0.06

Table 21: Subset Recall@K: fraction of queries where S∗
q ⊆ Sq,K .

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Dataset DISCo Exact Greedy Lazy Greedy PLAID WARP

2WikiMultiHopQA 0.34 0.35 0.35 0.32 0.31
Musique 0.23 0.23 0.23 0.20 0.17

Table 22: Precision@K:
|S∗

q∩Sq,K |
|Sq,K | .

Dataset DISCo Exact Greedy Lazy Greedy PLAID WARP

2WikiMultiHopQA 0.60 0.61 0.61 0.57 0.55
Musique 0.41 0.42 0.42 0.37 0.32

Table 23: Recall@K:
|S∗

q∩Sq,K |
|S∗

q |
.

In Tables 20, 21, 22, and 23, we note that DISCo performs closely wrt the greedy baselines and
outperforms the IR baselines PLAID and WARP. We also note that on a per-query basis, DISCo
takes 153.86 seconds on 2WikiMultihopQA and 42 seconds on Musique, whereas Exact Greedy
takes 189.71 seconds on 2WikiMultihopQA and 73 seconds on Musique, leading to speedups of
1.23x and 1.73x respectively.

I.2 COVERAGE OF GOLD ITEMSETS FOR QA DATASETS

DISCo

Lazier-than-lazy Greedy

Exact Greedy

MUVERA

Lazy Greedy

WARP

Stochastic Greedy

PLAID

2 3 4 5
Rank of Last Relevant Item Retrieved

0

5000

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

(a) 2WikiMultihopQA

2 3 4 5
Rank of Last Relevant Item Retrieved

0

1000

2000

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

(b) Musique

Figure 24: Histogram of the rank of the last (|Sgold|-th) true relevant item for the new QA datasets.
Left: 2WikiMultihopQA, right: Musique.

We analyze the ranking of the last relevant item across all methods by plotting a histogram of the
position of the last gold retrieved item. Note that a low value of the rank is better as then all items
in Sgold are retrieved within a small cutoff value of K. Figure 24 shows the results: DISCO more
frequently retrieves all the gold documents within the top 2–3 positions, performing closely wrt
Exact Greedy and Lazy Greedy, whereas IR methods such as MUVERA, PLAID, and WARP more
frequently place the last relevant item at lower ranks.

I.3 PERFORMANCE ON BRIGHT BENCHMARK

Figure 25 shows the trade-off between average coverage objective FK and the efficiency with re-
spect to Exact Greedy. These tradeoffs are obtained by varying the subset size K. We note that
DISCO achieves the most balanced tradeoff compared the other baselines. DISCO is also vastly
more efficient than the greedy baselines (Exact Greedy, Lazy Greedy, etc.). Amongst the IR base-
lines, PLAID and WARP compete with each other, with PLAID outperforming WARP on the first
two datasets, and WARP doing so on the other two.

I.4 COMPARISON WITH COLBERTV2 AND SPLADE

Figure 26 details the trade-off between average coverage objective FK and the efficiency with re-
spect to Exact Greedy, on a limited subset of the baselines. The key focus is on DISCO’s per-
formance in comparison to ColBERTv2 (Santhanam et al., 2021) and SPLADE (Formal et al.,
2021). We observe that DISCO provides higher quality tradeoffs compared to both ColBERTv2
and SPLADE. Amongst the other IR baselines, ColBERTv2 and PLAID often perform closely wrt

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

DISCo

Exact Greedy

Lazier-than-lazy Greedy

MUVERA

Lazy Greedy

WARP

PLAID

100 101 102 103

Efficiency→

15

20
A

v
g

F
(S

K
,Q

)
F

(S
K
,Q

)
F

(S
K
,Q

)

(a) Biology

100 101 102 103

Efficiency→

15

20

(b) Stackoverflow

100 101 102 103

Efficiency→
15

20

(c) Sustainable Living

100 101 102 103

Efficiency→

17

20

22

(d) Robotics

Figure 25: Trade off between efficiency and average coverage objective of DISCO and a subset of
state-of-the-art baselines on four datasets: (a) Biology, (b) Stackoverflow, (c) Sustainable Living,
and (d) Robotics. All datasets were chosen from the Bright benchmark. DISCO achieves the best
trade-off in three datasets, and the best coverage in Stackoverflow against the IR baselines, where
the next efficient performer is low on coverage. Efficiency is in log-scale. Upper right corner is the
best quadrant.

DISCo

Exact Greedy

MUVERA

Lazy Greedy

WARP

PLAID

ColBERTv2

SPLADE

100 102 104

Efficiency→

10

20

A
v
g

F
(S

K
,Q

)
F

(S
K
,Q

)
F

(S
K
,Q

)

(a) MS-Marco

100 102 104

Efficiency→

20

25

(b) HotpotQA

100 102 104

Efficiency→

22

25

27

(c) Fever

100 102 104

Efficiency→

20

25

(d) Pooled

Figure 26: Trade off between efficiency and average coverage objective of DISCO and a subset
of the state-of-the-art baselines on four datasets: (a) MS-Marco, (b) HotpotQA, (c) Fever, and (d)
Pooled. DISCO achieves the most balanced trade-off, and is able to outperform both new baselines:
ColBERTv2 and SPLADE. Upper right corner is the best quadrant.

each other, while WARP and SPLADE are the next best performers. Notably, SPLADE is unable to
achieve coverage on MS-Marco, which contains the largest corpus out of the four datasets.

I.5 FURTHER CLARIFICATION ON THE GOLD SETS OF HOTPOTQA

Here, we reply to the reviewer’s concerns about why HotpotQA’s gold sets differ from that of the
other datasets’s.

BEIR (Thakur et al., 2021) collects diverse datasets into a single retrieval benchmark, eliding fine
distinctions in the semantics of their relevant item subsets. HotpotQA (Yang et al., 2018) is a multi-
hop question answering dataset, which was absorbed into BEIR in order to test zero-shot retrieval.
In the original setting, each instance within a split (train/dev/test) contained a query, supporting
passages (some of which were relevant and some were ”distractors”), a list of candidate answers
and the gold answer. Each query required reasoning over all the relevant supporting facts to obtain
the answer. An example of such a query is ”The mulga apple is often eaten by people who genetic
research has inferred a date of habitation as early as when?”. This query requires understanding
what a mulga apple is, what kinds of people ate them often according to researchers, and when these
apple-eaters inhabited the Earth.

When it was repurposed into the BEIR benchmark, the set of queries was kept as-is, while an in-
dependent corpus was constructed using Wikipedia. The multi-hop reasoning nature of the dataset
remains even in its IR reformation. This distinguishes it from other datasets in the BEIR benchmark,
such as FEVER and MSMarco

I.6 ON HANDLING UPDATES TO THE CORPUS EFFICIENTLY

The topic of efficient corpus updates has practical significance for a wide variety of indexes and vec-
tor databases. Updating even classical posting-list–based inverted indexes involves complex engi-
neering, as outlined in Chapter 7 of BCC’s text on search engines and information retrieval (Büttcher
et al., 2016). Clustered-IVF–style dense indices can be updated for a while by inserting modified

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

postings into their lists—facing much the same impediments to posting-list compression as lexical
inverted indexes—but over time the stale clustering may cause hotspots and require reclustering.
Most relevant system-optimization issues are covered in the classic BCC (Büttcher et al., 2016) text.
This question encompasses most dense indexes and is not limited to DISCO, and would be an in-
triguing avenue of future work, but it is far beyond the scope of set retrieval from an unchanging
corpus, which itself poses significant challenges that our work addresses.

One way of incorporating new insertions to the corpus without having to perform the entire indexing
process from scratch is to perform a virtual insertion during retrieval, i.e., during the replica-level
centroid pruning process (Section 3.4). Across each of the r = 1 to R replicas of the index, we
compute the similarity of the new item c′ (using its corresponding embeddings) with the centroids
{o b, r}Bb=1 where B is the number of clusters. The item c′ is assigned to the cluster corresponding
to the highest similarity. Thereafter, pruning and subsequent operations can be executed as usual.

The above solution depends on the volume of inserts being executed within a period of time. For a
higher volume of insert operations, more suitable data structures need to be employed. One example
of such a data structure is a log structured merge tree (LSM), which writes updates to a primary
memory buffer before flushing all of them to an immutable file in secondary memory. Other engi-
neering techniques include batching updates, index versioning and snapshotting.

I.7 ON THE USE OF MAP IN QA-STYLE DATASETS

We have included a discussion on this matter in Section 4, after ”Evaluation setting, coverage and
efficiency”. We present an elaboration here.

Of all corpus subsets, there is a gold subset S∗. Ideally, a set ranking system would return sets
S1, S2, . . . in the order of “improving approximation” to S∗. In practice, a retrieval system will
generally rank items, not subsets. Suppose the items are ranked x1, x2, If we include the first K
items in the system output, i.e., SK = {x1, . . . , xK}, then there is clear motivation for using MAP:
the gold target is a set, and the system outputs a ranked list.

Note that (although its name includes ‘precision’ and not ‘recall’) MAP does take recall into account
because it averages precision up to the position of the last relevant item from S∗. For downstream
“reasoning” applications such as RAG for multi-passage QA, retrieving the whole of S∗ is usually
mandatory for correctness, possibly by setting K to be sufficiently large. This renders MRR unac-
ceptable as an evaluation measure, because MRR is content to track the rank of just the first ranked
item from S∗. NDCG does not care about recall of all of S∗, either. It is oblivious to loss of recall
beyond its top-K horizon.

One might argue that the differential treatment MAP accords to the relevant items is misplaced for
downstream set consumers, in which case, we can measure recall and precision at K as usual, aver-
aged over queries. We could also measure the average (over queries) rank at which S∗ is completely
recalled, or the fraction of queries where we succeed at recalling all of S∗ at rank K. These are
important from the “lost in the middle” perspective.

We feel in our context, where retrieving entire set S is crucial, MAP is more appropriate than both
MRR and NDCG. Also of interest is the last rank where a relevant item is recalled, because it is a
proxy for the (substantial) energy consumed by an LLM when the retrieved subset is presented to its
context. We also evaluated selection quality using three standard set-overlap metrics as described in
Appendix I.1.

I.8 ON THE PERILS OF PSEUDO-LABEL GENERATION

To evaluate using gold labels on non-QA datasets such as MSMarco and Fever, we prompt Qwen2.5-
14B-Instruct LLM to obtain pseudo-labels for these datasets. However, we find that the quality of
the labels obtained is not satisfactory, and this leads to a severe degradation in metrics across all
methods, not just DISCO. As an example, for the query ”Ed Decter only has citizenship in China.”
from the Fever dataset, the LLM labels a passage about the WCHA’s Ice Hockey tournament as a
gold item. Ed Decter is an American film director and has no relation to ice hockey. Thus, we avoid
the use of pseudo-labels in our work.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

I.9 ON DOWNSTREAM TASK EVALUATION (QUESTION-ANSWERING)

We agree that it would be useful to assess the performance of DISCo on a downstream task such as
question answering. To this end, we select two question answering datasets - 2WikiMultihopQA (Ho
et al., 2020) (abbreviated 2Wiki) and Musique (Trivedi et al., 2022). We process these datasets for
first-stage retrieval, second-stage answering as follows.

For each sample present in the train and dev splits of these datasets, we collect the union of the
corresponding supporting facts and generate the corpus. In the case of 2Wiki, this leads to 384,771
unique corpus items and for Musique, 84,453 unique items. Next, we mark the gold corpus items
for each query as the ground-truth supporting facts used to answer that query. In the case of 2Wiki,
we sample 20K queries u.a.r from the combined train and dev splits, while in the case of Musique,
we have 22,355 queries. In the first stage, DISCo retrieves the top-K corpus fact-set for each query
according to our coverage score. In the second stage, we prompt the Qwen2.5-14B-Instruct LLM to
answer the question given the set of retrieved facts only (i.e., without using world knowledge).

We vary K = 3, 5, 10 across both datasets, and tabulate our results below.

Avg Exact Match (EM) K = 3 K = 5 K = 10

2Wiki 0.43 0.45 0.45
Musique 0.10 0.11 0.11

Table 27: Average EM scores for 2WikiMultihopQA and Musique.

Avg F1 Score K = 3 K = 5 K = 10

2Wiki 0.44 0.45 0.46
Musique 0.13 0.15 0.16

Table 28: Average F1 scores for 2WikiMultihopQA and Musique.

We find that with increasing K, the performance of the LLM improves marginally, indicating the
difficulty it faces on dealing with the questions present in both datasets. For example, 2Wiki has
four different kinds of questions presenting with varying difficulty (see Table 3 in the 2Wiki paper).
On the other hand, all the queries in Musique are of the kind ”Which major Russian city borders the
body of water in which Saaremaa is located?”, and require multiple hops through the corpus to be
answered correctly. As a result, while the LLM is able to obtain decent scores on 2Wiki, it is not
able to do so on Musique.

Another aspect which adds to the complexity is the fact that the LLM is expected to answer in
free-form. No list of candidate answers is given, which renders grounding of the LLM difficult.

I.10 ON THE CONVERGENCE OF APPROXIMATION OF MARGINAL GAIN AND TRUE GREEDY
GAIN

We provide an estimate of the error between the true marginal gain (from greedy) and our approx-
imated marginal gains given number of hyperplanes R, across three datasets. In each of the tables,
the first column lists which iteration it is we’re computing the marginal gain error for. In the remain-
ing columns, we vary R = 1 to 5 and list the gain error. We find that with a modest increase in R,
the approximated marginal gain and the true greedy gain converge, as desired.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

K→K+1 R=1 R=2 R=3 R=4 R=5
1→2 0.32 0.08 0.05 0.00 0.00
2→3 0.72 0.03 0.27 0.00 0.00
3→4 0.75 0.04 0.10 0.00 0.00
4→5 0.77 0.08 0.00 0.00 0.00
5→6 0.65 0.01 0.00 0.00 0.00
6→7 0.47 0.00 0.00 0.00 0.00
7→8 0.09 0.00 0.00 0.00 0.00
8→9 0.06 0.00 0.00 0.00 0.00

9→10 0.05 0.00 0.00 0.00 0.00

Table 29: Marginal gain error for NFCorpus

K→K+1 R=1 R=2 R=3 R=4 R=5
1→2 0.80 0.38 0.00 0.00 0.00
2→3 0.31 0.31 0.31 0.31 0.02
3→4 0.65 0.22 0.14 0.18 0.03
4→5 0.26 0.22 0.00 0.00 0.00
5→6 0.02 0.03 0.00 0.00 0.00
6→7 0.13 0.04 0.00 0.00 0.00
7→8 0.01 0.02 0.03 0.00 0.00
8→9 0.14 0.03 0.00 0.00 0.00

9→10 0.16 0.06 0.00 0.00 0.00

Table 30: Marginal gain error for SciFact

K→K+1 R=1 R=2 R=3 R=4 R=5
1→2 0.93 0.24 0.14 0.08 0.00
2→3 0.70 0.00 0.00 0.00 0.00
3→4 0.15 0.03 0.00 0.01 0.00
4→5 0.03 0.03 0.00 0.01 0.00
5→6 0.02 0.02 0.01 0.02 0.00
6→7 0.01 0.01 0.00 0.00 0.00
7→8 0.03 0.02 0.02 0.00 0.00
8→9 0.03 0.02 0.01 0.01 0.00

9→10 0.03 0.01 0.00 0.00 0.00

Table 31: Marginal gain error for Writing

39

	Introduction
	Preliminaries
	Proposed Approach
	Coverage maximization
	Brief discussion of related work
	Retrieval-oriented approximation of marginal gain
	Indexing and retrieval

	Experiments
	Results

	Conclusion
	Broader impact
	Limitations
	LLM Usage
	Further motivating scenarios
	Multi-hop QA
	Knowledge graph QA
	Table QA
	Schema retrieval for text2sql

	Extended discussion of related work
	Submodular functions
	Data subset selection
	Approximate Nearest Neighbor (ANN) Search
	Diversity and fairness in selection and ranking

	Proofs of technical results
	F(,Q) is Monotone Submodular
	Proof of Proposition 1
	Proofs for random hyperplane approximation
	Proof of Approximate Greedy Guarantee

	Additional details about the experiments
	Datasets
	Indexing Statistics
	Implementation details
	Baselines
	System configuration

	Additional experiments
	Quality of proposed approximation
	Coverage-efficiency tradeoff
	Coverage vs K
	Ablation study on need for early pooling
	Ablation study on varying n' for DISCo
	Greedy algorithm variations
	Coverage objective on gold set of items

	Additional experiments during rebuttal
	Additional performance measures
	Coverage of gold itemsets for QA datasets
	Performance on Bright benchmark
	Comparison with ColBERTv2 and SPLADE
	Further clarification on the gold sets of HotpotQA
	On handling updates to the corpus efficiently
	On the use of MAP in QA-style datasets
	On the perils of pseudo-label generation
	On downstream task evaluation (question-answering)
	On the convergence of approximation of marginal gain and true greedy gain

