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ABSTRACT

Theory of Mind (ToM) presents a significant generalization challenge in computa-
tional modeling. This paper explores how neural networks with varying architec-
tures and training regimes learn and represent ToM-related features. We introduce
a novel method for quantifying feature representation within neural networks and
apply it to a set of theoretically-grounded features designed to differentiate be-
tween hypothesized ToM strategies. We examine the relationship between feature
representation and task accuracy across different model architectures and train-
ing datasets. This work provides insights into the mechanisms underlying ToM
capabilities in neural networks and offers a framework for future research in com-
putational ToM.

The study of Theory of Mind (ToM)—the ability to attribute mental states to others—began with
Premack and Woodruff’s work on chimpanzees in 1978 Premack & Woodruff (1978). Since then,
it has grown into a fundamental concept in cognitive science. Over the past five decades, develop-
mental and comparative psychologists have proposed various theories to explain how humans and
non-human animals acquire and use ToM skills. These theories have sparked heated debates and led
to numerous experimental paradigms, from false-belief tasks to nuanced measures of mental state
attribution. However, traditional behavioral studies are limited by methodological constraints and
the inherent difficulty of inferring cognitive processes from observable behavior alone.

Recent advancements in computational modeling provide new tools for simulating and analyzing
ToM processes in controlled, replicable environments. These simulated models offer unique in-
sights into the cognitive mechanisms underlying ToM, complementing traditional behavioral stud-
ies. However, researchers continue to face challenges in creating models that generalize learned
skills to novel scenarios, mirroring difficulties observed in non-human primate studies.

Psychologists have proposed a spectrum of theories to explain ToM task performance in human
and non-human subjects, ranging from simple behavior reading (no mentalizing) to more powerful
belief-desire mentalizing. There are ongoing debates about whether different strategies are capable
of solving certain ToM tasks as well as robustly generalizing to new tasks. Computational models
like neural networks can be used to experimentally study how an agent might learn from experience
to do ToM tasks. Without analyzing the features represented within these models, we cannot reliably
differentiate between these strategies in neural networks, impeding our ability to implement and
study mechanisms and curricula that foster genuine ToM capabilities and robust generalization.

In this paper, we:

• Develop and validate a novel technique for quantifying the implicit representation of fea-
tures within neural networks’ activations, providing a robust method for analyzing internal
model representations.

• Describe a comprehensive set of theoretically-grounded features to empirically evaluate
our feature extraction method and differentiate between three hypothesized ToM strategies
in neural networks

• Quantify the feature representation capabilities of diverse neural network architectures and
training regimes, offering insights into their respective ToM capabilities and potential un-
derlying mechanisms

• Investigate the relationship between feature representation and model performance, assess-
ing the necessity and sufficiency of specific features for accurate task completion
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1 RELATED WORK

1.1 COMPUTATIONAL THEORY OF MIND

This work is heavily inspired by the ToMnet experiments of Rabinowitz et al. Rabinowitz et al.
(2018). In their study, they implement machine learning models with explicit ToM-like representa-
tions about agents’ attributes and mental states, and are able to leverage the computational setting to
probe those models for representations of those features.

Recently, Horschler et al. Horschler et al. (2023) used computational modeling to investigate ToM
capabilities in non-human primates, focusing on visual perspective-taking tasks similar to the one
investigated by this paper. They developed seven models of varying complexity to represent dif-
ferent theories of primates’ social cognition, and parameterize the subjects’ reliance on their ToM
inferences to determine how well the theories explain primate behavior.

Computational ToM skills have also been particularly well-studied recently in the context of large
language models (LLMs). The ToMi dataset by Le et al. Le et al. (2019) consists of short, structured
narratives based on the Sally-Anne false belief test. ToMi focuses primarily on first-order ToM rea-
soning about physical world states. More recently, Xu et al. developed OpenToM Xu et al. (2024) to
benchmark ToM capabilities in large language models using longer, more natural narratives, cover-
ing both physical and psychological aspects of ToM. Despite recent advancements, LLMs continue
to significantly underperform humans on ToM tasks. The significant gap between LLMs and humans
on such tasks highlights the difficulty in acquiring robust ToM skills in machine learning models.

1.2 HYPOTHESES ABOUT TOM IN NONHUMAN ANIMALS

Developmental and comparative psychologists have produced a variety of theories about potential
ToM mechanisms. In this section we briefly overview some theories about ToM in developing hu-
mans and non-human animals. This list is incomplete, and much work remains to be done regarding
the extent to which any of these theories can be (and/or have already been) used to generate specific
cognitive hypotheses, which might be implemented computationally and tested empirically. We also
emphasize the importance of noting the context in which these theories were generated, and which
scientific problems they address.

Simulation theory involves using one’s own mental states as a model for replicating or simulating
those of others. It could be facilitated by mirror neurons, which are thought to enable the internal
mirroring of others’ actions and emotional states. Additionally, it emphasizes the role of pretend
play during childhood development (Gallese & Goldman, 1998), (Harris, 1992). Theory theory in-
volves updating (often Bayesian) beliefs based on empirical evidence about others. Children refine
their understanding by testing internal models empirically during social interactions (?). Mentaliz-
ing/systemizing theory differentiates between systematizing, reasoning about non-social rules, and
mentalizing, reasoning about social rules (Baron-Cohen, 2000). This theory has been used to explain
differences in the ToM skills of individuals on the Autism spectrum, who might tend to systemize
more strongly relative to mentalizing.

Of particular relevance to the work in this paper are theories about ToM in animal cognition, as
reviewed and categorized by Heyes Heyes (2015). Heyes outlines several key conceptual frame-
works for understanding potential mindreading abilities in animals. Under behavior reading, an-
imals predict others’ behavior based solely on observable cues, without attributing mental states
Heyes (1998). Perception-goal psychology is a framework proposed by Call and Tomasello Call
& Tomasello (2008) as an alternative to full-blown ToM in animals. It suggests that great apes
may understand what others perceive and what concrete goals they may have, without attributing
abstract mental states like beliefs. Minimal ToM is a more recent framework by Butterfill and Ap-
perly Butterfill & Apperly (2013), who propose a limited form of mindreading that allows for some
attribution of mental states, such as goals and perceptions, but without full metarepresentation of
propositional attitudes. Whiten’s intervening variable approach Whiten (2013) views animal min-
dreading as analogous to how comparative psychologists use intervening variables to explain animal
behavior. Finally, full-blown ToM involves the ability to attribute complex mental states, including
false beliefs Premack & Woodruff (1978).
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2 TEST ENVIRONMENT

In this paper, we use the Standoff test environment, a gridworld setting that replicates the competitive
feeding paradigm computationally Michelson et al. (2024). The competitive feeding paradigm is a
test setup designed to distinguish whether a non-verbal subject will change its behavior to account
for what it believes someone else knows, based on evidence relating to what the other person sees
(Hare et al., 2000). Specifically, the environment implements a version of competitive feeding in
the style of Penn and Povinelli Penn & Povinelli (2007). In Standoff tasks, two treats of different
sizes are visibly hidden in any of five boxes, which are then shuffled around. The player’s challenge
is to select the box containing the best possible treat; this is made difficult by the presence of an
opponent. The opponent follows simple behavioral rules: if it believes the larger treat is somewhere,
it will claim that box, preventing the player from getting whatever treat is inside. Otherwise, the
opponent will attempt to reach the smaller treat, or will select a preferred box. Those rules are
obfuscated by the fact that the opponent’s vision might be obscured at any point during the setup.
The opponent might be unaware that either treat exists, or it might harbor a counterfactual belief
about either of the treats’ locations. The player’s best option is always to either stay clear of the
opponent or to take advantage of the opponent’s unawareness.

We use this setting as a source of data for supervised learning; each datapoint is collected from a
single trial of five timesteps, or a (5, 5, 7, 7)-sized video. The target output to be learned is the
correct box, meaning the player’s best choice of the five boxes, given the opponent’s selection.
Twenty percent of all datapoints are reserved for the evaluations referenced throughout this paper.
Previously, Michelson et al. found that models trained on different subsets of Standoff were able to
learn the tasks present in their training data to high accuracies, but struggled to generalize to novel
settings Michelson et al. (2024).

In this paper, we use three training settings, patterned off of Penn and Povinelli’s description of
systematic competitive feeding: Stage-1 has all tasks without an opponent present. Stage-2 has
all tasks in Stage-1, plus those with a fully-informed opponent. Stage-3 has all tasks allowed in
the environment. Since ToM is a generalization challenge, we split many results in this paper by
novelty. Note that all tasks are familiar to models trained on Stage-3.

3 EXPERIMENT 1: FEATURE EXTRACTION

In this experiment, we demonstrate the process by which we quantify features’ presence within
neural networks’ inner activations.

3.1 MODELS

We train neural networks with three different architectures as our task-models. The selected architec-
tures are a multilayer perceptron (MLP), a convolutional neural network (CNN), and a convolutional
LSTM (CLSTM). The MLP has two hidden layers of 32 units and ReLU activations. The CNN
model has two convolutional layers, followed by a single 32-unit hidden layer. Finally, the CLSTM
model has a convolutional layer that is applied to data at each timestep, whose results are fed to a
three-layer LSTM with 32 hidden units in each layer. A 32-unit hidden layer is used to produce
output predictions from the last timestep of the LSTM’s outputs. For each dataset and architecture,
we train three task-models with different random seeds for batches and weight initialization. Inputs
to the MLP are flattened, and inputs to the CNN stack all five timesteps into the channel dimension.

3.2 METRIC: INTRINSIC FEATURE REPRESENTATION SCORES

The models that we train to complete our task (task-models) are connectionist, so we cannot expect
to find explicit, conveniently structured representations of discrete features. While methods like
correlation analysis or mutual information measurements provide some insight into feature repre-
sentations, they do not capture the complex, non-linear relationships that exist between perceptron
activations and high-level features, making the use of more sophisticated feature extraction tech-
niques necessary for accurate quantification. To quantify the degree to which features are implic-
itly represented within neural networks’ activations, we train additional machine learning models.
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These additional extraction-models take as inputs the internal activations of the task-models’, col-
lected when the task models are being evaluated. These internal activations might be sourced from
all hidden layers, or any specific hidden layer. Using those activations, each extraction-model is
trained to predict one of our defined features. Its accuracy in making that prediction is considered
the Intrinsic Feature Representation (IFR) score. We use two architectures for extraction-models:
linear regression, and a multilayer perceptron with one hidden layer of 32 units. The extraction-
model architectures are intended to be simpler than the original model, to ensure that they do not
make inferences the original model could not. We assume that, because these models might extract
connectionist features in the same manner that a task-model’s internal layers might, their ability
to predict a given feature corresponds with the task-model’s ability to use that feature. Hence, the
extraction-models’ accuracy scores quantify task-models’ feature representations in terms of their
usefulness to those models.

We train our extraction-models for 10,000 batches of 64 datapoints each. They are trained using the
Adam optimizer and an exponentially decaying learning rate schedule, starting at 0.01 and decreas-
ing by 1% each epoch. Since the extraction models must produce vectors of varying types which
may not be one-hot, their loss function is the mean squared error of their outputs. Accuracy is re-
ported by rounding outputs’ values to the nearest integer (all features tested in this paper are binary).
Each task-model provides data for three differently-seeded extraction-models.

The features of our set might also be accurately inferred from random chance—especially when
a feature is dominated by one value—or from the raw perceptual inputs of the environment. To
account for these factors, we imitate the IFR scoring procedure using the task-models’ inputs, pro-
ducing raw input IFR scores to compare activation IFR scores against. Activation IFR scores might
be lower than raw input IFR scores for several reasons: for example, the connectionist nature of
the activations might be more difficult to parse than the discrete inputs, or the neural network might
discard information about the given feature before the target layer. When activation IFR scores are
higher than the raw input IFR scores, we take that as evidence that the task-model performs useful
computations towards better-representing the given feature.

3.3 FEATURES

In this experiment, we investigate the IFR scores of two features: opponents, and b-loc. Opponents
is a binary scalar that indicates the presence or absence of an opponent, since the environment has at
most one opponent in each trial. We expect that all models should represent opponents well, even on
novel tasks, because the feature is easily observable in the perceptual input. B-loc represents a more
complex inference that our models might make: the opponent’s ground-truth belief state regarding
the location of both treats. This feature is a 10-length vector representing the two treats’ potential
presence in each of five locations. We expect that b-loc might be well-represented on familiar tasks
for all models. We do not expect, however, that any models should represent b-loc particularly well
on novel tasks. Doing so would be evidence for strong ToM skills, and b-loc is particularly useful
for predicting the opponent’s selection across all tasks in the environment.

3.4 RESULTS

Raw input IFR scores are strong for opponents across all tasks, indicating that the feature is acces-
sible given a sufficiently powerful extractor model. b-loc, on the other hand, becomes more difficult
to predict with each sequential dataset in the familiar case. The feature extractor generalizes better
to novel cases after being trained to predict b-loc on S2, which covers more unique b-loc possibili-
ties. Although we tested both linear and nonlinear extractors, we find that the nonlinear extractors’
performance is universally identical or better than that of its linear counterpart. While linear models
might struggle to find data in long vectors, underestimating a feature’s representation, nonlinear ex-
tractors could potentially make inferences that go beyond the most surface-level observations about
the environment and overestimate. We must take that fact into account when comparing our feature
extractors’ performance across different inputs.

From these results, we can see a clear difference between the two features tested: all models’ repre-
sentations of b-loc are much less robust to novel tasks than their representations of opponents. This
finding is unsurprising, because novel tasks often introduce unseen b-loc values as models transition
from Stages 1 and 2 to 2 and 3. Although the CLSTM model does not generalize particularly well,
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Figure 1: Results of Experiment 1 for all models using MLP feature extraction. Mean IFR scores on
familiar tasks (tasks in the given dataset) are depicted using outlined bars, while filled bars represent
mean IFR scores on novel tasks. Error bars indicate the quartiles of each value across the nine
extraction-models.

its ability to handle sequential data seems to give it a clear advantage over the simpler CNN and the
MLP.

In this experiment, we additionally recorded results for the final layers of the networks alone. We
find that, within these activations, representations are weaker than the sum total of all layers.

4 EXPERIMENT 2: DIFFERENTIATING HYPOTHESES ABOUT TOM
REPRESENTATIONS

In this experiment, we examine three hypotheses about the nature of our models’ ToM capabilities.
In order to evaluate these three hypotheses empirically, we first enumerate a list of features whose
presence we may quantify in our models. Next, we calculate the degree to which each of these
features is represented in our models, as in Experiment 1, and discuss what that evidence implies
regarding the models’ learned strategies for solving the task.

4.1 REPRESENTATION STRATEGIES

Similar to Horschler et al. Horschler et al. (2023), we consider a small number of mindreading strate-
gies, ordered by their representation power. We refer to these three strategies as non-mindreading,
low-mindreading, and high-mindreading. These are inspired by psychologists’ theories about the
evolution and development of ToM in humans and primates, in particular Butterfill & Apperly
(2013), though we refrain from using the same terminology in order to make specific claims about
what computational features each strategy allows for.

No-mindreading strategies are the hypothesis that a model does not make inferences about the mental
states of others. When using these strategies, a model would only ever solve a task by learning
surface-level statistics about the environment and the perceived behavior of others. These strategies
are closely associated with behavior reading, outlined by Heyes (Heyes, 2015). A no-mindreading
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model is incapable of accounting for an opponent’s knowledge and beliefs, except for where those
states happen to correlate with correct solutions in its past experience. Such correlations could be
purely coincidental, so they are not meaningful in novel circumstances.

Low-mindreading strategies represent a more advanced level of social cognition, in which limited
inferences might be made about other agents. In this framework, the subject is capable of under-
standing that an agent could have perceptions and goals that are different to its own. Similarly to
both minimal ToM and perception-goal psychology, these states must be grounded in reality: the
other’s perceptions are a part of the visible world-state, and the other’s goal is a concrete world state
that the other will attempt to reach. While this rudimentary mentalization is not capable of making
inferences about counterfactual beliefs, it does allow for an understanding that the opponent is or is
not aware of some factual information.

High-mindreading refers to the ability to attribute abstract mental states to others. This representa-
tion allows for the inference of specific counterfactual beliefs, and is capable of replacing concrete
goals with abstract desires, e.g. instead of reasoning that an opponent is going to go to that treat
over there, we might reason that the opponent wants the largest available treat, wherever it may be.
High-mindreading models might be likened to agents with full-blown ToM.

4.2 SELECTED FEATURES

 

 

Name Description Example Interpretation 

prediction the task-model's selection [1, 0, 0, 0, 0] box  0 is predicted  

opponents the number of opponents [1] there is an opponent present  

big-loc the large treat locations [1, 0, 0, 0, 0] large treat is at box 0 

small-loc the small treat location [1, 0, 0, 0, 0] small treat is at  box 0  

vision whether the opponent can see [1, 0, 0, 0, 0] opponent's vision is obscured in timestep 0 

fb-exist opponent false belief about existence [1, 0] opponent is misinformed about small treat existence 

fb-loc change-of-location false belief [1, 0, 1, 0, 0] opponent is misinformed about treats at box 0 and 2  

b-loc opponent beliefs about treat location [[1, 0], [0, 1], …] opponent believes small treat is at box 0, etc. 

target-loc opponent's current target [1, 0, 0, 0, 0] opponent's goal is location 0 

labels the correct box for the player [1, 0, 0, 0, 0] box 0 is correct 

Table 1: Descriptions of each feature that we select to extract from the activations of our task-models.
Aside from vision, which uses all five timesteps, features are sampled from the last timestep of the
environment.

To distinguish the three strategies, we identify a set of ten features, and hypothesize that each will
only be accurately represented in either familiar or unfamiliar tasks depending on the strategy taken.
These features are described in Table 1.

For non-mindreading models, we anticipate that predictions, the task-model’s outputs, should be
represented well. This hypothesis is a sanity check for the IFR extraction technique, as it makes the
assumption that features which would be available to or predictable by the task-models should like-
wise learnable by the extractor-models. The only reason that predictions would not generalize well
to novel tasks is if surprising inputs resulted in unexpected task-model behavior. Stage-1 includes
every event sequence in the environment, including all variations aside from opponent presence, so
novel tasks (which would only be novel by the introduction of an opponent) do not contain other
surprising observable features. We also anticipate the potential for strong representation of the treat
locations, which describes the location of either treat. The treats’ positions are never uncertain from
the perspective of the player. Even a non-mindreading player who has learned the larger treat will
often be claimed by an opponent might track both treats’ positions in case the opponent is absent.
Per the results of Experiment 1, opponent presence is easy to track and generalizes well to novel
scenarios in all models.

For low-mindreading models, we anticipate the introduction of vision, a five-length vector which
describes whether the opponent’s vision was obscured during any given timestep. We also expect
target-loc, the opponent’s goal, to be well-represented for familiar cases, but not necessarily for
novel cases. These models should also represent fb-exist, a vector which describes whether the oppo-
nent harbors a false belief about either of the two treats’ existence. This is because low-mindreading
models are capable of tracking a lack of awareness, but they cannot necessarily recall whether an
opponent harbors a specific counterfactual belief.
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Figure 2: Results of Experiment 2 for all models using MLP feature extraction. Mean IFR scores
on familiar tasks (tasks in the given dataset) are shown as outlined bars, while filled bars represent
mean IFR scores on novel tasks. Error bars indicate the quartiles of each value across the nine
extraction-models. Features are grouped by strategy: no mindreading, low mindreading, and high
mindreading. Because predictions is model-dependent, it cannot be inferred from raw input.

Finally, for high-mindreading models, we predict robust representation of b-loc, which describes the
opponent’s beliefs about the locations of both treats (quantified in Experiment 1). We additionally
predict strong representation of fb-loc, a five-length vector that describes counterfactual beliefs.
Fb-loc’s values are all zero, except for locations where the opponent believes a treat is in the wrong
location and is correct regarding that treat’s existence. Because high-mindreading models can reason
about false beliefs, goal-loc should robustly generalize in their results. Finally, given goal-loc and
the locations of both treats, high-mindreading models should robustly predict labels, the correct
outputs that the task-models are trained to predict.

4.3 RESULTS

The four non-mindreading features are represented surprisingly poorly by the CNN and MLP mod-
els. predictions, which functions as a sanity check for the IFR scoring technique, is well-captured
by all our tested models. Both MLP and CNN models score poorly for the features that describe the
treats’ true locations, across all datasets. Of the three strategies, non-mindreading features have by
far the most robust generalization to novel tasks, across all models and datasets. Only the CLSTM
model represents the non-mindreading features well, surpassing the input IFR scores on all datasets.

While the low-mindreading features are not represented well by the CNN model, they are repre-
sented well by the MLP and CLSTM models. For all models and datasets, vision, an observable
feature of the environment, robustly transfers to novel tasks, but fb-exist, a feature that must be
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Figure 3: Experiment 3 results on novel tasks. Values of P (A|F ), that the task-model will be
accurate given that a feature is accurately represented, are shown in darker bars. To the right of each
of those, in lighter color, are P (¬A|¬F ) values. As with the previous two experiments, features are
grouped by strategy.

synthesized from other information, does not. The high-mindreading features have more varied per-
formance. Fb-loc is well-represented on familiar tasks for all models but those trained on S3. All
models trained on S1 represent fb-loc, b-loc, and target-loc well on familiar tasks, but generalize
those features poorly. Only the CLSTM learns to represent labels on familiar tasks, but it does not
generalize that feature well to novel tasks.

5 EXPERIMENT 3: FEATURE REPRESENTATIONS AND TASK ACCURACY

We have shown how features may be measured in model activations, but we have yet to examine the
relationship between feature representation and task accuracy. In addition to our predictions about
which features should be present in models of different representation strategies, we also predict
that those features make meaningful contributions to the model’s outputs. Such contributions might
exist even for novel tasks. We may examine them by investigating how model accuracy depends on
any given feature: if, on a given datapoint, the feature is accurately represented, does that imply that
the task-model’s prediction will be accurate? Inversely, if the feature is inaccurately represented,
will the task-model be inaccurate? We may represent these two quantities as probabilities, P (A|F )
and P (¬A|¬F ), the probability that the model will be Accurate given that a Feature is present, and
the corresponding case when the Feature is absent.

In this experiment, we are investigating when those two accuracy values coincide, as opposed to a
causal relationships between them. As such, this technique does not directly measure sufficiency
and necessity; findings should be regarded as evidence for sufficiency and necessity instead.

5.1 RESULTS

Among all the features tested, none have overall negative effects on accuracy, supporting their rel-
evance to the task. Interestingly, while many features exhibit evidence of either necessity or suffi-
ciency, few provide both, highlighting the complex nature of features in this task. In the CLSTM
model, most tested features appear to be more necessary than they are sufficient, particularly in the
models trained on S2. This suggests that either combinations of these features, or additional fea-
tures not in our list, are required for robust generalization to novel tasks. Several such features are
necessary for almost every datapoint in the evaluation set. In the CNN model, there exist several
features that are more sufficient than they are necessary. This implies that there are multiple viable
strategies for robust generalization that the CNN model is able to employ. The single feature which
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provides the most sufficiency across all models is (b-loc). This result is reasonable, as b-loc encodes
the opponent’s goal, and often might contain information about the other treat’s location as well. Its
prominence suggests that understanding the opponent’s beliefs about treat locations is a key factor
in successful task completion, regardless of model architecture.

6 DISCUSSION AND LIMITATIONS

6.1 DISCUSSION

In general, we find that the best-generalizing features present in our models are those that do not
require mindreading. Models that represent low- and high-mindreading features do perform better
on the task overall, however, and all features in our set aid prediction accuracy when represented
well. As for the strategies used by our selected models architectures, the CNN and MLP models
do not even succeed at no-mindreading strategies on familiar tasks. The CLSTM models are adept
at no-mindreading strategies, but they are unable to robustly generalize low- and high-mindreading
features to novel tasks. While the training regime has a strong effect on the features represented
for familiar tasks, its effect on novel task features is weak relative to that of model architecture,
suggesting that model engineering could be more important for learning robust ToM skills than
learning curricula.

6.2 FEATURE EXTRACTION

Our feature extraction technique is subject to causes of both over- and under-performing, producing
scores that differ from models’ true ability to represent various features. Over-performance could
be caused by the introduction of nonlinearity to the models. Because we assume features might
be difficult to uncover within a connectionist task-model’s inner state, we require some amount of
nonlinearity in our extractor-models. But that same nonlinearity could be leveraged to synthesize
information that the task-model ignores. Additionally, the task itself likely contains spurious corre-
lations that could be abused by the extractor-model. Under-performance could be caused by both
over- and under-fitting (over-fitting only in the case of novel-task performance). We used identical
training for all task-models, despite their inputs and outputs having different shapes and distribu-
tion, so certain features are likely underfit. Additionally, the task-models often feature layers that
perform significantly more complex operations than the extractor-models, so they might synthesize
the information more easily. Overall, feature extraction using extractor-models is a measure of only
one piece of evidence that any feature is actually represented by the task-model.

6.3 ACCURACY DEPENDENCY

Our technique for determining accuracy dependency itself depends on feature extraction, so it is
subject to the same limitations. Its direct comparison of accuracy on individual datapoints allows
for a more fine-grained view of features’ contributions, but these effects could likewise include
spurious correlations.

6.4 FUTURE WORK

With minor environmental extensions, further mechanisms could be tested using the same method-
ology that we have presented, by identifying and quantifying differentiating features, e.g. those
included in theorized mechanisms that reason about uncertainty, preferences, and multiple agents.
The work presented in this paper is intended to serve as a precursor to the engineering and investi-
gation of models which embody mechanistic hypotheses about ToM skills. Only by understanding
the specific features that those models represent do we believe we can empirically validate models’
robustness to varied tasks. In addition to handcrafted mechanisms for mentalization, we intend to
evaluate contemporary machine learning techniques including transformer architectures. The grid-
world used in this paper is implemented primarily as a reinforcement learning environment, so we
also plan to examine the effect of embodied cognition, where the player is an agent with their own
goals and actions in which environmental knowledge may be grounded.
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The code and instructions to produce the results in this paper can be found in a github link, omitted
for review.
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