
HARDTESTS: Synthesizing High-Quality Test Cases for LLM Coding

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Verifiers play a crucial role in large language model (LLM) reasoning, needed
2 by post-training techniques such as reinforcement learning. However, reliable
3 verifiers are hard to get for difficult coding problems, because a well-disguised
4 wrong solution may only be detected by carefully human-written edge cases that
5 are difficult to synthesize. To address this issue, we propose HARDTESTGEN, a
6 pipeline for high-quality test synthesis using LLMs. With this pipeline, we curate a
7 comprehensive competitive programming dataset HARDTESTS with 47k problems
8 and synthetic high-quality tests. Compared with existing tests, HARDTESTGEN
9 tests demonstrate precision that is 11.3 percentage points higher and recall that is
10 17.5 percentage points higher when evaluating LLM-generated code. For harder
11 problems, the improvement in precision can be as large as 40 points. HARDTESTS
12 also proves to be more effective for model training, measured by downstream code
13 generation performance.

14 **1 Introduction**

15 Post-training large language models (LLMs) with outcome verifiers¹ (Guo et al., 2025; Kimi Team
16 et al., 2025) can greatly improve their reasoning ability. LLMs trained with these techniques
17 are approaching the level of the best humans on challenging problems in math and programming
18 olympiads (OpenAI et al., 2025). To properly assign outcome rewards in post-training, reliable
19 verifiers are needed for both reinforcement learning and (self-) distillation.

20 Verification is a non-trivial process. How good are current verifiers? How to get better verifiers? How
21 much does verifier quality matter in LLM post-training? Verification loops become increasingly less
22 tractable as the notion of correctness increases in complexity. For math, it is relatively straightforward
23 to determine correctness by looking at the answer, whereas verifying programs needs execution.
24 An effective approach to verify programs is through test cases (Le et al., 2022; Singh et al., 2023).
25 However, most datasets of coding problems and associated test cases are less than comprehensive.
26 60% of the programs that pass test cases in APPS (Hendrycks et al., 2021) are in fact, wrong. 46% of
27 the programs that pass test cases in CodeContests (Li et al., 2022) are semantically correct, but too
28 inefficient to pass human-written tests. More importantly, scraping human-written tests is unfeasible
29 — according to our study, for 80% of the problems, human-written test cases are proprietary and
30 impossible to scrape, demanding synthesized tests. Previous test synthesis attempts, such as TACO
31 (Li et al., 2023), have limited reliability, with the false positive rate being more than 90% for difficult
32 problems in our experiments.

¹In this paper, the term “verifier” refers to rule-based systems that attempt to check the correctness of problem solutions. It is used to differentiate from model-based rewards, such as those in RLHF. “Verifiers” are not necessarily formal and do not necessarily guarantee correctness.

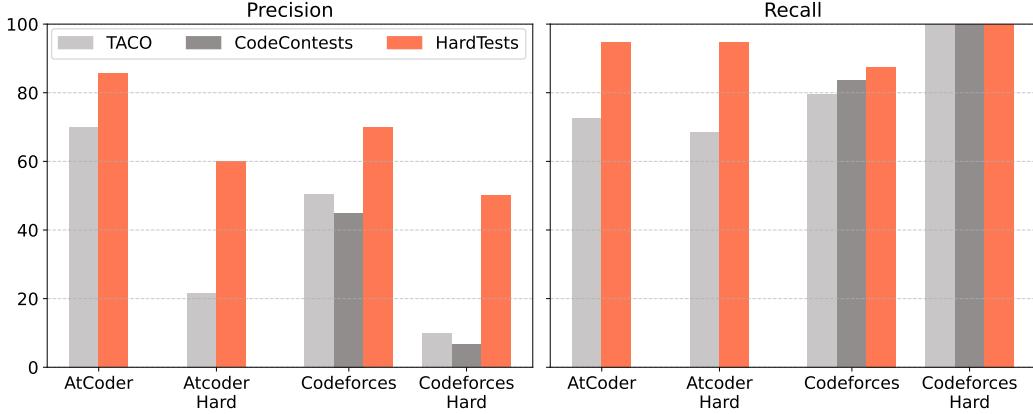


Figure 1: HARDTESTS test cases are significantly better than the baselines. The large improvement in precision indicates that our tests greatly reduce false positives and are indeed *harder*.

33 The low quality of synthetic tests is due to the challenging nature of coding problems. Coding
 34 competitions often require efficient solutions with advanced data structures and algorithms. A bad
 35 choice of algorithm can lead to a well-disguised wrong solution, which may easily pass most random
 36 tests but still break on human-written special cases. For example, on a random rooted tree with
 37 n nodes and depth of d , an algorithm with the time complexity of $\Theta(nd)$ can be very efficient, as
 38 $\mathbb{E}[d] = \Theta(\log n)$ for randomly generated trees (Devroye et al., 2012). For such an algorithm to time
 39 out, the test case needs to be a valid tree that is large enough (so that n is large) and special enough
 40 (so that d is large). A chain (each non-leaf node has exactly one child), whose depth $d = n$ can cause
 41 the algorithm to be as slow as $\Theta(n^2)$. We need valid, comprehensive tests that cover edge cases.

42 Generating valid and comprehensive tests is hard. Existing test synthesis methods, such as CodeT
 43 (Chen et al., 2023) and TACO (Li et al., 2023) rely on LLMs to directly write test inputs. While
 44 this works when the test inputs are small, it can barely keep the test inputs valid at a larger scale, let
 45 alone make them special. To alleviate these issues, we propose HARDTESTGEN, an LLM-based test
 46 synthesis pipeline. Our main insights are 1) Test case validity is better preserved when generated from
 47 LLM-produced programs rather than directly from the LLMs themselves, and 2) Each test generator
 48 has different hypotheses about the programs under test and creates tests from a different distribution.
 49 With these insights, HARDTESTGEN prompts an LLM with different aspects to consider for test
 50 cases, extracts LLM-generated test generator programs, and filters the test cases using human-written
 51 oracle programs, which widely exist for all problems in online coding competitions.

52 With HARDTESTGEN, we curate HARDTESTS, a comprehensive dataset for coding competitions
 53 with 47,136 problems and high-quality test cases. As shown in Figure 1, compared to existing test
 54 synthesizers, HARDTESTS tests are more reliable in terms of precision and recall when evaluating
 55 programs. The gap in precision can be as large as 40 percentage points for harder problems. Higher
 56 reliability of verification makes HARDTESTS the ideal playground for post-training research in the
 57 coding domain.

58 To further demonstrate the benefits of high-quality tests, we conduct post-training experiments with
 59 HARDTESTS and baseline tests. Our experiments in 3 different scenarios show that test quality
 60 matters significantly for self-distillation and reinforcement learning. Higher-quality tests can lead to
 61 improvements in downstream performance. However, our results also indicate that test quality is less
 62 important for teacher distillation.

63 In summary, this work provides:

- 64 • HARDTESTGEN, an LLM-based test synthesis pipeline that generates high-quality test
 65 cases for coding problems, improving precision by 11.3 points and recall by 17.5 points on
 66 average.
- 67 • HARDTESTS, a comprehensive problem set for competition-level code generation, with
 68 47,136 problems, among which 32.5k have high-quality test cases generated by HARDTEST-
 69 GEN.
- 70 • Empirical analyses on how test quality affects LLM post-training. We show that test quality
 71 is of great importance for reinforcement learning and self-distillation.

72 **2 Related work**

73 **RLVR.** Reinforcement learning has shown great potential in improving LLM reasoning abilities
74 in various domains, such as math (Guo et al., 2025; Zeng et al., 2025b; Ren et al., 2025) and
75 coding (OpenAI, 2025; Liu & Zhang, 2025; Luo et al.). The resulting long-reasoning LLMs, such
76 as OpenAI-o3 (OpenAI, 2024) and DeepSeek-R1 (Guo et al., 2025), largely outperform short-
77 reasoning LLMs through simple RL training to improve outcome-based reward, i.e., whether the
78 model-generated code solution passes all test cases. Although some previous works have explored
79 heuristic rules for selecting training data to improve RL performance (Ye et al., 2025; Wang et al.,
80 2025b; Li et al., 2025) or reward design (Hou et al., 2025; Kimi Team et al., 2025; Costello et al.,
81 2025), the impact of test case quality on coding LLMs during RL training remains underexplored.
82 In this work, we show that high-quality test cases, those better at detecting subtle bugs in code, can
83 largely improve coding LLM performance after RL training.

84 **LLM-based test synthesis.** Test cases are crucial in evaluating the functional correctness and
85 performance of LLM-generated code. Benchmarks such as HumanEval (Chen et al., 2021), MBPP
86 (Austin et al., 2021), and APPS (Hendrycks et al., 2021) provide hand-written test cases that serve as a
87 proxy for code correctness. However, such human-authored test cases are often only publicly available
88 for a limited set of problems. Early approaches such as EvoSuite (Fraser & Arcuri, 2011) and Pynguin
89 (Lukasczyk & Fraser, 2022) employ search-based heuristics methods. More recently, CodeContests
90 (Li et al., 2022) generates additional test cases by mutating existing crawled inputs. Several efforts
91 leverage LLMs to synthesize test inputs and (pseudo)-oracle programs for test outputs. CodeT (Chen
92 et al., 2023) and ALGO (Zhang et al., 2023) rely on LLMs to generate both tests and reference
93 programs for existing coding problems. EvalPlus (Liu et al., 2023) extends HumanEval with more
94 tests by providing the reference implementation to LLMs to synthesize seed input. Similarly, TACO
95 (Li et al., 2023) also generates test inputs with LLMs and outputs with reference implementation.
96 STGen (Peng et al., 2025) generates stressful test cases for evaluating the time efficiency of code.
97 KodCode (Xu et al., 2025) and AceCoder (Zeng et al., 2025a) push synthetic data even more by
98 generating coding questions, reference solutions, and tests all with LLMs. Although existing LLM
99 test synthesis methods prove to be useful in many scenarios, their quality is far from perfect. We
100 present a more thorough discussion on the quality issues in LLM synthetic tests and their implications
101 in Appendix A.1. Concurrently with our work, rStar-Coder (Liu et al., 2025) and HF-Codeforces
102 (Penedo et al., 2025) also study more reliable test synthesis in the competition context. Comparing
103 to them, our work highlights a thorough analysis of test quality and a unique set of post-training
104 experiments that demonstrate the downstream effects of high-quality tests.

105 **Datasets for competition code generation.** Existing datasets for competition code generation focus
106 on scaling the number of problems and CoTs. Luo et al. filters a high-quality 24k problemset of
107 TACO, LiveCodeBench, and other contest programming problems. CodeForces-CoTs, the dataset
108 of 10k Codeforces problems created by Penedo et al. (2025), contains 100k reasoning traces and
109 solutions generated by DeepSeek R1. OpenCodeReasoning (Ahmad et al., 2025) also compiles a
110 dataset of 28k problems, generates 735k reasoning traces, and filters them for syntactic correctness.
111 While these efforts have shown that better models can be trained with more data and more trajectories
112 from teacher models, they are facing a “code verifiability crisis”, as described by Open-R1 (Face,
113 2025), and programs that pass test cases in these problem sets are not necessarily correct. In our
114 paper, we curate HARDTESTS, the competitive coding problem set with the most number of problems
115 (47k). More importantly, we push the scaling of training data towards higher quality of test cases and
116 evaluate how test quality affects model training.

117 **3 HARDTESTGEN: Synthesizing High-Quality Test Cases**

118 **3.1 Problem Setting**

119 **Coding problems.** We study test generation for coding problems with natural language specifications.
120 We denote the space of problem specifications as \mathcal{X} , the space of candidate programs as \mathcal{Y} , and the
121 space of test suites as \mathcal{V} . A test suite V is a set of test cases $\{t_1, t_2 \dots, t_{|V|}\}$. A test case is a pair
122 (a, c) , where a is an input to a program, and c is a checker for the corresponding output². A candidate

²In most cases, the output checker is simply a comparison between golden outputs and program outputs. Others might be equivalence checkers that do not directly compare strings.

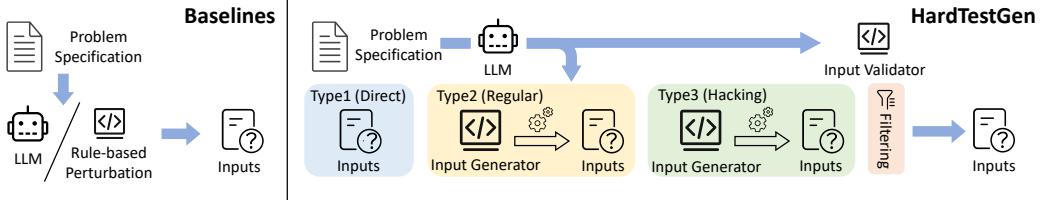


Figure 2: Comparison of the input generation process between previous test synthesizers (left) and HARDTESTGEN (right).

123 program $y \in \mathcal{Y}$ takes an input and generates an output $y(a)$, which is then sent to the output checker
 124 c for a boolean verdict $c(y(a)) \in \{\top, \perp\}$. When y exceeds a pre-defined runtime limit, its verdict is
 125 also \perp .

126 **Oracle tests and correctness.** For every coding problem $x \in \mathcal{X}$, we assume the existence of an
 127 oracle test suite $V^* \in \mathcal{V}$, which definitively tells the correctness of a program $y \in \mathcal{Y}$, i.e.

$$\text{Correctness}(y, V^*) := \bigwedge_{(a_i, c_i) \in V^*} c_i(y(a_i)). \quad (1)$$

128 In practice, the oracle tests are usually carefully written and proprietary by problem authors. Only
 129 very few of them are available for downloading, which makes them infeasible for model training.

130 **Oracle programs.** Compared to rarely available oracle tests, oracle programs (y^* such that
 131 $\text{Correctness}(y^*, V^*) = \top$) are available for almost all coding problems in online competitions.
 132 Therefore, we assume the existence of oracle programs y^* in our setting.

133 **Test synthesis.** Given a problem x , and an oracle program y^* , the task of test synthesis is to create a
 134 test suite V that agrees with V^* , i.e., we want $\text{Correctness}(y, V) = \text{Correctness}(y, V^*)$ for as many
 135 y s as possible. In HARDTESTGEN, we create a set of inputs $\{a_1, a_2, \dots, a_{|V|}\}$ and utilize the oracle
 136 program to get the outputs, i.e., $c_i = y^*(a_i)$.

137 3.2 Generating Inputs of Test Cases

138 We synthesize three types of test inputs. One is directly generated by an LLM, while the other two
 139 are generated by LLM-generated programs. Before generating inputs, we first prompt an LLM to
 140 generate an input validator in Python that checks whether a given input satisfies all the constraints in
 141 the problem specification. We subsequently prompt the LLM to generate the inputs. In the prompt, we
 142 include the input validator and an oracle program, as we find that doing so increases the likelihood of
 143 synthesizing valid inputs. Figure 2 illustrates the differences between the input generation processes
 144 of previous test synthesizers and HARDTESTGEN.

145 **Type 1. Directly Generated Inputs.** We prompt an LLM to directly generate $n_D = 10$ inputs by
 146 imitating the sample test cases provided in the problem specification. This type of input is typically
 147 small in scale, making it easy to generate and understand, and allowing for quick testing of the
 148 candidate program's functional correctness.

149 **Type 2. Regular Inputs.** Regular inputs are generated randomly according to the constraints specified
 150 in the problem specifications. For most problems, we prompt an LLM to generate a Python function
 151 g_R with no parameters that returns a random input on each call. We call this function $n_R = 20$ times
 152 to get n_R random inputs. For some problems, there are some unusual categories of outputs that are
 153 rarely triggered by random inputs. For example, when a problem's expected output is either "Yes"
 154 or "No", the correct output for almost all random inputs might be "Yes". In such cases, random
 155 inputs can potentially lead to false positives. For these problems, we prompt an LLM to generate m_R
 156 functions, each corresponding to one output category (e.g., "Yes" and "No"). We call each function
 157 $n_R = 10$ times to obtain a total of $m_R \times n_R$ inputs with their outputs specified.

158 **Type 3. Hacking Inputs.** Some well-disguised false positives cannot be easily detected with
 159 random inputs. For example, some programs may be functionally correct but inefficient in worst-case
 160 scenarios, or some programs may fail to handle certain edge cases that require special treatment.
 161 Therefore, we first prompt an LLM to list several candidate programs for the problem in natural
 162 language. Then, we prompt it to generate m_H input generation functions, each attempting to cause
 163 one candidate program to fail. Each function is called $n_H = 10$ times, generating $m_H \times n_H$ inputs.

164 After generating the inputs, we filter out all inputs that fail to pass the examination of the input
 165 validator.

166 **3.3 Generating Outputs of Test Cases**

167 We use human-written oracle programs that exist for all online competitions to test outputs. For each
168 problem, we use at most $n_{\text{oracle}} = 8$ oracle programs, prioritizing those from more reliable sources.
169 Each oracle program generates outputs for all synthesized inputs. If the outputs generated by two
170 oracle programs match for more than 90% of the cases, we consider the outputs to be acceptable and
171 adopt the matching portion as the final outputs.

172 For the majority of problems, a simple string comparison between two outputs is sufficient to
173 determine whether they match. However, some problems require a special judge. For example,
174 a problem might require returning a set (where element order does not matter) or a sequence of
175 operations that achieves a certain effect. In that case, we prompt an LLM to implement a special
176 judge function. This function takes the input and two outputs as parameters, and returns a Boolean
177 value indicating whether the two outputs are equivalent. In our dataset, 25.4% of the problems require
178 a special judge function. In subsequent training and testing processes, this function will continue to
179 be used to determine whether the candidate output and the reference output match.

180 In our dataset, we use GPT-4o to generate all of the above content. For all functions that need to be
181 generated, we include two to three carefully crafted examples in the prompts. The implementation
182 details of HARDTESTGEN (e.g., prompts), the number of generated test cases, the failure rate and
183 reasons for failure, as well as a concrete example, are provided in Appendix A.2.

184 **3.4 HARDTESTS: 47k Problems with High-Quality Test Cases**

185 The HARDTESTS dataset comprises 47,136 competitive programming problems with high-quality
186 test cases, aggregated from 13 major online judges (OJs) for competitive programming. The dataset
187 is constructed from five direct data sources: Codeforces, AtCoder, Luogu, CodeContests (Li et al.,
188 2022), and TACO (Li et al., 2023). We apply HARDTESTGEN to synthesize test cases for 32.5k
189 problems among them. The detailed constitution and description of the data sources are described in
190 Appendix A.3.

191 **Cleaning, deduplication, and decontamination.** For problems with only non-English descriptions,
192 we translated them into English using GPT-4o. To handle overlapping content among the five
193 direct data sources, we filtered out duplicated problems using problem IDs and n-gram overlaps in
194 description, prioritizing versions from the original platforms rather than mirror sites. For correct
195 programs, we retained all available versions and annotated them with their respective sources. We
196 conduct decontamination by removing the problems that are in LiveCodeBench (Jain et al., 2025b)
197 from our dataset. Since most of its problems are from Codeforces and AtCoder, we directly compare
198 the URLs to the problems.

199 **Labelling difficulty.** We retained the difficulty labels assigned by all five data sources in our dataset.
200 In the experiments presented in Section 4, we used the difficulty labels from Luogu, as it provides
201 consistent and fine-grained labels for problems from both AtCoder and Codeforces. Luogu’s difficulty
202 labels are divided into seven levels, with the first level representing beginner-level problems and the
203 seventh level corresponding to problems at the level of national competitions.

204 **4 Direct Evaluation of Test Case Quality**

205 **4.1 Evaluation Criteria**

206 We regard the testing of candidate programs as a binary classification process: a program is classified
207 as positive if it passes all test cases, and negative otherwise. To directly assess the quality of test
208 cases, we evaluate how good they are as binary classifiers. Given a problem x , an oracle test suite V^* ,
209 a synthesized test suite V , and a set of candidate programs $\{y_1 \dots y_n\}$, we categorize the programs
210 with their correctness according to V and V^* . When V and V^* both find a candidate program correct,
211 it’s a true positive (TP). When V finds a program correct while V^* finds it wrong, it’s a false positive
212 (FP). Similarly, we can define true negatives and false negatives. With these categories defined, we
213 use precision and recall to measure test quality:

$$\text{Precision} = \frac{TP}{TP + FP}, \quad \text{Recall} = \frac{TP}{TP + FN}.$$

214 **4.2 Baselines**

215 **CodeContests.** CodeContests (Li et al., 2022) primarily consists of problems from Codeforces.
216 Codeforces only provides test cases within certain length constraints. CodeContests collects these
217 and refers to them as “private test cases.” Additionally, it generates new test cases by introducing
218 random perturbations to the private test cases; these are referred to as “generated test cases.” This
219 gives CodeContests an unfair advantage as it has access to the distribution of oracle tests. In our
220 experiments, we only use generated test cases, which reduces the unfairness but does not eliminate it.

221 **TACO.** TACO (Li et al., 2023) integrates several existing datasets, such as APPS (Hendrycks et al.,
222 2021) and CodeContests (Li et al., 2022), while retaining their test cases. In addition to this, TACO
223 generates several additional test cases by using GPT-4o to directly generate the inputs and using
224 oracle programs for outputs. Furthermore, we observed that for some problems from AtCoder and
225 Codeforces, the TACO test cases included official test cases. To ensure fair comparisons, we removed
226 these official test cases.

227 **Ablative Baselines.** We also evaluate HARDTESTGEN with only Type 1 or Type 2 inputs to
228 demonstrate the necessity of all 3 types. Notably, the scenario with only Type 1, LLM directly
229 generated inputs, very much resembles many existing test synthesis methods such as KodCoder (Xu
230 et al., 2025), except that they synthesize not only the inputs but also the oracle programs.

231 **4.3 Evaluation Pipeline**

232 To evaluate the accuracy of rewards that our test cases can give to model training, we evaluate the
233 precision and recall over candidate programs generated by LLMs and written by humans on subsets
234 of problems in HARDTESTS. Details about the evaluation protocol can be found in Appendix A.4.

235 **Generating candidate problems.** To compare our tests with other synthesizers, we choose the
236 problems that exist in both HARDTESTS and the baseline datasets. For problems from AtCoder, we
237 select 653 problems that exist in both HARDTESTS and TACO. For problems from Codeforces, we
238 select 600 problems that exist in HARDTESTS, CodeContests, and TACO.

239 **Generating candidate programs.** We compare our tests with baseline tests on candidate programs
240 generated by 3 LLMs and also by human programmers. Specifically, we use three LLMs: Qwen2.5-
241 Coder-7B-Instruct (Yang et al., 2024), Qwen2.5-Coder-14B-Instruct, and GPT-4o. For each problem,
242 we sample 10 candidate programs from each LLM using a temperature of 0.7 and a top- p of 0.95. We
243 also randomly select 10 real-world human submissions for each problem.

244 **Generating gold labels.** We need gold labels to compute precision and recall. For AtCoder, we
245 run candidate programs on official tests that have been previously made available. For Codeforces,
246 we submit candidate programs to the website to obtain ground-truth verdicts. The human-written
247 candidate programs are sampled from MatrixStudio/Codeforces-Python-Submissions, which
248 provides official verdicts. We then use synthetic test cases to classify the correctness of these programs
249 and compare the results against the ground-truth labels, thereby evaluating test case quality.

250 **4.4 Results**

251 We evaluate the correctness of programs written by three LLMs and human programmers for problems
252 from AtCoder and Codeforces using test cases from TACO, CodeContests, and HARDTESTS. The
253 results are in Table 1 and 2. We present qualitative analyses of the synthetic tests in Appendix A.5.

254 We find that HARDTESTS significantly outperforms TACO and CodeContests in terms of both preci-
255 sion and recall under most evaluation settings. Moreover, this advantage becomes more pronounced
256 as problem difficulty increases. For example, for the Qwen2.5-Coder-7B-Instruct model on AtCoder
257 problems with difficulty level 4+, TACO achieves a precision of 21.67 and a recall of 68.42, whereas
258 HARDTESTS achieves a precision of 60.00 and a recall of 94.74. This implies that using HARDTESTS
259 during RL training would yield more true positive rewards and much fewer false positive rewards.

260 Furthermore, we observe that as the source of programs becomes less “intelligent” (ranging from
261 human-written to 7B LLM-generated), the precision advantage of HARDTESTS becomes more
262 pronounced. We attribute this to the fact that less skilled programmers are more likely to produce
263 functionally correct but inefficient programs. For instance, among incorrect human-written programs,
264 14.9% are due to TLE (Time Limit Exceeded), whereas among the incorrect programs written by

Table 1: Precision and recall of the test cases of TACO, HARDTESTS, and ablative baseline on AtCoder. HT-TYPE1 refers to the results using only the test cases of Type 1 from HARDTESTS, while TH-TYPE1+2 refers to the results using only the test cases of Type 1 and Type 2 from HARDTESTS.

	difficulty 1		difficulty 2		difficulty 3		difficulty 4+		average	
	prec.	recall	prec.	recall	prec.	recall	prec.	recall	prec.	recall
<i>Qwen2.5-Coder-7B-Instruct</i>										
TACO	99.48	77.09	89.66	62.90	69.07	81.71	21.67	68.42	69.97	72.53
HT-TYPE1	94.63	99.84	74.70	100.0	42.20	89.02	10.40	94.74	55.48	95.90
HT-TYPE1+2	97.85	99.35	97.58	100.0	74.23	87.80	58.06	94.74	81.93	95.47
HARDTESTS	98.15	98.95	97.64	97.58	86.75	87.80	60.00	94.74	85.64	94.77
<i>Qwen2.5-Coder-14B-Instruct</i>										
TACO	99.82	78.00	93.24	69.00	80.23	73.40	39.33	72.92	78.16	73.33
HT-TYPE1	96.21	99.72	77.22	100.0	58.90	96.81	18.50	97.92	62.71	98.61
HT-TYPE1+2	97.31	99.02	94.79	100.0	87.50	96.81	65.71	95.83	86.33	97.92
HARDTESTS	97.99	99.02	96.95	95.50	93.33	96.81	67.16	93.75	88.86	96.27
<i>GPT-4o</i>										
TACO	100.0	73.06	99.75	67.29	92.74	74.08	62.07	71.05	88.64	71.37
HT-TYPE1	99.42	99.47	94.31	99.32	86.39	99.42	45.56	99.67	81.42	99.47
HT-TYPE1+2	99.53	99.18	99.82	97.60	96.04	98.45	79.00	99.01	93.60	98.56
HARDTESTS	99.53	99.18	100.0	97.43	96.04	98.45	84.18	98.03	94.94	98.27

Table 2: Precision and recall of the test cases of TACO, CodeContests, and HARDTESTS evaluated using LLM-generated programs for problems on Codeforces.

	difficulty 1		difficulty 2		difficulty 3		difficulty 4		average	
	prec.	recall								
<i>Qwen2.5-Coder-7B-Instruct</i>										
TACO	89.64	86.13	71.07	92.91	31.06	39.47	9.82	100.0	50.40	79.63
CodeContests	85.74	89.24	63.73	97.64	23.80	47.54	6.67	100.0	44.99	83.61
HARDTESTS	87.61	95.45	93.30	98.82	48.38	55.61	50.00	100.0	69.82	87.47
<i>Qwen2.5-Coder-14B-Instruct</i>										
TACO	80.67	87.45	83.88	81.13	53.87	73.88	25.76	100.0	61.05	85.62
CodeContests	79.70	95.59	79.29	86.16	46.49	91.84	18.68	100.0	56.04	93.40
HARDTESTS	83.19	98.64	88.44	100.0	67.47	80.41	46.58	90.80	71.42	92.46
<i>GPT-4o</i>										
TACO	99.58	80.02	95.76	81.72	89.64	74.83	62.64	78.17	86.91	78.69
CodeContests	99.47	94.80	95.25	89.89	86.83	87.08	58.28	94.31	84.96	91.52
HARDTESTS	98.80	98.20	95.66	98.71	92.73	88.50	79.82	94.31	92.00	94.93
<i>Human Submission</i>										
TACO	96.28	88.89	91.48	81.59	75.90	78.84	62.23	73.77	81.47	64.62
CodeContests	94.15	90.06	87.47	89.99	73.11	85.10	56.80	79.88	77.88	69.01
HARDTESTS	93.29	94.13	85.15	95.05	73.71	93.59	64.16	89.35	79.08	74.42

265 the three LLMs, 30.0% are due to TLE. Consequently, the larger and more diverse test cases in
266 HARDTESTS are more likely to catch inefficient programs than the small-scale test cases in TACO
267 and CodeContests.

268 Compared with the ablative baselines in Table 1, HARDTESTS that includes Type2 (Regular) and
269 Type3 (Hacking) test cases consistently leads to a precision improvement ranging from 2% to 48%,
270 while the decrease in recall is always within 2.5%. This demonstrates the necessity for having
271 different types of tests.

272 **5 Downstream Effects of Test Case Quality in LLM Post-Training**

273 In this section, we aim to answer two questions with HARDTESTS: when does verifier/test quality
274 matter, and how much does it matter in post-training? We run experiments in 3 different post-training
275 scenarios: *teacher-distillation*, *self-distillation*, and *reinforcement learning*. We examine how much
276 verifier quality affects the training results in code generation, if any.

277 **5.1 Experiment Setup**

278 **Teacher-distillation.** Various papers, such as DeepSeek-R1 (Guo et al., 2025) suggest that fine-tuning
279 a smaller student model with reasoning trajectories from a stronger reasoning model can greatly
280 improve the student’s performance. In this scenario, verifiers can be used to filter out the incorrect
281 trajectories. We sample one reasoning trajectory with a C++ solution program from DeepSeek-R1
282 for each question in HARDTESTGEN, obtaining 46.6k trajectories in total after deduplication and
283 decontamination against all LiveCodeBench questions. We fine-tune two models from Qwen2.5-
284 Coder-Instruct-7B: one with all 46.6k trajectories, the other with 13k trajectories that are correct
285 according to HARDTESTS. As a baseline, we also evaluate OlympicCoder-7B (Face, 2025), another
286 Qwen2.5-Coder derivation fine-tuned with ~ 100 k trajectories of ~ 10 k Codeforces problems.

287 **Self-distillation.** Fine-tuning a model with its own reasoning trajectories can also improve its
288 reasoning ability (Zelikman et al., 2022). Hence, determining which trajectories to use is a critical
289 issue. To examine the effects of test quality, we sampled 5 traces of Qwen3-4B and used the tests
290 generated by HARDTESTGEN for filtering. We selected 4989 questions where there is at least one
291 Qwen3-4B generated program that passes the tests and at least one that fails the tests. We create
292 3 datasets for self-fine-tuning, each containing one trajectory per question. The *bad* 5k randomly
293 samples one incorrect trajectory for each question. The *good* 5k randomly samples one correct
294 trajectory. The *random* 5k randomly samples one trajectory, regardless of its correctness, for each
295 question. We further fine-tune Qwen3-4B with these 3 datasets and compare the performance of the
296 resulting models. All our fine-tuning experiments were done with Llama-factory (Zheng et al., 2024).

297 **Reinforcement learning.** Verifier feedback is an option for distillation, but it is a must for reinforce-
298 ment learning. To investigate how verifier quality affects RL, we train Qwen3-4B with RL using the
299 same problem set, the identical training setup, and different test cases. We select a problem set with
300 ~ 5 k problems that exist in both HARDTESTS and TACO for training. We use a modified version of
301 veRL (Sheng et al., 2024) inspired by Code-R1 (Liu & Zhang, 2025) for training with GRPO (Shao
302 et al., 2024). When a program passes all tests, it gets a reward of 1, otherwise, it gets a reward of 0.
303 We compare different verifiers by looking at the final performance and the validation curve.

304 **Evaluation protocol.** We use LiveCodeBench (Jain et al., 2025b) version 5 to evaluate the model
305 performance. Since all the programs we use for tuning are in C++, we build an evaluation pipeline for
306 evaluating C++ programs for LiveCodeBench and select a 105-problem subset where all problems
307 have test cases of “stdin” type. We name this subset of problems we use “LiveCodeBench-105”.
308 Details about our training and evaluation procedure can be found in Appendix A.6, including the
309 problems and hyperparameters we use for training and the sampling parameters we use for evaluation.

310 **5.2 Results**

311 **Teacher-distillation benefits more from question scaling than test quality or sample scaling.** We
312 evaluate models fine-tuned from Qwen2.5-Coder-7B using different training sets on LiveCodeBench-
313 105 and report the results in Table 3. Note that the difficulty labels are obtained from LiveCodeBench.
314 The model trained with HARDTESTS with all 46.6k examples outperforms OlympicCoder-7B (trained
315 with 100k trajectories of 10k questions), suggesting that the quality and diversity of training questions
316 matter more than the number of training samples. Interestingly, the model trained on smaller but more
317 curated subsets (13k filtered trajectories) does not match the performance of using larger, unfiltered
318 data, suggesting that data scaling dominates trajectory correctness in the teacher-distillation setting.
319 This observation aligns with the concurrent findings from OpenCodeReasoning (Ahmad et al., 2025).

320 **Self-distillation performance is highly dependent on sample quality and needs a good verifier.**
321 We evaluated variants of Qwen3-4B models self-distilled with different 5k subsets on LiveCodeBench-
322 105 and present the results in Table 4. Model self-distilled from incorrect samples identified by
323 HARDTESTGEN’s tests drops more significantly in pass@k. Self-distillation with randomly selected

Table 3: pass@k (%) of teacher-distilled LLMs based on Qwen2.5-Coder-7B on LiveCodeBench-105.

	Easy pass@1	Medium pass@1	Hard pass@1	All pass@1	All pass@10
QC2.5-7B-Ins	58.75	9.58	2.46	16.95	27.62
OlympicCoder-7B (100k trajectories)	65.83	41.25	2.46	25.81	46.67
QC2.5-7B-Ins + HARDTESTS (13k, filtered)	77.08	29.17	1.75	25.24	39.05
QC2.5-7B-Ins + HARDTESTS (46.6k, full)	83.65	44.58	6.49	32.86	53.33

Table 4: pass@k (%) self-distilled LLMs based on Qwen3-4B on LiveCodeBench-105.

	Easy pass@1	Medium pass@1	Hard pass@1	All pass@1	All pass@5	All pass@10
Qwen3-4B	88.75	53.33	11.05	38.48	52.04	56.19
Qwen3-4B (with <i>bad</i> 5k)	84.17	45.42	8.07	34.00	48.42	54.92
Qwen3-4B (with <i>random</i> 5k)	84.58	36.25	9.12	32.75	50.85	57.14
Qwen3-4B (with <i>good</i> 5k)	85.42	47.08	10.53	36.00	55.15	60.00

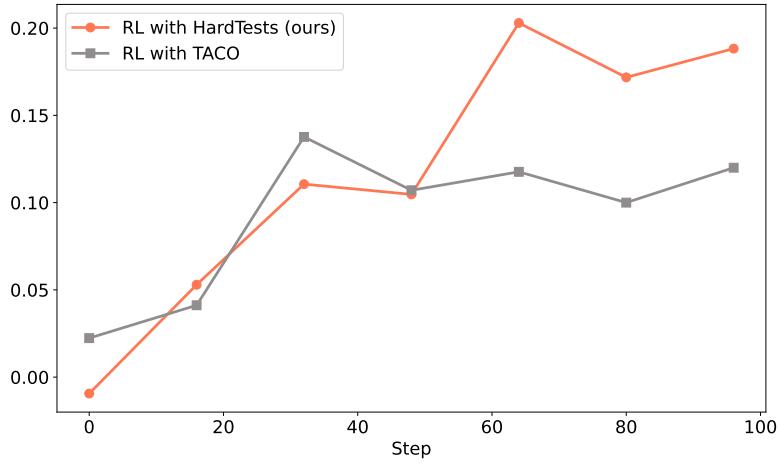


Figure 3: RL Validation Rewards Over Time. Reward from HARDTESTS makes the training better.

324 data could harm pass@1 even more, despite the slight improvements in pass@10. In contrast, using a
 325 5k subset verified by HARDTESTGEN’s test cases results in a smaller drop in pass@1 and a notable
 326 gain in pass@5 and pass@10, suggesting that verifiers are important to self-distillation.

327 **Test quality matters significantly for reinforcement learning.** As shown in Figure 3, the validation
 328 reward curve for HARDTESTS during RL training is generally higher than that for TACO.
 329 This indicates that for the same problems, HARDTESTS is giving better rewards. To evaluate on
 330 LiveCodeBench-105, we run the best checkpoints (according to valid reward) of both training jobs
 331 within 100 steps. As reported in Table 5, TACO tests hurt the model’s overall performance, while
 332 HARDTESTS improves the model’s overall performance.

Table 5: pass@k (%) for LLMs RL-trained from Qwen3-4B on LiveCodeBench-105.

	pass@1	pass@5	pass@10
Qwen3-4B	38.48	52.04	56.19
Qwen3-4B (RL with TACO)	36.95	51.01	57.14
Qwen3-4B (RL with HARDTESTS)	39.42	57.89	64.76

333 6 Conclusion

334 We present HARDTESTGEN, an LLM-based test synthesis pipeline, which is used to create
 335 HARDTESTS, a competitive coding dataset with 47k problems and significantly higher-quality
 336 tests. We examine when and how much test quality matters in LLM post-training, showing that harder
 337 tests generated by HARDTESTGEN can indeed help LLM post-training in many scenarios.

338 **Limitation**

339 Although HARDTESTS has higher-quality tests than the baselines, they are still not as good as human-
340 written ones. Moreover, we assume the existence of oracle solutions to utilize HARDTESTGEN, which
341 may not be true for some coding domains. To address this issue, we briefly discuss an initial idea for
342 synthesizing tests without oracles in Appendix A.7. Another limitation of the HARDTESTGEN is
343 that the code being tested is constrained to a single file that uses Standard I/O for input and output.
344 However, many real-world coding problems are more complicated, *e.g.* coding problems in SWE-
345 bench that may involve file I/O or web I/O, and we leave the exploration of applying HARDTESTGEN
346 to these scenarios as future work.

347 **References**

348 Wasi Uddin Ahmad, Sean Narendhiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain, Jo-
349 celyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data distillation
350 for competitive coding, 2025. URL <https://arxiv.org/abs/2504.01943>.

351 Toufique Ahmed, Martin Hirzel, Rangeet Pan, Avraham Shinnar, and Saurabh Sinha. Tdd-bench
352 verified: Can llms generate tests for issues before they get resolved?, 2024. URL <https://arxiv.org/abs/2412.02883>.

354 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
355 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
356 language models, 2021. URL <https://arxiv.org/abs/2108.07732>.

357 Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
358 Codet: Code generation with generated tests. In *ICLR*, 2023.

359 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
360 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
361 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
362 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
363 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
364 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
365 Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
366 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
367 Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
368 McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
369 large language models trained on code, 2021. URL <https://arxiv.org/abs/2107.03374>.

370 Caia Costello, Simon Guo, Anna Goldie, and Azalia Mirhoseini. Think, prune, train, improve:
371 Scaling reasoning without scaling models. *arXiv preprint arXiv: 2504.18116*, 2025.

372 Luc Devroye, Omar Fawzi, and Nicolas Fraiman. Depth properties of scaled attachment random
373 recursive trees. *Random Structures & Algorithms*, 41(1):66–98, 2012.

374 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.

376 Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-oriented
377 software. In *Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
378 on Foundations of Software Engineering, ESEC/FSE ’11*, pp. 416–419, New York, NY, USA, 2011.
379 Association for Computing Machinery. ISBN 9781450304436. doi: 10.1145/2025113.2025179.
380 URL <https://doi.org/10.1145/2025113.2025179>.

381 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
382 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
383 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

384 Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
385 Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
386 with apps. *arXiv preprint arXiv:2105.09938*, 2021.

387 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
 388 Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv preprint*
 389 *arXiv*: 2504.01296, 2025.

390 Kush Jain, Gabriel Synnaeve, and Baptiste Rozière. Testgeneval: A real world unit test generation
 391 and test completion benchmark, 2025a. URL <https://arxiv.org/abs/2410.00752>.

392 Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2E: Turning
 393 any github repository into a programming agent environment. In Ruslan Salakhutdinov, Zico
 394 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
 395 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
 396 *Proceedings of Machine Learning Research*, pp. 21196–21224. PMLR, 21–27 Jul 2024. URL
 397 <https://proceedings.mlr.press/v235/jain24c.html>.

398 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 399 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 400 evaluation of large language models for code. In *The Thirteenth International Conference on*
 401 *Learning Representations*, 2025b. URL <https://openreview.net/forum?id=chfJJYC3iL>.

402 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 403 Xiao, Chenzhuang Du, Chonghua Liao, Chunling Tang, Congcong Wang, Dehao Zhang, Enming
 404 Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
 405 Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li,
 406 Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
 407 Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
 408 Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu,
 409 Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong,
 410 Weiran He, Weixiao Huang, Wenhai Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,
 411 Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang
 412 Liu, Yanru Chen, Yeqie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du,
 413 Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu
 414 Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
 415 reinforcement learning with llms, 2025. URL <https://arxiv.org/abs/2501.12599>.

416 Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
 417 Mastering code generation through pretrained models and deep reinforcement learning. *Advances*
 418 *in Neural Information Processing Systems*, 35:21314–21328, 2022.

419 Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
 420 Ge Li. Taco: Topics in algorithmic code generation dataset. *arXiv preprint arXiv:2312.14852*,
 421 2023.

422 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling. *arXiv preprint arXiv:*
 423 [2502.11886](https://arxiv.org/abs/2502.11886), 2025.

424 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittweiser, Rémi Leblond, Tom
 425 Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
 426 de Masson d'Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,
 427 Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
 428 Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with
 429 alphacode. *arXiv preprint arXiv:2203.07814*, 2022.

430 Jonathan Light, Yue Wu, Yiyou Sun, Wenchao Yu, Yanchi Liu, Xujiang Zhao, Ziniu Hu, Haifeng
 431 Chen, and Wei Cheng. Scattered forest search: Smarter code space exploration with llms, 2025.
 432 URL <https://arxiv.org/abs/2411.05010>.

433 Jiawei Liu and Lingming Zhang. Code-r1: Reproducing r1 for code with reliable rewards. 2025.

434 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
 435 chatgpt really correct? rigorous evaluation of large language models for code generation, 2023.
 436 URL <https://arxiv.org/abs/2305.01210>.

437 Yifei Liu, Li Lyra Zhang, Yi Zhu, Bingcheng Dong, Xudong Zhou, Ning Shang, Fan Yang, and Mao
 438 Yang. rstar-coder: Scaling competitive code reasoning with a large-scale verified dataset, 2025.
 439 URL <https://arxiv.org/abs/2505.21297>.

440 Stephan Lukasczyk and Gordon Fraser. Pynguin: automated unit test generation for python. In
 441 *Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Com-
 442 panion Proceedings*, ICSE '22. ACM, May 2022. doi: 10.1145/3510454.3516829. URL
 443 <http://dx.doi.org/10.1145/3510454.3516829>.

444 Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
 445 Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
 446 Deepcoder: A fully open-source 14b coder at o3-mini level.

447 Niels Mündler, Mark Niklas Müller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and
 448 validating real-world bug-fixes with code agents, 2025. URL <https://arxiv.org/abs/2406.12952>.

450 OpenAI. Openai o1 system card. *arXiv preprint arXiv: 2412.16720*, 2024.

451 OpenAI. Competitive programming with large reasoning models. *arXiv preprint arXiv: 2502.06807*,
 452 2025.

453 OpenAI, ;, Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam,
 454 David Dohan, Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, Jerry Tworek,
 455 Lorenz Kuhn, Lukasz Kaiser, Mark Chen, Max Schwarzer, Mostafa Rohaninejad, Nat McAleese,
 456 o3 contributors, Oleg Mürk, Rhythm Garg, Rui Shu, Szymon Sidor, Vineet Kosaraju, and Wenda
 457 Zhou. Competitive programming with large reasoning models, 2025. URL <https://arxiv.org/abs/2502.06807>.

459 Guilherme Penedo, Anton Lozhkov, Hynek Kydlíček, Loubna Ben Allal, Edward Beeching,
 460 Agustín Piquerres Lajarín, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro
 461 von Werra. Codeforces. <https://huggingface.co/datasets/open-r1/codeforces>, 2025.

462 Yun Peng, Jun Wan, Yichen Li, and Xiaoxue Ren. Coffe: A code efficiency benchmark for code
 463 generation, 2025. URL <https://arxiv.org/abs/2502.02827>.

464 Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
 465 Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yuxuan Liu,
 466 Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing formal mathematical
 467 reasoning via reinforcement learning for subgoal decomposition. *arXiv preprint arXiv: 2504.21801*,
 468 2025.

469 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y.K. Li, Y. Wu,
 470 and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
 471 models, 2024. URL <https://arxiv.org/abs/2402.03300>.

472 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 473 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint
 474 arXiv: 2409.19256*, 2024.

475 Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
 476 Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training for
 477 problem-solving with language models. *arXiv preprint arXiv:2312.06585*, 2023.

478 Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming
 479 Zhang, An Ran Chen, and Lei Ma. Testeval: Benchmarking large language models for test case
 480 generation, 2025a. URL <https://arxiv.org/abs/2406.04531>.

481 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
 482 He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
 483 models with one training example. *arXiv preprint arXiv:2504.20571*, 2025b.

484 Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Zachary Mueller, Harm
485 de Vries, Leandro Von Werra, Arjun Guha, and Lingming Zhang. Selfcodealign: Self-alignment
486 for code generation. *arXiv preprint arXiv:2410.24198*, 2024.

487 Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A diverse,
488 challenging, and verifiable synthetic dataset for coding, 2025. URL <https://arxiv.org/abs/2503.02951>.

490 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
491 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
492 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
493 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
494 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
495 Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*,
496 2024.

497 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
498 reasoning. *arXiv preprint arXiv: 2502.03387*, 2025.

499 Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin Peng.
500 No more manual tests? evaluating and improving chatgpt for unit test generation, 2024. URL
501 <https://arxiv.org/abs/2305.04207>.

502 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
503 reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022.

504 Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhui Chen. Acecoder:
505 Acing coder rl via automated test-case synthesis, 2025a. URL <https://arxiv.org/abs/2502.01718>.

507 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
508 zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *arXiv*
509 *preprint arXiv: 2503.18892*, 2025b.

510 Kexun Zhang, Danqing Wang, Jingtiao Xia, William Yang Wang, and Lei Li. Algo: Synthesizing
511 algorithmic programs with llm-generated oracle verifiers, 2023. URL <https://arxiv.org/abs/2305.14591>.

513 Quanjun Zhang, Ye Shang, Chunrong Fang, Siqi Gu, Jianyi Zhou, and Zhenyu Chen. Testbench:
514 Evaluating class-level test case generation capability of large language models, 2024. URL
515 <https://arxiv.org/abs/2409.17561>.

516 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
517 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-
518 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
519 System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguistics.
520 URL <http://arxiv.org/abs/2403.13372>.

521 **NeurIPS Paper Checklist**

522 The checklist is designed to encourage best practices for responsible machine learning research,
523 addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
524 the checklist: **The papers not including the checklist will be desk rejected.** The checklist should
525 follow the references and follow the (optional) supplemental material. The checklist does NOT count
526 towards the page limit.

527 Please read the checklist guidelines carefully for information on how to answer these questions. For
528 each question in the checklist:

- 529 • You should answer **[Yes]** , **[No]** , or **[NA]** .
- 530 • **[NA]** means either that the question is Not Applicable for that particular paper or the
531 relevant information is Not Available.
- 532 • Please provide a short (1–2 sentence) justification right after your answer (even for NA).

533 **The checklist answers are an integral part of your paper submission.** They are visible to the
534 reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
535 (after eventual revisions) with the final version of your paper, and its final version will be published
536 with the paper.

537 The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
538 While "**[Yes]**" is generally preferable to "**[No]**", it is perfectly acceptable to answer "**[No]**" provided a
539 proper justification is given (e.g., "error bars are not reported because it would be too computationally
540 expensive" or "we were unable to find the license for the dataset we used"). In general, answering
541 "**[No]**" or "**[NA]**" is not grounds for rejection. While the questions are phrased in a binary way, we
542 acknowledge that the true answer is often more nuanced, so please just use your best judgment and
543 write a justification to elaborate. All supporting evidence can appear either in the main paper or the
544 supplemental material, provided in appendix. If you answer **[Yes]** to a question, in the justification
545 please point to the section(s) where related material for the question can be found.

546 **IMPORTANT**, please:

- 547 • **Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”**,
- 548 • **Keep the checklist subsection headings, questions/answers and guidelines below.**
- 549 • **Do not modify the questions and only use the provided macros for your answers.**

550 **1. Claims**

551 Question: Do the main claims made in the abstract and introduction accurately reflect the
552 paper’s contributions and scope?

553 Answer: **[Yes]**

554 Justification: Our first two claims about test quality is supported by Section 3 and 4’s method
555 and experiments. Our third claim about the downstream effects of test quality is supported
556 by Section 5.

557 Guidelines:

- 558 • The answer NA means that the abstract and introduction do not include the claims
559 made in the paper.
- 560 • The abstract and/or introduction should clearly state the claims made, including the
561 contributions made in the paper and important assumptions and limitations. A No or
562 NA answer to this question will not be perceived well by the reviewers.
- 563 • The claims made should match theoretical and experimental results, and reflect how
564 much the results can be expected to generalize to other settings.
- 565 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
566 are not attained by the paper.

567 **2. Limitations**

568 Question: Does the paper discuss the limitations of the work performed by the authors?

569 Answer: **[Yes]**

570 Justification: We discussed the limitations of HARDTESTGEN and HARDTESTS in the
571 limitation section in the appendix.

572 Guidelines:

- 573 • The answer NA means that the paper has no limitation while the answer No means that
574 the paper has limitations, but those are not discussed in the paper.
- 575 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 576 • The paper should point out any strong assumptions and how robust the results are to
577 violations of these assumptions (e.g., independence assumptions, noiseless settings,
578 model well-specification, asymptotic approximations only holding locally). The authors
579 should reflect on how these assumptions might be violated in practice and what the
580 implications would be.
- 581 • The authors should reflect on the scope of the claims made, e.g., if the approach was
582 only tested on a few datasets or with a few runs. In general, empirical results often
583 depend on implicit assumptions, which should be articulated.
- 584 • The authors should reflect on the factors that influence the performance of the approach.
585 For example, a facial recognition algorithm may perform poorly when image resolution
586 is low or images are taken in low lighting. Or a speech-to-text system might not be
587 used reliably to provide closed captions for online lectures because it fails to handle
588 technical jargon.
- 589 • The authors should discuss the computational efficiency of the proposed algorithms
590 and how they scale with dataset size.
- 591 • If applicable, the authors should discuss possible limitations of their approach to
592 address problems of privacy and fairness.
- 593 • While the authors might fear that complete honesty about limitations might be used by
594 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
595 limitations that aren't acknowledged in the paper. The authors should use their best
596 judgment and recognize that individual actions in favor of transparency play an impor-
597 tant role in developing norms that preserve the integrity of the community. Reviewers
598 will be specifically instructed to not penalize honesty concerning limitations.

599 3. Theory assumptions and proofs

600 Question: For each theoretical result, does the paper provide the full set of assumptions and
601 a complete (and correct) proof?

602 Answer: [NA]

603 Justification: [TODO]

604 Guidelines:

- 605 • The answer NA means that the paper does not include theoretical results.
- 606 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
607 referenced.
- 608 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 609 • The proofs can either appear in the main paper or the supplemental material, but if
610 they appear in the supplemental material, the authors are encouraged to provide a short
611 proof sketch to provide intuition.
- 612 • Inversely, any informal proof provided in the core of the paper should be complemented
613 by formal proofs provided in appendix or supplemental material.
- 614 • Theorems and Lemmas that the proof relies upon should be properly referenced.

615 4. Experimental result reproducibility

616 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
617 perimental results of the paper to the extent that it affects the main claims and/or conclusions
618 of the paper (regardless of whether the code and data are provided or not)?

619 Answer: [Yes]

620 Justification: The overview of experiments and protocol is listed in our section 3 and 4.
621 The details including dataset curation process, hyperparameters for training and sampling
622 parameters for inference are described in the Appendix.

623 Guidelines:

- 624 • The answer NA means that the paper does not include experiments.
- 625 • If the paper includes experiments, a No answer to this question will not be perceived
- 626 well by the reviewers: Making the paper reproducible is important, regardless of
- 627 whether the code and data are provided or not.
- 628 • If the contribution is a dataset and/or model, the authors should describe the steps taken
- 629 to make their results reproducible or verifiable.
- 630 • Depending on the contribution, reproducibility can be accomplished in various ways.
- 631 For example, if the contribution is a novel architecture, describing the architecture fully
- 632 might suffice, or if the contribution is a specific model and empirical evaluation, it may
- 633 be necessary to either make it possible for others to replicate the model with the same
- 634 dataset, or provide access to the model. In general, releasing code and data is often
- 635 one good way to accomplish this, but reproducibility can also be provided via detailed
- 636 instructions for how to replicate the results, access to a hosted model (e.g., in the case
- 637 of a large language model), releasing of a model checkpoint, or other means that are
- 638 appropriate to the research performed.
- 639 • While NeurIPS does not require releasing code, the conference does require all submis-
- 640 sions to provide some reasonable avenue for reproducibility, which may depend on the
- 641 nature of the contribution. For example
 - 642 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
 - 643 to reproduce that algorithm.
 - 644 (b) If the contribution is primarily a new model architecture, the paper should describe
 - 645 the architecture clearly and fully.
 - 646 (c) If the contribution is a new model (e.g., a large language model), then there should
 - 647 either be a way to access this model for reproducing the results or a way to reproduce
 - 648 the model (e.g., with an open-source dataset or instructions for how to construct
 - 649 the dataset).
 - 650 (d) We recognize that reproducibility may be tricky in some cases, in which case
 - 651 authors are welcome to describe the particular way they provide for reproducibility.
 - 652 In the case of closed-source models, it may be that access to the model is limited in
 - 653 some way (e.g., to registered users), but it should be possible for other researchers
 - 654 to have some path to reproducing or verifying the results.

655 **5. Open access to data and code**

656 Question: Does the paper provide open access to the data and code, with sufficient instruc-

657 tions to faithfully reproduce the main experimental results, as described in supplemental

658 material?

659 Answer: [NA]

660 Justification: We plan to release the full dataset with all 47k problems and all the code and

661 model checkpoints upon publication.

662 Guidelines:

- 663 • The answer NA means that paper does not include experiments requiring code.
- 664 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 665 • While we encourage the release of code and data, we understand that this might not be
- 666 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
- 667 including code, unless this is central to the contribution (e.g., for a new open-source
- 668 benchmark).
- 669 • The instructions should contain the exact command and environment needed to run to
- 670 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 671 • The authors should provide instructions on data access and preparation, including how
- 672 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 673 • The authors should provide scripts to reproduce all experimental results for the new
- 674 proposed method and baselines. If only a subset of experiments are reproducible, they
- 675 should state which ones are omitted from the script and why.

678 • At submission time, to preserve anonymity, the authors should release anonymized
679 versions (if applicable).
680 • Providing as much information as possible in supplemental material (appended to the
681 paper) is recommended, but including URLs to data and code is permitted.

682 **6. Experimental setting/details**

683 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
684 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
685 results?

686 Answer: [\[Yes\]](#)

687 Justification: They are listed in the experiment setup sections and more details are in the
688 appendix.

689 Guidelines:

690 • The answer NA means that the paper does not include experiments.
691 • The experimental setting should be presented in the core of the paper to a level of detail
692 that is necessary to appreciate the results and make sense of them.
693 • The full details can be provided either with the code, in appendix, or as supplemental
694 material.

695 **7. Experiment statistical significance**

696 Question: Does the paper report error bars suitably and correctly defined or other appropriate
697 information about the statistical significance of the experiments?

698 Answer: [\[No\]](#)

699 Justification: It is conventional for people not to report error bars as the computation cost
700 for sampling enough samples to obtain statistic significance for each problem is very high.

701 Guidelines:

702 • The answer NA means that the paper does not include experiments.
703 • The authors should answer "Yes" if the results are accompanied by error bars, confi-
704 dence intervals, or statistical significance tests, at least for the experiments that support
705 the main claims of the paper.
706 • The factors of variability that the error bars are capturing should be clearly stated (for
707 example, train/test split, initialization, random drawing of some parameter, or overall
708 run with given experimental conditions).
709 • The method for calculating the error bars should be explained (closed form formula,
710 call to a library function, bootstrap, etc.)
711 • The assumptions made should be given (e.g., Normally distributed errors).
712 • It should be clear whether the error bar is the standard deviation or the standard error
713 of the mean.
714 • It is OK to report 1-sigma error bars, but one should state it. The authors should
715 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
716 of Normality of errors is not verified.
717 • For asymmetric distributions, the authors should be careful not to show in tables or
718 figures symmetric error bars that would yield results that are out of range (e.g. negative
719 error rates).
720 • If error bars are reported in tables or plots, The authors should explain in the text how
721 they were calculated and reference the corresponding figures or tables in the text.

722 **8. Experiments compute resources**

723 Question: For each experiment, does the paper provide sufficient information on the com-
724 puter resources (type of compute workers, memory, time of execution) needed to reproduce
725 the experiments?

726 Answer: [\[Yes\]](#)

727 Justification: These are provided in the appendix.

728 Guidelines:

729 • The answer NA means that the paper does not include experiments.
730 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
731 or cloud provider, including relevant memory and storage.
732 • The paper should provide the amount of compute required for each of the individual
733 experimental runs as well as estimate the total compute.
734 • The paper should disclose whether the full research project required more compute
735 than the experiments reported in the paper (e.g., preliminary or failed experiments that
736 didn't make it into the paper).

737 **9. Code of ethics**

738 Question: Does the research conducted in the paper conform, in every respect, with the
739 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

740 Answer: **[Yes]**

741 Justification: **[TODO]**

742 Guidelines:

743 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
744 • If the authors answer No, they should explain the special circumstances that require a
745 deviation from the Code of Ethics.
746 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
747 eration due to laws or regulations in their jurisdiction).

748 **10. Broader impacts**

749 Question: Does the paper discuss both potential positive societal impacts and negative
750 societal impacts of the work performed?

751 Answer: **[Yes]**

752 Justification: See our conclusion.

753 Guidelines:

754 • The answer NA means that there is no societal impact of the work performed.
755 • If the authors answer NA or No, they should explain why their work has no societal
756 impact or why the paper does not address societal impact.
757 • Examples of negative societal impacts include potential malicious or unintended uses
758 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
759 (e.g., deployment of technologies that could make decisions that unfairly impact specific
760 groups), privacy considerations, and security considerations.
761 • The conference expects that many papers will be foundational research and not tied
762 to particular applications, let alone deployments. However, if there is a direct path to
763 any negative applications, the authors should point it out. For example, it is legitimate
764 to point out that an improvement in the quality of generative models could be used to
765 generate deepfakes for disinformation. On the other hand, it is not needed to point out
766 that a generic algorithm for optimizing neural networks could enable people to train
767 models that generate Deepfakes faster.
768 • The authors should consider possible harms that could arise when the technology is
769 being used as intended and functioning correctly, harms that could arise when the
770 technology is being used as intended but gives incorrect results, and harms following
771 from (intentional or unintentional) misuse of the technology.
772 • If there are negative societal impacts, the authors could also discuss possible mitigation
773 strategies (e.g., gated release of models, providing defenses in addition to attacks,
774 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
775 feedback over time, improving the efficiency and accessibility of ML).

776 **11. Safeguards**

777 Question: Does the paper describe safeguards that have been put in place for responsible
778 release of data or models that have a high risk for misuse (e.g., pretrained language models,
779 image generators, or scraped datasets)?

780 Answer: **[NA]**

781 Justification: No such risks.

782 Guidelines:

- 783 • The answer NA means that the paper poses no such risks.
- 784 • Released models that have a high risk for misuse or dual-use should be released with
- 785 necessary safeguards to allow for controlled use of the model, for example by requiring
- 786 that users adhere to usage guidelines or restrictions to access the model or implementing
- 787 safety filters.
- 788 • Datasets that have been scraped from the Internet could pose safety risks. The authors
- 789 should describe how they avoided releasing unsafe images.
- 790 • We recognize that providing effective safeguards is challenging, and many papers do
- 791 not require this, but we encourage authors to take this into account and make a best
- 792 faith effort.

793 12. Licenses for existing assets

794 Question: Are the creators or original owners of assets (e.g., code, data, models), used in

795 the paper, properly credited and are the license and terms of use explicitly mentioned and

796 properly respected?

797 Answer: [Yes]

798 Justification: We carefully credit and cite them in the appendix about daca curation.

799 Guidelines:

- 800 • The answer NA means that the paper does not use existing assets.
- 801 • The authors should cite the original paper that produced the code package or dataset.
- 802 • The authors should state which version of the asset is used and, if possible, include a
- 803 URL.
- 804 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 805 • For scraped data from a particular source (e.g., website), the copyright and terms of
- 806 service of that source should be provided.
- 807 • If assets are released, the license, copyright information, and terms of use in the
- 808 package should be provided. For popular datasets, paperswithcode.com/datasets
- 809 has curated licenses for some datasets. Their licensing guide can help determine the
- 810 license of a dataset.
- 811 • For existing datasets that are re-packaged, both the original license and the license of
- 812 the derived asset (if it has changed) should be provided.
- 813 • If this information is not available online, the authors are encouraged to reach out to
- 814 the asset's creators.

815 13. New assets

816 Question: Are new assets introduced in the paper well documented and is the documentation

817 provided alongside the assets?

818 Answer: [Yes]

819 Justification: In section 3 and the appendix.

820 Guidelines:

- 821 • The answer NA means that the paper does not release new assets.
- 822 • Researchers should communicate the details of the dataset/code/model as part of their
- 823 submissions via structured templates. This includes details about training, license,
- 824 limitations, etc.
- 825 • The paper should discuss whether and how consent was obtained from people whose
- 826 asset is used.
- 827 • At submission time, remember to anonymize your assets (if applicable). You can either
- 828 create an anonymized URL or include an anonymized zip file.

829 14. Crowdsourcing and research with human subjects

830 Question: For crowdsourcing experiments and research with human subjects, does the paper

831 include the full text of instructions given to participants and screenshots, if applicable, as

832 well as details about compensation (if any)?

833 Answer: [NA]

834 Justification: [TODO]

835 Guidelines:

836 • The answer NA means that the paper does not involve crowdsourcing nor research with
837 human subjects.

838 • Including this information in the supplemental material is fine, but if the main contribu-
839 tion of the paper involves human subjects, then as much detail as possible should be
840 included in the main paper.

841 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
842 or other labor should be paid at least the minimum wage in the country of the data
843 collector.

844 **15. Institutional review board (IRB) approvals or equivalent for research with human
845 subjects**

846 Question: Does the paper describe potential risks incurred by study participants, whether
847 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
848 approvals (or an equivalent approval/review based on the requirements of your country or
849 institution) were obtained?

850 Answer: [NA]

851 Justification: [TODO]

852 Guidelines:

853 • The answer NA means that the paper does not involve crowdsourcing nor research with
854 human subjects.

855 • Depending on the country in which research is conducted, IRB approval (or equivalent)
856 may be required for any human subjects research. If you obtained IRB approval, you
857 should clearly state this in the paper.

858 • We recognize that the procedures for this may vary significantly between institutions
859 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
860 guidelines for their institution.

861 • For initial submissions, do not include any information that would break anonymity (if
862 applicable), such as the institution conducting the review.

863 **16. Declaration of LLM usage**

864 Question: Does the paper describe the usage of LLMs if it is an important, original, or
865 non-standard component of the core methods in this research? Note that if the LLM is used
866 only for writing, editing, or formatting purposes and does not impact the core methodology,
867 scientific rigorousness, or originality of the research, declaration is not required.

868 Answer: [NA]

869 Justification: [TODO]

870 Guidelines:

871 • The answer NA means that the core method development in this research does not
872 involve LLMs as any important, original, or non-standard components.

873 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for
874 what should or should not be described.

875 **A Appendix**

876 **A.1 More Related Work on Synthetic Test Quality and its Implications**

877 Although existing LLM test synthesis methods prove to be useful in many scenarios, such as improving
878 the quality of synthetic data (Wei et al., 2024) and software engineering(Mündler et al., 2025; Jain
879 et al., 2024), their quality is far from perfect (Yuan et al., 2024) and are bounded in complexity,
880 because direct generations of complicated data structures often result in inconsistency (Zhang et al.,
881 2023). Weak verifiers can harm downstream code generation and search performance (Light et al.,
882 2025). The quality of those synthetic tests and their implications are less discussed. Existing
883 benchmarks for LLM test case generation abilities focus on code coverage and/or mutation scores
884 (Wang et al., 2025a; Zhang et al., 2024; Jain et al., 2025a, 2024), the success rate for reproducing
885 issues (Mündler et al., 2025), and the code change coverage for generated code patches (Ahmed et al.,
886 2024; Mündler et al., 2025).

887 **A.2 Details of the Test Cases Generation Pipeline HARDTESTGEN**

888 As we mentioned in Section 3.2, HARDTESTGEN constructs both the input generator functions
889 and the validator functions for verifying input correctness. In this section, we first introduce the
890 detailed HARDTESTGEN implementation, including the coding problem filtering process, and detailed
891 prompts for input generator/validator synthesis (Section A.2.1), followed by detailed dataset statistics
892 for the final HARDTESTS dataset (Section A.2.2) and some examples in HARDTESTS (Section A.2.3).

893 **A.2.1 HARDTESTGEN Implementation**

894 **Coding problem filtering.** Before generating test cases, we first filter out questions not suitable
895 for our test case generation. For example, those without oracle code solutions, and the questions
896 that do not use standard I/O for input and output. More specifically, our question filtering process is
897 as follows: We first remove problems that do not have any oracle programs. Next, we exclude all
898 problems where the `starter_code` field is non-empty, as they are so-called “core logic” problems,
899 rather than “input-output” style problems, and typically originate from online judges like LeetCode
900 and GeeksforGeeks. In such problems, the programmer is not responsible for handling input and
901 output logic, but only for implementing the core function based on a given function signature. Since
902 the inputs and outputs in these problems are often not strings, they are difficult to use for test case
903 generation. After the filtering, we are left with 32.5k unique coding problems.

904 **Input validator prompt.** We use the following LLM prompt to generate an input validator function,
905 and a special judge function when necessary. This prompt includes the problem specification and the
906 oracle program to help the LLM have a better understanding.

907 **Input generator prompt.** We use the following prompt to have the LLM generate inputs directly
908 (Type 1), a regular input generator (Type 2), and a hacking input generator (Type 3). This prompt
909 makes use of the problem specification, oracle program, and input validator to help the LLM better
910 understand the problem requirements.

911 Note that in the prompts above, we provide two to three carefully crafted examples for each function
912 that we ask the LLM to generate, enabling in-context learning. Additionally, we prompt the LLM
913 to perform chain-of-thought reasoning. These two requirements help the LLM understand the task
914 better and improve the data synthesis.

915 **A.2.2 HARDTESTS Statistics**

916 We generated test cases for all 32.5k valid questions in the HARDTESTS. The status distribution
917 of test case generation is shown in Figure 5. While we carefully designed the test-case generation
918 prompt, we didn’t attain 100% coverage. We successfully generated test cases for 81.9% of the
919 questions. The main failure reasons include: no valid oracle programs (i.e., compiles and runs without
920 errors) (6.62%), all output verification failed (5.85%), and input generation failed (3.72%). The
921 distribution of the number of Type1, Type2, and Type3 test cases, as well as the total number of test
922 cases, is shown in Figure 4.

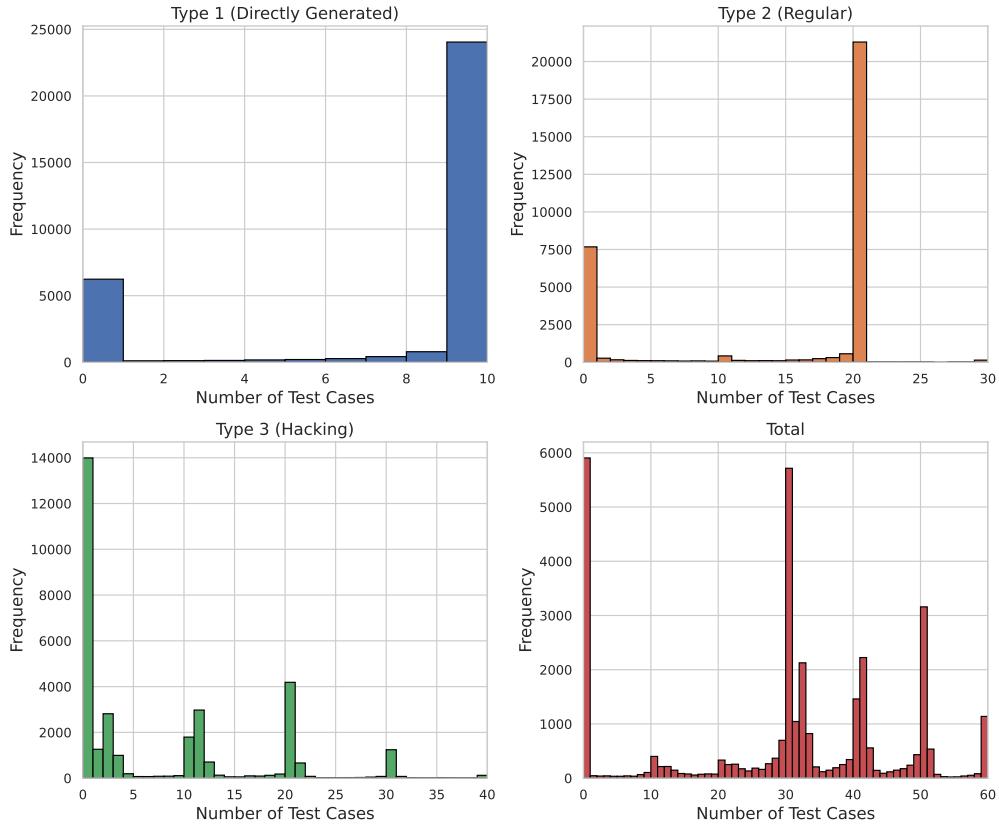


Figure 4: The distribution of the number of Type1, Type2, and Type3 test cases, as well as the total number of test cases in HARDTESTS.

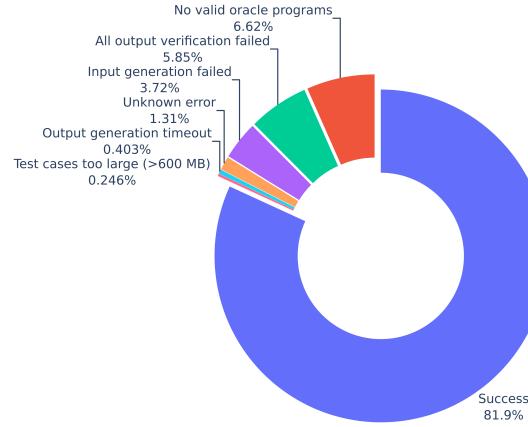


Figure 5: The result status distribution of our test case generation pipeline HARDTESTGEN.

923 A.2.3 HARDTESTS Examples

924 Example 1

925 This example demonstrates the input validator, Type 1 (Directly Generated) and Type 2 (Regular) test
 926 cases, as well as a custom judging function. Here's the problem description:

927 *Codeforces 1096A: There are a total of T ($1 \leq T \leq 1000$) sub-tasks. Each sub-task gives a pair*
928 *of integers l, r ($1 \leq l \leq r \leq 998244353$), and the goal is to find a pair of integers x, y such that*
929 *$l \leq x, y \leq r, x \neq y$, and y is divisible by x . It is guaranteed that every sub-task has a valid solution.*

930 *Note: It can be mathematically proven that a sub-task has a solution if and only if $2l < r$.*

931 The input validator is as follows. It checks whether `input_str` conforms to the required format
932 specified in the problem specification, whether all data falls within the required ranges, and whether
933 other constraints are satisfied (e.g., whether each sub-task has a solution).

934 Since this problem allows multiple correct solutions, simple string comparison is not sufficient. We
935 need a special, customized output judging function. The output judging function is as follows.

936 The Type1 (Directly Generated) inputs are as follows.

937 The Type 2 input (Regular) generator is as follows. To ensure a solution always exists, the LLM sets
938 $r \geq 2l$.

939 The LLM believes that there is no need to generate a Type 3 (Hacking) input generator for this
940 problem.

941 **Example 2**

942 This example demonstrates the input validator, as well as the Type 1 (Directly Generated), Type 2
943 (Regular), and Type 3 (Hacking) test cases. Here's the problem description:

944 *Codeforces 1141 A: Given two numbers n, m ($1 \leq n \leq m \leq 5 \times 10^8$), you are to determine whether*
945 *it is possible to transform n into m by multiplying by 2 and 3, and if so, output the minimum number*
946 *of operations. Otherwise, output -1.*

947 The input validator is as follows. It checks whether `input_str` conforms to various format require-
948 ments and constraints.

949 The Type1 (Directly Generated) inputs are as follows.

950 The Type 2 input (Regular) generator is as follows. The output of this problem has two categories (i.e.,
951 possible and impossible), so the LLM generates two regular input generating functions, corresponding
952 to these two categories respectively.

953 The Type 3 input (Hacking) generator is as follows. The LLM generates two hacking input generating
954 functions. The first function sets a small n and a large m . This is because a brute-force approach
955 that a candidate program might take is to use DFS, recursively trying to multiply n by 2 or 3 until
956 it becomes greater than or equal to m . If we randomly choose n and m , the ratio between them is
957 usually small, so this approach might still pass. Setting n to be small and m to be big creates a large
958 gap between n and m , making the brute-force DFS approach inefficient. The second function sets
959 $m = n$, which serves as an edge case.

960 For this problem, the LLM believes that a string comparison function would be enough for output
961 judging.

962 **A.3 Details of the Collection of Problem Specifications and Oracle Programs in HARDTESTS**

963 HARDTESTS consists of 47,136 coding problems collected from 13 OJs. In practice, the dataset ob-
964 tains problem specifications and oracle programs from five direct data sources: AtCoder, Codeforces,
965 Luogu, CodeContests, and TACO.

966 **Data sources.** *Codeforces* (<https://codeforces.com/>) is one of the largest English OJs. We
967 collected all publicly available problem specifications up to September 2024 from Codeforces.

968 *AtCoder* (<https://atcoder.jp/>) is a large OJ offering problems in both Japanese and English.
969 We scraped all problem specifications available up to September 2024, along with three correct
970 user-submitted C++ programs for each problem. We used those directly for problems with official
971 English versions. *Luogu* (<https://www.luogu.com.cn/>) is a large Chinese OJ consisting of a main
972 section (Luogu-Main) and four mirror sections. The main section hosts original problems authored
973 by users and administrators, as well as problems sourced from real-world contests (e.g. USACO).

974 The mirror sections contain problems from other OJs, including AtCoder, SPOJ, Codeforces, and
975 UVa. We collected all available problem specifications and community-authored tutorials, which

976 often include both correct C++ programs and corresponding natural language explanations, from
977 *Luogu*. *CodeContests* (Li et al., 2022) is a dataset comprising 13,493 problems collected from five
978 OJs. Each entry includes a problem specification and several correct programs in C++, Python 2,
979 Python 3, and Java. Only Codeforces problems in CodeContests were used in our dataset, as only
980 their problem IDs were explicitly provided. *TACO* (Li et al., 2023) is a large-scale English dataset
981 containing 25.4k problems sourced from ten OJs. Each entry includes a problem specification and
982 multiple correct Python programs. We collect all problems from *TACO*.

983 The distribution of problem counts across each OJ is shown in Figure 6. The URLs of each OJ, along
984 with the direct data sources of their problem specifications and oracle programs, are listed in Table 6.

985 Note that since some problems have multiple oracle program sources, we prioritize programs from
986 more reliable sources when generating test cases. The reliability, supported languages, and notes
987 regarding each direct source of oracle programs are presented in Table 7. The distribution of the
988 number of oracle programs per problem in *HARDTESTS* is shown in Figure 7.

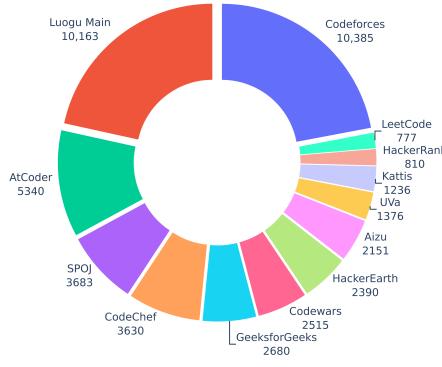


Figure 6: Number of problems from each OJs.

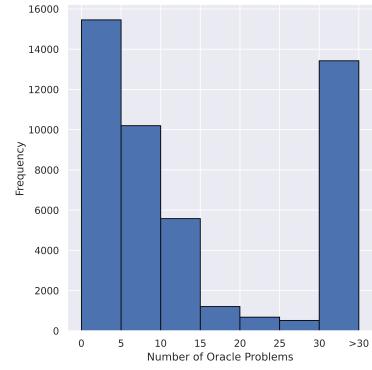


Figure 7: Distribution of the number of oracle programs in *HARDTESTS*.

Table 6: Problem specification sources and oracle solution sources of each OJ.

OJ	URL	Problem Specification Sources	Oracle Program Sources
Codeforces	https://codeforces.com/	Codeforces	TACO, CodeContests, Luogu
AtCoder	https://atcoder.jp/contests/	AtCoder	AtCoder, TACO, Luogu
Luogu	https://www.luogu.com.cn/	Luogu	Luogu
UVa	https://onlinejudge.org/	Luogu	Luogu
SPOJ	https://www.spoj.com/	Luogu	Luogu
Aizu	https://onlinejudge.u-aizu.ac.jp/	TACO	TACO
GeeksforGeeks	https://www.geeksforgeeks.org/	TACO	TACO
Codewars	https://www.codewars.com/	TACO	TACO
Kattis	https://open.kattis.com/	TACO	TACO
CodeChef	https://www.codechef.com/	TACO	TACO
HackerEarth	https://www.hackerearth.com/	TACO	TACO
LeetCode	https://leetcode.com/	TACO	TACO
HackerRank	https://www.hackerrank.com/	TACO	TACO

989 A.4 Direct Evaluation Details

990 **Evaluation details for LLM-generated programs on AtCoder.** AtCoder previously made its
991 official test cases publicly available. Although this is no longer the case, we obtained a partial archive

Table 7: Oracle program sources with reliability, languages, and notes

Oracle Program Source	Reliability	Languages	Notes
User-submitted and accepted programs from AtCoder	High	Python, C++	Some code (either Python or C++) may use AtCoder’s custom library.
Code solutions from CodeContests tests	High	Python, C++, Java	2/3, —
Community-authored editorials from Luogu	Medium	C++	Some editorials may lack complete, directly executable code. But if the code has no compilation or runtime errors, it is very likely to be completely correct.
Verified programs from TACO, i.e., programs that can pass all TACO’s own test cases	Medium	Python	There’s some false positives in TACO’s test cases.
Other programs from TACO	Low	Python	Reliability is not zero due to some false negatives in TACO’s test cases.

992 from the Github repository `con1acda/atcoder-testcases`. On AtCoder, we use the test cases in
993 TACO as the baselines. We selected problems that have at least one test case in each dataset, resulting
994 in a total of 653 problems.

995 **Evaluation details for LLM-generated programs on Codeforces.** Codeforces does not make its
996 test cases publicly available. Therefore, we manually submit LLM-generated candidate programs
997 to the Codeforces platform to obtain ground-truth verdicts. We use TACO and CodeContests as
998 baselines. For problems where the results of all three datasets agree, we randomly select 5% of them
999 for submission. For problems where the datasets produce conflicting results, we submit 50% of the
1000 candidate programs. We compute precision and recall based on the combined submission outcomes.
1001 For each difficulty level from 1 to 4, we randomly select 150 problems with at least one test case in
1002 each dataset, yielding a total of 600 problems.

1003 **Evaluation details for human-written programs on Codeforces.** A dataset at Huggingface titled
1004 `MatrixStudio/Codeforces-Python-Submissions` collects 690k human-submitted programs on
1005 Codeforces along with their official verdicts. We use the verdicts as the ground-truth labels. All other
1006 settings are the same as those of evaluation using LLM-generated programs.

1007 A.5 Qualitative Analysis of Generated Tests

1008 A.5.1 Example 1: False Positive of TACO and HARDTESTS Type 1

1009 In this example we show how TACO and HARDTESTS Type 1 tests cannot break a wrong program
1010 and result in a false positive, while HARDTESTS Type 2 tests succeeds in making the program fail.
1011 Here’s the problem description:

1012 *AtCoder ABC117C: Given an integer N ($2 \leq N \leq 2 \times 10^5$) and an integer array A of length N
1013 ($0 \leq A_i \leq 10^9$), compute the value of $\sum_{i=1}^{N-1} \sum_{j=i+1}^N A_i A_j \bmod 10^9 + 7$.*

1014 Since $2 \leq N \leq 2 \times 10^5$, the solution to the problem needs to be relatively efficient. The correct solu-
1015 tion employs mathematical techniques to simplify the equation into: $\frac{1}{2} \left(\left(\sum_{i=1}^N A_i \right)^2 - \sum_{i=1}^N A_i^2 \right)$,
1016 which yields an $O(N)$ algorithm.

1017 However, a candidate program generated by Qwen2.5-Coder-7B-Instruct uses a brute-force algorithm
1018 with a time complexity of $O(N^2)$. The candidate program is as follows:

1019 Due to its inefficiency, this candidate program failed to pass the official test cases. Nevertheless,
1020 because the test cases in TACO and HARDTESTS Type 1 (Directly Generated) were relatively small
1021 (with small N), the candidate program successfully passed these cases.

1022 Furthermore, the HARDTESTS Type 2 (Regular) input for this problem is generated using the
1023 following Python function:

1024 Due to the larger scale of HARDTESTS Type 2 (Regular) inputs, the candidate program failed to pass
1025 these test cases and we have a true negative.

1026 **A.5.2 Example 2: False Positive of TACO and HARDTESTS Type 1 + 2**

1027 In this example we show how TACO and HARDTESTS Type 1 + 2 tests cannot break a wrong program
1028 and result in a false positive, while HARDTESTS Type 3 tests succeeds in making the program fail.
1029 Here's the problem description:

1030 *AtCoder ABC139C: There are N ($1 \leq N \leq 10^5$) squares arranged from left to right, with the height
1031 of the i -th square from the left being H_i ($1 \leq H_i \leq 10^9$). Starting from any square, you can move
1032 one step to the right as long as the next square's height is not greater than the current one. Find the
1033 maximum number of moves possible.*

1034 Given that $1 \leq N \leq 10^5$, the solution needs to be relatively efficient. The correct solution uses an
1035 $O(N)$ greedy algorithm. Specifically, it traverses the array from left to right, counting how many
1036 consecutive heights satisfy $H_i \geq H_{i+1}$. Each time a condition fails, the counter is reset, and the
1037 maximum value is maintained throughout the traversal as the answer.

1038 A candidate program generated by Qwen-Coder-14B-Instruct uses a brute-force approach, iterating
1039 over each starting position and simulating the moves. Although functionally correct, its complexity is
1040 $O(N^2)$ and too inefficient to work. The code is as follows:

1041 Because of its inefficiency, this candidate program failed the official test cases. Nevertheless, due to
1042 the relatively small scale of the test cases in TACO and HARDTESTS Type 1 (Directly Generated),
1043 the candidate program passed these tests.

1044 Additionally, the HARDTESTS Type 2 (Regular) input for this problem is generated using the
1045 following Python function:

1046 We observe that since the H_i sequence is randomly generated, it fluctuates significantly, reducing the
1047 complexity of the “simulate moving from a certain square” procedure from $O(N)$ to approximately
1048 $O(1)$. Thus, the tests generated do not lead to the worst case complexity of the inefficient program
1049 and its overall time complexity effectively becomes $O(N)$, enabling the candidate program to pass
1050 HARDTESTS Type 2 (Regular) test cases.

1051 The HARDTESTS Type 3 (Hacking) inputs for this problem are generated using the following Python
1052 functions:

1053 There are three hacking input generation functions: monotonically decreasing, monotonically increasing,
1054 and alternating sequences. The first generated input (monotonically decreasing) successfully
1055 increased the actual runtime complexity of the candidate program to $O(N^2)$, causing a timeout and
1056 consequently a failure on this test case.

1057 **A.5.3 Example 3: False Negative of TACO**

1058 In this example, we show an example of false negative caused by the lack of special judge function in
1059 TACO tests. We also show how HARDTESTS can correctly evaluate the candidate program. Here's
1060 the problem description:

1061 *AtCoder ABC117A: Given an integer T and an integer X ($1 \leq T \leq 100$, $1 \leq X \leq 100$). Compute
1062 the value of T/X with an error tolerance within 10^{-3} .*

1063 A candidate program generated by Qwen2.5-Coder-14B-Instruct is:

1064 This is clearly correct and passes all official test cases. It also passes all test cases from HARDTESTS,
1065 but it fails on TACO's test cases. This is because using a simple string comparison function is
1066 insufficient due to potential differences in precision between the candidate output and the reference
1067 output. TACO does not provide a special output judging function for problems, which leads to false
1068 negatives. HARDTESTS provides a special output judging function, shown below:

1069 **A.6 Downstream Training and Evaluation Details**

1070 **Teacher-distillation training and evaluation details.** In the teacher-distillation experiments, our
1071 model is trained with the same training parameters used to train OlympicCoder-7B (epochs=10,
1072 learning_rate=4e-5, batch_size=128, cosine learning rate schedule with a decay to 10% of the peak
1073 learning rate and 32,768 max length). The evaluations are sampled with temperature=0.7, top_p=0.95,
1074 max_new_tokens=16384.

1075 **Self-distillation training and evaluation details.** In the self-distillation experiments, our model is
1076 trained with the following training parameters (epochs=20, learning_rate=4e-5, batch_size=128,
1077 cosine learning rate schedule with a decay to 10% of the peak learning rate and 32,768 max
1078 length). The evaluations are sampled with temperature=0.6, top_p=0.95, top_k=20, min_p=0,
1079 max_new_tokens=32768 as recommended by Qwen.

1080 **RL training and evaluation details.** We use verl for RL training and firejail for sandboxing
1081 code execution. The rollouts are generated with temperature=1, top_p=0.95, top_k=20, min_p=0,
1082 response_length=24000, initial learning rate 5e-7. We use a global batch size of 32 and generate
1083 32 samples per rollout. All our experiments are run on 8 NVIDIA H100 GPUs. We do not use KL
1084 divergence in our RL loss.

1085 **A.7 Test Case Generation Without an Oracle Model**

1086 In the case that an oracle program y^* , or an oracle test suite V^* does not exist for a problem x , such
1087 as when problems are synthetically generated, we propose a method, based on ALGO (Zhang et al.,
1088 2023) that synthesizes both the oracle and tests. To start, we prompt an LLM, such as Anthropic
1089 Claude 3.5 Sonnet, to generate a brute-force solution y_{bf} to the problem. Specifically, we encourage
1090 it to use inefficient methods such as exhaustive search and enumeration of the possible output space.
1091 This is founded on the observation that it is relatively easy to generate a solution that exhaustively
1092 searches the correct output, but more difficult to optimize it within a time complexity bound.

1093 Then, an LLM is prompted to create a validator program and 10 edge test input generators, which
1094 are used to generate one test input each, $\{a_1, \dots, a_{10}\}$. To prevent the y_{bf} from timing out when
1095 computing their respective outputs, we explicitly prompt the LLM to keep input values small. Once
1096 these test inputs are verified for correctness using the validator, the brute-force solution is used to
1097 generate the corresponding outputs $c_i = y_{bf}(a_i)$ for each input, resulting in a total of 10 input-output
1098 pairs as test cases. Finally, the LLM is prompted to create one maximum-length test case a_{max}
1099 with inputs at the upper bounds of the problem's constraints, designed to catch solutions that are
1100 functionally correct but inefficient. This test case is considered to be passed as long as the program
1101 produces an output before timing out. Crucially, all 11 of the generated test cases $\{a_1, \dots, a_{10}, a_{max}\}$
1102 are designed to cause seemingly correct programs to fail, and none are generated using random inputs.

1103 We compare this method to the baseline method outlined in AceCoder (Zeng et al., 2025a), which
1104 uses a direct prompt to generate 20 full test cases (inputs and corresponding outputs), also using
1105 Claude 3.5. Then, after prompting a stronger model such as Qwen2.5-Coder-32B-Instruct to generate
1106 a solution, the test cases that cause the solution to fail are considered hallucinated and are filtered out.
1107 Problems with fewer than 5 test cases after filtering are discarded.

1108 To evaluate the accuracy of rewards that our test cases can give to model training, we evaluate the
1109 precision and recall over candidate programs generated by LLMs and written by humans on subsets
1110 of problems in HARDTESTS.

1111 The quality of the test cases are verified using 165 Atcoder problems, each with 50 sample solutions.
1112 It is clear from these experiments (shown in Table 8) that our method can also work much better than
1113 the baseline even when oracle programs are not available. The false positive rate of HARDTESTGEN
1114 is only half as high as AceCoder, showing that deliberately crafting high-quality, hard test cases is
1115 crucial for effective program verifiers.

1116 We will show some examples of the test generation process in the following sections.

Table 8: Performance comparison of oracle-free test generation algorithms based on error rates.

	False Positive Rate (FPR)	False Negative Rate (FNR)
AceCoder	32.49	2.59
HARDTESTGEN	17.67	2.19

1117 **A.7.1 Example 1: Brute-force oracle solution generated by ALGO**

1118 In this example, we show a brute-force oracle solution y_{bf} that ALGO generates. The problem is
 1119 challenging, and while the LLM is unable to correctly solve it directly, its brute-force solution works.
 1120 Here's the problem description:

1121 *AtCoder ABC301C: A single-player card game is popular in AtCoder Inc.*
 1122 *Each card in the game has a lowercase English letter or the symbol written on it. There is plenty*
 1123 *number of cards for each kind. The game goes as follows.*

1124

- 1125 - *Arrange the same number of cards in two rows.*
- 1126 - *Replace each card with one of the following cards: a, t, c, o, d, e, r.*
- 1127 - *If the two rows of cards coincide, you win. Otherwise, you lose.*

1128 *To win this game, you will do the following cheat.*

1129

- 1130 - *Freely rearrange the cards within a row whenever you want after step 1.*

1131 *You are given two strings S and T ($1 \leq |S|, |T| \leq 2 \times 10^5$), representing the two rows you*
 1132 *have after step 1. Determine whether it is possible to win with cheating allowed. If it is possible to*
 1133 *win with cheating allowed, print Yes; otherwise, print No.*

1134 The solution generated by Claude 3.5 Sonnet is:

1135 This solution is evidently inefficient. A full analysis yields runtime in the bound of $O(n \log n 7^n)$,
 1136 where $n = |S| = |T|$, but the exponential complexity is clear from the Cartesian product function in
 1137 the implementation. For inputs $n > 10$, this algorithm quickly becomes intractable. However, for
 1138 inputs $n \leq 10$ it is able to generate valid test outputs, allowing it to correctly evaluate the validity
 1139 of submitted solutions. The test outputs it generates achieve a 100% accuracy, compared to actual
 1140 execution results from the online judge.

1143 **A.7.2 Example 2: Test cases generated by ALGO**

1144 In this example we show a contest coding problem for which ALGO effectively generates a testing
 1145 suite. Here's the problem description:

1146 *AtCoder cafeteria sells meals consisting of a main dish and a side dish. There are N types of main*
 1147 *dishes, called main dish 1, main dish 2, ..., main dish N. Main dish i costs a_i yen. There are M*
 1148 *types of side dishes, called side dish 1, side dish 2, ..., side dish M. Side dish i costs b_i yen.*

1149
 1150 *A set meal is composed by choosing one main dish and one side dish. The price of a set*
 1151 *meal is the sum of the prices of the chosen main dish and side dish.*

1152
 1153 *However, for L distinct pairs $(c_1, d_1), \dots, (c_L, d_L)$, the set meal consisting of main dish c_i*
 1154 *and side dish d_i is not offered because they do not go well together. That is, $NM - L$ set meals are*
 1155 *offered. (The constraints guarantee that at least one set meal is offered.)*

1156
 1157 *Find the price of the most expensive set meal offered.*

1158
 1159 *The input is given from Standard Input in the following format:*

1160 $N \ M \ L$
 1161 $a_1 \ a_2 \dots \ a_N$
 1162 $b_1 \ b_2 \dots \ b_M$

```

1163   $c_1 d_1$ 
1164   $c_2 d_2$ 
1165  :
1166   $c_L d_L$ 
1167
1168  Constraints:
1169  -  $1 \leq N, M \leq 10^5$ 
1170  -  $0 \leq L \leq \min(10^5, NM - 1)$ 
1171  -  $1 \leq a_i, b_i \leq 10^9$ 
1172 The first 3 edge test input generators created by ALGO are shown below, corresponding to the
1173 following test inputs. Note that the values are at the boundaries of the input bounds and follow clearly
1174 defined structures.
1175 Also, the generator for the maximum-length test input  $a_{max}$  is shown here. It produces a test input
1176 where  $N = M = 10^5$ , which is the upper bound of the problem.
1177 This test suite effectively achieves 100% accuracy on evaluating submissions, demonstrating that
1178 precise test inputs are crucial for oracle-free verifiers.

1179 A.7.3 Example 3: Test cases generated by AceCoder
1180 For the same Atcoder problem as Example A.7.2, AceCoder generates the following 16 test cases
1181 with inputs and outputs after filtering. While the LLM implicitly knows to generate edge test cases,
1182 shown in the maximal values of  $c_i, d_i$ , all of the test cases have relatively similar and low values of
1183  $M$  and  $N$ .
1184 These test cases fail to correctly categorize solutions that exceed the problem's time limit. One such
1185 example is shown below, which AceCoder falsely categorizes as a positive solution. Compared to
1186 Example A.7.2, in which ALGO generated test inputs as large as  $N = M = 10^5$ , the test cases
1187 from AceCoder are no larger than  $N = M = 5$ , making them unable to break inefficient programs.
1188 Without a brute-force reference oracle, and constrained by the requirement of generating input-output
1189 pairs simultaneously, the LLM used by AceCoder sticks to simple test cases that it can be confident
1190 are correct. Moreover, longer test cases are likelier to contain hallucinations, and get removed by
1191 their filtering process. As a result, their test cases are relatively weaker and result in less effective
1192 verifiers.

```