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Abstract

Verifiers play a crucial role in large language model (LLM) reasoning, needed1

by post-training techniques such as reinforcement learning. However, reliable2

verifiers are hard to get for difficult coding problems, because a well-disguised3

wrong solution may only be detected by carefully human-written edge cases that4

are difficult to synthesize. To address this issue, we propose HARDTESTGEN, a5

pipeline for high-quality test synthesis using LLMs. With this pipeline, we curate a6

comprehensive competitive programming dataset HARDTESTS with 47k problems7

and synthetic high-quality tests. Compared with existing tests, HARDTESTGEN8

tests demonstrate precision that is 11.3 percentage points higher and recall that is9

17.5 percentage points higher when evaluating LLM-generated code. For harder10

problems, the improvement in precision can be as large as 40 points. HARDTESTS11

also proves to be more effective for model training, measured by downstream code12

generation performance.13

1 Introduction14

Post-training large language models (LLMs) with outcome verifiers1 (Guo et al., 2025; Kimi Team15

et al., 2025) can greatly improve their reasoning ability. LLMs trained with these techniques16

are approaching the level of the best humans on challenging problems in math and programming17

olympiads (OpenAI et al., 2025). To properly assign outcome rewards in post-training, reliable18

verifiers are needed for both reinforcement learning and (self-) distillation.19

Verification is a non-trivial process. How good are current verifiers? How to get better verifiers? How20

much does verifier quality matter in LLM post-training? Verification loops become increasingly less21

tractable as the notion of correctness increases in complexity. For math, it is relatively straightforward22

to determine correctness by looking at the answer, whereas verifying programs needs execution.23

An effective approach to verify programs is through test cases (Le et al., 2022; Singh et al., 2023).24

However, most datasets of coding problems and associated test cases are less than comprehensive.25

60% of the programs that pass test cases in APPS (Hendrycks et al., 2021) are in fact, wrong. 46% of26

the programs that pass test cases in CodeContests (Li et al., 2022) are semantically correct, but too27

inefficient to pass human-written tests. More importantly, scraping human-written tests is unfeasible28

— according to our study, for 80% of the problems, human-written test cases are proprietary and29

impossible to scrape, demanding synthesized tests. Previous test synthesis attempts, such as TACO30

(Li et al., 2023), have limited reliability, with the false positive rate being more than 90% for difficult31

problems in our experiments.32

1In this paper, the term “verifier” refers to rule-based systems that attempt to check the correctness of problem
solutions. It is used to differentiate from model-based rewards, such as those in RLHF. “Verifiers” are not
necessarily formal and do not necessarily guarantee correctness.
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Figure 1: HARDTESTS test cases are significantly better than the baselines. The large improvement
in precision indicates that our tests greatly reduce false positives and are indeed harder.

The low quality of synthetic tests is due to the challenging nature of coding problems. Coding33

competitions often require efficient solutions with advanced data structures and algorithms. A bad34

choice of algorithm can lead to a well-disguised wrong solution, which may easily pass most random35

tests but still break on human-written special cases. For example, on a random rooted tree with36

n nodes and depth of d, an algorithm with the time complexity of Θ(nd) can be very efficient, as37

E[d] = Θ(log n) for randomly generated trees (Devroye et al., 2012). For such an algorithm to time38

out, the test case needs to be a valid tree that is large enough (so that n is large) and special enough39

(so that d is large). A chain (each non-leaf node has exactly one child), whose depth d = n can cause40

the algorithm to be as slow as Θ(n2). We need valid, comprehensive tests that cover edge cases.41

Generating valid and comprehensive tests is hard. Existing test synthesis methods, such as CodeT42

(Chen et al., 2023) and TACO (Li et al., 2023) rely on LLMs to directly write test inputs. While43

this works when the test inputs are small, it can barely keep the test inputs valid at a larger scale, let44

alone make them special. To alleviate these issues, we propose HARDTESTGEN, an LLM-based test45

synthesis pipeline. Our main insights are 1) Test case validity is better preserved when generated from46

LLM-produced programs rather than directly from the LLMs themselves, and 2) Each test generator47

has different hypotheses about the programs under test and creates tests from a different distribution.48

With these insights, HARDTESTGEN prompts an LLM with different aspects to consider for test49

cases, extracts LLM-generated test generator programs, and filters the test cases using human-written50

oracle programs, which widely exist for all problems in online coding competitions.51

With HARDTESTGEN, we curate HARDTESTS, a comprehensive dataset for coding competitions52

with 47,136 problems and high-quality test cases. As shown in Figure 1, compared to existing test53

synthesizers, HARDTESTS tests are more reliable in terms of precision and recall when evaluating54

programs. The gap in precision can be as large as 40 percentage points for harder problems. Higher55

reliability of verification makes HARDTESTS the ideal playground for post-training research in the56

coding domain.57

To further demonstrate the benefits of high-quality tests, we conduct post-training experiments with58

HARDTESTS and baseline tests. Our experiments in 3 different scenarios show that test quality59

matters significantly for self-distillation and reinforcement learning. Higher-quality tests can lead to60

improvements in downstream performance. However, our results also indicate that test quality is less61

important for teacher distillation.62

In summary, this work provides:63

• HARDTESTGEN, an LLM-based test synthesis pipeline that generates high-quality test64

cases for coding problems, improving precision by 11.3 points and recall by 17.5 points on65

average.66

• HARDTESTS, a comprehensive problem set for competition-level code generation, with67

47,136 problems, among which 32.5k have high-quality test cases generated by HARDTEST-68

GEN.69

• Empirical analyses on how test quality affects LLM post-training. We show that test quality70

is of great importance for reinforcement learning and self-distillation.71
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2 Related work72

RLVR. Reinforcement learning has shown great potential in improving LLM reasoning abilities73

in various domains, such as math (Guo et al., 2025; Zeng et al., 2025b; Ren et al., 2025) and74

coding (OpenAI, 2025; Liu & Zhang, 2025; Luo et al.). The resulting long-reasoning LLMs, such75

as OpenAI-o3 (OpenAI, 2024) and DeepSeek-R1 (Guo et al., 2025), largely outperform short-76

reasoning LLMs through simple RL training to improve outcome-based reward, i.e., whether the77

model-generated code solution passes all test cases. Although some previous works have explored78

heuristic rules for selecting training data to improve RL performance (Ye et al., 2025; Wang et al.,79

2025b; Li et al., 2025) or reward design (Hou et al., 2025; Kimi Team et al., 2025; Costello et al.,80

2025), the impact of test case quality on coding LLMs during RL training remains underexplored.81

In this work, we show that high-quality test cases, those better at detecting subtle bugs in code, can82

largely improve coding LLM performance after RL training.83

LLM-based test synthesis. Test cases are crucial in evaluating the functional correctness and84

performance of LLM-generated code. Benchmarks such as HumanEval (Chen et al., 2021), MBPP85

(Austin et al., 2021), and APPS (Hendrycks et al., 2021) provide hand-written test cases that serve as a86

proxy for code correctness. However, such human-authored test cases are often only publicly available87

for a limited set of problems. Early approaches such as EvoSuite (Fraser & Arcuri, 2011) and Pynguin88

(Lukasczyk & Fraser, 2022) employ search-based heuristics methods. More recently, CodeContests89

(Li et al., 2022) generates additional test cases by mutating existing crawled inputs. Several efforts90

leverage LLMs to synthesize test inputs and (pseudo)-oracle programs for test outputs. CodeT (Chen91

et al., 2023) and ALGO (Zhang et al., 2023) rely on LLMs to generate both tests and reference92

programs for existing coding problems. EvalPlus (Liu et al., 2023) extends HumanEval with more93

tests by providing the reference implementation to LLMs to synthesize seed input.Similarly, TACO94

(Li et al., 2023) also generates test inputs with LLMs and outputs with reference implementation.95

STGen (Peng et al., 2025) generates stressful test cases for evaluating the time efficiency of code.96

KodCode (Xu et al., 2025) and AceCoder (Zeng et al., 2025a) push synthetic data even more by97

generating coding questions, reference solutions, and tests all with LLMs. Although existing LLM98

test synthesis methods prove to be useful in many scenarios, their quality is far from perfect. We99

present a more thorough discussion on the quality issues in LLM synthetic tests and their implications100

in Appendix A.1. Concurrently with our work, rStar-Coder (Liu et al., 2025) and HF-Codeforces101

(Penedo et al., 2025) also study more reliable test synthesis in the competition context. Comparing102

to them, our work highlights a thorough analysis of test quality and a unique set of post-training103

experiments that demonstrate the downstream effects of high-quality tests.104

Datasets for competition code generation. Existing datasets for competition code generation focus105

on scaling the number of problems and CoTs. Luo et al. filters a high-quality 24k problemset of106

TACO, LiveCodeBench, and other contest programming problems. CodeForces-CoTs, the dataset107

of 10k Codeforces problems created by Penedo et al. (2025), contains 100k reasoning traces and108

solutions generated by DeepSeek R1. OpenCodeReasoning (Ahmad et al., 2025) also compiles a109

dataset of 28k problems, generates 735k reasoning traces, and filters them for syntactic correctness.110

While these efforts have shown that better models can be trained with more data and more trajectories111

from teacher models, they are facing a “code verifiability crisis”, as described by Open-R1 (Face,112

2025), and programs that pass test cases in these problem sets are not necessarily correct. In our113

paper, we curate HARDTESTS, the competitive coding problem set with the most number of problems114

(47k). More importantly, we push the scaling of training data towards higher quality of test cases and115

evaluate how test quality affects model training.116

3 HARDTESTGEN: Synthesizing High-Quality Test Cases117

3.1 Problem Setting118

Coding problems. We study test generation for coding problems with natural language specifications.119

We denote the space of problem specifications as X , the space of candidate programs as Y , and the120

space of test suites as V . A test suite V is a set of test cases {t1, t2 · · · , t|V |}. A test case is a pair121

(a, c), where a is an input to a program, and c is a checker for the corresponding output 2. A candidate122

2In most cases, the output checker is simply a comparison between golden outputs and program outputs.
Others might be equivalence checkers that do not directly compare strings.
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Figure 2: Comparison of the input generation process between previous test synthesizers (left) and
HARDTESTGEN (right).
program y ∈ Y takes an input and generates an output y(a), which is then sent to the output checker123

c for a boolean verdict c(y(a)) ∈ {⊤,⊥}. When y exceeds a pre-defined runtime limit, its verdict is124

also ⊥.125

Oracle tests and correctness. For every coding problem x ∈ X , we assume the existence of an126

oracle test suite V ∗ ∈ V , which definitively tells the correctness of a program y ∈ Y , i.e.127

Correctness(y, V ∗) :=
∧

(ai,ci)∈V ∗

ci(y(ai)). (1)

In practice, the oracle tests are usually carefully written and proprietary by problem authors. Only128

very few of them are available for downloading, which makes them infeasible for model training.129

Oracle programs. Compared to rarely available oracle tests, oracle programs (y∗ such that130

Correctness(y∗, V ∗) = ⊤) are available for almost all coding problems in online competitions.131

Therefore, we assume the existence of oracle programs y∗ in our setting.132

Test synthesis. Given a problem x, and an oracle program y∗, the task of test synthesis is to create a133

test suite V that agrees with V ∗, i.e., we want Correctness(y, V ) = Correctness(y, V ∗) for as many134

ys as possible. In HARDTESTGEN, we create a set of inputs {a1, a2, · · · , a|V |} and utilize the oracle135

program to get the outputs, i.e., ci = y∗(ai).136

3.2 Generating Inputs of Test Cases137

We synthesize three types of test inputs. One is directly generated by an LLM, while the other two138

are generated by LLM-generated programs. Before generating inputs, we first prompt an LLM to139

generate an input validator in Python that checks whether a given input satisfies all the constraints in140

the problem specification. We subsequently prompt the LLM to generate the inputs. In the prompt, we141

include the input validator and an oracle program, as we find that doing so increases the likelihood of142

synthesizing valid inputs. Figure 2 illustrates the differences between the input generation processes143

of previous test synthesiziers and HARDTESTGEN.144

Type 1. Directly Generated Inputs. We prompt an LLM to directly generate nD = 10 inputs by145

imitating the sample test cases provided in the problem specification. This type of input is typically146

small in scale, making it easy to generate and understand, and allowing for quick testing of the147

candidate program’s functional correctness.148

Type 2. Regular Inputs. Regular inputs are generated randomly according to the constraints specified149

in the problem specifications. For most problems, we prompt an LLM to generate a Python function150

gR with no parameters that returns a random input on each call. We call this function nR = 20 times151

to get nR random inputs. For some problems, there are some unusual categories of outputs that are152

rarely triggered by random inputs. For example, when a problem’s expected output is either “Yes”153

or “No”, the correct output for almost all random inputs might be “Yes”. In such cases, random154

inputs can potentially lead to false positives. For these problems, we prompt an LLM to generate mR155

functions, each corresponding to one output category (e.g., “Yes” and “No”). We call each function156

nR = 10 times to obtain a total of mR × nR inputs with their outputs specified.157

Type 3. Hacking Inputs. Some well-disguised false positives cannot be easily detected with158

random inputs. For example, some programs may be functionally correct but inefficient in worst-case159

scenarios, or some programs may fail to handle certain edge cases that require special treatment.160

Therefore, we first prompt an LLM to list several candidate programs for the problem in natural161

language. Then, we prompt it to generate mH input generation functions, each attempting to cause162

one candidate program to fail. Each function is called nH = 10 times, generating mH × nH inputs.163

After generating the inputs, we filter out all inputs that fail to pass the examination of the input164

validator.165

4



3.3 Generating Outputs of Test Cases166

We use human-written oracle programs that exist for all online competitions to test outputs. For each167

problem, we use at most noracle = 8 oracle programs, prioritizing those from more reliable sources.168

Each oracle program generates outputs for all synthesized inputs. If the outputs generated by two169

oracle programs match for more than 90% of the cases, we consider the outputs to be acceptable and170

adopt the matching portion as the final outputs.171

For the majority of problems, a simple string comparison between two outputs is sufficient to172

determine whether they match. However, some problems require a special judge. For example,173

a problem might require returning a set (where element order does not matter) or a sequence of174

operations that achieves a certain effect. In that case, we prompt an LLM to implement a special175

judge function. This function takes the input and two outputs as parameters, and returns a Boolean176

value indicating whether the two outputs are equivalent. In our dataset, 25.4% of the problems require177

a special judge function. In subsequent training and testing processes, this function will continue to178

be used to determine whether the candidate output and the reference output match.179

In our dataset, we use GPT-4o to generate all of the above content. For all functions that need to be180

generated, we include two to three carefully crafted examples in the prompts. The implementation181

details of HARDTESTGEN (e.g., prompts), the number of generated test cases, the failure rate and182

reasons for failure, as well as a concrete example, are provided in Appendix A.2.183

3.4 HARDTESTS: 47k Problems with High-Quality Test Cases184

The HARDTESTS dataset comprises 47,136 competitive programming problems with high-quality185

test cases, aggregated from 13 major online judges (OJs) for competitive programming. The dataset186

is constructed from five direct data sources: Codeforces, AtCoder, Luogu, CodeContests (Li et al.,187

2022), and TACO (Li et al., 2023). We apply HARDTESTGEN to synthesize test cases for 32.5k188

problems among them. The detailed constitution and description of the data sources are described in189

Appendix A.3.190

Cleaning, deduplication, and decontamination. For problems with only non-English descriptions,191

we translated them into English using GPT-4o. To handle overlapping content among the five192

direct data sources, we filtered out duplicated problems using problem IDs and n-gram overlaps in193

description, prioritizing versions from the original platforms rather than mirror sites. For correct194

programs, we retained all available versions and annotated them with their respective sources. We195

conduct decontamination by removing the problems that are in LiveCodeBench (Jain et al., 2025b)196

from our dataset. Since most of its problems are from Codeforces and AtCoder, we directly compare197

the URLs to the problems.198

Labelling difficulty. We retained the difficulty labels assigned by all five data sources in our dataset.199

In the experiments presented in Section 4, we used the difficulty labels from Luogu, as it provides200

consistent and fine-grained labels for problems from both AtCoder and Codeforces. Luogu’s difficulty201

labels are divided into seven levels, with the first level representing beginner-level problems and the202

seventh level corresponding to problems at the level of national competitions.203

4 Direct Evaluation of Test Case Quality204

4.1 Evaluation Criteria205

We regard the testing of candidate programs as a binary classification process: a program is classified206

as positive if it passes all test cases, and negative otherwise. To directly assess the quality of test207

cases, we evaluate how good they are as binary classifiers. Given a problem x, an oracle test suite V ∗,208

a synthesized test suite V , and a set of candidate programs {y1 · · · yn}, we categorize the programs209

with their correctness according to V and V ∗. When V and V ∗ both find a candidate program correct,210

it’s a true positive (TP). When V finds a program correct while V ∗ finds it wrong, it’s a false positive211

(FP). Similarly, we can define true negatives and false negatives. With these categories defined, we212

use precision and recall to measure test quality:213

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
.
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4.2 Baselines214

CodeContests. CodeContests (Li et al., 2022) primarily consists of problems from Codeforces.215

Codeforces only provides test cases within certain length constraints. CodeContests collects these216

and refers to them as “private test cases.” Additionally, it generates new test cases by introducing217

random perturbations to the private test cases; these are referred to as "generated test cases." This218

gives CodeContests an unfair advantage as it has access to the distribution of oracle tests. In our219

experiments, we only use generated test cases, which reduces the unfairness but does not eliminate it.220

TACO. TACO (Li et al., 2023) integrates several existing datasets, such as APPS (Hendrycks et al.,221

2021) and CodeContests (Li et al., 2022), while retaining their test cases. In addition to this, TACO222

generates several additional test cases by using GPT-4o to directly generate the inputs and using223

oracle programs for outputs. Furthermore, we observed that for some problems from AtCoder and224

Codeforces, the TACO test cases included official test cases. To ensure fair comparisons, we removed225

these official test cases.226

Ablative Baselines. We also evaluate HARDTESTGEN with only Type 1 or Type 2 inputs to227

demonstrate the necessity of all 3 types. Notably, the scenario with only Type 1, LLM directly228

generated inputs, very much resembles many existing test synthesis methods such as KodCoder (Xu229

et al., 2025), except that they synthesize not only the inputs but also the oracle programs.230

4.3 Evaluation Pipeline231

To evaluate the accuracy of rewards that our test cases can give to model training, we evaluate the232

precision and recall over candidate programs generated by LLMs and written by humans on subsets233

of problems in HARDTESTS. Details about the evaluation protocol can be found in Appendix A.4.234

Generating candidate problems. To compare our tests with other synthesizers, we choose the235

problems that exist in both HARDTESTS and the baseline datasets. For problems from AtCoder, we236

select 653 problems that exist in both HARDTESTS and TACO. For problems from Codeforces, we237

select 600 problems that exist in HARDTESTS, CodeContests, and TACO.238

Generating candidate programs. We compare our tests with baseline tests on candidate programs239

generated by 3 LLMs and also by human programmers. Specifically, we use three LLMs: Qwen2.5-240

Coder-7B-Instruct (Yang et al., 2024), Qwen2.5-Coder-14B-Instruct, and GPT-4o. For each problem,241

we sample 10 candidate programs from each LLM using a temperature of 0.7 and a top-p of 0.95. We242

also randomly select 10 real-world human submissions for each problem.243

Generating gold labels. We need gold labels to compute precision and recall. For AtCoder, we244

run candidate programs on official tests that have been previously made available. For Codeforces,245

we submit candidate programs to the website to obtain ground-truth verdicts. The human-written246

candidate programs are sampled from MatrixStudio/Codeforces-Python-Submissions, which247

provides official verdicts. We then use synthetic test cases to classify the correctness of these programs248

and compare the results against the ground-truth labels, thereby evaluating test case quality.249

4.4 Results250

We evaluate the correctness of programs written by three LLMs and human programmers for problems251

from AtCoder and Codeforces using test cases from TACO, CodeContests, and HARDTESTS. The252

results are in Table 1 and 2. We present qualitative analyses of the synthetic tests in Appendix A.5.253

We find that HARDTESTS significantly outperforms TACO and CodeContests in terms of both preci-254

sion and recall under most evaluation settings. Moreover, this advantage becomes more pronounced255

as problem difficulty increases. For example, for the Qwen2.5-Coder-7B-Instruct model on AtCoder256

problems with difficulty level 4+, TACO achieves a precision of 21.67 and a recall of 68.42, whereas257

HARDTESTS achieves a precision of 60.00 and a recall of 94.74. This implies that using HARDTESTS258

during RL training would yield more true positive rewards and much fewer false positive rewards.259

Furthermore, we observe that as the source of programs becomes less “intelligent” (ranging from260

human-written to 7B LLM-generated), the precision advantage of HARDTESTS becomes more261

pronounced. We attribute this to the fact that less skilled programmers are more likely to produce262

functionally correct but inefficient programs. For instance, among incorrect human-written programs,263

14.9% are due to TLE (Time Limit Exceeded), whereas among the incorrect programs written by264
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Table 1: Precision and recall of the test cases of TACO, HARDTESTS, and ablative baseline on
AtCoder. HT-TYPE1 refers to the results using only the test cases of Type 1 from HARDTESTS.
while TH-TYPE1+2 refers to the results using only the test cases of Type 1 and Type 2 from
HARDTESTS.

difficulty 1 difficulty 2 difficulty 3 difficulty 4+ average
prec. recall prec. recall prec. recall prec. recall prec. recall

Qwen2.5-Coder-7B-Instruct

TACO 99.48 77.09 89.66 62.90 69.07 81.71 21.67 68.42 69.97 72.53
HT-TYPE1 94.63 99.84 74.70 100.0 42.20 89.02 10.40 94.74 55.48 95.90
HT-TYPE1+2 97.85 99.35 97.58 100.0 74.23 87.80 58.06 94.74 81.93 95.47
HARDTESTS 98.15 98.95 97.64 97.58 86.75 87.80 60.00 94.74 85.64 94.77

Qwen2.5-Coder-14B-Instruct

TACO 99.82 78.00 93.24 69.00 80.23 73.40 39.33 72.92 78.16 73.33
HT-TYPE1 96.21 99.72 77.22 100.0 58.90 96.81 18.50 97.92 62.71 98.61
HT-TYPE1+2 97.31 99.02 94.79 100.0 87.50 96.81 65.71 95.83 86.33 97.92
HARDTESTS 97.99 99.02 96.95 95.50 93.33 96.81 67.16 93.75 88.86 96.27

GPT-4o

TACO 100.0 73.06 99.75 67.29 92.74 74.08 62.07 71.05 88.64 71.37
HT-TYPE1 99.42 99.47 94.31 99.32 86.39 99.42 45.56 99.67 81.42 99.47
HT-TYPE1+2 99.53 99.18 99.82 97.60 96.04 98.45 79.00 99.01 93.60 98.56
HARDTESTS 99.53 99.18 100.0 97.43 96.04 98.45 84.18 98.03 94.94 98.27

Table 2: Precision and recall of the test cases of TACO, CodeContests, and HARDTESTS evaluated
using LLM-generated programs for problems on Codeforces.

difficulty 1 difficulty 2 difficulty 3 difficulty 4 average
prec. recall prec. recall prec. recall prec. recall prec. recall

Qwen2.5-Coder-7B-Instruct

TACO 89.64 86.13 71.07 92.91 31.06 39.47 9.82 100.0 50.40 79.63
CodeContests 85.74 89.24 63.73 97.64 23.80 47.54 6.67 100.0 44.99 83.61
HARDTESTS 87.61 95.45 93.30 98.82 48.38 55.61 50.00 100.0 69.82 87.47

Qwen2.5-Coder-14B-Instruct

TACO 80.67 87.45 83.88 81.13 53.87 73.88 25.76 100.0 61.05 85.62
CodeContests 79.70 95.59 79.29 86.16 46.49 91.84 18.68 100.0 56.04 93.40
HARDTESTS 83.19 98.64 88.44 100.0 67.47 80.41 46.58 90.80 71.42 92.46

GPT-4o

TACO 99.58 80.02 95.76 81.72 89.64 74.83 62.64 78.17 86.91 78.69
CodeContests 99.47 94.80 95.25 89.89 86.83 87.08 58.28 94.31 84.96 91.52
HARDTESTS 98.80 98.20 95.66 98.71 92.73 88.50 79.82 94.31 92.00 94.93

Human Submission

TACO 96.28 88.89 91.48 81.59 75.90 78.84 62.23 73.77 81.47 64.62
CodeContests 94.15 90.06 87.47 89.99 73.11 85.10 56.80 79.88 77.88 69.01
HARDTESTS 93.29 94.13 85.15 95.05 73.71 93.59 64.16 89.35 79.08 74.42

the three LLMs, 30.0% are due to TLE. Consequently, the larger and more diverse test cases in265

HARDTESTS are more likely to catch inefficient programs than the small-scale test cases in TACO266

and CodeContests.267

Compared with the ablative baselines in Table 1, HARDTESTS that includes Type2 (Regular) and268

Type3 (Hacking) test cases consistently leads to a precision improvement ranging from 2% to 48%,269

while the decrease in recall is always within 2.5%. This demonstrates the necessity for having270

different types of tests.271
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5 Downstream Effects of Test Case Quality in LLM Post-Training272

In this section, we aim to answer two questions with HARDTESTS: when does verifier/test quality273

matter, and how much does it matter in post-training? We run experiments in 3 different post-training274

scenarios: teacher-distillation, self-distillation, and reinforcement learning. We examine how much275

verifier quality affects the training results in code generation, if any.276

5.1 Experiment Setup277

Teacher-distillation. Various papers, such as DeepSeek-R1 (Guo et al., 2025) suggest that fine-tuning278

a smaller student model with reasoning trajectories from a stronger reasoning model can greatly279

improve the student’s performance. In this scenario, verifiers can be used to filter out the incorrect280

trajectories. We sample one reasoning trajectory with a C++ solution program from DeepSeek-R1281

for each question in HARDTESTGEN, obtaining 46.6k trajectories in total after deduplication and282

decontamination against all LiveCodeBench questions. We fine-tune two models from Qwen2.5-283

Coder-Instruct-7B: one with all 46.6k trajectories, the other with 13k trajectories that are correct284

according to HARDTESTS. As a baseline, we also evaluate OlympicCoder-7B (Face, 2025), another285

Qwen2.5-Coder derivation fine-tuned with ∼100k trajectories of ∼10k Codeforces problems.286

Self-distillation. Fine-tuning a model with its own reasoning trajectories can also improve its287

reasoning ability (Zelikman et al., 2022). Hence, determining which trajectories to use is a critical288

issue. To examine the effects of test quality, we sampled 5 traces of Qwen3-4B and used the tests289

generated by HARDTESTGEN for filtering. We selected 4989 questions where there is at least one290

Qwen3-4B generated program that passes the tests and at least one that fails the tests. We create291

3 datasets for self-fine-tuning, each containing one trajectory per question. The bad 5k randomly292

samples one incorrect trajectory for each question. The good 5k randomly samples one correct293

trajectory. The random 5k randomly samples one trajectory, regardless of its correctness, for each294

question. We further fine-tune Qwen3-4B with these 3 datasets and compare the performance of the295

resulting models. All our fine-tuning experiments were done with Llama-factory (Zheng et al., 2024).296

Reinforcement learning. Verifier feedback is an option for distillation, but it is a must for reinforce-297

ment learning. To investigate how verifier quality affects RL, we train Qwen3-4B with RL using the298

same problem set, the identical training setup, and different test cases. We select a problem set with299

∼5k problems that exist in both HARDTESTS and TACO for training. We use a modified version of300

veRL (Sheng et al., 2024) inspired by Code-R1 (Liu & Zhang, 2025) for training with GRPO (Shao301

et al., 2024). When a program passes all tests, it gets a reward of 1, otherwise, it gets a reward of 0.302

We compare different verifiers by looking at the final performance and the validation curve.303

Evaluation protocol. We use LiveCodeBench (Jain et al., 2025b) version 5 to evaluate the model304

performance. Since all the programs we use for tuning are in C++, we build an evaluation pipeline for305

evaluating C++ programs for LiveCodeBench and select a 105-problem subset where all problems306

have test cases of “stdin” type. We name this subset of problems we use “LiveCodeBench-105”.307

Details about our training and evaluation procedure can be found in Appendix A.6, including the308

problems and hyperparameters we use for training and the sampling parameters we use for evaluation.309

5.2 Results310

Teacher-distillation benefits more from question scaling than test quality or sample scaling. We311

evaluate models fine-tuned from Qwen2.5-Coder-7B using different training sets on LiveCodeBench-312

105 and report the results in Table 3. Note that the difficulty labels are obtained from LiveCodeBench.313

The model trained with HARDTESTS with all 46.6k examples outperforms OlympicCoder-7B (trained314

with 100k trajectories of 10k questions), suggesting that the quality and diversity of training questions315

matter more than the number of training samples. Interestingly, the model trained on smaller but more316

curated subsets (13k filtered trajectories) does not match the performance of using larger, unfiltered317

data, suggesting that data scaling dominates trajectory correctness in the teacher-distillation setting.318

This observation aligns with the concurrent findings from OpenCodeReasoning (Ahmad et al., 2025).319

Self-distillation performance is highly dependent on sample quality and needs a good verifier.320

We evaluated variants of Qwen3-4B models self-distilled with different 5k subsets on LiveCodeBench-321

105 and present the results in Table 4. Model self-distilled from incorrect samples identified by322

HARDTESTGEN’s tests drops more significantly in pass@k. Self-distillation with randomly selected323
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Table 3: pass@k (%) of teacher-distilled LLMs based on Qwen2.5-Coder-7B on LiveCodeBench-105.
Easy Medium Hard All

pass@1 pass@1 pass@1 pass@1 pass@10

QC2.5-7B-Ins 58.75 9.58 2.46 16.95 27.62
OlympicCoder-7B (100k trajectories) 65.83 41.25 2.46 25.81 46.67
QC2.5-7B-Ins + HARDTESTS (13k, filtered) 77.08 29.17 1.75 25.24 39.05
QC2.5-7B-Ins + HARDTESTS (46.6k, full) 83.65 44.58 6.49 32.86 53.33

Table 4: pass@k (%) self-distilled LLMs based on Qwen3-4B on LiveCodeBench-105.
Easy Medium Hard All

pass@1 pass@1 pass@1 pass@1 pass@5 pass@10

Qwen3-4B 88.75 53.33 11.05 38.48 52.04 56.19
Qwen3-4B (with bad 5k) 84.17 45.42 8.07 34.00 48.42 54.92
Qwen3-4B (with random 5k) 84.58 36.25 9.12 32.75 50.85 57.14
Qwen3-4B (with good 5k) 85.42 47.08 10.53 36.00 55.15 60.00

0 20 40 60 80 100
Step

0.00

0.05

0.10

0.15

0.20 RL with HardTests (ours)
RL with TACO

Figure 3: RL Validation Rewards Over Time. Reward from HARDTESTS makes the training better.

data could harm pass@1 even more, despite the slight improvements in pass@10. In contrast, using a324

5k subset verified by HARDTESTGEN’s test cases results in a smaller drop in pass@1 and a notable325

gain in pass@5 and pass@10, suggesting that verifiers are important to self-distillation.326

Test quality matters significantly for reinforcement learning. As shown in Figure 3, the vali-327

dation reward curve for HARDTESTS during RL training is generally higher than that for TACO.328

This indicates that for the same problems, HARDTESTS is giving better rewards. To evaluate on329

LiveCodeBench-105, we run the best checkpoints (according to valid reward) of both training jobs330

within 100 steps. As reported in Table 5, TACO tests hurt the model’s overall performance, while331

HARDTESTS improves the model’s overall performance.332

Table 5: pass@k (%) for LLMs RL-trained from Qwen3-4B on LiveCodeBench-105.
pass@1 pass@5 pass@10

Qwen3-4B 38.48 52.04 56.19
Qwen3-4B (RL with TACO) 36.95 51.01 57.14
Qwen3-4B (RL with HARDTESTS) 39.42 57.89 64.76

6 Conclusion333

We present HARDTESTGEN, an LLM-based test synthesis pipeline, which is used to create334

HARDTESTS, a competitive coding dataset with 47k problems and significantly higher-quality335

tests. We examine when and how much test quality matters in LLM post-training, showing that harder336

tests generated by HARDTESTGEN can indeed help LLM post-training in many scenarios.337
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Limitation338

Although HARDTESTS has higher-quality tests than the baselines, they are still not as good as human-339

written ones. Moreover, we assume the existence of oracle solutions to utilize HARDTESTGEN, which340

may not be true for some coding domains. To address this issue, we briefly discuss an initial idea for341

synthesizing tests without oracles in Appendix A.7. Another limitation of the HARDTESTGEN is342

that the code being tested is constrained to a single file that uses Standard I/O for input and output.343

However, many real-world coding problems are more complicated, e.g. coding problems in SWE-344

bench that may involve file I/O or web I/O, and we leave the exploration of applying HARDTESTGEN345

to these scenarios as future work.346
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NeurIPS Paper Checklist521

The checklist is designed to encourage best practices for responsible machine learning research,522

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove523

the checklist: The papers not including the checklist will be desk rejected. The checklist should524

follow the references and follow the (optional) supplemental material. The checklist does NOT count525

towards the page limit.526

Please read the checklist guidelines carefully for information on how to answer these questions. For527

each question in the checklist:528

• You should answer [Yes] , [No] , or [NA] .529

• [NA] means either that the question is Not Applicable for that particular paper or the530

relevant information is Not Available.531

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).532

The checklist answers are an integral part of your paper submission. They are visible to the533

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it534

(after eventual revisions) with the final version of your paper, and its final version will be published535

with the paper.536

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.537

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a538

proper justification is given (e.g., "error bars are not reported because it would be too computationally539

expensive" or "we were unable to find the license for the dataset we used"). In general, answering540

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we541

acknowledge that the true answer is often more nuanced, so please just use your best judgment and542

write a justification to elaborate. All supporting evidence can appear either in the main paper or the543

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification544

please point to the section(s) where related material for the question can be found.545

IMPORTANT, please:546

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",547

• Keep the checklist subsection headings, questions/answers and guidelines below.548

• Do not modify the questions and only use the provided macros for your answers.549

1. Claims550

Question: Do the main claims made in the abstract and introduction accurately reflect the551

paper’s contributions and scope?552

Answer: [Yes]553

Justification: Our first two claims about test quality is supported by Section 3 and 4’s method554

and experiments. Our third claim about the downstream effects of test quality is supported555

by Section 5.556

Guidelines:557

• The answer NA means that the abstract and introduction do not include the claims558

made in the paper.559

• The abstract and/or introduction should clearly state the claims made, including the560

contributions made in the paper and important assumptions and limitations. A No or561

NA answer to this question will not be perceived well by the reviewers.562

• The claims made should match theoretical and experimental results, and reflect how563

much the results can be expected to generalize to other settings.564

• It is fine to include aspirational goals as motivation as long as it is clear that these goals565

are not attained by the paper.566

2. Limitations567

Question: Does the paper discuss the limitations of the work performed by the authors?568

Answer: [Yes]569
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Justification: We discussed the limitations of HARDTESTGEN and HARDTESTS in the570

limitation section in the appendix.571

Guidelines:572

• The answer NA means that the paper has no limitation while the answer No means that573

the paper has limitations, but those are not discussed in the paper.574

• The authors are encouraged to create a separate "Limitations" section in their paper.575

• The paper should point out any strong assumptions and how robust the results are to576

violations of these assumptions (e.g., independence assumptions, noiseless settings,577

model well-specification, asymptotic approximations only holding locally). The authors578

should reflect on how these assumptions might be violated in practice and what the579

implications would be.580

• The authors should reflect on the scope of the claims made, e.g., if the approach was581

only tested on a few datasets or with a few runs. In general, empirical results often582

depend on implicit assumptions, which should be articulated.583

• The authors should reflect on the factors that influence the performance of the approach.584

For example, a facial recognition algorithm may perform poorly when image resolution585

is low or images are taken in low lighting. Or a speech-to-text system might not be586

used reliably to provide closed captions for online lectures because it fails to handle587

technical jargon.588

• The authors should discuss the computational efficiency of the proposed algorithms589

and how they scale with dataset size.590

• If applicable, the authors should discuss possible limitations of their approach to591

address problems of privacy and fairness.592

• While the authors might fear that complete honesty about limitations might be used by593

reviewers as grounds for rejection, a worse outcome might be that reviewers discover594

limitations that aren’t acknowledged in the paper. The authors should use their best595

judgment and recognize that individual actions in favor of transparency play an impor-596

tant role in developing norms that preserve the integrity of the community. Reviewers597

will be specifically instructed to not penalize honesty concerning limitations.598

3. Theory assumptions and proofs599

Question: For each theoretical result, does the paper provide the full set of assumptions and600

a complete (and correct) proof?601

Answer: [NA]602

Justification: [TODO]603

Guidelines:604

• The answer NA means that the paper does not include theoretical results.605

• All the theorems, formulas, and proofs in the paper should be numbered and cross-606

referenced.607

• All assumptions should be clearly stated or referenced in the statement of any theorems.608

• The proofs can either appear in the main paper or the supplemental material, but if609

they appear in the supplemental material, the authors are encouraged to provide a short610

proof sketch to provide intuition.611

• Inversely, any informal proof provided in the core of the paper should be complemented612

by formal proofs provided in appendix or supplemental material.613

• Theorems and Lemmas that the proof relies upon should be properly referenced.614

4. Experimental result reproducibility615

Question: Does the paper fully disclose all the information needed to reproduce the main ex-616

perimental results of the paper to the extent that it affects the main claims and/or conclusions617

of the paper (regardless of whether the code and data are provided or not)?618

Answer: [Yes]619

Justification: The overview of experiments and protocol is listed in our section 3 and 4.620

The details including dataset curation process, hyperparameters for training and sampling621

parameters for inference are described in the Appendix.622
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Guidelines:623

• The answer NA means that the paper does not include experiments.624

• If the paper includes experiments, a No answer to this question will not be perceived625

well by the reviewers: Making the paper reproducible is important, regardless of626

whether the code and data are provided or not.627

• If the contribution is a dataset and/or model, the authors should describe the steps taken628

to make their results reproducible or verifiable.629

• Depending on the contribution, reproducibility can be accomplished in various ways.630

For example, if the contribution is a novel architecture, describing the architecture fully631

might suffice, or if the contribution is a specific model and empirical evaluation, it may632

be necessary to either make it possible for others to replicate the model with the same633

dataset, or provide access to the model. In general. releasing code and data is often634

one good way to accomplish this, but reproducibility can also be provided via detailed635

instructions for how to replicate the results, access to a hosted model (e.g., in the case636

of a large language model), releasing of a model checkpoint, or other means that are637

appropriate to the research performed.638

• While NeurIPS does not require releasing code, the conference does require all submis-639

sions to provide some reasonable avenue for reproducibility, which may depend on the640

nature of the contribution. For example641

(a) If the contribution is primarily a new algorithm, the paper should make it clear how642

to reproduce that algorithm.643

(b) If the contribution is primarily a new model architecture, the paper should describe644

the architecture clearly and fully.645

(c) If the contribution is a new model (e.g., a large language model), then there should646

either be a way to access this model for reproducing the results or a way to reproduce647

the model (e.g., with an open-source dataset or instructions for how to construct648

the dataset).649

(d) We recognize that reproducibility may be tricky in some cases, in which case650

authors are welcome to describe the particular way they provide for reproducibility.651

In the case of closed-source models, it may be that access to the model is limited in652

some way (e.g., to registered users), but it should be possible for other researchers653

to have some path to reproducing or verifying the results.654

5. Open access to data and code655

Question: Does the paper provide open access to the data and code, with sufficient instruc-656

tions to faithfully reproduce the main experimental results, as described in supplemental657

material?658

Answer: [NA]659

Justification: We plan to release the full dataset with all 47k problems and all the code and660

model checkpoints upon publication.661

Guidelines:662

• The answer NA means that paper does not include experiments requiring code.663

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/664

public/guides/CodeSubmissionPolicy) for more details.665

• While we encourage the release of code and data, we understand that this might not be666

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not667

including code, unless this is central to the contribution (e.g., for a new open-source668

benchmark).669

• The instructions should contain the exact command and environment needed to run to670

reproduce the results. See the NeurIPS code and data submission guidelines (https:671

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.672

• The authors should provide instructions on data access and preparation, including how673

to access the raw data, preprocessed data, intermediate data, and generated data, etc.674

• The authors should provide scripts to reproduce all experimental results for the new675

proposed method and baselines. If only a subset of experiments are reproducible, they676

should state which ones are omitted from the script and why.677
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• At submission time, to preserve anonymity, the authors should release anonymized678

versions (if applicable).679

• Providing as much information as possible in supplemental material (appended to the680

paper) is recommended, but including URLs to data and code is permitted.681

6. Experimental setting/details682

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-683

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the684

results?685

Answer: [Yes]686

Justification: They are listed in the experiment setup sections and more details are in the687

appendix.688

Guidelines:689

• The answer NA means that the paper does not include experiments.690

• The experimental setting should be presented in the core of the paper to a level of detail691

that is necessary to appreciate the results and make sense of them.692

• The full details can be provided either with the code, in appendix, or as supplemental693

material.694

7. Experiment statistical significance695

Question: Does the paper report error bars suitably and correctly defined or other appropriate696

information about the statistical significance of the experiments?697

Answer: [No]698

Justification: It is conventional for people not to report error bars as the computation cost699

for sampling enough samples to obtain statistic significance for each problem is very high.700

Guidelines:701

• The answer NA means that the paper does not include experiments.702

• The authors should answer "Yes" if the results are accompanied by error bars, confi-703

dence intervals, or statistical significance tests, at least for the experiments that support704

the main claims of the paper.705

• The factors of variability that the error bars are capturing should be clearly stated (for706

example, train/test split, initialization, random drawing of some parameter, or overall707

run with given experimental conditions).708

• The method for calculating the error bars should be explained (closed form formula,709

call to a library function, bootstrap, etc.)710

• The assumptions made should be given (e.g., Normally distributed errors).711

• It should be clear whether the error bar is the standard deviation or the standard error712

of the mean.713

• It is OK to report 1-sigma error bars, but one should state it. The authors should714

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis715

of Normality of errors is not verified.716

• For asymmetric distributions, the authors should be careful not to show in tables or717

figures symmetric error bars that would yield results that are out of range (e.g. negative718

error rates).719

• If error bars are reported in tables or plots, The authors should explain in the text how720

they were calculated and reference the corresponding figures or tables in the text.721

8. Experiments compute resources722

Question: For each experiment, does the paper provide sufficient information on the com-723

puter resources (type of compute workers, memory, time of execution) needed to reproduce724

the experiments?725

Answer: [Yes]726

Justification: These are provided in the appendix.727

Guidelines:728
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• The answer NA means that the paper does not include experiments.729

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,730

or cloud provider, including relevant memory and storage.731

• The paper should provide the amount of compute required for each of the individual732

experimental runs as well as estimate the total compute.733

• The paper should disclose whether the full research project required more compute734

than the experiments reported in the paper (e.g., preliminary or failed experiments that735

didn’t make it into the paper).736

9. Code of ethics737

Question: Does the research conducted in the paper conform, in every respect, with the738

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?739

Answer: [Yes]740

Justification: [TODO]741

Guidelines:742

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.743

• If the authors answer No, they should explain the special circumstances that require a744

deviation from the Code of Ethics.745

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-746

eration due to laws or regulations in their jurisdiction).747

10. Broader impacts748

Question: Does the paper discuss both potential positive societal impacts and negative749

societal impacts of the work performed?750

Answer: [Yes]751

Justification: See our conclusion.752

Guidelines:753

• The answer NA means that there is no societal impact of the work performed.754

• If the authors answer NA or No, they should explain why their work has no societal755

impact or why the paper does not address societal impact.756

• Examples of negative societal impacts include potential malicious or unintended uses757

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations758

(e.g., deployment of technologies that could make decisions that unfairly impact specific759

groups), privacy considerations, and security considerations.760

• The conference expects that many papers will be foundational research and not tied761

to particular applications, let alone deployments. However, if there is a direct path to762

any negative applications, the authors should point it out. For example, it is legitimate763

to point out that an improvement in the quality of generative models could be used to764

generate deepfakes for disinformation. On the other hand, it is not needed to point out765

that a generic algorithm for optimizing neural networks could enable people to train766

models that generate Deepfakes faster.767

• The authors should consider possible harms that could arise when the technology is768

being used as intended and functioning correctly, harms that could arise when the769

technology is being used as intended but gives incorrect results, and harms following770

from (intentional or unintentional) misuse of the technology.771

• If there are negative societal impacts, the authors could also discuss possible mitigation772

strategies (e.g., gated release of models, providing defenses in addition to attacks,773

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from774

feedback over time, improving the efficiency and accessibility of ML).775

11. Safeguards776

Question: Does the paper describe safeguards that have been put in place for responsible777

release of data or models that have a high risk for misuse (e.g., pretrained language models,778

image generators, or scraped datasets)?779

Answer: [NA]780
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Justification: No such risks.781

Guidelines:782

• The answer NA means that the paper poses no such risks.783

• Released models that have a high risk for misuse or dual-use should be released with784

necessary safeguards to allow for controlled use of the model, for example by requiring785

that users adhere to usage guidelines or restrictions to access the model or implementing786

safety filters.787

• Datasets that have been scraped from the Internet could pose safety risks. The authors788

should describe how they avoided releasing unsafe images.789

• We recognize that providing effective safeguards is challenging, and many papers do790

not require this, but we encourage authors to take this into account and make a best791

faith effort.792

12. Licenses for existing assets793

Question: Are the creators or original owners of assets (e.g., code, data, models), used in794

the paper, properly credited and are the license and terms of use explicitly mentioned and795

properly respected?796

Answer: [Yes]797

Justification: We carefully credit and cite them in the appendix about daca curation.798

Guidelines:799

• The answer NA means that the paper does not use existing assets.800

• The authors should cite the original paper that produced the code package or dataset.801

• The authors should state which version of the asset is used and, if possible, include a802

URL.803

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.804

• For scraped data from a particular source (e.g., website), the copyright and terms of805

service of that source should be provided.806

• If assets are released, the license, copyright information, and terms of use in the807

package should be provided. For popular datasets, paperswithcode.com/datasets808

has curated licenses for some datasets. Their licensing guide can help determine the809

license of a dataset.810

• For existing datasets that are re-packaged, both the original license and the license of811

the derived asset (if it has changed) should be provided.812

• If this information is not available online, the authors are encouraged to reach out to813

the asset’s creators.814

13. New assets815

Question: Are new assets introduced in the paper well documented and is the documentation816

provided alongside the assets?817

Answer: [Yes]818

Justification: In section 3 and the appendix.819

Guidelines:820

• The answer NA means that the paper does not release new assets.821

• Researchers should communicate the details of the dataset/code/model as part of their822

submissions via structured templates. This includes details about training, license,823

limitations, etc.824

• The paper should discuss whether and how consent was obtained from people whose825

asset is used.826

• At submission time, remember to anonymize your assets (if applicable). You can either827

create an anonymized URL or include an anonymized zip file.828

14. Crowdsourcing and research with human subjects829

Question: For crowdsourcing experiments and research with human subjects, does the paper830

include the full text of instructions given to participants and screenshots, if applicable, as831

well as details about compensation (if any)?832
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Answer: [NA]833

Justification: [TODO]834

Guidelines:835

• The answer NA means that the paper does not involve crowdsourcing nor research with836

human subjects.837

• Including this information in the supplemental material is fine, but if the main contribu-838

tion of the paper involves human subjects, then as much detail as possible should be839

included in the main paper.840

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,841

or other labor should be paid at least the minimum wage in the country of the data842

collector.843

15. Institutional review board (IRB) approvals or equivalent for research with human844

subjects845

Question: Does the paper describe potential risks incurred by study participants, whether846

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)847

approvals (or an equivalent approval/review based on the requirements of your country or848

institution) were obtained?849

Answer: [NA]850

Justification: [TODO]851

Guidelines:852

• The answer NA means that the paper does not involve crowdsourcing nor research with853

human subjects.854

• Depending on the country in which research is conducted, IRB approval (or equivalent)855

may be required for any human subjects research. If you obtained IRB approval, you856

should clearly state this in the paper.857

• We recognize that the procedures for this may vary significantly between institutions858

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the859

guidelines for their institution.860

• For initial submissions, do not include any information that would break anonymity (if861

applicable), such as the institution conducting the review.862

16. Declaration of LLM usage863

Question: Does the paper describe the usage of LLMs if it is an important, original, or864

non-standard component of the core methods in this research? Note that if the LLM is used865

only for writing, editing, or formatting purposes and does not impact the core methodology,866

scientific rigorousness, or originality of the research, declaration is not required.867

Answer: [NA]868

Justification: [TODO]869

Guidelines:870

• The answer NA means that the core method development in this research does not871

involve LLMs as any important, original, or non-standard components.872

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for873

what should or should not be described.874
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A Appendix875

A.1 More Related Work on Synthetic Test Quality and its Implications876

Although existing LLM test synthesis methods prove to be useful in many scenarios, such as improving877

the quality of synthetic data (Wei et al., 2024) and software engineering(Mündler et al., 2025; Jain878

et al., 2024), their quality is far from perfect (Yuan et al., 2024) and are bounded in complexity,879

because direct generations of complicated data structures often result in inconsistency (Zhang et al.,880

2023). Weak verifiers can harm downstream code generation and search performance (Light et al.,881

2025). The quality of those synthetic tests and their implications are less discussed. Existing882

benchmarks for LLM test case generation abilities focus on code coverage and/or mutation scores883

(Wang et al., 2025a; Zhang et al., 2024; Jain et al., 2025a, 2024), the success rate for reproducing884

issues (Mündler et al., 2025), and the code change coverage for generated code patches (Ahmed et al.,885

2024; Mündler et al., 2025).886

A.2 Details of the Test Cases Generation Pipeline HARDTESTGEN887

As we mentioned in Section 3.2, HARDTESTGEN constructs both the input generator functions888

and the validator functions for verifying input correctness. In this section, we first introduce the889

detailed HARDTESTGEN implementation, including the coding problem filtering process, and detailed890

prompts for input generator/validator synthesis (Section A.2.1), followed by detailed dataset statistics891

for the final HARDTESTS dataset (Section A.2.2) and some examples in HARDTESTS (Section A.2.3).892

A.2.1 HARDTESTGEN Implementation893

Coding problem filtering. Before generating test cases, we first filter out questions not suitable894

for our test case generation. For example, those without oracle code solutions, and the questions895

that do not use standard I/O for input and output. More specifically, our question filtering process is896

as follows: We first remove problems that do not have any oracle programs. Next, we exclude all897

problems where the starter_code field is non-empty, as they are so-called “core logic” problems,898

rather than “input-output” style problems, and typically originate from online judges like LeetCode899

and GeeksforGeeks. In such problems, the programmer is not responsible for handling input and900

output logic, but only for implementing the core function based on a given function signature. Since901

the inputs and outputs in these problems are often not strings, they are difficult to use for test case902

generation. After the filtering, we are left with 32.5k unique coding problems.903

Input validator prompt. We use the following LLM prompt to generate an input validator function,904

and a special judge function when necessary. This prompt includes the problem specification and the905

oracle program to help the LLM have a better understanding.906

Input generator prompt. We use the following prompt to have the LLM generate inputs directly907

(Type 1), a regular input generator (Type 2), and a hacking input generator (Type 3). This prompt908

makes use of the problem specification, oracle program, and input validator to help the LLM better909

understand the problem requirements.910

Note that in the prompts above, we provide two to three carefully crafted examples for each function911

that we ask the LLM to generate, enabling in-context learning. Additionally, we prompt the LLM912

to perform chain-of-thought reasoning. These two requirements help the LLM understand the task913

better and improve the data synthesis.914

A.2.2 HARDTESTS Statistics915

We generated test cases for all 32.5k valid questions in the HARDTESTS. The status distribution916

of test case generation is shown in Figure 5. While we carefully designed the test-case generation917

prompt, we didn’t attain 100% coverage. We successfully generated test cases for 81.9% of the918

questions. The main failure reasons include: no valid oracle programs (i.e., compiles and runs without919

errors) (6.62%), all output verification failed (5.85%), and input generation failed (3.72%). The920

distribution of the number of Type1, Type2, and Type3 test cases, as well as the total number of test921

cases, is shown in Figure 4.922
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Figure 4: The distribution of the number of Type1, Type2, and Type3 test cases, as well as the total
number of test cases in HARDTESTS.

Figure 5: The result status distribution of our test case generation pipeline HARDTESTGEN.

A.2.3 HARDTESTS Examples923

Example 1924

This example demonstrates the input validator, Type 1 (Directly Generated) and Type 2 (Regular) test925

cases, as well as a custom judging function. Here’s the problem description:926
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Codeforces 1096A: There are a total of T (1 ≤ T ≤ 1000) sub-tasks. Each sub-task gives a pair927

of integers l, r (1 ≤ l ≤ r ≤ 998244353), and the goal is to find a pair of integers x, y such that928

l ≤ x, y ≤ r, x ̸= y, and y is divisible by x. It is guaranteed that every sub-task has a valid solution.929

Note: It can be mathematically proven that a sub-task has a solution if and only if 2l < r.930

The input validator is as follows. It checks whether input_str conforms to the required format931

specified in the problem specification, whether all data falls within the required ranges, and whether932

other constraints are satisfied (e.g., whether each sub-task has a solution).933

Since this problem allows multiple correct solutions, simple string comparison is not sufficient. We934

need a special, customized output judging function. The output judging function is as follows.935

The Type1 (Directly Generated) inputs are as follows.936

The Type 2 input (Regular) generator is as follows. To ensure a solution always exists, the LLM sets937

r ≥ 2l.938

The LLM believes that there is no need to generate a Type 3 (Hacking) input generator for this939

problem.940

Example 2941

This example demonstrates the input validator, as well as the Type 1 (Directly Generated), Type 2942

(Regular), and Type 3 (Hacking) test cases. Here’s the problem description:943

Codeforces 1141 A: Given two numbers n,m (1 ≤ n ≤ m ≤ 5× 108), you are to determine whether944

it is possible to transform n into m by multiplying by 2 and 3, and if so, output the minimum number945

of operations. Otherwise, output -1.946

The input validator is as follows. It checks whether input_str conforms to various format require-947

ments and constraints.948

The Type1 (Directly Generated) inputs are as follows.949

The Type 2 input (Regular) generator is as follows. The output of this problem has two categories (i.e.,950

possible and impossible), so the LLM generates two regular input generating functions, corresponding951

to these two categories respectively.952

The Type 3 input (Hacking) generator is as follows. The LLM generates two hacking input generating953

functions. The first function sets a small n and a large m. This is because a brute-force approach954

that a candidate program might take is to use DFS, recursively trying to multiply n by 2 or 3 until955

it becomes greater than or equal to m. If we randomly choose n and m, the ratio between them is956

usually small, so this approach might still pass. Setting n to be small and m to be big creates a large957

gap between n and m, making the brute-force DFS approach inefficient. The second function sets958

m = n, which serves as an edge case.959

For this problem, the LLM believes that a string comparison function would be enough for output960

judging.961

A.3 Details of the Collection of Problem Specifications and Oracle Programs in HARDTESTS962

HARDTESTS consists of 47,136 coding problems collected from 13 OJs. In practice, the dataset ob-963

tains problem specifications and oracle programs from five direct data sources: AtCoder, Codeforces,964

Luogu, CodeContests, and TACO.965

Data sources. Codeforces (https://codeforces.com/) is one of the largest English OJs. We966

collected all publicly available problem specifications up to September 2024 from Codeforces.967

AtCoder. (https://atcoder.jp/) is a large OJ offering problems in both Japanese and English.968

We scraped all problem specifications available up to September 2024, along with three correct969

user-submitted C++ programs for each problem. We used those directly for problems with official970

English versions. Luogu (https://www.luogu.com.cn/) is a large Chinese OJ consisting of a main971

section (Luogu-Main) and four mirror sections. The main section hosts original problems authored972

by users and administrators, as well as problems sourced from real-world contests (e.g. USACO).973

The mirror sections contain problems from other OJs, including AtCoder, SPOJ, Codeforces, and974

UVa. We collected all available problem specifications and community-authored tutorials, which975
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often include both correct C++ programs and corresponding natural language explanations, from976

Luogu. CodeContests (Li et al., 2022) is a dataset comprising 13,493 problems collected from five977

OJs. Each entry includes a problem specification and several correct programs in C++, Python 2,978

Python 3, and Java. Only Codeforces problems in CodeContests were used in our dataset, as only979

their problem IDs were explicitly provided. TACO (Li et al., 2023) is a large-scale English dataset980

containing 25.4k problems sourced from ten OJs. Each entry includes a problem specification and981

multiple correct Python programs. We collect all problems from TACO.982

The distribution of problem counts across each OJ is shown in Figure 6. The URLs of each OJ, along983

with the direct data sources of their problem specifications and oracle programs, are listed in Table 6.984

Note that since some problems have multiple oracle program sources, we prioritize programs from985

more reliable sources when generating test cases. The reliability, supported languages, and notes986

regarding each direct source of oracle programs are presented in Table 7. The distribution of the987

number of oracle programs per problem in HARDTESTS is shown in Figure 7.988

Figure 6: Number of problems from each OJs. Figure 7: Distribution of the
number of oracle programs in
HARDTESTS.

Table 6: Problem specification sources and oracle solution sources of each OJ.

OJ URL
Problem
Specification
Sources

Oracle Program
Sources

Codeforces https://codeforces.com/ Codeforces TACO, CodeContests,
Luogu

AtCoder https://atcoder.jp/contests/ AtCoder AtCoder, TACO,
Luogu

Luogu https://www.luogu.com.cn/ Luogu Luogu
UVa https://onlinejudge.org/ Luogu Luogu
SPOJ https://www.spoj.com/ Luogu Luogu
Aizu https://onlinejudge.u-aizu.ac.jp/ TACO TACO
GeeksforGeeks https://www.geeksforgeeks.org/ TACO TACO
Codewars https://www.codewars.com/ TACO TACO
Kattis https://open.kattis.com/ TACO TACO
CodeChef https://www.codechef.com/ TACO TACO
HackerEarth https://www.hackerearth.com/ TACO TACO
LeetCode https://leetcode.com/ TACO TACO
HackerRank https://www.hackerrank.com/ TACO TACO

A.4 Direct Evaluation Details989

Evaluation details for LLM-generated programs on AtCoder. AtCoder previously made its990

official test cases publicly available. Although this is no longer the case, we obtained a partial archive991
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Table 7: Oracle program sources with reliability, languages, and notes

Oracle Program Source Reliability Languages Notes

User-submitted and accepted
programs from AtCoder

High Python, C++ Some code (either Python or
C++) may use AtCoder’s cus-
tom library.

Code solutions from CodeCon-
tests

High Python 2/3,
C++, Java

—

Community-authored editorials
from Luogu

Medium C++ Some editorials may lack com-
plete, directly executable code.
But if the code has no compila-
tion or runtime errors, it is very
likely to be completely correct.

Verified programs from TACO,
i.e., programs that can pass all
TACO’s own test cases

Medium Python There’s some false positives in
TACO’s test cases.

Other programs from TACO Low Python Reliability is not zero due to
some false negatives in TACO’s
test cases.

from the Github repository conlacda/atcoder-testcases. On AtCoder, we use the test cases in992

TACO as the baselines. We selected problems that have at least one test case in each dataset, resulting993

in a total of 653 problems.994

Evaluation details for LLM-generated programs on Codeforces. Codeforces does not make its995

test cases publicly available. Therefore, we manually submit LLM-generated candidate programs996

to the Codeforces platform to obtain ground-truth verdicts. We use TACO and CodeContests as997

baselines. For problems where the results of all three datasets agree, we randomly select 5% of them998

for submission. For problems where the datasets produce conflicting results, we submit 50% of the999

candidate programs. We compute precision and recall based on the combined submission outcomes.1000

For each difficulty level from 1 to 4, we randomly select 150 problems with at least one test case in1001

each dataset, yielding a total of 600 problems.1002

Evaluation details for human-written programs on Codeforces. A dataset at Huggingface titled1003

MatrixStudio/Codeforces-Python-Submissions collects 690k human-submitted programs on1004

Codeforces along with their official verdicts. We use the verdicts as the ground-truth labels. All other1005

settings are the same as those of evaluation using LLM-generated programs.1006

A.5 Qualitative Analysis of Generated Tests1007

A.5.1 Example 1: False Positive of TACO and HARDTESTS Type 11008

In this example we show how TACO and HARDTESTS Type 1 tests cannot break a wrong program1009

and result in a false positive, while HARDTESTS Type 2 tests succeeds in making the program fail.1010

Here’s the problem description:1011

AtCoder ABC117C: Given an integer N (2 ≤ N ≤ 2 × 105) and an integer array A of length N1012

(0 ≤ Ai ≤ 109), compute the value of
∑N−1

i=1

∑N
j=i+1 AiAj modulo 109 + 7.1013

Since 2 ≤ N ≤ 2× 105, the solution to the problem needs to be relatively efficient. The correct solu-1014

tion employs mathematical techniques to simplify the equation into: 1
2

((∑N
i=1 Ai

)2

−
∑N

i=1 A
2
i

)
,1015

which yields an O(N) algorithm.1016

However, a candidate program generated by Qwen2.5-Coder-7B-Instruct uses a brute-force algorithm1017

with a time complexity of O(N2). The candidate program is as follows:1018

Due to its inefficiency, this candidate program failed to pass the official test cases. Nevertheless,1019

because the test cases in TACO and HARDTESTS Type 1 (Directly Generated) were relatively small1020

(with small N ), the candidate program successfully passed these cases.1021
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Furthermore, the HARDTESTS Type 2 (Regular) input for this problem is generated using the1022

following Python function:1023

Due to the larger scale of HARDTESTS Type 2 (Regular) inputs, the candidate program failed to pass1024

these test cases and we have a true negative.1025

A.5.2 Example 2: False Positive of TACO and HARDTESTS Type 1 + 21026

In this example we show how TACO and HARDTESTS Type 1 + 2 tests cannot break a wrong program1027

and result in a false positive, while HARDTESTS Type 3 tests succeeds in making the program fail.1028

Here’s the problem description:1029

AtCoder ABC139C: There are N (1 ≤ N ≤ 105) squares arranged from left to right, with the height1030

of the i-th square from the left being Hi (1 ≤ Hi ≤ 109). Starting from any square, you can move1031

one step to the right as long as the next square’s height is not greater than the current one. Find the1032

maximum number of moves possible.1033

Given that 1 ≤ N ≤ 105, the solution needs to be relatively efficient. The correct solution uses an1034

O(N) greedy algorithm. Specifically, it traverses the array from left to right, counting how many1035

consecutive heights satisfy Hi ≥ Hi+1. Each time a condition fails, the counter is reset, and the1036

maximum value is maintained throughout the traversal as the answer.1037

A candidate program generated by Qwen-Coder-14B-Instruct uses a brute-force approach, iterating1038

over each starting position and simulating the moves. Although functionally correct, its complexity is1039

O(N2) and too inefficient to work. The code is as follows:1040

Because of its inefficiency, this candidate program failed the official test cases. Nevertheless, due to1041

the relatively small scale of the test cases in TACO and HARDTESTS Type 1 (Directly Generated),1042

the candidate program passed these tests.1043

Additionally, the HARDTESTS Type 2 (Regular) input for this problem is generated using the1044

following Python function:1045

We observe that since the Hi sequence is randomly generated, it fluctuates significantly, reducing the1046

complexity of the “simulate moving from a certain square” procedure from O(N) to approximately1047

O(1). Thus, the tests generated do not lead to the worst case complexity of the inefficient program1048

and its overall time complexity effectively becomes O(N), enabling the candidate program to pass1049

HARDTESTS Type 2 (Regular) test cases.1050

The HARDTESTS Type 3 (Hacking) inputs for this problem are generated using the following Python1051

functions:1052

There are three hacking input generation functions: monotonically decreasing, monotonically increas-1053

ing, and alternating sequences. The first generated input (monotonically decreasing) successfully1054

increased the actual runtime complexity of the candidate program to O(N2), causing a timeout and1055

consequently a failure on this test case.1056

A.5.3 Example 3: False Negative of TACO1057

In this example, we show an example of false negative caused by the lack of special judge function in1058

TACO tests. We also show how HARDTESTS can correctly evaluate the candidate program. Here’s1059

the problem description:1060

AtCoder ABC117A: Given an integer T and an integer X (1 ≤ T ≤ 100, 1 ≤ X ≤ 100). Compute1061

the value of T/X with an error tolerance within 10−3.1062

A candidate program generated by Qwen2.5-Coder-14B-Instruct is:1063

This is clearly correct and passes all official test cases. It also passes all test cases from HARDTESTS,1064

but it fails on TACO’s test cases. This is because using a simple string comparison function is1065

insufficient due to potential differences in precision between the candidate output and the reference1066

output. TACO does not provide a special output judging function for problems, which leads to false1067

negatives. HARDTESTS provides a special output judging function, shown below:1068
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A.6 Downstream Training and Evaluation Details1069

Teacher-distillation training and evaluation details. In the teacher-distillation experiments, our1070

model is trained with the same training parameters used to train OlympicCoder-7B (epochs=10,1071

learning_rate=4e-5, batch_size=128, cosine learning rate schedule with a decay to 10% of the peak1072

learning rate and 32,768 max length). The evaluations are sampled with temperature=0.7, top_p=0.95,1073

max_new_tokens=16384.1074

Self-distillation training and evaluation details. In the self-distillation experiments, our model is1075

trained with the following training parameters (epochs=20, learning_rate=4e-5, batch_size=128,1076

cosine learning rate schedule with a decay to 10% of the peak learning rate and 32,768 max1077

length). The evaluations are sampled with temperature=0.6, top_p=0.95, top_k=20, min_p=0,1078

max_new_tokens=32768 as recommended by Qwen.1079

RL training and evaluation details. We use verl for RL training and firejail for sandboxing1080

code execution. The rollouts are generated with temperature=1, top_p=0.95, top_k=20, min_p=0,1081

response_length=24000, initial learning rate 5e-7. We use a global batch size of 32 and generate1082

32 samples per rollout. All our experiments are run on 8 NVIDIA H100 GPUs. We do not use KL1083

divergence in our RL loss.1084

A.7 Test Case Generation Without an Oracle Model1085

In the case that an oracle program y∗, or an oracle test suite V ∗ does not exist for a problem x, such1086

as when problems are synthetically generated, we propose a method, based on ALGO (Zhang et al.,1087

2023) that synthesizes both the oracle and tests. To start, we prompt an LLM, such as Anthropic1088

Claude 3.5 Sonnet, to generate a brute-force solution ybf to the problem. Specifically, we encourage1089

it to use inefficient methods such as exhaustive search and enumeration of the possible output space.1090

This is founded on the observation that it is relatively easy to generate a solution that exhaustively1091

searches the correct output, but more difficult to optimize it within a time complexity bound.1092

Then, an LLM is prompted to create a validator program and 10 edge test input generators, which1093

are used to generate one test input each, {a1, . . . , a10}. To prevent the ybf from timing out when1094

computing their respective outputs, we explicitly prompt the LLM to keep input values small. Once1095

these test inputs are verified for correctness using the validator, the brute-force solution is used to1096

generate the corresponding outputs ci = ybf (ai) for each input, resulting in a total of 10 input-output1097

pairs as test cases. Finally, the LLM is prompted to create one maximum-length test case amax1098

with inputs at the upper bounds of the problem’s constraints, designed to catch solutions that are1099

functionally correct but inefficient. This test case is considered to be passsed as long as the program1100

produces an output before timing out. Crucially, all 11 of the generated test cases {a1, . . . , a10, amax}1101

are designed to cause seemingly correct programs to fail, and none are generated using random inputs.1102

We compare this method to the baseline method outlined in AceCoder (Zeng et al., 2025a), which1103

uses a direct prompt to generate 20 full test cases (inputs and corresponding outputs), also using1104

Claude 3.5. Then, after prompting a stronger model such as Qwen2.5- Coder-32B-Instruct to generate1105

a solution, the test cases that cause the solution to fail are considered hallucinated and are filtered out.1106

Problems with fewer than 5 test cases after filtering are discarded.1107

To evaluate the accuracy of rewards that our test cases can give to model training, we evaluate the1108

precision and recall over candidate programs generated by LLMs and written by humans on subsets1109

of problems in HARDTESTS.1110

The quality of the test cases are verified using 165 Atcoder problems, each with 50 sample solutions.1111

It is clear from these experiments (shown in Table 8) that our method can also work much better than1112

the baseline even when oracle programs are not available. The false positive rate of HARDTESTGEN1113

is only half as high as AceCoder, showing that deliberately crafting high-quality, hard test cases is1114

crucial for effective program verifiers.1115

We will show some examples of the test generation process in the following sections.1116
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Table 8: Performance comparison of oracle-free test generation algorithms based on error rates.

False Positive Rate (FPR) False Negative Rate (FNR)
AceCoder 32.49 2.59

HARDTESTGEN 17.67 2.19

A.7.1 Example 1: Brute-force oracle solution generated by ALGO1117

In this example, we show a brute-force oracle solution ybf that ALGO generates. The problem is1118

challenging, and while the LLM is unable to correctly solve it directly, its brute-force solution works.1119

Here’s the problem description:1120

AtCoder ABC301C: A single-player card game is popular in AtCoder Inc.1121

Each card in the game has a lowercase English letter or the symbol written on it. There is plenty1122

number of cards for each kind. The game goes as follows.1123

1124

- Arrange the same number of cards in two rows.1125

- Replace each card with with one of the following cards: a, t, c, o, d, e, r.1126

- If the two rows of cards coincide, you win. Otherwise, you lose.1127

1128

To win this game, you will do the following cheat.1129

1130

- Freely rearrange the cards within a row whenever you want after step 1.1131

1132

You are given two strings S and T (1 ≤ |S|, |T | ≤ 2 × 105), representing the two rows you1133

have after step 1. Determine whether it is possible to win with cheating allowed. If it is possible to1134

win with cheating allowed, print Yes; otherwise, print No.1135

The solution generated by Claude 3.5 Sonnet is:1136

This solution is evidently inefficient. A full analysis yields runtime in the bound of O(n log n7n),1137

where n = |S| = |T |, but the exponential complexity is clear from the Cartesian product function in1138

the implementation. For inputs n > 10, this algorithm quickly becomes intractable. However, for1139

inputs n ≤ 10 it is able to generate valid test outputs, allowing it to correctly evaluate the validity1140

of submitted solutions. The test outputs it generates achieve a 100% accuracy, compared to actual1141

execution results from the online judge.1142

A.7.2 Example 2: Test cases generated by ALGO1143

In this example we show a contest coding problem for which ALGO effectively generates a testing1144

suite. Here’s the problem description:1145

AtCoder cafeteria sells meals consisting of a main dish and a side dish. There are N types of main1146

dishes, called main dish 1, main dish 2, . . . , main dish N . Main dish i costs ai yen. There are M1147

types of side dishes, called side dish 1, side dish 2, . . . , side dish M . Side dish i costs bi yen.1148

1149

A set meal is composed by choosing one main dish and one side dish. The price of a set1150

meal is the sum of the prices of the chosen main dish and side dish.1151

1152

However, for L distinct pairs (c1, d1), . . . , (cL, dL), the set meal consisting of main dish ci1153

and side dish di is not offered because they do not go well together. That is, NM − L set meals are1154

offered. (The constraints guarantee that at least one set meal is offered.)1155

1156

Find the price of the most expensive set meal offered.1157

1158

The input is given from Standard Input in the following format:1159

N M L1160

a1 a2 . . . aN1161

b1 b2 . . . bM1162
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c1 d11163

c2 d21164

...1165

cL dL1166

1167

Constraints:1168

- 1 ≤ N,M ≤ 1051169

- 0 ≤ L ≤ min(105, NM − 1)1170

- 1 ≤ ai, bi ≤ 1091171

The first 3 edge test input generators created by ALGO are shown below, corresponding to the1172

following test inputs. Note that the values are at the boundaries of the input bounds and follow clearly1173

defined structures.1174

Also, the generator for the maximum-length test input amax is shown here. It produces a test input1175

where N = M = 105, which is the upper bound of the problem.1176

This test suite effectively achieves 100% accuracy on evaluating submissions, demonstrating that1177

precise test inputs are crucial for oracle-free verifiers.1178

A.7.3 Example 3: Test cases generated by AceCoder1179

For the same Atcoder problem as Example A.7.2, AceCoder generates the following 16 test cases1180

with inputs and outputs after filtering. While the LLM implicitly knows to generate edge test cases,1181

shown in the maximal values of ci, di, all of the test cases have relatively similar and low values of1182

M and N .1183

These test cases fail to correctly categorize solutions that exceed the problem’s time limit. One such1184

example is shown below, which AceCoder falsely categorizes as a positive solution. Compared to1185

Example A.7.2, in which ALGO generated test inputs as large as N = M = 105, the test cases1186

from AceCoder are no larger than N = M = 5, making them unable to break inefficient programs.1187

Without a brute-force reference oracle, and constrained by the requirement of generating input-output1188

pairs simultaneously, the LLM used by AceCoder sticks to simple test cases that it can be confident1189

are correct. Moreover, longer test cases are likelier to contain hallucinations, and get removed by1190

their filtering process. As a result, their test cases are relatively weaker and result in less effective1191

verifiers.1192
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