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Abstract: Image-based behaviour cloning leverages demonstrations captured
from ubiquitous RGB cameras. However, it remains constrained by the cost of
collecting diverse demos, especially for generalizing across workspace variations.
We propose MirrorDuo, a reflection-based formulation that operates on image,
proprioception, and full 6-DoF end-effector action tuples, generating a mirrored
counterpart for each original demonstration, effectively achieving “collect one,
get one for free”. It can be applied as a data augmentation strategy for existing
learning pipelines, such as standard behaviour cloning or diffusion policy, or as
a structural prior for reflection-equivariant policy networks. By leveraging the
overlap between the original and mirrored domains, MirrorDuo achieves signif-
icantly improved performance under the same data budget when demonstrations
are evenly distributed across both sides of the workspace. When demonstrations
are confined to one side, MirrorDuo enables efficient skill transfer to the mirrored
workspace with as few as zero or five demos in the target arrangement.
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1 Introduction
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Figure 1: Illustration of MirrorDuo (M).
Mirroring a source demo to synthesis paired
demo in the mirrored arrangement.

Behaviour Cloning (BC) from visual demonstrations
holds promise for scalable skill acquisition in real-
world environments. Still, it is constrained by the
cost of collecting diverse data, particularly in set-
tings with spatial variation of target objects or asym-
metric scene layouts [1, 2], see Fig. 1.

Unlike image-based BC, methods leveraging 3D in-
puts (e.g., point clouds) can exploit spatial roto-
translation equivariance to improve data efficiency.
For example, SE(3) rigid transformations on the
3D inputs preserve spatial relationships between the
robot and objects, enabling policies to generalize
to new configurations by synthesizing transformed
demonstrations [3, 4, 5]. In contrast to the natural
SE(3) equivariance emerging in 3D representations,
applying 3D transformations to 2D images often produces inconsistent effects, with meaningful
transformations restricted to simplified settings such as planar top-down views [6]. While prior
work [7] approximates SO(2) symmetry by rotating third-person images, its gains remain limited to
in-domain settings and fall short of the broader generalization supported by 3D inputs.

∗Equal contribution

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://github.com/zheyu-zhuang/mirror-duo


One underexplored source of structure for image-based policies is reflection symmetry. Many ma-
nipulation tasks have mirrored variants, for example, a pick-and-place on the left can be reflected
to the right, and a pushing trajectory often has a counterpart on the opposite side. Such image-
space symmetries are typically faithful to end-effector–object relations, though may be affected by
visual artifacts, as illustrated in Fig. 1. Prior work [8, 9] has considered mirroring image and action
pairs, but only in simplified settings (e.g., top-down views or SE(2) actions) and without addressing
generalization to unseen mirrored scenarios.

We introduce MirrorDuo, a general formulation for incorporating reflection symmetry into generic
visuomotor learning settings. MirrorDuo applies mirroring jointly to RGB observations (both eye-
in-hand and third-person), proprioceptive inputs, and 6-DoF actions, producing semantically and
physically consistent pairs. This enables two complementary use cases: (1) as a data augmentation
strategy that extends coverage to mirrored configurations, and (2) as a prior for learning reflection-
equivariant policies that generalize by construction. While mirroring introduces visual asymmetries
(Fig. 3), policies trained on demonstrations from one side achieve near in-domain performance on
the mirrored side with substantially fewer demonstrations. When demonstrations from both sides
are available, this symmetry can be further leveraged to improve data efficiency, yielding competent
performance with fewer demonstrations overall.

2 Related Work

Image-based Behaviour Cloning (BC) learns policies that map observations to actions from
demonstrations (ot,at), where observations include multi-view images {I(c)t }c∈C , with C denot-
ing the set of camera views (e.g., eye-in-hand, third-person), and proprioceptive states st. Early
explicit-policy methods [10, 11, 12] struggle with the multi-modal nature of human actions. Implicit
approaches, such as energy-based models [13], and more recent diffusion-based policies [14, 15, 16],
better capture action distributions via generative modeling.

Geometric Symmetries in Robotic Manipulation are rooted in the structure of rigid transforma-
tions in the state space, such as complete 3D rigid transformations, i.e., SE(3). When the end-
effector and object are transformed by the same rigid transformation, the resulting trajectory, ex-
pressed in the relative frame, remains invariant, providing a theoretical foundation for gains in data
efficiency. On the data generation side, recent works [17, 2, 18, 19, 20] exploit such symmetries
to augment demonstrations by replaying transformed trajectories for transformed objects. On the
policy learning side, recent works have shown compelling results in incorporating these symmetries
through equivariant policies [3, 4, 5, 8, 9]. In particular, [5, 7] leverage equivariant properties within
the diffusion process [21]. These approaches often represent observations and actions in a 3D geo-
metric form, which are naturally suited for SE(3) or SE(2) transformations due to their invariance
under such transformations. However, in image-based BC settings, the observations are 2D projec-
tions of the 3D world, while the actions and robot states remain in 3D. The SO(2)-Equivariant Dif-
fusion Policy [7] uses image inputs and enforces equivariance by rotating third-person images and
transforming proprioception and actions to emulate global scene rotation. Other approaches [8, 9]
incorporate image reflection but with simplified observation and action spaces.

3 Methodology

Mirroring in Pose Space for Static Cameras. To ensure consistency with image mirroring (hori-
zontal flip), we define an analogous mirroring operation in pose space. Let CXHt

∈ SE(3) denote
the end-effector pose XHt

at time t expressed in the camera frame XC . Henceforth, we drop the
time index for brevity. Under a standard pinhole camera model, the mirrored pose is given by
CX∗

H = ECXH E, where E = diag([−1, 1, 1, 1]). Mapping back to the world frame yields:

X∗
H = XC EX−1

C XH E. (1)

This formulation also applies to absolute actions, with at := XHt+1
. Gripper states and actions

(e.g., open/close) are omitted, as they do not exhibit geometric structures affected by mirroring.
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Eliminating Dependency on Camera Extrinsics. While Eq. (1) guarantees geometric consistency
with image mirroring, it depends on the camera extrinsics XC , which are often unavailable in BC
datasets. To address this, we express every pose in a local coordinate system. We use two equivalent
forms: delta pose ∆XHt

= X−1
H0

XHt
(relative to a fixed initial frame, e.g., average of initial poses

from demonstrations) and relative pose δXHt = X−1
Ht−1

XHt
. Substituting these into Eq. (1) yields

∆X∗
H = E∆XH E, δX∗

H = E δXH E, (2)

which removes the dependency on the camera frame. If an eye-in-hand camera is rigidly attached
to the end-effector, Eq. (1) no longer applies in the global frame. However, the same symmetry
holds in local coordinates, and the absolute mirrored pose can then be recovered by composition
(see App. A for derivation). The associated actions are ∆at := ∆XHt+1

and δat := δXHt+1
. This

canonicalization re-centers every trajectory starting at the identity and is thus dataset-agnostic.

Discontinuity of Mirroring in SO(3). To ensure the robot acquires the mirrored skill starting from
a near-identical configuration, it is desirable for the initial end-effector pose to remain consistent
before and after mirroring. However, in general, the mirrored initial pose satisfies X∗

H0
̸= XH0

, due
to discontinuities introduced by reflection in SO(3). For brevity, we omit the local-frame markers
(δ, ∆) in Eq. (2) and overload E=diag(−1, 1, 1) to act on 3×3 matrices. Represent a global pose
X ∈ SE(3) by rotation R ∈ SO(3) and translation t ∈ R3. Reflection about the yz-plane maps
(R, t) 7−→ (R∗, t∗) with R∗ = ERE, t∗ = Et. Translations are altered mildly after the local
reparameterization around the origin (t∗≈t for small motions), whereas rotations generally are not:
R∗ flips the first column and first row of R, producing an abrupt change (see App. A for details).
The phenomenon is avoided only when the end-effector’s x-axis already aligns with the world X-
axis (R(:,1) ≈ [1, 0, 0]⊤), in which case R∗ ≈R. MirrorDuo enforces this condition via a constant
alignment rotation Q, derived once from the average initial rotations across the dataset, which maps
the mean tool axis RH0(:, 1) to the world X-axis ex = [1, 0, 0]⊤.

The Dual Realization. The above formulation offers flexibility by enabling either data aug-
mentation to enrich the distribution or geometric constraints that embed the inductive bias di-
rectly into the network architecture. We first cast the geometric mirroring rule into a vector
form that interfaces cleanly with neural networks. A pose X = [R, t] ∈ SE(3) is vectorized as
vecX(X) =

[
t⊤ r⊤1 r⊤2

]⊤∈ R9, r1,2 are the first two rotation columns [22]. Eq. (1) simplifies to:

vecX
(
CX∗

Ht

)
= ρ ⊙ vecX

(
CXHt

)
, ρ = [−1, 13, −13, 12]⊤, (3)

where 1n repeats the scalar 1 n times and ⊙ is element-wise multiplication. From Eq. (3), we define
a unified mirroring operator M over observation–action pairs:

M(ot) :=
(
MI({I(c)t }), ρ⊙ vecX(st)

)
, M(at) := ρ⊙ vecX(at), (4)

where MI(·) denotes horizontal flipping in image space.

The data augmentation variant of MIRRORDUO operates during batch sampling without modifying
the model. Given a minibatch of N trajectories, we randomly sample m trajectories and mirror their
images, proprioception, and actions according to Eq. (4). Mirrored samples replace the originals,
yielding a mixture of original and mirrored data in each batch. Throughout all experiments in this
paper, we set m/N ≈ 0.5. For brevity, we refer to MirrorDuo Data Augmentation as MIRRORAUG.

Mirror-equivariant diffusion policy embeds the mirror transformations as an inductive bias within
the latent diffusion process, promoting consistency between original and mirrored samples. This
approach leverages the strengths of diffusion models while preserving the introduced reflection-
equivariance properties introduced by MirrorDuo. We refer to it as MIRRORDIFFUSION.

Diffusion models for behavior cloning [14] train the noise prediction function εθ(o,a
k + εk, k) to

infer the noise εk added to the action at each forward diffusion step k, based on the observation o
and noisy action prediction ak + εk, where θ denotes the learnable weights and the noise schedule
governs the injection of εk. During inference, starting from a noisy action ak ∼ N (0, I), the
denoised action a0 is obtained iteratively via

ak−1 = α
(
ak − γ εθ(o,a

k, k) + ηk
)
, where ηk ∼ N (0, σ2I), (5)
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with α, γ, and σ being functions of k, governed by the noise schedule. The equivariance of the
diffusion process lies in its noise prediction function. A function f is equivariant to a group G if it
commutes with the group transformations, i.e., f (ρx(g)x) = ρy(g)f(x), ∀g ∈ G, where ρx and
ρy are group representations mapping each group element g to an n×n invertible transformation ma-
trix acting on the input and output spaces (x, y), respectively. For brevity, we omit explicit notation
for group representations. As shown in [5, 7], the per-step ground-truth noise prediction function ε
is equivariant if the underlying policy π : o 7→ a is equivariant: ε(go, gak, k) = g ε(o,ak, k).

In this work, we enforce the reflection symmetry of the policy π by using E(n)-equivariant Steer-
able CNNs [23]. The sign pattern in the representation matrix ρ in Eq. (3) corresponds to a block
decomposition aligned with the irreducible representations of the reflection group acting on both the
action and proprioceptive state spaces. Specifically, πξ(M(o)) = M(πξ(o)), where ξ denotes the
learnable parameters of the policy. Detailed network structure is in App. B. Note that the denoising
function is per-step equivariant. However, the independent noise term ηk injected at each iteration
in Eq. (5) introduces diversity, breaking global reflection symmetry in the reverse diffusion process.
Removing this noise collapses the process to a single deterministic output [24]. We quantify the
impact of this symmetry violation on task performance in Sec. 4.1.

Generalization under Visual Asymmetry. The goal of MirrorDuo is to synthesize immediately
deployable mirrored trajectories without altering the robot’s initial state or relying on camera ex-
trinsics. In the state space, this is achieved through local parameterization and centering at the fixed
point of the reflection operator. In the image space, the analogous operation centers the end-effector
on the vertical flip axis when the third-person camera is off-centered, either by estimating the cam-
era pose via hand–eye calibration or by using vision models such as Grounded-SAM [25] for direct
localization. Simulation experiments are in App. F.

Furthermore, the above reflection symmetry formulations do not account for common sources of
visual asymmetry under image mirroring, such as non-uniform table textures, background patterns,
or asymmetries in the robot’s design. As shown in Fig. 3, the robot’s wrist appears left-sided in the
mirrored view despite being consistently right-sided in the real world. Such discrepancies introduce
visual out-of-distribution (OOD) artifacts. To address this, we complement MirrorDuo with simple
yet effective generalization techniques that mitigate mild violations of image reflection symmetry.
As discussed in Sec. 4.1, MirrorDuo’s tolerance to visual asymmetry is closely tied to the policy’s
visual encoder and its capacity to generalize to task-irrelevant variations, such as lighting, distrac-
tors, and background differences. We use a ResNet-18 [26] pretrained on ImageNet [27], which has
shown strong OOD robustness in manipulation [28], and apply Random Overlay [29, 30] to further
enhance the visual robustness of the policies.

4 Experiments

4.1 Simulation

We design three evaluation settings to study different aspects of MirrorDuo. All tasks are based on
the publicly available MimicGen dataset [17], with detailed task descriptions provided in App. C.
All experiments include both an eye-in-hand and a third-person camera. For clarity, we use the term
mirrored demonstrations to denote synthetic data generated through mirroring, and opposite-side
demonstrations to denote real data collected directly from the mirrored workspace.

(I) Nearly Symmetric Visuals, One-side (Fig. 2a). For one-sided demonstrations, mirrored images
differ slightly around the wrist and gripper compared to the true appearance from the opposite side
(Fig. 3a). We evaluate the direct transferability of policies from the demonstration domain to the
unseen mirrored setup, and assess improvements from integrating visual generalization techniques.

(II) Visual Asymmetry from the Robot and Backgrounds, One-side (Fig. 2b). Moving the cam-
era farther back reveals the robot’s elbow, shoulder, and wrist, introducing stronger visual asymmetry
compared with close-view (Fig. 3b). When table textures differ between sides, mirrored setups in-
troduce background asymmetry (Fig. 5). These settings are especially challenging given the higher
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(a) Close-view, one-side (b) Wide-view, one-side (c) Varying demonstrations, two-sides

Figure 2: Simulation Setups. Each image shows the environment, averaged over several initial
conditions. (a) Close-view with demonstrations confined to one half of the workspace. (b) Wide-
view with the camera moved back. (c) Intermediate-view with demos distributed across the tabletop.

Square D0 Coffee D2

Original Mirror Original Mirror

MirrorDiffusion (Delta)

��M 92±1 0±0 69±1 0±0

M 90±0 54±3 67±0 26±4

M,O 92±0 64±1 72±2 28±1

Diffusion Policy (Delta)

M 86±0 46±0 66±3 21±0

M,O 83±1 79±2 66±6 35±2

M,O,P 95±0 93±0 62±0 33±3

BC-RNN (Relative)

M 71±1 3±0 50±1 0±0

M,O 80±2 42±3 54±2 32±3

M,O,P 82±0 53±4 61±4 17±2

Table 1: Success rate (%) for close-view, one-side de-
mos. Policies are trained on 200 Original with their pre-
ferred action representations, and evaluated on both Orig-
inal and Mirrored setups. ��M / M: MirrorAug disabled /
enabled, O: Random Overlay, P: Pretrained.

(a) Close-view

(b) Wide-view

Figure 3: Visual asymmetry from
the robot. In the close view, asym-
metry appears near the wrist and grip-
per, while in the wide view it extends
to the elbow and shoulder.

visual complexity and limited data. We study whether the reflection formulation combined with vi-
sual generalization can improve transferability under non-trivial asymmetric visual shifts, and how
performance gains with varying numbers of opposite-side demos added.

(III) Two-sided Demonstrations for Long-horizon Tasks with Varying Data (Fig. 2c). Given the
longer horizons and increased task complexity, with demonstrations exhibiting left–right symmetry,
we vary the number of demonstrations to quantify how mirroring improves data efficiency when the
mirrored domain geometrically overlaps with the demonstrated domain.

Setting I: Nearly Symmetric Visuals, One-side

We evaluate three policy variants: MirrorDiffusion as described in Sec. 3, Diffusion Policy [14],
and BC-RNN [12], each combined with MirrorAug (M), Random Overlay [30] (O), and, when
available, pretrained visual backbone weights (P). Diffusion Policy and BC-RNN use ResNet-18
backbones initialized from ImageNet-pretrained weights, fine-tuned with a backbone learning rate
one-tenth that of the policy head. MirrorDiffusion uses randomly initialized backbones, as no off-
the-shelf pretrained weights exist for reflection-equivariant architectures. Evaluation is performed
on original and mirrored object arrangements, with success rates averaged over the top three rollouts,
sampled every 10 epochs across 250 training epochs.

Tab. 1 shows that direct transferability varies across policies and tasks. On Square D0, Diffusion
Policy with Random Overlay and pretrained visual backbones matches its in-domain performance
at 93%. In contrast, on Coffee D2, all methods perform similarly with transfer success rates around
30%. MirrorDiffusion without MirrorAug fails entirely, achieving 0% direct transfer. As detailed
in Sec. 3, although its denoising function is per-step equivariant, reflection symmetry is broken over
the whole denoising trajectory due to independently sampled noise at each reverse step (Eq. (5)).
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Square D0 Mirrored Arrangements Coffee D2 Mirrored Arrangements

MirrorDiff. +
MirrorDiff. +

Diff. + 

BC-RNN +
BC-RNN +

Number of Demos from Mirrored Setup Added to 200 Demos

Diff. +

Close-viewWide-viewClose-view Wide-view

Figure 4: Wide-view success rate (%), against number of additional opposite-side demos.
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Mirrored Setup for Evaluation
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Diff. +
Diff. +
MirrorDiff. +

MirrorAug
Rand. Overlay
Pretrained 

MirrorDiff. +

Figure 5: Setup and success rate (%) for asymmetric backgrounds, in the mirrored arrangements,
against the number of additional opposite-side demos. Evaluation of Square D0 under mirrored
setups with local visual domain shifts: white-to-wood and wood-to-white table textures.

While no clear winner emerges between using Random Overlay alone versus combining it with pre-
trained weights, improved visual robustness consistently correlates with better direct transferability
across tasks and policies. BC-RNN shows marked gains with mirrored success rates rise from near
zero with MirrorAug alone to 53% on Square D0 and 32% on Coffee D2.

Setting II: Visual Asymmetry from the Robot and Backgrounds, One-side

To assess MirrorDuo under non-trivial visual asymmetry in one-sided tasks, we evaluate Square D0
and Coffee D2 with wide-view images, and Square D0 with asymmetric table textures. In both cases,
opposite-side demonstrations are generated via Eq. (1) and validated through successful executions.
MirrorDiffusion, Diffusion Policy, and BC-RNN are tested with combinations of MirrorAug (M),
Random Overlay (O), and pretrained weights (P; unavailable for MirrorDiffusion).

With wide-view, all demos are re-rendered with a wide camera view, exposing asymmetries such
as the elbow and shoulder links, making zero-shot transfer considerably harder than in close-view
(Fig. 3). As shown in Fig. 4, for Square D0, the direct transfer performance of Diffusion Policy
(M, O, P) drops by approximately 30%, while BC-RNN (M, O, P) and MirrorDiffusion (M, O)
fall below 20%, with BC-RNN dropping to zero. Fig. 4 also demonstrates that policies with Mirro-
rAug (solid lines) recover near in-domain performance with as few as 5 opposite-side demos, gaining
at most after adding 10 opposite demos and plateauing beyond 15. In contrast, without MirrorAug
(green and yellow dashed lines), Diffusion Policy and BC-RNN require substantially more data to
achieve comparable performance. Notably, although MirrorDiffusion (O) fails at direct transfer due
to symmetry violations introduced by step-wise noise during reverse diffusion, it matches the per-
formance of MirrorDiffusion (M, O) with as few as additional 5 opposite-side demos, showing that
structural reflection-equivariance can be effectively unlocked for workspace generalization.

We alternated half of the table textures (white/wood) in Square D0 and tested under mirrored setups
with the opposite texture, where white-to-wood is notably harder due to higher visual complexity and
limited demonstrations (Fig. 5). Without visual generalization (faded bars), MirrorDiff. and Diffu-
sion (M) both improve data efficiency over vanilla Diffusion, with MirrorDiff. showing a slight ad-
vantage. With the selected visual generalization techniques, MirrorDiff. (O) gains modestly, while
Diffusion (M, O, P) benefits most, consistent with the gap observed between MirrorDiff. (O) and
Diffusion (M, O, P) in real experiments (Sec. 4.2). Overall, MirrorDiff. is preferred without gen-
eralization techniques, but with lightweight visual generalization methods, Diffusion (M, O, P)
achieves superior performance under visually challenging, limited-data conditions while also being
faster. MirrorDiff., by contrast, is more computationally demanding due to its more sophisticated
equivariant structure. We therefore recommend Diffusion (M, O, P) as the practical choice.
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Stack Three D1 Square D2 3-Part Assembly D2

Method 50 100 200 100 200 500 100 200 500

D
el

ta

EquiDiff. +O 20.7 54.7 77.3 25.3 41.3 60.0 15.3 39.3 63.0
MirrorDiff. +O 51.3↑31 77.3↑23 89.3↑12 24.0↓1 48.7↑7 59.3↓1 25.3↑10 49.3↑10 61.3↓2

DiffPo. +OP 19.3 47.3 80.7 20.7 40.0 58.0 11.0 31.3 64.0
DiffPo. +M, O, P 50.7↑31 68.0↑21 91.3↑11 32.7↑12 49.3↑9 56.7↓1 21.0↑10 47.3↑16 61.3↓3

BC-RNN +O, P 0.7 2.0 8.0 4.0 9.3 32.0 0.0 0.0 6.0
BC-RNN +M, O, P 0.0↓1 3.3↑1 37.3↑29 4.7↑1 12.7↑3 43.3↑11 1.0↑1 3.3↑3 12.0↑6

R
el

at
iv

e

EquiDiff. +O 6.7 25.3 62.7 11.3 20.7 40.0 1.3 4.7 22.0
MirrorDiff. +O 28.7↑22 57.3↑32 80.0↑17 18.0↑7 32.0↑11 47.3↑7 13.3↑12 23.3↑19 50.0↑28

DiffPo. +O, P 19.3 31.3 58.0 18.0 30.0 44.0 4.0 13.3 32.0
DiffPo. +M, O, P 29.3↑10 50.0↑19 68.0↑10 32.7↑15 41.3↑11 45.3↑1 11.0↑7 26.7↑13 48.0↑16

BC-RNN +O, P 6.7 18.0 51.3 8.0 19.3 45.3 2.0 3.3 11.3
BC-RNN +M, O, P 18.0↑11 35.3↑17 73.3↑22 16.0↑8 24.7↑5 48.0↑3 1.0↓1 8.7↑5 22.7↑11

Table 2: Setting III: Wide-view, two-side demonstrations. Success rate (%) on three MimicGen
tasks as the number of demos increases. Blue denotes absolute gains from MirrorAug or MirrorDif-
fusion over their baselines; red indicates drops. Delta and Relative refer to action controllers. Results
are averaged over the top-1 rollout from three training seeds. Full table in App. D.

Setting III: Two-Side Demonstrations with Challenging Long Horizon Tasks

We evaluate MirrorDuo’s data efficiency with challenging long-horizon demonstrations covering
both sides of the workspace (Fig. 2c). Experiments are conducted on Stack Three D1, Square D2,
and Three-piece Assembly D1. To match task difficulty, the number of demonstrations is varied:
[50, 100, 200] for Stack Three D1, where performance saturates quickly, and [100, 200, 500] for the
more challenging Square D2 and Three-piece Assembly D1.

Beyond the previously evaluated policies, we also compare against the SO(2)-Equivariant Diffu-
sion Policy [7] as introduced in Sec. 2. However, their relative controller is defined using global
transformations, At = XHt

X−1
Ht−1

, whereas applying our relative formulation (Eq. (2)) would in-
duce SO(2) invariance, differing from their original design. Nonetheless, the comparison remains
valid since both delta and absolute controllers operate in fixed frames, and both relative formulations
involve frame-to-frame transformations. Detailed performance benchmarking is provided in Tab. 3.

Method Low
Demos

Medium
Demos

High
Demos

D
el

ta MirrorDiff. +O 13.1 13.3 3.2
DiffPo +M, O, P 17.8 15.3 2.2
BC-RNN +M, O, P 0.3 2.7 15.6

R
el

at
iv

e MirrorDiff. +O 13.6 20.7 17.5
DiffPo. +M, O, P 10.6 14.4 9.1
BC-RNN +M, O, P 6.1 9.3 12.0

Table 3: Average absolute gains over three
tasks relative to each method’s baseline.

The absolute performance improvements over
each method’s baseline are averaged across tasks,
grouped by demonstration level (low, medium,
high), and controller mode. MirrorDuo yields con-
sistent gains in low- and medium-data regimes, with
improvements plateauing once sufficient demonstra-
tions are available. Notably, it significantly en-
hances performance under the less favorable con-
troller for each policy, specifically, the relative con-
troller for Diffusion and the delta controller for BC-
RNN. However, BC-RNN continues to struggle un-
der the relative setting, showing near-zero performance with or without MirrorAug when the data
is insufficient. We observe comparable performance between Diffusion (M, O, P) and the explic-
itly reflection-equivariant MirrorDiffusion (O) under delta control. This indicates that there is no
substantial advantage between the two approaches under trivial visual asymmetry.

4.2 Real-World Experiments

We evaluate on a real-world setup with a Franka Emika arm, a third-person Azure Kinect, and an
eye-in-hand Orbbec Femto Bolt camera. Both cameras provide RGB-D input, though only RGB is
used during training and inference. Demonstrations are collected via teleoperation [31] at 10 Hz. We
design two tasks as real-world counterparts of the one-side and two-side settings in simulation: (1)
One-side: a pick-and-place task, where a plush toy is picked from the right and placed in a left-sided
bin; and (2) Two-side: a block-stacking task, where a green block is stacked onto a blue one, with
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Toy PnP Toy PnP, Mirrored Setup Stack Green on Blue

(a) Task Distributions

Start Goal

(b) Task Goals

Figure 6: Illstrations of Real Task Setups. (a) Task Distribution: Each image overlay with three
task arrangements. (b) Example of start and goal configuration.

In-domain # M-Demos

0 5

MirrorDiff. +O 76.7 0.0 73.3
DiffPo. +M, O, P 86.7 20.0 83.3
DiffPo. +O, P 83.3 0.0 3.3

Table 4: Generalization to Mirrored Setup.
Success rates (out-of 30 trials) on the plush toy
task in original and mirrored setups. M-demos
denote demonstrations in the mirrored setup.

# Demos

200 300

MirrorDiff. +O 43.0 60.0
DiffPo. +M, O, P 66.7 73.3
DiffPo. +O, P 40.0 53.3

Table 5: In-domain Data Efficiency. Success
rates (averaged over 30 trials) for the block-
stacking task, evaluated with increasing num-
bers of demonstrations.

demonstrations evenly distributed across both sides. Objects are randomly rotated, and placement
regions are shown in Fig. 6. We evaluate the direct transferability and data efficiency of Diffusion
Policy (M, O, P) and MirrorDiffusion (O). Training follows the same protocol as in simulation,
with evaluation performed on the best checkpoint selected by validation loss in 400 epochs.

As shown in Tab. 4, with only 5 opposite-side demonstrations, both MirrorDiffusion (O) and Dif-
fusion Policy (M, O, P) effectively transfer to the mirrored setup, achieving 73.3% and 83.3%,
respectively, matching their in-domain performance. This is not observed for the standard Diffusion
Policy, when trained primarily on one-side demonstrations, achieves only 3.3% in the mirrored do-
main. In the stacking task, Diffusion Policy (M, O, P) achieves gains of 26.7% and 20% over the
baseline Diffusion Policy. Similar to Setting II (Sec. 4.1) in simulation, MirrorDiffusion (O) lags be-
hind Diffusion Policy (M, O, P) under challenging visual asymmetry, performing only marginally
better than the baseline Diffusion Policy. In the plush toy task, Diffusion Policy (M, O, P) out-
performs MirrorDiffusion (O) by approximately 10% in both the original and mirrored domains.
This may be attributed to the use of pretrained visual backbones, which offer improved robustness
to real-world variations such as slight shadows, along with faster convergence during training.

In summary, while MirrorDiffusion is favored without visual generalization techniques, Diffusion
(M, O, P) achieves higher performance under challenging, limited-data conditions and offers more
efficient training. We therefore recommend Diffusion Policy (M, O, P) as the practical choice.

5 Conclusion

We introduced MirrorDuo, a general framework for leveraging reflectional symmetry in image-based
visuomotor policy learning. By mirroring RGB observations, 6-DoF proprioception, and actions in
a semantically consistent way, our approach enables two complementary applications: MirrorAug,
a data augmentation strategy that expands training coverage to mirrored configurations, and Mir-
rorDiffusion, a reflection-equivariant policy that generalizes by construction. Despite the complex-
ity of projecting 3D reflections into 2D visual observations, our results demonstrate that reflectional
symmetry is highly compatible with image-based learning pipelines. Combined with lightweight
visual generalization techniques, policies trained with MirrorDuo generalize effectively to mirrored
setups with minimal or no additional opposite-side data and are tolerant to visual asymmetries intro-
duced by both the robot and the background (e.g., table textures). Together, these findings highlight
reflection as a powerful and underexplored inductive bias for scalable, generalizable robot learning.
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6 Limitations

6.1 Applicability to Other Camera Placements

Eye-in-hand-only setups remove visual asymmetry from the third-person camera, and do not require
centering in image space, allowing direct application without modification. The mirrored setup then
corresponds to the initial camera frame.

As discussed in Sec. 3, off-centered third-person cameras can be addressed by pre-centering the
end-effector tool-center point (TCP). The TCP image coordinate can be obtained either through
hand–eye calibration and robot kinematics, or by leveraging vision models such as Grounded-
SAM [25] (App. F).

Side-camera setups typically have the end-effector near the image center, and as shown in App. F,
centering on the end-effector makes MirrorDuo remain effective. As explained in the above section,
asymmetries in the background and robot, which may be more pronounced in side-camera settings,
can be narrowed using visual generalization and a few in-domain samples. However, unlike front-
camera setups, side cameras may imply a more offset initial configuration, potentially leading to
mirrored poses outside the workspace.

While the formulation remains unchanged, over-the-shoulder cameras can introduce more self-
occlusion, potentially widening the visual gap and warranting further testing. Interestingly, in
symmetric bimanual setups with dual-arm robots and over-the-shoulder cameras mimicking head
position, we expect mirrored trajectories to transfer directly to the other arm.

6.2 Marginal Performance Drop under Sufficient Data

3rd-person Eye-in-hand Eye-in-hand3rd-person

Configuration 1 Configuration 2

Figure 7: Illustration of two plausible robot configurations and eye-in-hand views that share near-
identical third-person observations.

As shown in Tab. 2, both MirrorDiffusion and Diffusion + MirrorAug exhibit a slight performance
drop on Square D2 and Three-piece Assembly D1 compared to their baseline counterparts. We hy-
pothesize this is due to fragmented decision boundaries arising when near-identical task setups yield
differing observation distributions. Specifically, the eye-in-hand camera provides only a portion of
the workspace. As illustrated above, depending on the task, the demonstrator may choose either a
clockwise or counter-clockwise rotation, leading to two distinct eye-in-hand perspectives and action
trajectories. While mirrored trajectories maintain semantic consistency with the source trajectory,
they create inconsistent mappings across the mirrored pairs. This results in additional, possibly
conflicting, decision boundaries that may degrade performance. See App. E for more qualitative ex-
amples. However, in low- to medium-data regimes where demonstrations are sparse, this additional
diversity can be beneficial by enriching the training distribution and helping the policy generalize.
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A Formulation Derivations

Eye-in-hand Local-frame Reparameterization

For an eye-in-hand camera setup, let the current camera frame at time t be denoted as XCt
∈ SE(3),

where SE(3) represents the Special Euclidean group. The initial and previous camera frames are
denoted as XC0 and XCt−1 , respectively. Let the end-effector pose at time t be denoted as XHt .
Expressed in the initial eye-in-hand camera frame, and relative to the initial end-effector pose, the
delta transformation ∆XHt

is:

∆XHt
:= X−1

H0
XHt

=
(
C0XH0

)−1 (C0XHt

)
.

Similarly, the relative pose with respect to the previous timestep is:

δXHt
:= X−1

Ht−1
XHt

=
(
Ct−1XHt−1

)−1 (
Ct−1XHt

)
.

Fixed Points of the Pose Mirroring Mapping

For successful transfer of the mirrored trajectory to the current robot configuration, it is crucial that
the initial state of the manipulation trajectory lies near a fixed point of the pose mirroring mapping.
That is, the pose should remain close to configurations that are invariant under the mirror mapping
M(·). For an arbitrary pose X ∈ SE(3), the mirroring mapping is defined as M(X) = EXE, as
introduced in Eq. (1), where E = diag([−1, 1, 1, 1]). The fixed points of this mapping must satisfy
EXE = X. Applying the mirroring operation to a general pose X ∈ SE(3):

E



rxx ryx rzx tx
rxy ryy rzy ty
rxz ryz rzz tz
0 0 0 1


E =




rxx −ryx −rzx −tx
−rxy ryy rzy ty
−rxz ryz rzz tz
0 0 0 1


 .

Therefore, for a pose to be a fixed point under M, the following symmetry conditions must hold:

ryx = rzx = rxy = rxz = 0, tx = 0,

which means that the rotation matrix corresponds to a pure rotation about the x-axis. The translation
vector is only mildly affected by the local reparameterization (δXHt , ∆XHt ) around the origin (i.e.,
t∗ ≈ t for small motions). Likewise, small rotational motions that follow this fixed-point structure,
i.e., rotations about the x-axis, are only slightly perturbed by the mirroring operation.

B Reflection-Equivariant Diffusion Policy (MirrorDiffusion)

The general architecture of MirrorDiffusion follows the SO(2)-Equivariant Diffusion Policy pro-
posed by Wang et al. [7], with the key difference being a change in structural equivariance from
rotation to reflection. As illustrated in Fig. 8, the Equivariant ResNet used in [7] is modified to be
reflection-equivariant by constructing the ResNet architecture using the abstract group Flip2dOnR2

provided in the E(n)-CNN library [23]. The end-effector states are arranged following the repre-
sentation specified by the color coding in the figure. The reflection-equivariant linear layers are
implemented by overloading the Dihedral group in the E(n)-CNN library [23], with the number of
group elements set to 1 (a group only contains the original element and reflected counter part).

During the encoding phase (generating the global condition), two independent reflection-equivariant
ResNets encode the third-person and eye-in-hand views, each producing a pair of 128-dimensional
regular representations (i.e., 128× 2). The robot states are arranged according to the corresponding
irregular and trivial group representations, as formulated in Eq. (3) and illustrated in Fig. 8. A
subsequent reflection-equivariant linear layer encodes these mixed representations into a 128 × 2
regular representation. During the denoising phase, the noisy action is arranged according to the
representation specified in Fig. 8, and is processed by a reflection-equivariant linear layer, producing
a 64 × 2 regular representation. A 1D Temporal U-Net with hidden dimensions [512, 1024, 2048]
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Figure 8: Illustration of Reflection Equivariant Diffusion (MirrorDiffusion) Network Architecture.

then processes each element of the embedding. Conceptually, this corresponds to applying the U-
Net independently to the concatenated embedding (comprising the global condition and the action
embedding) for both the original and reflected inputs, yielding a 64-dimensional embedding for
each component. The separately denoised latents are recovered to shape 64 × 2, which is then
passed through a final reflection-equivariant decoder to produce the predicted noise.

C Experiment Implementation Details

Baseline Networks

Diffusion Policy follows the hybrid-CNN architecture with global conditioning as described in [14],
consistent with the baseline implementation in [7]. The input horizon, action horizon, and action
prediction horizon are set to 2, 8, and 16, respectively. A fixed learning rate of 1 × 10−4 is used.
The model utilizes a DDPM noise scheduler [24], with both training and inference configured for
100 diffusion steps across simulated and real-world experiments.

BC-RNN follows the network architecture and hyperparameters specified in RoboMimic [12].
Specifically, the image encoder comprises a ResNet18 [26] followed by a Spatial Softmax layer
The extracted image features are concatenated with the robot’s proprioceptive states and passed
through a 2-layer LSTM, whose final hidden state is used as input to a Gaussian Mixture Model
(GMM) policy head. As in RoboMimic [12], during rollout, the learned standard deviations of each
GMM mode are clamped and replaced with a fixed value of 1× 10−4.

Random Overlay

Random Overlay plays an integral role in MirrorDuo. For diffusion policies, we follow the default
setting described in [30]. Specifically, for each batch of trajectories, we randomly sample half and
overlay their images with random backgrounds using a blend factor α = 0.5. During preliminary ex-
periments, MirrorDiffusion exhibited minor performance degradation under stronger overlays (i.e.,
lower α). As a result, we set the blend factor to α = 0.75. The blending operation is defined as:

overlaid image = α · image+ (1− α) · random background, α ∈ [0, 1].

The number of warmup epochs, during which the ratio of sampled trajectories gradually ramps up
to the designated threshold, is set to min(20, 4000/num demos) to accommodate varying numbers
of demonstrations.
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Training Epochs and Evaluation Protocols

The total number of training epochs is scaled according to the number of demonstrations, computed
as 50000/num demos. Evaluation is performed every 2000/num demos steps. At each evaluation
step, 50 rollouts are performed. For experiments involving additional demonstrations from mir-
rored arrangements, the number of demonstrations used to compute the total training epochs and
evaluation frequency is fixed to the base number of demonstrations, i.e., 200.

For the data points of the SO(2)-Equivariant Diffusion Policy [7] in Table 2 and Table 6, results for
tasks with 100 and 200 demonstrations are directly taken from the published results. Results for
50 and 500 demonstrations are not publicly available and are therefore newly generated using the
authors’ released code.

Image size. The image inputs for all experiments are of size 3 × 84 × 84, with a random crop of
size 76× 76 applied during training. The crop is set to 76× 76 center crop during evaluation.

Initial Pose. The local reparameterization of poses and actions (Eq. (2)) require centering all tra-
jectories around a fixed initial pose. In simulation, where the starting pose is constant, we use this
fixed pose directly. In real-world experiments, where initial poses vary within a neighborhood, we
use the average initial pose across demonstrations.

Simulation Task Descriptions

In this work, we use five simulation tasks from MimicGen [17], using the provided datasets. All
tasks employ the Franka Panda robot as the manipulator, operating in a 7-dimensional action space
comprising 6 degrees of freedom for the end-effector pose and 1 dimension for gripper open/close.
Each task uses two camera views: a third-person view and an eye-in-hand view. Task descriptions
and key properties are summarized below:

• Square D0: Grasp the square nut by the handle and insert it into a matching square peg. The
nut undergoes 360° random rotation around the z-axis, with limited positional variation.
The target peg remains fixed.

• Square D2: Same objective as Square D0, but with a broader distribution over both the
nut’s and peg’s positions and orientations.

• Coffee D2: Pick up the coffee pod from one side, insert it into the coffee machine on the
opposite side, and close the lid. The coffee pod has constrained positional variation, and
the coffee machine has limited variation in position and z-axis orientation.

• Stack Three D1: Sequentially stack three cubes on top of each other. Positions and z-axis
orientations of the cubes are randomized within the workspace.

• Three Piece Assembly D1: Sequentially assemble three pieces, requiring stricter precision
on orientation and placement.

Except for Square D0 and Coffee D2, which involve constrained initialization, all other tasks allow
full 360° rotation around the z-axis and broad position variation for all relevant objects.

D Simulation Results with Standard Deviation

Table 6 presents the complete simulation results from Table 2, including standard deviations.

E Mismatch Between Mirrored and Actual Demonstrations

As discussed in the limitations section and observed in Table 2, when the number of demonstrations
increases to 500 for the Square D2 and Three Pieces Assembly D1 tasks, MirrorDuo exhibits a
marginal decrease in performance. We hypothesize that this is due to the mirrored demonstrations
increasing the level of multi-modality in the data, leading to a more fragmented decision boundary.
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Stack Three (D1) Square (D2) 3-Part Assembly (D2)

Method 50 100 200 100 200 500 100 200 500

D
el

ta

EquiDiff. 20.7±0.9 54.7±5.2 77.3±1.8 25.3±8.7 41.3±9.8 60.0±7.5 15.3±1.8 39.3±1.8 63.0±3.0
MirrorDiff. 51.3±0.9 77.3±0.9 89.3±0.9 24.0±2.8 48.7±2.5 59.3±3.4 25.3±2.5 49.3±3.4 61.3±4.1

DiffPo. 19.3±3.8 47.3±2.5 80.7±5.0 20.7±0.9 40.0±2.8 58.0±1.6 11.0±3.0 31.3±2.5 64.0±7.5
DiffPo. + M 50.7±1.9 68.0±3.3 91.3±0.9 32.7±2.5 49.3±8.4 56.7±2.5 21.0±1.0 47.3±6.6 61.3±5.0

BC-RNN 0.7±0.9 2.0±0.0 8.0±1.6 4.0±1.6 9.3±2.5 32.0±4.3 0.0±0.0 0.0±0.0 6.0±0.0
BC-RNN + M 0.0±0.0 3.3±1.9 37.3±6.2 4.7±2.5 12.7±0.9 43.3±8.2 1.0±1.0 3.3±1.9 12.0±2.8

R
el

at
iv

e

EquiDiff. 6.7±2.5 25.3±3.3 62.7±3.5 11.3±1.3 20.7±4.1 40.0±2.0 1.3±0.7 4.7±0.7 22.0±2.8
MirrorDiff. 28.7±2.5 57.3±0.9 80.0±3.3 18.0±1.6 32.0±3.3 47.3±1.9 13.3±2.5 23.3±2.5 50.0±1.6

DiffPo. 19.3±0.9 31.3±3.4 58.0±3.3 18.0±3.3 30.0±4.3 44.0±1.6 4.0±0.0 13.3±0.9 32.0±4.3
DiffPo. + M 29.3±3.4 50.0±2.8 68.0±0.0 32.7±2.5 41.3±3.4 45.3±5.7 11.0±1.0 26.7±5.7 48.0±1.6

BC-RNN 6.7±4.1 18.0±1.6 51.3±11.1 8.0±1.6 19.3±2.5 45.3±3.8 2.0±0.0 3.3±1.9 11.3±5.7
BC-RNN + M 18.0±5.7 35.3±6.8 73.3±3.4 16.0±2.8 24.7±0.9 48.0±8.6 1.0±1.0 8.7±2.5 22.7±1.9

Table 6: Setting III: Wide-view, two-sided demonstrations. Success rate (%) on three MimicGen
tasks as the number of demonstrations increases. Delta and Relative refer to action controllers.
Results are averaged over the top-1 rollout (50 trials) from three training seeds. EquiDiffḋenotes
the SO(2)-equivariant diffusion policy [7], DiffPo. denotes the diffusion policy [14], M denotes
MirrorDuo augmentation, and MirrorDiff. denotes the proposed mirror-equivariant diffusion policy.

(a) Original Demo A (b) Mirrored Demo A

(c) Original Demo B (d) Mirrored Demo B

Figure 9: Illustration of Conflicting Visual Cues and Trajectories introduced by mirrored demon-
strations in the Square D2 task. Each mirrored demonstration features an approximately co-located
square nut relative to its original counterpart (e.g., Fig.(b, c) and Fig.(d, a)), yet exhibits a distinct
eye-in-hand view. This discrepancy suggests that while the mirrored and original demonstrations
share a similar initial setup (i.e., the first subtask), they require oppositely rotating actions.

Specifically, for a given original demonstration, its mirrored counterpart may represent a valid but
conflicting trajectory from the actual sample contained in the original dataset. For Square D2, as
illustrated in Fig. 9, the mirrored demonstration in Fig. 9b shows the square nut approximately co-
located with that in the other original demonstration (Fig. 9c). However, the mirrored eye-in-hand
view (Fig. 9b) shows the entire square nut clearly, while in the original view, only the handle of
the nut is visible. Fig. 10 shows one of the examples in the Three-piece Assembly D1 Task. Each
mirrored demonstration features an approximately co-located T-shaped piece relative to its original
counterpart (e.g., Fig. (b, c) and Fig. (d, a)), yet exhibits a distinct eye-in-hand view, one oriented
toward the workspace, the other facing outward.

These examples indicate that, under similar subtask setups, the augmented data introduces addi-
tional valid trajectories that involve opposing end-effector rotations and result in distinct eye-in-
hand views. This divergence introduces ambiguity into the learned policy, and the likelihood of
such ambiguity increases as the density of demonstrations grows.

16



(a) Original Demo A (b) Mirrored Demo A

(c) Original Demo B (d) Mirrored Demo B

Figure 10: Illustration of Conflicting Visual Cues and Trajectories introduced by mirrored
demonstrations in the Three Piece Assembly D1 task. Each mirrored demonstration features an
approximately co-located T-shaped piece relative to its original counterpart (e.g., (b, c) and (d, a)),
yet exhibits a distinct eye-in-hand view, one oriented toward the workspace, the other facing out-
ward. This discrepancy suggests that while the mirrored and original demonstrations share a similar
initial setup (i.e., the first subtask), they require oppositely rotating actions.

F MirrorDuo with Off-Centered Third-Person Camera

(a) Original Image (b) Roll-Centered Image (c) Centered Mirror Image (d) Centered Mirror Setup

Figure 11: Illustration of Mirroring with an Off-Centered Camera. (a) Original image from
an off-centered third-person camera. (b) Roll-centered image with the end-effector aligned to the
mirroring axis. (c) Mirrored version of the roll-centered image used by MirrorDuo. (d) Roll-centered
image from the actual mirrored setup.

To transfer the mirrored skill to the initial configuration based on the given demonstrations, Mirror-
Duo requires alignment not only in the proprioceptive states but also in the image space. This means
that the end-effector should be near the mirroring axis, i.e. the horizontal center of the image. Al-
though random cropping alleviates the strictness of centering to the midline, a general alignment is
still required. For off-centered third-person cameras, a pre-alignment step is necessary. Otherwise,
even if MirrorDuo successfully learns the mirrored skill, the starting configuration and workspace
setup of the mirrored demonstration will not align with the ideal scenario of transferring under the
current robot configuration to a mirrored object arrangement.

Here we show that MirrorDuo can be applied to off-centered third-person camera scenarios by pre-
centering the view, demonstrated in two settings: one with one-sided demonstrations (Square D0,
Fig. 11) and another with two-sided demonstrations (Stack Three D1, Fig. 12). Let the off-centered
camera be denoted as {C} and the re-centered camera as {Cref}. The mirrored setup is derived using
Eq. (1), where the mirroring is applied with respect to the re-centered camera pose, i.e., XCref

.
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In-domain # M-Demos
0 5 10

MirrorDiff. 89.3 ± 1.9 0.0 ± 0.0 72.7 ± 1.9 90.0 ± 1.6
DiffPo. + M 83.3 ± 1.9 0.0 ± 0.0 69.3 ± 0.9 84.0 ± 1.6
DiffPo. 85.3 ± 2.5 0.0 ± 0.0 23.3 ± 1.9 32.7 ± 3.8

Table 7: Off-Centered Third-Person Camera, One-Sided. Success rate (%) on the Square D0
task under the mirrored arrangement, with an additional 5 or 10 demonstrations from the mirrored
setup (denoted as M-Demos in this table) added on top of the original 200 demonstrations. Each
data point reports the average of the top-3 evaluations, with 50 rollouts per evaluation.

Third-person Camera
Centered Off-centered

MirrorDiff. 89.3 ± 0.9 84.7 ± 1.9
DiffPo. + M 91.3 ± 0.9 81.3 ± 1.9
DiffPo. 80.7 ± 5.0 70.7 ± 3.4

Table 8: Off-Centered Third-Person Camera, Two-
Sided. Success rates (%) on the Stack Three D1 task.

Figure 12: Illustration of Off-centered
camera view for Stack Three D1

Following previous setups, we evaluate MirrorDiffusion, Diffusion + MirrorAug, and the Diffusion
baseline using re-rendered demonstrations under off-centered cameras. In the one-sided case, we
assess performance on mirrored arrangements with 0, 5, and 10 additional demonstrations. For
the two-sided case, we directly evaluate in-domain performance. All experiments assume access
to global camera extrinsics, enabling roll-centering by aligning the initial end-effector pose to the
image center. The same offset is applied to subsequent frames, with the rolled region tinted green to
indicate shifted areas. Networks receive these centered images as input.

In the off-centered camera settings, the visual domain gap between the (already-centered) mirrored
and original samples arises not only from the robot’s asymmetry but also from perspective shifts
across the left and right sides of the workspace. For instance, as shown in Fig. 11, in the original
domain, the square peg appears near the horizontal center of the image, showing only its front face.
In the mirrored setup, however, the peg shifts toward the left side of the image, revealing its right
face, an angle not observed in the original demonstrations. Additionally, the appearance of the table
also changes under this off-centered view.

Table 7 shows that the widened visual domain gap reduces the performance of direct transfer to
the mirrored arrangement to zero, in contrast to the matched in-domain performance of Diffusion +
MirrorAug when the third-person camera is centered (Fig. 3). However, the data efficiency benefit of
MirrorDuo remains evident. Under the increased visual domain gap, the performance in the mirrored
arrangement with five additional demonstrations is only 17% and 24% lower than the corresponding
in-domain setting for MirrorDiffusion and Diffusion + MirrorAug, respectively. With ten additional
demonstrations, both methods recover their performance in the mirrored setup, matching their in-
domain success rates. In contrast, without MirrorDuo, simply adding ten demonstrations in the
mirrored setup results in only a 32.7% success rate for the baseline diffusion policy.

For the two-sided setup with an off-centered camera, we evaluate on Stack Three D1. The centered
camera results reported in Table 8, are drawn from Table 6 (averaged over three seeds). For the off-
centered case, each entry reflects the average of the top 3 evaluations, with 50 rollouts per evaluation
due to limited compute resources. As shown in Table 8, all methods exhibit a performance drop
under the more challenging viewpoint. MirrorDiffusion and Diffusion Policy + MirrorAug maintain
relatively high success rates (84.7% and 81.3%, respectively), while the baseline drops to 70.7%.
This ∼10% decline aligns with trends observed in the centered-camera setting, highlighting the
effectiveness of mirroring-based approaches to off-centered camera variations.
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