© O N O g A~ W N =

w N = O

HARDTESTS:
Synthesizing High-Quality Test Cases for LLM Coding

Anonymous Author(s)
Affiliation
Address
email

Abstract

Verifiers play a crucial role in large language model (LLM) reasoning, needed
by post-training techniques such as reinforcement learning. However, reliable
verifiers are hard to get for difficult coding problems, because a well-disguised
wrong solution may only be detected by carefully human-written edge cases that
are difficult to synthesize. To address this issue, we propose HARDTESTGEN, a
pipeline for high-quality test synthesis using LLMs. With this pipeline, we curate a
comprehensive competitive programming dataset HARDTESTS with 47k problems
and synthetic high-quality tests. Compared with existing tests, HARDTESTGEN
tests demonstrate precision that is 11.3 percentage points higher and recall that is
17.5 percentage points higher when evaluating LLM-generated code. For harder
problems, the improvement in precision can be as large as 40 points. HARDTESTS
also proves to be more effective for model training, measured by downstream code
generation performance.

1 Introduction

Post-training large language models (LLMs) with outcome Veriﬁer (Guo et al. 2025} |Kimi Team
et al., 2025) can greatly improve their reasoning ability. LLMs trained with these techniques
are approaching the level of the best humans on challenging problems in math and programming
olympiads (OpenAl et al., 2025). To properly assign outcome rewards in post-training, reliable
verifiers are needed for both reinforcement learning and (self-) distillation.

Verification is a non-trivial process. How good are current verifiers? How to get better verifiers? How
much does verifier quality matter in LLM post-training? Verification loops become increasingly less
tractable as the notion of correctness increases in complexity. For math, it is relatively straightforward
to determine correctness by looking at the answer, whereas verifying programs needs execution.
An effective approach to verify programs is through test cases (Le et al.|,[2022; Singh et al., [2023)).
However, most datasets of coding problems and associated test cases are less than comprehensive.
60% of the programs that pass test cases in APPS (Hendrycks et al.,[2021)) are in fact, wrong. 46% of
the programs that pass test cases in CodeContests (Li et al.,2022) are semantically correct, but too
inefficient to pass human-written tests. More importantly, scraping human-written tests is unfeasible
— according to our study, for 80% of the problems, human-written test cases are proprietary and
impossible to scrape, demanding synthesized tests. Previous test synthesis attempts, such as TACO
(Li et al.l 2023)), have limited reliability, with the false positive rate being more than 90% for difficult
problems in our experiments.

'In this paper, the term “verifier” refers to rule-based systems that attempt to check the correctness of problem
solutions. It is used to differentiate from model-based rewards, such as those in RLHFE. “Verifiers” are not
necessarily formal and do not necessarily guarantee correctness.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57

58
59
60
61
62

63

64
65
66

67
68
69

70
71

Precision Recall
TACO [CodeContests [HardTests

0 4 4
AtCoder Atcoder Codeforces Codeforces AtCoder Atcoder Codeforces Codeforces
Hard Hard Hard Hard

Figure 1: HARDTESTS test cases are significantly better than the baselines. The large improvement
in precision indicates that our tests greatly reduce false positives and are indeed harder.

The low quality of synthetic tests is due to the challenging nature of coding problems. Coding
competitions often require efficient solutions with advanced data structures and algorithms. A bad
choice of algorithm can lead to a well-disguised wrong solution, which may easily pass most random
tests but still break on human-written special cases. For example, on a random rooted tree with
n nodes and depth of d, an algorithm with the time complexity of ©(nd) can be very efficient, as
E[d] = O(logn) for randomly generated trees (Devroye et al.|2012). For such an algorithm to time
out, the test case needs to be a valid tree that is large enough (so that n is large) and special enough
(so that d is large). A chain (each non-leaf node has exactly one child), whose depth d = n can cause
the algorithm to be as slow as ©(n?). We need valid, comprehensive tests that cover edge cases.

Generating valid and comprehensive tests is hard. Existing test synthesis methods, such as CodeT
(Chen et al.}[2023)) and TACO 2023)) rely on LLMs to directly write test inputs. While
this works when the test inputs are small, it can barely keep the test inputs valid at a larger scale, let
alone make them special. To alleviate these issues, we propose HARDTESTGEN, an LLM-based test
synthesis pipeline. Our main insights are 1) Test case validity is better preserved when generated from
LLM-produced programs rather than directly from the LLMs themselves, and 2) Each test generator
has different hypotheses about the programs under test and creates tests from a different distribution.
With these insights, HARDTESTGEN prompts an LLM with different aspects to consider for test
cases, extracts LLM-generated test generator programs, and filters the test cases using human-written
oracle programs, which widely exist for all problems in online coding competitions.

With HARDTESTGEN, we curate HARDTESTS, a comprehensive dataset for coding competitions
with 47,136 problems and high-quality test cases. As shown in[Figure] compared to existing test
synthesizers, HARDTESTS tests are more reliable in terms of precision and recall when evaluating
programs. The gap in precision can be as large as 40 percentage points for harder problems. Higher
reliability of verification makes HARDTESTS the ideal playground for post-training research in the
coding domain.

To further demonstrate the benefits of high-quality tests, we conduct post-training experiments with
HARDTESTS and baseline tests. Our experiments in 3 different scenarios show that test quality
matters significantly for self-distillation and reinforcement learning. Higher-quality tests can lead to
improvements in downstream performance. However, our results also indicate that test quality is less
important for teacher distillation.

In summary, this work provides:

* HARDTESTGEN, an LLM-based test synthesis pipeline that generates high-quality test
cases for coding problems, improving precision by 11.3 points and recall by 17.5 points on
average.

* HARDTESTS, a comprehensive problem set for competition-level code generation, with
47,136 problems, among which 32.5k have high-quality test cases generated by HARDTEST-
GEN.

» Empirical analyses on how test quality affects LLM post-training. We show that test quality
is of great importance for reinforcement learning and self-distillation.

73
74
75
76
77
78
79
80
81
82
83

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105
106
107
108
109
110
111
112
113
114
115
116

117

118

119
120
121

122

2 Related work

RLVR. Reinforcement learning has shown great potential in improving LLM reasoning abilities
in various domains, such as math (Guo et al., [2025}; Zeng et al., 2025b} |Ren et al.| 2025) and
coding (OpenAl, 2025} |Liu & Zhangl| 2025} [Luo et al.). The resulting long-reasoning LL.Ms, such
as OpenAl-03 (OpenAl, 2024) and DeepSeek-R1 (Guo et al.l |2025), largely outperform short-
reasoning LLMs through simple RL training to improve outcome-based reward, i.e., whether the
model-generated code solution passes all test cases. Although some previous works have explored
heuristic rules for selecting training data to improve RL performance (Ye et al.,|2025; Wang et al.,
2025b; [Li et al., |2025) or reward design (Hou et al.| 2025} | Kimi Team et al.| 2025} |Costello et al.,
2025)), the impact of test case quality on coding LLMs during RL training remains underexplored.
In this work, we show that high-quality test cases, those better at detecting subtle bugs in code, can
largely improve coding LLM performance after RL training.

LLM-based test synthesis. Test cases are crucial in evaluating the functional correctness and
performance of LLM-generated code. Benchmarks such as HumanEval (Chen et al.,[2021), MBPP
(Austin et al.,|2021)), and APPS (Hendrycks et al.,|2021) provide hand-written test cases that serve as a
proxy for code correctness. However, such human-authored test cases are often only publicly available
for a limited set of problems. Early approaches such as EvoSuite (Fraser & Arcuri,[2011) and Pynguin
(Lukasczyk & Fraser, |2022) employ search-based heuristics methods. More recently, CodeContests
(L1 et al.| | 2022) generates additional test cases by mutating existing crawled inputs. Several efforts
leverage LLMs to synthesize test inputs and (pseudo)-oracle programs for test outputs. CodeT (Chen
et al.l 2023)) and ALGO (Zhang et al.| [2023)) rely on LLMs to generate both tests and reference
programs for existing coding problems. EvalPlus (Liu et al.| 2023)) extends HumanEval with more
tests by providing the reference implementation to LLMs to synthesize seed input.Similarly, TACO
(L1 et al., |2023)) also generates test inputs with LLMs and outputs with reference implementation.
STGen (Peng et al.l[2025) generates stressful test cases for evaluating the time efficiency of code.
KodCode (Xu et al., |2025) and AceCoder (Zeng et al., 2025a) push synthetic data even more by
generating coding questions, reference solutions, and tests all with LLMs. Although existing LLM
test synthesis methods prove to be useful in many scenarios, their quality is far from perfect. We
present a more thorough discussion on the quality issues in LLM synthetic tests and their implications
in Appendix [A.T] Concurrently with our work, rStar-Coder (Liu et all 2025) and HF-Codeforces
(Penedo et al., 2025) also study more reliable test synthesis in the competition context. Comparing
to them, our work highlights a thorough analysis of test quality and a unique set of post-training
experiments that demonstrate the downstream effects of high-quality tests.

Datasets for competition code generation. Existing datasets for competition code generation focus
on scaling the number of problems and CoTs. [Luo et al.| filters a high-quality 24k problemset of
TACO, LiveCodeBench, and other contest programming problems. CodeForces-CoTs, the dataset
of 10k Codeforces problems created by [Penedo et al.| (2025), contains 100k reasoning traces and
solutions generated by DeepSeek R1. OpenCodeReasoning (Ahmad et al., [2025) also compiles a
dataset of 28k problems, generates 735k reasoning traces, and filters them for syntactic correctness.
While these efforts have shown that better models can be trained with more data and more trajectories
from teacher models, they are facing a “code verifiability crisis”, as described by Open-R1 (Facel
2025)), and programs that pass test cases in these problem sets are not necessarily correct. In our
paper, we curate HARDTESTS, the competitive coding problem set with the most number of problems
(47k). More importantly, we push the scaling of training data towards higher quality of test cases and
evaluate how test quality affects model training.

3 HARDTESTGEN: Synthesizing High-Quality Test Cases

3.1 Problem Setting

Coding problems. We study test generation for coding problems with natural language specifications.
We denote the space of problem specifications as &, the space of candidate programs as)/, and the
space of test suites as V. A test suite V' is a set of test cases {t1,ta - 7t‘v|}. A test case is a pair

(a, ¢), where a is an input to a program, and ¢ is a checker for the corresponding outputﬂ A candidate

*In most cases, the output checker is simply a comparison between golden outputs and program outputs.
Others might be equivalence checkers that do not directly compare strings.

123
124
125

126
127

128
129

130
131
132

133
134
135
136

137

138
139
140
141
142
143
144

145
146
147
148

149
150
151
152
153
154
155
156
157

158
159
160
161
162
163

164
165

Baselines HardTestGen

D problem 8 Problem ,m, <>
Specification Specification —
LLM Input Validator

Typel (Direct) Type2 (Regular) Type3 (Hacking)

— — o —) _
Rulsed EC;) EC]D % E(l) €3 E(fl)
Perturbation ::>

(o

Inputs

Sunayd X

Inputs Inputs Input Generator Inputs Input Generator Inputs

Figure 2: Comparison of the input generation process between previous test synthesizers (left) and
HARDTESTGEN (right).

program y €) takes an input and generates an output y(a), which is then sent to the output checker
¢ for a boolean verdict ¢(y(a)) € {T, L}. When y exceeds a pre-defined runtime limit, its verdict is
also L.

Oracle tests and correctness. For every coding problem z € X', we assume the existence of an
oracle test suite V* € V, which definitively tells the correctness of a program y € Y, i.e.

Correctness(y, V*) := /\ ci(y(as)). (1)
(ai,ci)eV™
In practice, the oracle tests are usually carefully written and proprietary by problem authors. Only
very few of them are available for downloading, which makes them infeasible for model training.

Oracle programs. Compared to rarely available oracle tests, oracle programs (y* such that
Correctness(y*, V*) = T) are available for almost all coding problems in online competitions.
Therefore, we assume the existence of oracle programs y* in our setting.

Test synthesis. Given a problem z, and an oracle program y*, the task of test synthesis is to create a
test suite V' that agrees with V*, i.e., we want Correctness(y, V') = Correctness(y, V*) for as many
ys as possible. In HARDTESTGEN, we create a set of inputs {ay, az, - - - ,a;y|} and utilize the oracle
program to get the outputs, i.e., ¢; = y*(a;).

3.2 Generating Inputs of Test Cases

We synthesize three types of test inputs. One is directly generated by an LLM, while the other two
are generated by LLM-generated programs. Before generating inputs, we first prompt an LLM to
generate an input validator in Python that checks whether a given input satisfies all the constraints in
the problem specification. We subsequently prompt the LLM to generate the inputs. In the prompt, we
include the input validator and an oracle program, as we find that doing so increases the likelihood of
synthesizing valid inputs. Figure 2]illustrates the differences between the input generation processes
of previous test synthesiziers and HARDTESTGEN.

Type 1. Directly Generated Inputs. We prompt an LLM to directly generate np = 10 inputs by
imitating the sample test cases provided in the problem specification. This type of input is typically
small in scale, making it easy to generate and understand, and allowing for quick testing of the
candidate program’s functional correctness.

Type 2. Regular Inputs. Regular inputs are generated randomly according to the constraints specified
in the problem specifications. For most problems, we prompt an LLM to generate a Python function
gr with no parameters that returns a random input on each call. We call this function nr = 20 times
to get nr random inputs. For some problems, there are some unusual categories of outputs that are
rarely triggered by random inputs. For example, when a problem’s expected output is either “Yes”
or “No”, the correct output for almost all random inputs might be “Yes”. In such cases, random
inputs can potentially lead to false positives. For these problems, we prompt an LLM to generate mp
functions, each corresponding to one output category (e.g., “Yes” and “No”). We call each function
ngr = 10 times to obtain a total of mp X ng inputs with their outputs specified.

Type 3. Hacking Inputs. Some well-disguised false positives cannot be easily detected with
random inputs. For example, some programs may be functionally correct but inefficient in worst-case
scenarios, or some programs may fail to handle certain edge cases that require special treatment.
Therefore, we first prompt an LLM to list several candidate programs for the problem in natural
language. Then, we prompt it to generate m g input generation functions, each attempting to cause
one candidate program to fail. Each function is called ny = 10 times, generating mg X ny inputs.

After generating the inputs, we filter out all inputs that fail to pass the examination of the input
validator.

166

167
168
169
170
171

172
173
174
175
176
177
178
179

180
181
182
183

184

194

204

205

206
207
208
209
210
211
212
213

3.3 Generating Outputs of Test Cases

We use human-written oracle programs that exist for all online competitions to test outputs. For each
problem, we use at most ngp,cle = 8 oracle programs, prioritizing those from more reliable sources.
Each oracle program generates outputs for all synthesized inputs. If the outputs generated by two
oracle programs match for more than 90% of the cases, we consider the outputs to be acceptable and
adopt the matching portion as the final outputs.

For the majority of problems, a simple string comparison between two outputs is sufficient to
determine whether they match. However, some problems require a special judge. For example,
a problem might require returning a set (where element order does not matter) or a sequence of
operations that achieves a certain effect. In that case, we prompt an LLM to implement a special
judge function. This function takes the input and two outputs as parameters, and returns a Boolean
value indicating whether the two outputs are equivalent. In our dataset, 25.4% of the problems require
a special judge function. In subsequent training and testing processes, this function will continue to
be used to determine whether the candidate output and the reference output match.

In our dataset, we use GPT-4o0 to generate all of the above content. For all functions that need to be
generated, we include two to three carefully crafted examples in the prompts. The implementation
details of HARDTESTGEN (e.g., prompts), the number of generated test cases, the failure rate and
reasons for failure, as well as a concrete example, are provided in Appendix[A.2]

3.4 HARDTESTS: 47k Problems with High-Quality Test Cases

The HARDTESTS dataset comprises 47,136 competitive programming problems with high-quality
test cases, aggregated from 13 major online judges (OJs) for competitive programming. The dataset
is constructed from five direct data sources: Codeforces, AtCoder, Luogu, CodeContests (Li et al.,
2022), and TACO (Li et al., 2023). We apply HARDTESTGEN to synthesize test cases for 32.5k
problems among them. The detailed constitution and description of the data sources are described in
Appendix [A.3]

Cleaning, deduplication, and decontamination. For problems with only non-English descriptions,
we translated them into English using GPT-40. To handle overlapping content among the five
direct data sources, we filtered out duplicated problems using problem IDs and n-gram overlaps in
description, prioritizing versions from the original platforms rather than mirror sites. For correct
programs, we retained all available versions and annotated them with their respective sources. We
conduct decontamination by removing the problems that are in LiveCodeBench (Jain et al., [2025b)
from our dataset. Since most of its problems are from Codeforces and AtCoder, we directly compare
the URLSs to the problems.

Labelling difficulty. We retained the difficulty labels assigned by all five data sources in our dataset.
In the experiments presented in Section[d] we used the difficulty labels from Luogu, as it provides
consistent and fine-grained labels for problems from both AtCoder and Codeforces. Luogu’s difficulty
labels are divided into seven levels, with the first level representing beginner-level problems and the
seventh level corresponding to problems at the level of national competitions.

4 Direct Evaluation of Test Case Quality

4.1 Evaluation Criteria

We regard the testing of candidate programs as a binary classification process: a program is classified
as positive if it passes all test cases, and negative otherwise. To directly assess the quality of test
cases, we evaluate how good they are as binary classifiers. Given a problem z, an oracle test suite V'*,
a synthesized test suite V', and a set of candidate programs {y; - - - y,, }, we categorize the programs
with their correctness according to V and V*. When V and V* both find a candidate program correct,
it’s a true positive (TP). When V finds a program correct while V* finds it wrong, it’s a false positive
(FP). Similarly, we can define true negatives and false negatives. With these categories defined, we
use precision and recall to measure test quality:
TP TP

Precision = ———, Recall =

TP+ FP’ TP+ FN’

214

215
216
217
218
219
220

221
222
223
224
225
226

227
228
229
230

231

232
233
234

236
237
238

239
240
241
242
243

244
245
246
247
248
249

250

251
252
253

254
255
256
257
258
259

260
261
262
263
264

4.2 Baselines

CodeContests. CodeContests (Li et al.| [2022) primarily consists of problems from Codeforces.
Codeforces only provides test cases within certain length constraints. CodeContests collects these
and refers to them as “private test cases.” Additionally, it generates new test cases by introducing
random perturbations to the private test cases; these are referred to as "generated test cases.”" This
gives CodeContests an unfair advantage as it has access to the distribution of oracle tests. In our
experiments, we only use generated test cases, which reduces the unfairness but does not eliminate it.

TACO. TACO (L1 et al., [2023)) integrates several existing datasets, such as APPS (Hendrycks et al.,
2021)) and CodeContests (Li et al., [2022), while retaining their test cases. In addition to this, TACO
generates several additional test cases by using GPT-4o to directly generate the inputs and using
oracle programs for outputs. Furthermore, we observed that for some problems from AtCoder and
Codeforces, the TACO test cases included official test cases. To ensure fair comparisons, we removed
these official test cases.

Ablative Baselines. We also evaluate HARDTESTGEN with only Type 1 or Type 2 inputs to
demonstrate the necessity of all 3 types. Notably, the scenario with only Type 1, LLM directly
generated inputs, very much resembles many existing test synthesis methods such as KodCoder (Xu
et al.,[20235)), except that they synthesize not only the inputs but also the oracle programs.

4.3 Evaluation Pipeline

To evaluate the accuracy of rewards that our test cases can give to model training, we evaluate the
precision and recall over candidate programs generated by LLMs and written by humans on subsets
of problems in HARDTESTS. Details about the evaluation protocol can be found in Appendix

Generating candidate problems. To compare our tests with other synthesizers, we choose the
problems that exist in both HARDTESTS and the baseline datasets. For problems from AtCoder, we
select 653 problems that exist in both HARDTESTS and TACO. For problems from Codeforces, we
select 600 problems that exist in HARDTESTS, CodeContests, and TACO.

Generating candidate programs. We compare our tests with baseline tests on candidate programs
generated by 3 LLMs and also by human programmers. Specifically, we use three LLMs: Qwen2.5-
Coder-7B-Instruct (Yang et al., [2024), Qwen2.5-Coder-14B-Instruct, and GPT-40. For each problem,
we sample 10 candidate programs from each LLM using a temperature of 0.7 and a top-p of 0.95. We
also randomly select 10 real-world human submissions for each problem.

Generating gold labels. We need gold labels to compute precision and recall. For AtCoder, we
run candidate programs on official tests that have been previously made available. For Codeforces,
we submit candidate programs to the website to obtain ground-truth verdicts. The human-written
candidate programs are sampled from MatrixStudio/Codeforces-Python-Submissions| which
provides official verdicts. We then use synthetic test cases to classify the correctness of these programs
and compare the results against the ground-truth labels, thereby evaluating test case quality.

4.4 Results

We evaluate the correctness of programs written by three LLMs and human programmers for problems
from AtCoder and Codeforces using test cases from TACO, CodeContests, and HARDTESTS. The
results are in Table [T|and[2] We present qualitative analyses of the synthetic tests in Appendix [A.5]

We find that HARDTESTS significantly outperforms TACO and CodeContests in terms of both preci-
sion and recall under most evaluation settings. Moreover, this advantage becomes more pronounced
as problem difficulty increases. For example, for the Qwen2.5-Coder-7B-Instruct model on AtCoder
problems with difficulty level 4+, TACO achieves a precision of 21.67 and a recall of 68.42, whereas
HARDTESTS achieves a precision of 60.00 and a recall of 94.74. This implies that using HARDTESTS
during RL training would yield more true positive rewards and much fewer false positive rewards.

Furthermore, we observe that as the source of programs becomes less “intelligent” (ranging from
human-written to 7B LLM-generated), the precision advantage of HARDTESTS becomes more
pronounced. We attribute this to the fact that less skilled programmers are more likely to produce
functionally correct but inefficient programs. For instance, among incorrect human-written programs,
14.9% are due to TLE (Time Limit Exceeded), whereas among the incorrect programs written by

https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions

265

267

268

270
271

Table 1: Precision and recall of the test cases of TACO, HARDTESTS, and ablative baseline on
AtCoder. HT-TYPE] refers to the results using only the test cases of Type 1 from HARDTESTS.
while TH-TYPE1+2 refers to the results using only the test cases of Type 1 and Type 2 from
HARDTESTS.

difficulty 1 difficulty 2 difficulty 3 difficulty 4+ average
prec. recall prec. recall prec. vrecall prec. recall prec. recall

QOwen2.5-Coder-7B-Instruct

TACO 77.09 69.07 81.71 69.97 72.53
HT-TyPEL
HT-TYPE1+2 81.93
HARDTESTS 85.64

QOwen2.5-Coder-14B-Instruct

TACO 80.23 73.40 78.16 73.33
HT-TYPE1
HT-TYPE1+2
HARDTESTS

GPT-4o

TACO
HT-TYPEI
HT-TYPE1+2
HARDTESTS

Table 2: Precision and recall of the test cases of TACO, CodeContests, and HARDTESTS evaluated
using LLM-generated programs for problems on Codeforces.

difficulty 1 difficulty 2 difficulty 3 difficulty 4 average
prec. recall prec. recall prec. vrecall prec. recall prec. recall

Owen2.5-Coder-7B-Instruct

TACO 86.13 71.07 79.63
CodeContests 89.24 83.61
HARDTESTS 69.82

Qwen2.5-Coder-14B-Instruct
TACO 80.67 8745 83.88 81.13 73.88
CodeContests =~ 79.70 79.29
HARDTESTS = 83.19 67.47 80.41

GPT-4o0

TACO 74.83 78.17 78.69
CodeContests 84.96
HARDTESTS 79.82

Human Submission

TACO 81.59 73.77 81.47
CodeContests 73.11 85.10 69.01
HARDTESTS 73.71 74.42

the three LLMs, 30.0% are due to TLE. Consequently, the larger and more diverse test cases in
HARDTESTS are more likely to catch inefficient programs than the small-scale test cases in TACO
and CodeContests.

Compared with the ablative baselines in Table [T, HARDTESTS that includes Type2 (Regular) and
Type3 (Hacking) test cases consistently leads to a precision improvement ranging from 2% to 48%,
while the decrease in recall is always within 2.5%. This demonstrates the necessity for having
different types of tests.

272

273
274
275
276

277

278
279
280
281
282

284
285
286

287
288
289
290
291
292
293
294
295
296

297
298
299
300

302
303

304
305
306
307
308
309

310

311
312
313
314
315
316
317

319

320
321
322
323

5 Downstream Effects of Test Case Quality in LLM Post-Training

In this section, we aim to answer two questions with HARDTESTS: when does verifier/test quality
matter, and how much does it matter in post-training? We run experiments in 3 different post-training
scenarios: teacher-distillation, self-distillation, and reinforcement learning. We examine how much
verifier quality affects the training results in code generation, if any.

5.1 Experiment Setup

Teacher-distillation. Various papers, such as DeepSeek-R1 (Guo et al.l[2025) suggest that fine-tuning
a smaller student model with reasoning trajectories from a stronger reasoning model can greatly
improve the student’s performance. In this scenario, verifiers can be used to filter out the incorrect
trajectories. We sample one reasoning trajectory with a C++ solution program from DeepSeek-R 1
for each question in HARDTESTGEN, obtaining 46.6k trajectories in total after deduplication and
decontamination against all LiveCodeBench questions. We fine-tune two models from Qwen2.5-
Coder-Instruct-7B: one with all 46.6k trajectories, the other with 13k trajectories that are correct
according to HARDTESTS. As a baseline, we also evaluate OlympicCoder-7B (Face} 2025), another
Qwen2.5-Coder derivation fine-tuned with ~100k trajectories of ~10k Codeforces problems.

Self-distillation. Fine-tuning a model with its own reasoning trajectories can also improve its
reasoning ability (Zelikman et al.}|2022)). Hence, determining which trajectories to use is a critical
issue. To examine the effects of test quality, we sampled 5 traces of Qwen3-4B and used the tests
generated by HARDTESTGEN for filtering. We selected 4989 questions where there is at least one
Qwen3-4B generated program that passes the tests and at least one that fails the tests. We create
3 datasets for self-fine-tuning, each containing one trajectory per question. The bad 5k randomly
samples one incorrect trajectory for each question. The good 5k randomly samples one correct
trajectory. The random 5k randomly samples one trajectory, regardless of its correctness, for each
question. We further fine-tune Qwen3-4B with these 3 datasets and compare the performance of the
resulting models. All our fine-tuning experiments were done with Llama-factory (Zheng et al.| [2024).

Reinforcement learning. Verifier feedback is an option for distillation, but it is a must for reinforce-
ment learning. To investigate how verifier quality affects RL, we train Qwen3-4B with RL using the
same problem set, the identical training setup, and different test cases. We select a problem set with
~5k problems that exist in both HARDTESTS and TACO for training. We use a modified version of
veRL (Sheng et al., [2024) inspired by Code-R1 (Liu & Zhang] 2025) for training with GRPO (Shao
et al.| 2024). When a program passes all tests, it gets a reward of 1, otherwise, it gets a reward of 0.
We compare different verifiers by looking at the final performance and the validation curve.

Evaluation protocol. We use LiveCodeBench (Jain et al., 2025b)) version 5 to evaluate the model
performance. Since all the programs we use for tuning are in C++, we build an evaluation pipeline for
evaluating C++ programs for LiveCodeBench and select a 105-problem subset where all problems
have test cases of “stdin” type. We name this subset of problems we use “LiveCodeBench-105".
Details about our training and evaluation procedure can be found in Appendix [A.6] including the
problems and hyperparameters we use for training and the sampling parameters we use for evaluation.

5.2 Results

Teacher-distillation benefits more from question scaling than test quality or sample scaling. We
evaluate models fine-tuned from Qwen2.5-Coder-7B using different training sets on LiveCodeBench-
105 and report the results in Table 3] Note that the difficulty labels are obtained from LiveCodeBench.
The model trained with HARDTESTS with all 46.6k examples outperforms OlympicCoder-7B (trained
with 100k trajectories of 10k questions), suggesting that the quality and diversity of training questions
matter more than the number of training samples. Interestingly, the model trained on smaller but more
curated subsets (13k filtered trajectories) does not match the performance of using larger, unfiltered
data, suggesting that data scaling dominates trajectory correctness in the teacher-distillation setting.
This observation aligns with the concurrent findings from OpenCodeReasoning (Ahmad et al., [2025).

Self-distillation performance is highly dependent on sample quality and needs a good verifier.
We evaluated variants of Qwen3-4B models self-distilled with different Sk subsets on LiveCodeBench-
105 and present the results in Table 4] Model self-distilled from incorrect samples identified by
HARDTESTGEN's tests drops more significantly in pass@k. Self-distillation with randomly selected

324
325
326

327
328
329
330
331
332

333

334
335
336
337

Table 3: pass@k (%) of teacher-distilled LLMs based on Qwen2.5-Coder-7B on LiveCodeBench-105.

Easy Medium Hard All
pass@1l pass@l pass@l pass@l pass@10
QC2.5-7B-Ins 58.75 9.58 2.46 16.95 27.62
OlympicCoder-7B (100k trajectories) 65.83 41.25 2.46 25.81 46.67
QC2.5-7B-Ins + HARDTESTS (13k, filtered) 77.08 29.17 1.75 25.24 39.05
QC2.5-7B-Ins + HARDTESTS (46.6k, full) 83.65 44.58 6.49 32.86 53.33

Table 4: pass@k (%) self-distilled LLMs based on Qwen3-4B on LiveCodeBench-105.

Easy Medium Hard All
pass@1 pass@1 pass@1 pass@l pass@5 pass@10

Qwen3-4B 88.75 53.33 11.05 38.48 52.04 56.19
Qwen3-4B (with bad 5k) 84.17 45.42 8.07 34.00 48.42 54.92
Qwen3-4B (with random 5k) 84.58 36.25 9.12 32.75 50.85 57.14
Qwen3-4B (with good 5k) 85.42 47.08 10.53 36.00 55.15 60.00

0.20+ RL with HardTests (ours)

RL with TACO

0.151

0.101

0.051

0.00

0 20 40 60 80 100
Step

Figure 3: RL Validation Rewards Over Time. Reward from HARDTESTS makes the training better.

data could harm pass@ 1 even more, despite the slight improvements in pass@ 10. In contrast, using a
5k subset verified by HARDTESTGEN’s test cases results in a smaller drop in pass@1 and a notable
gain in pass@5 and pass@ 10, suggesting that verifiers are important to self-distillation.

Test quality matters significantly for reinforcement learning. As shown in Figure |3] the vali-
dation reward curve for HARDTESTS during RL training is generally higher than that for TACO.
This indicates that for the same problems, HARDTESTS is giving better rewards. To evaluate on
LiveCodeBench-105, we run the best checkpoints (according to valid reward) of both training jobs
within 100 steps. As reported in Table [5] TACO tests hurt the model’s overall performance, while
HARDTESTS improves the model’s overall performance.

Table 5: pass@k (%) for LLMs RL-trained from Qwen3-4B on LiveCodeBench-105.
pass@1 pass@5 pass@10
Qwen3-4B 38.48 52.04 56.19

Qwen3-4B (RL with TACO) 36.95 51.01 57.14
Qwen3-4B (RL with HARDTESTS) 39.42 57.89 64.76

6 Conclusion

We present HARDTESTGEN, an LLM-based test synthesis pipeline, which is used to create
HARDTESTS, a competitive coding dataset with 47k problems and significantly higher-quality
tests. We examine when and how much test quality matters in LLM post-training, showing that harder
tests generated by HARDTESTGEN can indeed help LLM post-training in many scenarios.

338

339
340
341
342
343
344
345
346

347

349
350

351
352
353

354
355
356

357
358

359
360
361
362
363
364
365
366
367
368
369

370
371

372
373

374
375

376
377
378
379
380

381
382
383

385
386

@

Limitation

Although HARDTESTS has higher-quality tests than the baselines, they are still not as good as human-
written ones. Moreover, we assume the existence of oracle solutions to utilize HARDTESTGEN, which
may not be true for some coding domains. To address this issue, we briefly discuss an initial idea for
synthesizing tests without oracles in Appendix[A.7] Another limitation of the HARDTESTGEN is
that the code being tested is constrained to a single file that uses Standard I/O for input and output.
However, many real-world coding problems are more complicated, e.g. coding problems in SWE-
bench that may involve file I/O or web /O, and we leave the exploration of applying HARDTESTGEN
to these scenarios as future work.

References

Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain, Jo-
celyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data distillation
for competitive coding, 2025. URL https://arxiv.org/abs/2504.01943.

Toufique Ahmed, Martin Hirzel, Rangeet Pan, Avraham Shinnar, and Saurabh Sinha. Tdd-bench
verified: Can llms generate tests for issues before they get resolved?, 2024. URL https://arxiv|
org/abs/2412.02883.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732,

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests. In /CLR, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374,

Caia Costello, Simon Guo, Anna Goldie, and Azalia Mirhoseini. Think, prune, train, improve:
Scaling reasoning without scaling models. arXiv preprint arXiv: 2504.18116, 2025.

Luc Devroye, Omar Fawzi, and Nicolas Fraiman. Depth properties of scaled attachment random
recursive trees. Random Structures & Algorithms, 41(1):66-98, 2012.

Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL https:
//github.com/huggingface/open-ri.

Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-oriented
software. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, ESEC/FSE ’11, pp. 416419, New York, NY, USA, 2011.
Association for Computing Machinery. ISBN 9781450304436. doi: 10.1145/2025113.2025179.
URL https://doi.org/10.1145/2025113.2025179.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

10

https://arxiv.org/abs/2504.01943
https://arxiv.org/abs/2412.02883
https://arxiv.org/abs/2412.02883
https://arxiv.org/abs/2412.02883
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://doi.org/10.1145/2025113.2025179

387
388
389

390
391

393
394
395
396
397

398
399
400
401

402
403
404
405
406
407
408
409
410
411
412
413
414
415

416
417
418

419
420
421

422
423

424
425
426
427
428
429

430
431
432

433

434

435
436

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv: 2504.01296, 2025.

Kush Jain, Gabriel Synnaeve, and Baptiste Roziere. Testgeneval: A real world unit test generation
and test completion benchmark, 2025a. URL https://arxiv.org/abs/2410.00752,

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2E: Turning
any github repository into a programming agent environment. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 21196-21224. PMLR, 21-27 Jul 2024. URL
https://proceedings.mlr.press/v235/jain24c.html.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In The Thirteenth International Conference on
Learning Representations, 2025b. URL https://openreview.net/forum?id=chfJJYC3iL.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li,
Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu,
Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong,
Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,
Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang
Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du,
Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu
Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
reinforcement learning with llms, 2025. URL https://arxiv.org/abs/2501.12599.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314-21328, 2022.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for 1l scaling. arXiv preprint arXiv:
2502.11886, 2025.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’ Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with
alphacode. arXiv preprint arXiv:2203.07814, 2022.

Jonathan Light, Yue Wu, Yiyou Sun, Wenchao Yu, Yanchi liu, Xujiang Zhao, Ziniu Hu, Haifeng
Chen, and Wei Cheng. Scattered forest search: Smarter code space exploration with 1lms, 2025.
URL https://arxiv.org/abs/2411.05010.

Jiawei Liu and Lingming Zhang. Code-r1: Reproducing r1 for code with reliable rewards. 2025.
Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by

chatgpt really correct? rigorous evaluation of large language models for code generation, 2023.
URL https://arxiv.org/abs/2305.01210.

11

https://arxiv.org/abs/2410.00752
https://proceedings.mlr.press/v235/jain24c.html
https://openreview.net/forum?id=chfJJYC3iL
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2411.05010
https://arxiv.org/abs/2305.01210

437
438
439

440
441
442
443

444
445
446

447
448
449

450

464

474

475
476
477

478
479
480

481
482
483

Yifei Liu, Li Lyna Zhang, Yi Zhu, Bingcheng Dong, Xudong Zhou, Ning Shang, Fan Yang, and Mao
Yang. rstar-coder: Scaling competitive code reasoning with a large-scale verified dataset, 2025.
URL https://arxiv.org/abs/2505.21297.

Stephan Lukasczyk and Gordon Fraser. Pynguin: automated unit test generation for python. In
Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Com-
panion Proceedings, ICSE °22. ACM, May 2022. doi: 10.1145/3510454.3516829. URL
http://dx.doi.org/10.1145/3510454.3516829.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepcoder: A fully open-source 14b coder at 03-mini level.

Niels Miindler, Mark Niklas Miiller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and
validating real-world bug-fixes with code agents, 2025. URL https://arxiv.org/abs/2406|
12952.

OpenAl. Openai ol system card. arXiv preprint arXiv: 2412.16720, 2024.

OpenAl. Competitive programming with large reasoning models. arXiv preprint arXiv: 2502.06807,
2025.

OpenAl, :, Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam,
David Dohan, Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, Jerry Tworek,
Lorenz Kuhn, Lukasz Kaiser, Mark Chen, Max Schwarzer, Mostafa Rohaninejad, Nat McAleese,
03 contributors, Oleg Miirk, Rhythm Garg, Rui Shu, Szymon Sidor, Vineet Kosaraju, and Wenda
Zhou. Competitive programming with large reasoning models, 2025. URL https://arxiv.org/
abs/2502.06807.

Guilherme Penedo, Anton Lozhkov, Hynek Kydlicek, Loubna Ben Allal, Edward Beeching,
Agustin Piqueres Lajarin, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro
von Werra. Codeforces. https://huggingface.co/datasets/open-ri1/codeforces, 2025.

Yun Peng, Jun Wan, Yichen Li, and Xiaoxue Ren. Coffe: A code efficiency benchmark for code
generation, 2025. URL https://arxiv.org/abs/2502.02827.

Z.Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yuxuan Liu,
Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing formal mathematical
reasoning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv: 2504.21801,
2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y.K. Li, Y. Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models, 2024. URL https://arxiv.org/abs/2402.03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jachoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming
Zhang, An Ran Chen, and Lei Ma. Testeval: Benchmarking large language models for test case
generation, 2025a. URL https://arxiv.org/abs/2406.04531.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai

He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
models with one training example. arXiv preprint arXiv:2504.20571, 2025b.

12

https://arxiv.org/abs/2505.21297
http://dx.doi.org/10.1145/3510454.3516829
https://arxiv.org/abs/2406.12952
https://arxiv.org/abs/2406.12952
https://arxiv.org/abs/2406.12952
https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2502.06807
https://huggingface.co/datasets/open-r1/codeforces
https://arxiv.org/abs/2502.02827
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2406.04531

484

504
505
506

508
509

510
511
512

513
514
515

516
517
518
519
520

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Zachary Mueller, Harm
de Vries, Leandro Von Werra, Arjun Guha, and Lingming Zhang. Selfcodealign: Self-alignment
for code generation. arXiv preprint arXiv:2410.24198, 2024.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A diverse,
challenging, and verifiable synthetic dataset for coding, 2025. URL https://arxiv.org/abs/
2503.02951.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yugiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv: 2502.03387, 2025.

Zhigiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin Peng.
No more manual tests? evaluating and improving chatgpt for unit test generation, 2024. URL
https://arxiv.org/abs/2305.04207.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476—15488, 2022.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. Acecoder:
Acing coder rl via automated test-case synthesis, 2025a. URL https://arxiv.org/abs/2502|
01718.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv: 2503.18892, 2025b.

Kexun Zhang, Danging Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: Synthesizing
algorithmic programs with llm-generated oracle verifiers, 2023. URL https://arxiv.org/abs/
2305.14591.

Quanjun Zhang, Ye Shang, Chunrong Fang, Siqi Gu, Jianyi Zhou, and Zhenyu Chen. Testbench:
Evaluating class-level test case generation capability of large language models, 2024. URL
https://arxiv.org/abs/2409.17561.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

13

https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2305.04207
https://arxiv.org/abs/2502.01718
https://arxiv.org/abs/2502.01718
https://arxiv.org/abs/2502.01718
https://arxiv.org/abs/2305.14591
https://arxiv.org/abs/2305.14591
https://arxiv.org/abs/2305.14591
https://arxiv.org/abs/2409.17561
http://arxiv.org/abs/2403.13372

521

522
523
524
525
526

527
528

529

530
531

532

533
534
535
536

537
538
539
540
541
542
543
544
545

546

547

548

549

550

551
552

553

554
555
556

557
558
559

560
561
562

563
564

565
566

567

568

569

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our first two claims about test quality is supported by Section 3 and 4’s method
and experiments. Our third claim about the downstream effects of test quality is supported
by Section 5.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

14

570
571

572

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

599

600
601

602

603

604

605

606
607

608

609
610
611

612
613

614

615

616
617
618

619

621
622

Justification: We discussed the limitations of HARDTESTGEN and HARDTESTS in the
limitation section in the appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The overview of experiments and protocol is listed in our section 3 and 4.
The details including dataset curation process, hyperparameters for training and sampling
parameters for inference are described in the Appendix.

15

623

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

655

656
657
658

659

660
661

662

664
665
666
667
668
669

671
672
673
674

676
677

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: We plan to release the full dataset with all 47k problems and all the code and
model checkpoints upon publication.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

678 * At submission time, to preserve anonymity, the authors should release anonymized
679 versions (if applicable).

680 * Providing as much information as possible in supplemental material (appended to the
681 paper) is recommended, but including URLSs to data and code is permitted.

682 6. Experimental setting/details

683 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
684 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
685 results?

686 Answer: [Yes]

687 Justification: They are listed in the experiment setup sections and more details are in the
688 appendix.

689 Guidelines:

690 * The answer NA means that the paper does not include experiments.

691 * The experimental setting should be presented in the core of the paper to a level of detail
692 that is necessary to appreciate the results and make sense of them.

693 * The full details can be provided either with the code, in appendix, or as supplemental
694 material.

695 7. Experiment statistical significance

696 Question: Does the paper report error bars suitably and correctly defined or other appropriate
697 information about the statistical significance of the experiments?

698 Answer:

699 Justification: It is conventional for people not to report error bars as the computation cost
700 for sampling enough samples to obtain statistic significance for each problem is very high.
701 Guidelines:

702 * The answer NA means that the paper does not include experiments.

703 * The authors should answer "Yes" if the results are accompanied by error bars, confi-
704 dence intervals, or statistical significance tests, at least for the experiments that support
705 the main claims of the paper.

706 * The factors of variability that the error bars are capturing should be clearly stated (for
707 example, train/test split, initialization, random drawing of some parameter, or overall
708 run with given experimental conditions).

709 * The method for calculating the error bars should be explained (closed form formula,
710 call to a library function, bootstrap, etc.)

711 * The assumptions made should be given (e.g., Normally distributed errors).

712 * It should be clear whether the error bar is the standard deviation or the standard error
713 of the mean.

714 It is OK to report 1-sigma error bars, but one should state it. The authors should
715 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
716 of Normality of errors is not verified.

717 For asymmetric distributions, the authors should be careful not to show in tables or
718 figures symmetric error bars that would yield results that are out of range (e.g. negative
719 error rates).

720 e If error bars are reported in tables or plots, The authors should explain in the text how
721 they were calculated and reference the corresponding figures or tables in the text.

722 8. Experiments compute resources

723 Question: For each experiment, does the paper provide sufficient information on the com-
724 puter resources (type of compute workers, memory, time of execution) needed to reproduce
725 the experiments?

726 Answer: [Yes]

727 Justification: These are provided in the appendix.

728 Guidelines:

17

729
730
731
732
733
734
735
736

737

738
739

740

741

742

743
744
745
746
747

748

749
750

751

752

753

754

755
756

757
758
759
760

761
762
763
764
765
766
767
768
769
770
771
772
773
774
775

776

77
778
779

780

0.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See our conclusion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

18

https://neurips.cc/public/EthicsGuidelines

781

782

783

784
785
786
787

788
789

791
792

793

794

796

797

798

800
801

802
803

804

805
806

807
808
809
810

811
812

813
814
815

816
817

818

819

820

821
822
823
824
825
826
827
828

829

830
831
832

12.

13.

14.

Justification: No such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We carefully credit and cite them in the appendix about daca curation.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: In section 3 and the appendix.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

19

paperswithcode.com/datasets

833

834

835

836

837

838
839
840

841
842
843

844
845

846
847
848
849

850

851

852

853
854

855
856
857

858
859
860

862

863

864
865
866

868

869

870

871
872
873
874

15.

16.

Answer: [NA]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [TODO]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

875

876

877
878
879
880
881

883
884
885
886

887

888
889
890
891
892

893

894
895
896
897
898
899
900
901
902
903

904
905
906

907
908
909
910

911
912
913
914

915

916
917
918
919

921
922

A Appendix

A.1 More Related Work on Synthetic Test Quality and its Implications

Although existing LLM test synthesis methods prove to be useful in many scenarios, such as improving
the quality of synthetic data (Wei et al., 2024) and software engineering(Miindler et al.| 2025} Jain
et al.| [2024), their quality is far from perfect (Yuan et al.l |2024) and are bounded in complexity,
because direct generations of complicated data structures often result in inconsistency (Zhang et al.,
2023). Weak verifiers can harm downstream code generation and search performance (Light et al.|
2025). The quality of those synthetic tests and their implications are less discussed. Existing
benchmarks for LLM test case generation abilities focus on code coverage and/or mutation scores
(Wang et al., [2025a; Zhang et al., [2024; Jain et al.| 20254l |2024), the success rate for reproducing
issues (Miindler et al.| [2025)), and the code change coverage for generated code patches (Ahmed et al.
2024; Miindler et al., 2025)).

A.2 Details of the Test Cases Generation Pipeline HARDTESTGEN

As we mentioned in Section [3.2] HARDTESTGEN constructs both the input generator functions
and the validator functions for verifying input correctness. In this section, we first introduce the
detailed HARDTESTGEN implementation, including the coding problem filtering process, and detailed
prompts for input generator/validator synthesis (Section[A.2.T)), followed by detailed dataset statistics
for the final HARDTESTS dataset (Section[A.2.7)) and some examples in HARDTESTS (Section[A.2.3).

A.2.1 HARDTESTGEN Implementation

Coding problem filtering. Before generating test cases, we first filter out questions not suitable
for our test case generation. For example, those without oracle code solutions, and the questions
that do not use standard I/O for input and output. More specifically, our question filtering process is
as follows: We first remove problems that do not have any oracle programs. Next, we exclude all
problems where the starter_code field is non-empty, as they are so-called “core logic” problems,
rather than “input-output” style problems, and typically originate from online judges like LeetCode
and GeeksforGeeks. In such problems, the programmer is not responsible for handling input and
output logic, but only for implementing the core function based on a given function signature. Since
the inputs and outputs in these problems are often not strings, they are difficult to use for test case
generation. After the filtering, we are left with 32.5k unique coding problems.

Input validator prompt. We use the following LLM prompt to generate an input validator function,
and a special judge function when necessary. This prompt includes the problem specification and the
oracle program to help the LLM have a better understanding.

Input generator prompt. We use the following prompt to have the LLM generate inputs directly
(Type 1), a regular input generator (Type 2), and a hacking input generator (Type 3). This prompt
makes use of the problem specification, oracle program, and input validator to help the LLM better
understand the problem requirements.

Note that in the prompts above, we provide two to three carefully crafted examples for each function
that we ask the LLM to generate, enabling in-context learning. Additionally, we prompt the LLM
to perform chain-of-thought reasoning. These two requirements help the LLM understand the task
better and improve the data synthesis.

A.2.2 HARDTESTS Statistics

We generated test cases for all 32.5k valid questions in the HARDTESTS. The status distribution
of test case generation is shown in Figure[5] While we carefully designed the test-case generation
prompt, we didn’t attain 100% coverage. We successfully generated test cases for 81.9% of the
questions. The main failure reasons include: no valid oracle programs (i.e., compiles and runs without
errors) (6.62%), all output verification failed (5.85%), and input generation failed (3.72%). The
distribution of the number of Typel, Type2, and Type3 test cases, as well as the total number of test
cases, is shown in Figure

21

Type 1 (Directly Generated) Type 2 (Regular)

25000
20000
20000 17500
15000
> >
15000
2 2 12500
(] [
= =
10000
9] 19
(L 10000 P
7500
5000 5000
2500
0 0 - -
0 2 4 6 8 10 0 5 10 15 20 25 30
Number of Test Cases Number of Test Cases
Type 3 (Hacking) Total
14000 6000
12000 5000
10000
4000
> >
g g
3 8000 3
2 2 3000
2 6000 2
2000
4000
2000 1000
0 0
0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60
Number of Test Cases Number of Test Cases

Figure 4: The distribution of the number of Typel, Type2, and Type3 test cases, as well as the total
number of test cases in HARDTESTS.

No valid oracle programs,

6.62%
All output verification failed
5.85%
Input generation failed
3.72%
Unknown error
1.31%
Output generation timeout —‘
0.403%
Test cases too large (>600 MB)
0.246%

Success
81.9%

Figure 5: The result status distribution of our test case generation pipeline HARDTESTGEN.

923 A.2.3 HARDTESTS Examples

924 Example 1

925 This example demonstrates the input validator, Type 1 (Directly Generated) and Type 2 (Regular) test
926 cases, as well as a custom judging function. Here’s the problem description:

22

927
928
929

930

931
932
933

935

936

937
938

939
940

941

942
943

944
945
946

947
948

949

950
951
952

953
954
955
956
957
958
959

960
961

962

963

965

966
967
968
969
970
971
972

974
975

Codeforces 1096A: There are a total of T (1 < T < 1000) sub-tasks. Each sub-task gives a pair
of integers l,r (1 <1 < r < 998244353), and the goal is to find a pair of integers x,y such that
I <x,y <7, x#vy, andy is divisible by x. It is guaranteed that every sub-task has a valid solution.

Note: It can be mathematically proven that a sub-task has a solution if and only if 21 < r.

The input validator is as follows. It checks whether input_str conforms to the required format
specified in the problem specification, whether all data falls within the required ranges, and whether
other constraints are satisfied (e.g., whether each sub-task has a solution).

Since this problem allows multiple correct solutions, simple string comparison is not sufficient. We
need a special, customized output judging function. The output judging function is as follows.

The Typel (Directly Generated) inputs are as follows.

The Type 2 input (Regular) generator is as follows. To ensure a solution always exists, the LLM sets
r > 2.

The LLM believes that there is no need to generate a Type 3 (Hacking) input generator for this
problem.

Example 2

This example demonstrates the input validator, as well as the Type 1 (Directly Generated), Type 2
(Regular), and Type 3 (Hacking) test cases. Here’s the problem description:

Codeforces 1141 A: Given two numbers n,m (1 <n <m <5 x 108), you are to determine whether
it is possible to transform n into m by multiplying by 2 and 3, and if so, output the minimum number
of operations. Otherwise, output -1.

The input validator is as follows. It checks whether input_str conforms to various format require-
ments and constraints.

The Typel (Directly Generated) inputs are as follows.

The Type 2 input (Regular) generator is as follows. The output of this problem has two categories (i.e.,
possible and impossible), so the LLM generates two regular input generating functions, corresponding
to these two categories respectively.

The Type 3 input (Hacking) generator is as follows. The LLM generates two hacking input generating
functions. The first function sets a small n and a large m. This is because a brute-force approach
that a candidate program might take is to use DFS, recursively trying to multiply n by 2 or 3 until
it becomes greater than or equal to m. If we randomly choose n and m, the ratio between them is
usually small, so this approach might still pass. Setting n to be small and m to be big creates a large
gap between n and m, making the brute-force DFS approach inefficient. The second function sets
m = n, which serves as an edge case.

For this problem, the LLM believes that a string comparison function would be enough for output
judging.

A.3 Details of the Collection of Problem Specifications and Oracle Programs in HARDTESTS

HARDTESTS consists of 47,136 coding problems collected from 13 OJs. In practice, the dataset ob-
tains problem specifications and oracle programs from five direct data sources: AtCoder, Codeforces,
Luogu, CodeContests, and TACO.

Data sources. Codeforces (https://codeforces.com/) is one of the largest English OJs. We
collected all publicly available problem specifications up to September 2024 from Codeforces.
AtCoder. (https://atcoder. jp/)) is a large OJ offering problems in both Japanese and English.
We scraped all problem specifications available up to September 2024, along with three correct
user-submitted C++ programs for each problem. We used those directly for problems with official
English versions. Luogu (https://www. luogu.com.cn/) is a large Chinese OJ consisting of a main
section (Luogu-Main) and four mirror sections. The main section hosts original problems authored
by users and administrators, as well as problems sourced from real-world contests (e.g. USACO).
The mirror sections contain problems from other OJs, including AtCoder, SPOJ, Codeforces, and
UVa. We collected all available problem specifications and community-authored tutorials, which

23

https://codeforces.com/
https://atcoder.jp/
https://www.luogu.com.cn/

978

988

989

990
991

often include both correct C++ programs and corresponding natural language explanations, from
Luogu. CodeContests (Li et al, is a dataset comprising 13,493 problems collected from five
OlJs. Each entry includes a problem specification and several correct programs in C++, Python 2,
Python 3, and Java. Only Codeforces problems in CodeContests were used in our dataset, as only
their problem IDs were explicitly provided. TACO 2023) is a large-scale English dataset
containing 25.4k problems sourced from ten OJs. Each entry includes a problem specification and
multiple correct Python programs. We collect all problems from TACO.

The distribution of problem counts across each OJ is shown in Figure[6] The URLSs of each OJ, along
with the direct data sources of their problem specifications and oracle programs, are listed in Table [6}

Note that since some problems have multiple oracle program sources, we prioritize programs from
more reliable sources when generating test cases. The reliability, supported languages, and notes
regarding each direct source of oracle programs are presented in Table|/| The distribution of the
number of oracle programs per problem in HARDTESTS is shown in Figure[7]

N 16000
Luogu Main

10,163

Codeforces
10,385
14000

12000
LeetCode
777 10000
HackerRank

AtCoder
5340

=
g
&
Frequency
©
8
5]
5

1376 6000

Aizu
2151 4000
HackerEarth
2390 2000
Codewars

2515

GeeksforGeeks 0

2680 0 5 10 15 20 25
Number of Oracle Problems

CodeChef
3630

30 >30

Figure 6: Number of problems from each OJs. Figure 7: Distribution of the
number of oracle programs in
HARDTESTS.

Table 6: Problem specification sources and oracle solution sources of each OJ.

Problem Oracle Program

oJ URL Specification S
ources

Sources
Codeforces https://codeforces.com/ Codeforces Eﬁfg?l’ CodeContests,
AtCoder https://atcoder. jp/contests/ AtCoder éflggger’ TACO,
Luogu https://www.luogu.com.cn/ Luogu Luogu
UVa https://onlinejudge.org/ Luogu Luogu
SPOJ https://www.spoj.com/ Luogu Luogu
Aizu https://onlinejudge.u-aizu.ac.jp/| TACO TACO
GeeksforGeeks |https://www.geeksforgeeks.org/ TACO TACO
Codewars https://www.codewars.com/ TACO TACO
Kattis https://open.kattis.com/ TACO TACO
CodeChef https://www.codechef.com/ TACO TACO
HackerEarth https://www.hackerearth.com/ TACO TACO
LeetCode https://leetcode.com/ TACO TACO
HackerRank https://www.hackerrank.com/ TACO TACO

A.4 Direct Evaluation Details

Evaluation details for LLM-generated programs on AtCoder. AtCoder previously made its
official test cases publicly available. Although this is no longer the case, we obtained a partial archive

24

https://codeforces.com/
https://atcoder.jp/contests/
https://www.luogu.com.cn/
https://onlinejudge.org/
https://www.spoj.com/
https://onlinejudge.u-aizu.ac.jp/
https://www.geeksforgeeks.org/
https://www.codewars.com/
https://open.kattis.com/
https://www.codechef.com/
https://www.hackerearth.com/
https://leetcode.com/
https://www.hackerrank.com/

992
993

995
996
997
998
999
1000
1001
1002

1003
1004
1005
1006

1007

1008

1009
1010
1011

1012

1013

1014

1015

1016

1017
1018

1019
1020
1021

Table 7: Oracle program sources with reliability, languages, and notes

Oracle Program Source Reliability Languages Notes

User-submitted and accepted High Python, C++ Some code (either Python or

programs from AtCoder C++) may use AtCoder’s cus-
tom library.

Code solutions from CodeCon- High Python 213, —

tests C++, Java

Community-authored editorials ~Medium C++ Some editorials may lack com-

from Luogu plete, directly executable code.
But if the code has no compila-
tion or runtime errors, it is very
likely to be completely correct.

Verified programs from TACO, Medium Python There’s some false positives in

i.e., programs that can pass all TACO’s test cases.

TACO’s own test cases

Other programs from TACO Low Python Reliability is not zero due to
some false negatives in TACO’s
test cases.

from the Github repository conlacda/atcoder-testcases. On AtCoder, we use the test cases in
TACO as the baselines. We selected problems that have at least one test case in each dataset, resulting
in a total of 653 problems.

Evaluation details for LL.M-generated programs on Codeforces. Codeforces does not make its
test cases publicly available. Therefore, we manually submit LLM-generated candidate programs
to the Codeforces platform to obtain ground-truth verdicts. We use TACO and CodeContests as
baselines. For problems where the results of all three datasets agree, we randomly select 5% of them
for submission. For problems where the datasets produce conflicting results, we submit 50% of the
candidate programs. We compute precision and recall based on the combined submission outcomes.
For each difficulty level from 1 to 4, we randomly select 150 problems with at least one test case in
each dataset, yielding a total of 600 problems.

Evaluation details for human-written programs on Codeforces. A dataset at Huggingface titled
MatrixStudio/Codeforces-Python-Submissions|collects 690k human-submitted programs on
Codeforces along with their official verdicts. We use the verdicts as the ground-truth labels. All other
settings are the same as those of evaluation using LLM-generated programs.

A.5 Qualitative Analysis of Generated Tests

A.5.1 Example 1: False Positive of TACO and HARDTESTS Type 1

In this example we show how TACO and HARDTESTS Type 1 tests cannot break a wrong program
and result in a false positive, while HARDTESTS Type 2 tests succeeds in making the program fail.
Here’s the problem description:

AtCoder ABC117C: Given an integer N (2 < N < 2 x 10°) and an integer array A of length N
(0 < A; < 10°), compute the value onfi_ll Z;’V:'Hrl A;Aj modulo 10° + 7.

Since 2 < N < 2 x 105, the solution to the problem needs to be relatively efficient. The correct solu-

2
tion employs mathematical techniques to simplify the equation into: % ((val Ai) — sz\; A?),

which yields an O(N) algorithm.

However, a candidate program generated by Qwen?2.5-Coder-7B-Instruct uses a brute-force algorithm
with a time complexity of O(N?). The candidate program is as follows:

Due to its inefficiency, this candidate program failed to pass the official test cases. Nevertheless,
because the test cases in TACO and HARDTESTS Type 1 (Directly Generated) were relatively small
(with small N), the candidate program successfully passed these cases.

25

https://github.com/atcoder/ac-library
https://github.com/atcoder/ac-library
https://huggingface.co/datasets/likaixin/TACO-verified
https://github.com/conlacda/atcoder-testcases
https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions

1022
1023

1024
1025

1026

1027
1028
1029

1030
1031
1032
1033

1034
1035
1036
1037

1038
1039
1040

1041
1042
1043

1044
1045

1046
1047
1048
1049
1050

1051
1052

1053
1054
1055
1056

1057

1058
1059
1060

1061
1062

1063

1064
1065
1066
1067
1068

Furthermore, the HARDTESTS Type 2 (Regular) input for this problem is generated using the
following Python function:

Due to the larger scale of HARDTESTS Type 2 (Regular) inputs, the candidate program failed to pass
these test cases and we have a true negative.

A.5.2 Example 2: False Positive of TACO and HARDTESTS Type 1 + 2

In this example we show how TACO and HARDTESTS Type 1 + 2 tests cannot break a wrong program
and result in a false positive, while HARDTESTS Type 3 tests succeeds in making the program fail.
Here’s the problem description:

AtCoder ABC139C: There are N (1 < N < 10°) squares arranged from left to right, with the height
of the i-th square from the left being H; (1 < H; < 10°). Starting from any square, you can move
one step to the right as long as the next square’s height is not greater than the current one. Find the
maximum number of moves possible.

Given that 1 < N < 10, the solution needs to be relatively efficient. The correct solution uses an
O(N) greedy algorithm. Specifically, it traverses the array from left to right, counting how many
consecutive heights satisfy H; > H;;;. Each time a condition fails, the counter is reset, and the
maximum value is maintained throughout the traversal as the answer.

A candidate program generated by Qwen-Coder-14B-Instruct uses a brute-force approach, iterating
over each starting position and simulating the moves. Although functionally correct, its complexity is
O(N?) and too inefficient to work. The code is as follows:

Because of its inefficiency, this candidate program failed the official test cases. Nevertheless, due to
the relatively small scale of the test cases in TACO and HARDTESTS Type 1 (Directly Generated),
the candidate program passed these tests.

Additionally, the HARDTESTS Type 2 (Regular) input for this problem is generated using the
following Python function:

We observe that since the H; sequence is randomly generated, it fluctuates significantly, reducing the
complexity of the “simulate moving from a certain square” procedure from O(N) to approximately
O(1). Thus, the tests generated do not lead to the worst case complexity of the inefficient program
and its overall time complexity effectively becomes O(N), enabling the candidate program to pass
HARDTESTS Type 2 (Regular) test cases.

The HARDTESTS Type 3 (Hacking) inputs for this problem are generated using the following Python
functions:

There are three hacking input generation functions: monotonically decreasing, monotonically increas-
ing, and alternating sequences. The first generated input (monotonically decreasing) successfully
increased the actual runtime complexity of the candidate program to O(N?), causing a timeout and
consequently a failure on this test case.

A.5.3 Example 3: False Negative of TACO

In this example, we show an example of false negative caused by the lack of special judge function in
TACO tests. We also show how HARDTESTS can correctly evaluate the candidate program. Here’s
the problem description:

AtCoder ABC117A: Given an integer T and an integer X (1 <T <100, 1 < X < 100). Compute
the value of T/ X with an error tolerance within 1073.

A candidate program generated by Qwen2.5-Coder-14B-Instruct is:

This is clearly correct and passes all official test cases. It also passes all test cases from HARDTESTS,
but it fails on TACO’s test cases. This is because using a simple string comparison function is
insufficient due to potential differences in precision between the candidate output and the reference
output. TACO does not provide a special output judging function for problems, which leads to false
negatives. HARDTESTS provides a special output judging function, shown below:

26

1069

1070
1071
1072
1073
1074

1075
1076
1077
1078
1079

1080
1081
1082
1083
1084

1085

1086
1087
1088
1089
1090
1091
1092

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102

1103
1104
1105
1106
1107

1108
1109
1110

1111
1112
1113
1114
1115

1116

A.6 Downstream Training and Evaluation Details

Teacher-distillation training and evaluation details. In the teacher-distillation experiments, our
model is trained with the same training parameters used to train OlympicCoder-7B (epochs=10,
learning_rate=4e-5, batch_size=128, cosine learning rate schedule with a decay to 10% of the peak
learning rate and 32,768 max length). The evaluations are sampled with temperature=0.7, top_p=0.95,
max_new_tokens=16384.

Self-distillation training and evaluation details. In the self-distillation experiments, our model is
trained with the following training parameters (epochs=20, learning_rate=4e-5, batch_size=128,
cosine learning rate schedule with a decay to 10% of the peak learning rate and 32,768 max
length). The evaluations are sampled with temperature=0.6, top_p=0.95, top_k=20, min_p=0,
max_new_tokens=32768 as recommended by Qwen.

RL training and evaluation details. We use verl for RL training and firejail for sandboxing
code execution. The rollouts are generated with temperature=1, top_p=0.95, top_k=20, min_p=0,
response_length=24000, initial learning rate Se-7. We use a global batch size of 32 and generate
32 samples per rollout. All our experiments are run on 8 NVIDIA H100 GPUs. We do not use KL
divergence in our RL loss.

A.7 Test Case Generation Without an Oracle Model

In the case that an oracle program y*, or an oracle test suite V' * does not exist for a problem z, such
as when problems are synthetically generated, we propose a method, based on ALGO (Zhang et al.,
2023) that synthesizes both the oracle and tests. To start, we prompt an LLM, such as Anthropic
Claude 3.5 Sonnet, to generate a brute-force solution y s to the problem. Specifically, we encourage
it to use inefficient methods such as exhaustive search and enumeration of the possible output space.
This is founded on the observation that it is relatively easy to generate a solution that exhaustively
searches the correct output, but more difficult to optimize it within a time complexity bound.

Then, an LLM is prompted to create a validator program and 10 edge test input generators, which
are used to generate one test input each, {a1,...,a10}. To prevent the y;; from timing out when
computing their respective outputs, we explicitly prompt the LLM to keep input values small. Once
these test inputs are verified for correctness using the validator, the brute-force solution is used to
generate the corresponding outputs ¢; = 3 (a;) for each input, resulting in a total of 10 input-output
pairs as test cases. Finally, the LLM is prompted to create one maximum-length test case a,,qx
with inputs at the upper bounds of the problem’s constraints, designed to catch solutions that are
functionally correct but inefficient. This test case is considered to be passsed as long as the program
produces an output before timing out. Crucially, all 11 of the generated test cases {az, . . ., @10, Gmazx }
are designed to cause seemingly correct programs to fail, and none are generated using random inputs.

We compare this method to the baseline method outlined in AceCoder (Zeng et al., [2025a), which
uses a direct prompt to generate 20 full test cases (inputs and corresponding outputs), also using
Claude 3.5. Then, after prompting a stronger model such as Qwen2.5- Coder-32B-Instruct to generate
a solution, the test cases that cause the solution to fail are considered hallucinated and are filtered out.
Problems with fewer than 5 test cases after filtering are discarded.

To evaluate the accuracy of rewards that our test cases can give to model training, we evaluate the
precision and recall over candidate programs generated by LLMs and written by humans on subsets
of problems in HARDTESTS.

The quality of the test cases are verified using 165 Atcoder problems, each with 50 sample solutions.
It is clear from these experiments (shown in Table[8) that our method can also work much better than
the baseline even when oracle programs are not available. The false positive rate of HARDTESTGEN
is only half as high as AceCoder, showing that deliberately crafting high-quality, hard test cases is
crucial for effective program verifiers.

We will show some examples of the test generation process in the following sections.

27

1117

1118
1119
1120

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135

1136

1137
1138
1139
1140
1141
1142

1143

1144
1145

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162

Table 8: Performance comparison of oracle-free test generation algorithms based on error rates.

False Positive Rate (FPR) False Negative Rate (FNR)
AceCoder 32.49 2.59
HARDTESTGEN 17.67 2.19

A.7.1 Example 1: Brute-force oracle solution generated by ALGO

In this example, we show a brute-force oracle solution y; ¢ that ALGO generates. The problem is
challenging, and while the LLM is unable to correctly solve it directly, its brute-force solution works.
Here’s the problem description:

AtCoder ABC301C: A single-player card game is popular in AtCoder Inc.
Each card in the game has a lowercase English letter or the symbol written on it. There is plenty
number of cards for each kind. The game goes as follows.

- Arrange the same number of cards in two rows.
- Replace each card with with one of the following cards: a, t, c, o, d, e, r.
- If the two rows of cards coincide, you win. Otherwise, you lose.

To win this game, you will do the following cheat.
- Freely rearrange the cards within a row whenever you want after step 1.

You are given two strings S and T (1 < |S|,|T| < 2 x 10°), representing the two rows you
have after step 1. Determine whether it is possible to win with cheating allowed. If it is possible to
win with cheating allowed, print Yes; otherwise, print No.

The solution generated by Claude 3.5 Sonnet is:

This solution is evidently inefficient. A full analysis yields runtime in the bound of O(nlogn7™),
where n = |S| = |T'|, but the exponential complexity is clear from the Cartesian product function in
the implementation. For inputs n > 10, this algorithm quickly becomes intractable. However, for
inputs n < 10 it is able to generate valid test outputs, allowing it to correctly evaluate the validity
of submitted solutions. The test outputs it generates achieve a 100% accuracy, compared to actual
execution results from the online judge.

A.7.2 Example 2: Test cases generated by ALGO

In this example we show a contest coding problem for which ALGO effectively generates a testing
suite. Here’s the problem description:

AtCoder cafeteria sells meals consisting of a main dish and a side dish. There are N types of main
dishes, called main dish 1, main dish 2, . .., main dish N. Main dish © costs a; yen. There are M
types of side dishes, called side dish 1, side dish 2, . . ., side dish M. Side dish i costs b; yen.

A set meal is composed by choosing one main dish and one side dish. The price of a set
meal is the sum of the prices of the chosen main dish and side dish.

However, for L distinct pairs (c¢1,d1), ..., (cp,dr), the set meal consisting of main dish c;
and side dish d; is not offered because they do not go well together. That is, NM — L set meals are
offered. (The constraints guarantee that at least one set meal is offered.)

Find the price of the most expensive set meal offered.

The input is given from Standard Input in the following format:

N ML
ayag ... anN
b1 by ... by

28

1163
1164

1165
1166
1167
1168
1169
1170
171

1172
1173
1174

1175
1176

1177
1178

1179

1180
1181
1182
1183

1184
1185
1186
1187
1188
1189
1190
1191
1192

c1 dy
co dy

Cy, dL

Constraints:

-1< N,M <10°

-0<L <L min(lOE’,NM -1
-1 < ai,bi < 109

The first 3 edge test input generators created by ALGO are shown below, corresponding to the
following test inputs. Note that the values are at the boundaries of the input bounds and follow clearly
defined structures.

Also, the generator for the maximum-length test input a,,, is shown here. It produces a test input
where N = M = 10°, which is the upper bound of the problem.

This test suite effectively achieves 100% accuracy on evaluating submissions, demonstrating that
precise test inputs are crucial for oracle-free verifiers.

A.7.3 Example 3: Test cases generated by AceCoder

For the same Atcoder problem as Example AceCoder generates the following 16 test cases
with inputs and outputs after filtering. While the LLM implicitly knows to generate edge test cases,
shown in the maximal values of ¢;, d;, all of the test cases have relatively similar and low values of
M and N.

These test cases fail to correctly categorize solutions that exceed the problem’s time limit. One such
example is shown below, which AceCoder falsely categorizes as a positive solution. Compared to
Example in which ALGO generated test inputs as large as N = M = 105, the test cases
from AceCoder are no larger than N = M = 5, making them unable to break inefficient programs.
Without a brute-force reference oracle, and constrained by the requirement of generating input-output
pairs simultaneously, the LLM used by AceCoder sticks to simple test cases that it can be confident
are correct. Moreover, longer test cases are likelier to contain hallucinations, and get removed by
their filtering process. As a result, their test cases are relatively weaker and result in less effective
verifiers.

29

	Introduction
	Related work
	HardTestGen: Synthesizing High-Quality Test Cases
	Problem Setting
	Generating Inputs of Test Cases
	Generating Outputs of Test Cases
	HardTests: 47k Problems with High-Quality Test Cases

	Direct Evaluation of Test Case Quality
	Evaluation Criteria
	Baselines
	Evaluation Pipeline
	Results

	Downstream Effects of Test Case Quality in LLM Post-Training
	Experiment Setup
	Results

	Conclusion
	Appendix
	More Related Work on Synthetic Test Quality and its Implications
	Details of the Test Cases Generation Pipeline HardTestGen
	HardTestGen Implementation
	HardTests Statistics
	HardTests Examples

	Details of the Collection of Problem Specifications and Oracle Programs in HardTests
	Direct Evaluation Details
	Qualitative Analysis of Generated Tests
	Example 1: False Positive of TACO and HardTests Type 1
	Example 2: False Positive of TACO and HardTests Type 1 + 2
	Example 3: False Negative of TACO

	Downstream Training and Evaluation Details
	Test Case Generation Without an Oracle Model
	Example 1: Brute-force oracle solution generated by ALGO
	Example 2: Test cases generated by ALGO
	Example 3: Test cases generated by AceCoder

