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ABSTRACT

Mean Field Game (MFG) is a framework utilized to model and approximate the
behavior of a large number of agents, and the computation of equilibria in MFG
has been a subject of interest. Despite the proposal of methods to approximate the
equilibria, algorithms where the sequence of updated policy converges to equilib-
rium, specifically those exhibiting last-iterate convergence, have been limited. We
propose the use of a simple, proximal-point-type algorithm to compute equilibiria
for MFGs. Subsequently, we provide the first last-iterate convergence guaran-
tee under the Lasry–Lions-type monotonicity condition. We further employ the
Mirror Descent algorithm for the regularized MFG to efficiently approximate the
update rules of the proximal point method for MFGs. We demonstrate that the al-
gorithm can approximate with an accuracy of ε after O(log(1/ε)) iterations. This
research offers a tractable approach for large-scale and large-population games.

1 INTRODUCTION

Mean Field Games (MFGs) provide a simple and powerful framework for approximating the be-
havior of large populations of interacting agents. Originally formulated by Lasry & Lions (2007);
Huang et al. (2006), MFGs model the collective behavior of homogeneous agents in continuous time
and state settings using Partial Differential Equations (PDEs) (Cardaliaguet & Hadikhanloo, 2017;
Lavigne & Pfeiffer, 2023; Inoue et al., 2023). Subsequently, the formulation of MFGs using Markov
Decision Processes (Bertsekas & Shreve, 1978; Puterman, 1994) has enabled the study of discrete-
time and discrete-state models (Gomes et al., 2010), broadening the applicability of MFGs to Multi-
Agent Reinforcement Learning (MARL) (Yang et al., 2018). Moreover, it has become possible to
capture interactions among heterogeneous agents (Gao & Caines, 2017; Caines & Huang, 2019).

Figure 1: Overview of Algorithms

The applicability of MFGs to MARL drives research into their
computational aspects. Under fairly general assumptions, the
problem of finding an equilibrium in MFGs is known to be
PPAD-complete (Yardim et al., 2024). Consequently, it would
be essential to impose assumptions that allow for the exis-
tence of algorithms capable of efficiently computing an equi-
librium. One of the assumptions is contractivity (Xie et al.,
2021; Anahtarci et al., 2023; Yardim et al., 2023). However,
it is known that many problems are not contractive in prac-
tice (Cui & Koeppl, 2021). One of the more realistic assump-
tions is monotonicity (Pérolat et al., 2022; Zhang et al., 2023;
Yardim & He, 2024), which intuitively implies that as more
agents converge to a single state, the reward monotonically decreases. Under the monotonicity as-
sumption, Online Mirror Descent (OMD) has been proposed and widely adopted (Pérolat et al.,
2022; Cui & Koeppl, 2022; Lauriere et al., 2022; Fabian et al., 2023). OMD, especially when com-
bined with function approximation via deep learning, has enabled the application of MFGs to MARL
(Yang & Wang, 2021; Zhang et al., 2021; Cui et al., 2022).

Theoretically, last-iterate convergence (LIC), which ensures that the policy obtained in the final iter-
ation converges, is particularly important in deep learning settings due to the constraints imposed by
neural networks (NN). In NNs, calculating the time-averaged policy like in the celebrated Fictitious
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Play method (Brown, 1951; Perrin et al., 2020) may be less meaningful due to nonlinearity in the
parameter space. These considerations have spurred significant research into developing algorithms
that achieve LIC in finite N -player games, as seen in, e.g., Mertikopoulos et al. (2018); Piliouras
et al. (2022); Abe et al. (2023; 2024).

Despite its importance, the literature on LIC results in MFG is quite limited. The only exception is
Pérolat et al. (2022), who proved the LIC result for the continuous-time version of OMD without the
quantified rates under the strict monotonicity condition. The aim of this research is to establish an
online learning algorithm that can achieve LIC in MFGs under non-strict monotonicity conditions.

In this paper, we propose a novel proximal-point (PP) type algorithm and prove that it achieves LIC
under the non-strict monotonicity assumption. Furthermore, we demonstrate that the update rule of
the PP can be approximated efficiently by sequentially using the Regularized Mirror Descent (RMD).
We further show that RMD achieves the approximation with the accuracy of ε within O(log (1/ε))
iterations. Figure 1 summarizes the overview of the algorithms in this paper.

In summary, the contributions of this paper are as follows:

Contribution

(i) We construct the first algorithm based on the celebrated PP method that achieves
LIC for general monotone MFGs (Theorem 4.3).

(ii) We prove for the first time that regularized Mirror Descent achieves exponential
convergence for monotone MFGs (Theorem 4.4).

(iii) We combine these two algorithms as shown in Figure 1 to develop a tractable
algorithm that approximates the PP-based method (Algorithm 2).

The organization of this paper is as follows: In Section 2, we review the fundamental concepts
of MFGs. In Section 3, we introduce the PP method and its convergence results. In Section 4,
we present the RMD algorithm and its convergence properties. Finally, in Section 5, we propose a
combined approximation method, demonstrating its convergence through experimental validation.

2 SETTING AND PRELIMINARY FACT

2.1 NOTATION

For a positive integer N ∈ N, [N ] := {1, . . . , N}. For a finite set X , ∆(X) := {p ∈
R|X|

≥0 |
∑

x∈X p(x) = 1}. For a function f :X → R and a probability π ∈ ∆(X), ⟨f, π⟩ :=

⟨f(•), π(•)⟩ := ∑
x∈X f(x)π(x). For p0, p1 ∈ ∆(X), define the Kullback–Leibler (KL) diver-

gence DKL(p
0, p1) :=

∑
x∈X p0(x) log

(
p0(x)/p1(x)

)
, and the total variation (TV) distance as∥∥p0 − p1

∥∥ :=
∑

x∈X

∣∣p0(x)− p1(x)
∣∣.

2.2 MEAN-FIELD GAMES

Consider a Mean-Field Game (MFG) that is defined through a tuple (S,A, H, P, r, µ1). Here, S is
a finite discrete space of states, A is a finite discrete space of actions, H ∈ N≥2 is a time horizon,
and P = (Ph)

H
h=1 is a family of transition kernels Ph:S × A → ∆(S), that is, if a player with

state sh ∈ S takes action ah ∈ A at time h ∈ [H], the next state sh+1 ∈ S will transition
according to sh+1 ∼ Ph (· | sh, ah). In addition, r = (rh)

H
h=1 is a family of reward functions

rh:S × A × ∆(S) → [0, 1], and µ1 ∈ ∆(S) is an initial probability of state. Note that, in the
context of theoretical analysis of the online learning method for MFG (Pérolat et al., 2022; Zhang
et al., 2023), P is assumed to be independent of the state distribution. It is reasonable to assume that
at any time h, every state s′ ∈ S is reachable:
Assumption 2.1. For each (h, s′) ∈ [H]×S , there exists (s, a) ∈ S×A such that Ph (s

′ | s, a) > 0.

In this paper, we focus on rewards r that satisfy the following two typical conditions, which are
also assumed in Perrin et al. (2020; 2022); Pérolat et al. (2022); Fabian et al. (2023); Zhang et al.
(2023). The first one is monotonicity of the type introduced by Lasry & Lions (2007), which means,
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under a state distribution µ = (µh)
H
h=1 ∈ ∆(S)H , if players choose a strategy—called a policy

π = (πh)
H
h=1 ∈ (∆(A)S)H to be planned—that concentrates on a state or action, they will receive

a small reward.

Assumption 2.2 (weak monotonicity of r). For all µ, µ̃ ∈ ∆(S)H , π, π̃ ∈ (∆(A)S)H , it holds that

H∑
h=1

∑
(s,a)∈S×A

(rh(s, a, µh)− rh(s, a, µ̃h))(πh (a | s)µh(s)− π̃h (a | s) µ̃h(s)) ≤ 0.

For example, a reward r that satisfies these assumptions includes a model of a crowd that avoids
overcrowding.

The second is the Lipschitz continuity of the reward r with respect to µ ∈ (∆(S))H , which is a
standard assumption in the field of MFGs (Cui & Koeppl, 2021; Fabian et al., 2023; Zhang et al.,
2023).

Assumption 2.3 (Lipschitz continuity of r). There exists a constant L such that for every h ∈ [H],
s ∈ S, a ∈ A, and µ, µ′ ∈ ∆(S):

|rh(s, a, µ)− rh(s, a, µ
′)| ≤ L∥µ− µ′∥.

Given a policy π, the probabilities m[π] = (m[π]h)
H
h=1 ∈ ∆(S)H of the state is recursively defined

as follows: m[π]1 = µ1 and

m[π]h(sh) =
∑

(sh−1,ah−1)∈S×A

πh−1 (ah−1 | sh−1)Ph−1 (sh | sh−1, ah−1)m[π]h−1(sh−1),

(2.1)
if h = 2, . . . ,H . We plan to maximize the following cumulative reward

J(µ, π) :=

H∑
h=1

∑
(sh,ah)∈S×A

πh (ah | sh)m[π]h(sh)rh(sh, ah, µh), (2.2)

under a probability µ ∈ ∆(S)H of states. The mean-field equilibrium defined below means the pair
of probabilities µ and policies π that achieves the maximum under the constraints (2.1).

Definition 2.4. A pair (µ⋆, π⋆) ∈ ∆(S)H × (∆(A)S)H is
:
a
:
mean-field equilibrium if it satisfies (i)

J(µ⋆, π⋆) = maxπ∈∆(S)H J(µ⋆, π), and (ii) µ⋆ = m[π⋆]. In addition, set Π⋆ ⊂ (∆(A)S)H as the
set of all policies that are in equilibrium.

Under Assumptions 2.2 and 2.3, there exists a mean-field equilibrium, see the proof of (Saldi et al.,
2018, Theorem 3.3.) and (Pérolat et al., 2022, Proposition 1.). Note that the equilibrium may not be
unique if the inequality in Assumption 2.2 is non-strict. In other words, the set Π⋆ ⊂ (∆(A)S)H is
not singleton in general. As an illustrative example, one might consider the trivial case where r ≡ 0.
Our goal is to construct an algorithm that generates policies that converge to Π⋆.

3 PROXIMAL POINT-TYPE METHOD FOR MFG

3.1 ALGORITHM

This section presents an algorithm motivated by the proximal point (PP) method. Let λ > 0 be a
sufficiently small positive number, roughly “the inverse of learning rate.” In the algorithm proposed
in this paper, we generate a sequence

(
(σk, µk)

)∞
k=0
⊂ (∆(A)S)H ×∆(S)H as

σk+1 = arg max
π∈(∆(A)S)H

{
J(µk+1, π)− λDm[π](π, σ

k)
}
, µk+1 = m[σk+1], (3.1)

where m is defined in (2.1) and Dµ(π, σ
k) :=

∑
h Es∼µh

[
DKL(πh(s), σ

k
h(s))

]
with a probability

µ ∈ ∆(S)H . If the initial policy π0 has full support, i.e., min(h,s,a)∈H×S×A π0
h (a | s) > 0, the

rule (3.1) is well-defined, see Proposition C.1.
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Algorithm 1: Proximal point (PP) method with KL divergence for MFG

Input: MFG (S,A, H, P, r, µ1), initial policy π0, number of iterations N , parameter λ > 0
1 Initialization: Set k ← 0 and σk ← π0;
2 while k < N do
3 Compute (µk+1, σk+1) by solving the regularized MFG;
4 σk+1 = arg max

π∈(∆(A)S)H

{
J(µk+1, π)− λDm[π](π, σ

k)
}
,

µk+1 = m[σk+1]

Update k ← k + 1;
Output: σk(≈ π⋆)

Interestingly, the rule (3.1) is similar to the traditional proximal point (PP) method with KL diver-
gence in mathematical optimization and Optimal Transport, see (Censor & Zenios, 1992; Xie et al.,
2019) and the pseudocode in Algorithm 1. Therefore, we also refer to this update rule as the PP
method. On the other hand, unlike the traditional PP method, our method changes the objective
function J(µk, •): (∆(A)S)H → R with each iteration k ∈ N. Therefore, the convergence of our
traditional method is not directly derived from traditional theory.

3.2 LAST-ITERATE CONVERGENCE RESULT

The following theorem implies the last-iterate convergence of the policies generated by (3.1). Specif-
ically, it shows that under the assumptions above, the sequence of policies converges to the equilib-
rium set. This result is crucial for the effectiveness of the algorithm in reaching an optimal policy.

Theorem 3.1. Let (σk)∞k=0 be the sequence defined by Algorithm 1. In addition
to Assumptions 2.1 to 2.3, assume that the initial policy π0 has full support, i.e.,
min(h,s,a)∈H×S×A π0

h (a | s) > 0. Then, the sequence (σk)∞k=0 converges to the set Π⋆

of equilibrium, i.e.,
lim
k→∞

dist(σk,Π⋆) = 0,

where dist(π,Π⋆) := infπ⋆∈Π⋆

∑
(h,s)∈[H]×S ∥πh(s)− π⋆

h(s)∥.

Proof sketch of Theorem 3.1. If we accept the next two lemmas, we can easily prove Theorem 3.1:
The first implies that the KL divergence from an equilibrium to the generated policy becomes
smaller as the cumulative reward J increases.

Lemma 3.2. Suppose Assumption 2.2. Then, for any equilibrium (µ⋆, π⋆) it holds that

Dµ⋆(π⋆, σk+1)−Dµ⋆(π⋆, σk) ≤ J(µ⋆, σk+1)− J(µ⋆, π⋆).

Furthermore, we can control the right-hand side of the inequality in Lemma 3.2 by the distance:

Lemma 3.3. There exist positive constants α and C such that, for any π ∈ (∆(A)S)H ,

J(µ⋆, π)− J(µ⋆, π⋆) ≤ −C(dist(π,Π⋆))
α
.

4
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Combining these lemmas yields that Dµ⋆(π⋆, σk+1) − Dµ⋆(π⋆, σk) ≤ −C
(
dist(σk+1,Π⋆)

)α
.

Thus, the telescoping sum of this inequality yields
∞∑
k=1

(
dist(σk,Π⋆)

)α ≤ 1

C
Dµ⋆(π⋆, π0) < +∞.

Therefore, limk→∞ dist(σk,Π⋆) = 0.

Thus, the non-trivial aspects of the last-iterate convergence lie in the proof of Lemmas 3.2 and 3.3;
see Appendix B.

4 APPROXIMATING PROXIMAL POINT WITH MIRROR DESCENT IN
REGULARIZED MFG
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Figure 2:
:::::::
Behavior

:::
of

::::
RMD.

As in the previous section, in the PP method in Algorithm 1,
it is necessary to solve the regularized MFG (3.1) at each itera-
tion. Therefore, this section introduces Regularized Mirror Descent
(RMD), which approximates the solution (µk+1, σk+1) of (3.1) for
each policy σk. The novel result in this section is that the divergence
between the sequence of RMD and the equilibrium exponentially de-
cays

::
as

:::::
shown

::
in
:
Figure 2.

4.1 APPROXIMATION
OF THE UPDATE RULE OF PP WITH REGULARIZED MFG

Fortunately, solving (3.1) corresponds to finding an equilibrium for
KL-regularized MFG introduced in Cui & Koeppl (2021); Zhang
et al. (2023). Let us review the settings for the regularized MFG.
For each parameter λ > 0 and policy σ ∈ (∆(A)S)H , which plays
the role of σk in Algorithm 1, we define the regularized cumulative
reward Jλ,σ: ∆(S)H × (∆(A)S)H ∋ (µ, π) 7→ Jλ,σ(µ, π) ∈ R to be

Jλ,σ(µ, π) := J(µ, π)− λDm[π](π, σ). (4.1)

Since σ is a representative of (σk)k, the assumption of full support is also imposed on σ:
Assumption 4.1. The base σ has full support, i.e., σmin := min(s,a,h)S×A×[H] σh (a | s) > 0.

For the reward Jλ,σ , we introduce a regularized equilibrium:
Definition 4.2. A pair (µ∗, ϖ∗) ∈ ∆(S)H × (∆(A)S)H is regularized equilibrium of Jλ,σ if it
satisfies (i) Jλ,σ(µ∗, ϖ∗) = maxπ∈∆(S)H Jλ,σ(µ∗, π), and (ii) µ∗ = m[ϖ∗].

Specifically, (µk+1, σk+1) can be characterized as the regularized equilibrium of Jλ,σk

for k ∈ N.
Note that the regularized equilibrium is unique under Assumption 4.1, see Appendix C.

In the next subsection, we will introduce RMD using value functions, which are defined as fol-
lows: for each h ∈ [H], s ∈ S , a ∈ A, µ ∈ ∆(S)H and π ∈ ∆(A)S , define the
state value function

:::::::::::::::::::::::::::::::
V λ,σ
h :S ×∆(S)H × (∆(A)S)H → R

:
and the state-action value function

:::::::::::::::::::::::::::::::::::
Qλ,σ

h :S ×A×∆(S)H × (∆(A)S)H → R as

V λ,σ
h (s, µ, π) := E((sl,al))Hl=h

[
H∑
l=h

(rl(sl, al, µl)− λDKL(πl(sl), σl(sl)))

∣∣∣∣∣ sh = s

]
, (4.2)

V λ,σ
H+1(s, µ, π) := 0,

Qλ,σ
h (s, a, µ, π) = rh(s, a, µh) + Esh+1∼P (s,a,µh)

[
V λ,σ
h+1(sh+1, µ, π)

]
. (4.3)

Here, the discrete time stochastic process ((sl, al))
H
l=h is induced recursively as sl+1 ∼

Pl(sl, al), al ∼ πl(sl) for each l ∈ {h, . . . ,H − 1} and aH ∼ πH(sH). Note that the the ob-
jective function Jλ,σ in Definition 4.2 can be expressed as Jλ,σ(µ, π) = Es∼µ1 [V

λ,σ
1 (s, µ, π)].
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Algorithm 2: Practical version of Algorithm 1 for MFG

Input: MFG(S,A, H, P, r, µ1), initial policy π0, number of iterations N , parameter λ > 0
1 Initialization: Set k ← 0 and σk ← π0;
2 while k < N do
3 Compute (µk+1, σk+1) by solving the regularized MFG;
4 {

σk+1 = RMD(MFG, σk, λ, η, σk, τ),

µk+1 = m[σk+1]

Update k ← k + 1;
Output: σk(≈ π⋆)

5

6 Function RMD(MFG, π0, λ, η, σ0, τ):
7 Initialization: Set t← 0, πt ← π0 and σ ← σ0;
8 while t < τ do
9 Compute µt = m[πt];

10 Compute Qλ,σ
h (s, a, πt, µt) ((h, s, a) ∈ [H]× S ×A) by (4.3);

11 Compute πt+1 as, for (h, s, a) ∈ [H]× S ×A,

πt+1
h (a | s) =

(σh (a | s))λη(πt
h (a | s))

1−λη
exp

(
ηQλ,σ

h (s, a, πt, µt)
)

∑
a′∈A

(σh (a′ | s))λη(πt
h (a

′ | s))1−λη
exp

(
ηQλ,σ

h (s, a′, πt, µt)
)

Update t← t+ 1;
12 return πt;

4.2 AN EXPONENTIAL CONVERGENCE RESULT OF REGULARIZED MIRROR DESCENT

In this subsection, we introduce the iterative method for finding the regularized equilibrium proposed
by Zhang et al. (2023) as RMD. The method constructs a sequence ((πt, µt))

∞
t=0 ⊂ (∆(A)S)H ×

∆(S)H approximating the regularized equilibrium of Jλ,σ using the following rule:πt+1
h (s) = arg max

p∈∆(A)

{ η

1− λη

(〈
Qλ,σ

h (s, •, πt, µt), p
〉
− λDKL(p, σh(s))

)
−DKL(p, π

t
h(s))

}
,

µt+1 =m[πt+1],
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

where η > 0 is another learning rate, and Qλ,σ
h is the state-action value function defined in (4.3). We

give the pseudo-code of RMD in Algorithm 2.
:::
For

:::
the

:::::::
sequence

:::
of

::::::
policies

:::
in

::::
RMD,

:::
we

:::
can

:::::::
establish

::
the

:::::::::::
convergence

:::::
result

::
as

:::::::
follows:

:

Theorem 4.3. Let ((µt, πt))
∞
t=0 ⊂ ∆(S)H×(∆(A)S)H be the sequence generated by (4.4),

and (µ∗, ϖ∗) ∈ ∆(S)H×(∆(A)S)H be the regularized equilibrium given in Definition 4.2.
In addition to Assumptions 2.2, 2.3, and 4.1, suppose that η ≤ η∗, where η∗ > 0 is the upper
bound of the learning rate defined in (D.5), which only depends on λ, σ, H and |A|.
Then, the sequence (πt)∞t=0 satisfies

Dµ∗(ϖ∗, πt+1) ≤
(
1− λη

2

)
Dµ∗(ϖ∗, πt) (t = 0, 1, . . . ).

Accordingly, Dµ∗(ϖ∗, πt) ≤ Dµ∗(ϖ∗, π0) exp (−ληt/2). Clearly, the inequality states
that an approximate policy πt satisfying Dµ∗(ϖ∗, πt) < ε can be obtained in O(log (1/ε))
iterations.

6
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4.3 INTUITION FOR EXPONENTIAL CONVERGENCE: CONTINUOUS-TIME VERSION OF
REGULARIZED MIRROR DESCENT

The convergence of (πt)∞t=0 can be intuitively explained by considering a continuous limit (πt)∞t≥0
with respect to the time t of RMD. In this paragraph, we will use the idea of mirror flow (Krichene
et al., 2015; Tzen et al., 2023; Deb et al., 2023) and continuous dynamics in games (Taylor & Jonker,
1978; Mertikopoulos et al., 2018; Pérolat et al., 2021; 2022) to observe the exponential convergence
of the flow to equilibrium. According to Deb et al. (2023, (2.1)), the continuous curve of π should
satisfy that

d

dt
πt
h (a | s) = πt

h (a | s)
(
Qλ,σ

h (s, a, πt, µt)− λ log
πt
h (a | s)

σh (a | s)

)
. (4.4)

The flow induced by the dynamical system (4.4) converges to equilibrium exponentially as time t
goes to infinity.

Theorem 4.4. Let πt be a solution of (4.4) and ϖ∗ be a regularized equilibrium defined in
Definition 4.2. Suppose that Assumption 2.2. Then, it holds that

d

dt
Dµ∗(ϖ∗, πt) ≤ −λDµ∗(ϖ∗, πt),

for all t ≥ 0. Moreover, the inequality implies Dµ∗(ϖ∗, πt) ≤ Dµ∗(ϖ∗, π0) exp (−λt).

Technically, the non-Lipschitz continuity of the value function Qλ,σ
h (s, a, •, µt) in the right-hand

side of (4.4) is non-trivial for the existence of the solution π: [0,+∞) → (∆(A)S)H of the dif-
ferential equation (4.4), see, e.g., (Coddington & Levinson, 1984). The proof of this existence and
Theorem 4.4 are given in Appendix C.

4.4 PROOF SKETCH OF THE CONVERGENCE RESULT FOR REGULARIZED MIRROR DESCENT

Let us return from continuous-time dynamics (4.4) to the discrete-time algorithm (4.4). The tech-
nical difficulty in the proof of Theorem 4.3 is the non-Lipschitz continuity of the value function
Qλ,σ

h in (4.4), that is, the derivative of Qλ,σ
h (s, a, π, µ) with respect to the policy π can blow up as π

approaches the boundary of the space (∆(A)S)H of probability simplices.

We can overcome this difficulty as shown in the following sketch of proof:
Proof sketch of Theorem 4.3. In a similar way to Theorem 4.4, we can obtain the following
inequality with a discretization error:

Dµ∗(ϖ∗, πt+1)−Dµ∗(ϖ∗, πt) ≤ −ληDµ∗(ϖ∗, πt) + Dµ∗(πt, πt+1).

discretization error

(4.5)

The remainder of the proof is almost entirely dedicated to showing that the above error term is
sufficiently small and bounded compared to the other terms in the inequality. As a result, we
obtain the following claim:

Claim 4.5. Suppose that the learning rate η is less than the upper bound η∗ in (D.5).
Then, we have

Dµ∗(πt, πt+1) ≤ Cη2Dµ∗(ϖ∗, πt),

where C > 0 is the constant defined in (D.4), which satisfies Cη∗ ≤ λ/2.

The key to proving Claim 4.5 is leveraging another claim that, over the sequence (πt)t, the value
function Qλ,σ

h behaves well, almost as if it were a Lipschitz continuous function, see Lemma D.3
for details. Therefore, applying Claim 4.5 to (4.5) completes the proof.
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The complete proof of Theorem 4.3 is given in Appendix D.

4.5 APPROXIMATED PROXIMAL POINT METHOD

Let us consider an approximation of Algorithm 1 using RMD of (4.4). We can simply replace the
intractable computation in line 4 of Algorithm 1 with RMD. In the end, this means that after repeating
(4.4) a sufficient number of times, we also update σ to the most recently obtained policy σk+1 using
RMD. The pseudo-code that summarizes this idea is presented in Algorithm 2.

5 NUMERICAL EXPERIMENT

We numerically demonstrate that the proposed algorithm (Algorithm 2), which is the approximated
version of Algorithm 1, can achieve convergence to the mean-field equilibrium.

Algorithms. In this experiment, we implement Algorithm 2. For comparison, we also implement
RMD (i.e., Algorithm 2 without the update of σk) in (4.4). For both algorithms, the learning rate
is fixed at η = 0.1, and we vary the regularization parameter λ and update time T to run the
experiments.

Evaluations. We evaluate the convergence of our proposed method using the Beach Bar Pro-
cess introduced by Perrin et al. (2020), a standard benchmark for MFGs. In particular, the transi-
tion kernel P in this benchmark gives a random walk on a one-dimensional discretized torus S =
{0, . . . , |S| − 1}, and the reward is set to be rh(s, a, µ) = −|a|/|S| − |s− |S|/2|/|S| − logµh(s)
with a ∈ A := {−1,±0,+1}. See Appendix F for further details. Since the mean-field equilibrium
in this benchmark cannot be computed exactly, we follow Pérolat et al. (2022); Zhang et al. (2023)
and employ the exploitability of a policy π ∈ (∆(A)S)H defined by

Exploit(π) := max
π′∈(∆(A)S)H

{J(m[π], π′)} − J(m[π], π) ≥ 0,

as our convergence criterion. Note that from Definition 2.4, Exploit(π) = 0 if and only if (m[π], π)
is mean-field equilibrium.

Discussion. Figure 3 is a summary of the results of the experiment. The most noteworthy aspect
is the convergence of the exploitability, as shown in Figure 3b. Our proposed method decreases the
exploitability with each iteration when we update σ.

Figures 3a and 3c illustrate the qualitative validity of the approximation achieved by our proposed
method. In this benchmark, the equilibrium is expected to lie at the vertices of the probability
simplex. Therefore, RMD, which can shift the equilibrium to the interior of the probability simplex,
seems unable to find the mean-field equilibrium accurately. On the other hand, the sequence (πt)t
of policies generated by our proposed method shows a behavior that converges to the vertices.

In summary, Algorithm 2 experimentally shows the last-iterate convergence to the mean-field equi-
librium. This is evidenced by the decreasing exploitability and the qualitative behavior in our pro-
posed method, which align with the theoretical guarantees.

6 COMPARISON OF THE RESULTS

Last-iterate convergence (LIC) results for MFG. Pérolat et al. (2022) showed that Mirror De-
scent achieves LIC only under strictly monotone conditions, i.e., if the equality in the Lemma E.2
is satisfied only if π = π̃. In contrast, our work establishes LIC even in non-strictly monotone
scenarios. While the distinction regarding strictness might seem subtle, it is profoundly signifi-
cant. Indeed, non-strictly monotone MFGs encompass the fundamental examples of finite-horizon
Markov Decision Processes. Moreover, in strictly monotone cases, mean-field equilibria become
unique. Consequently, as Zeng et al. (2024) also noted, strictly monotone rewards fail to represent
MFGs with diverse equilibria.
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Figure 3: Experimental results for Algorithm 2 for Beach Bar Process

Regularized MFG. Theorem 4.3, which supports the efficient execution of RMD, is novel in two
respects: RMD achieves LIC, and the divergence to the equilibrium decays exponentially. Indeed,
one of the few works that analyze the convergence rate of RMD states that the time-averaged policy
1
T

∑T
t=0 π

t up to time T converges to the equilibrium in O
(
1/ε2

)
iterations (Zhang et al., 2023).

Additionally, although it is a different approach from MD, it is known that applying fixed-point
iteration to regularized MFG achieves an exponential convergence rate under the assumption that
the regularization parameter λ is sufficiently large (Cui & Koeppl, 2021). In contrast, our work
derives the convergence rate for cases where λ is sufficiently small.

Other type of learning method of MFG. Recently, in addition to Mirror Descent and Fictitious
Play, a new type of learning method using the characterization of MFGs as optimization problems
has been proposed (Guo et al., 2024; Hu & Zhang, 2024). In this work, the authors establish local
convergence of the algorithms without the assumption of monotonicity. Specifically, it is proved
that an optimization method can achieve LIC if the initial guess of the algorithm is sufficiently
close to the Nash equilibrium. In contrast, our convergence results state “global” convergence under
the assumption of monotonicity, complementing their results.

:::
See

:
Table 1

:
in

:::
the

:::::::::
Appendix

:::
for

:
a

:::::::::
comparison

::
of
::::
our

:::::
results

::::
with

:::
the

:::::
more

:::::::::::::
comprehensive

:::::::
previous

::::::
studies.

:

7 CONCLUSION

This paper proposes noble algorithms that can achieve last-iterate convergence under the mono-
tonicity condition. The main idea behind the derivation of the main algorithm (Algorithm 2) is to
approximate the proximal-point type algorithm (Algorithm 1) using RMD. Theorem 3.1 guarantees
that the proximal-point-type algorithm achieves LIC, and Theorem 4.3 guarantees the exponential
convergence of RMD. An important future task of this study is to prove the convergence rates of
Algorithm 2. Specifically, we aim to make the convergence result of Theorem 3.1 quantitative. As
the experimental results suggest in Figure 3b, we conjecture that the algorithm converges with a rate
of O(1/tα) for some α > 0.
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Julien Pérolat, Rémi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei, Mark Rowland, Pe-
dro A. Ortega, Neil Burch, Thomas W. Anthony, David Balduzzi, Bart De Vylder, Georgios
Piliouras, Marc Lanctot, and Karl Tuyls. From Poincaré recurrence to convergence in imperfect
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RELATED

::::::::
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::::::
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:::::::
previous

:::::::
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::::
have

:::::::
derived

::::::::::
convergence

::::::
results

:::
for

:::::
MFG

:::
for

:::::::
various

:::::::::
algorithms.

:::::
Note

:::
that

:::
the

::::::::
meaning

::
of

::::::::::
convergence

::
is
::::::::
different

::
in

:::
the

:::::::
previous

:::::::
studies.

:
Table 1

:::::
shows

:::::
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::::
type

::
of

::::::::::
convergence

::
is

:::::::
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for

::::::
which

:::
type

:::
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algorithm
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the

:::::::
previous

:::::::
studies
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and

:::
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::::::
results.

: ::::
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::
on
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:
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:::
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::::::
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:::
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::::::::
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:::::::::::
contributions

::
of

:::
this

:::::
paper

::::::
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:

::::::::::
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:::
of

::::
Our

::::::::::::
Convergence

:::::::
Results:

::::::
Unlike

:::::
many

::
of

::::
the

:::::::::
referenced

:::::
works

::::
that

::::::
require

:::::
strong

:::::::::::
assumptions,

::::
such

::
as

::::::::::
contraction,

::
to

:::::::
achieve

:::::::::::
convergence,

:::
our

:::::
results

:::::::::::
demonstrate

::::::::
last-iterate

::::::::::
convergence

:::::
(LIC)

:::::::
without

::::
such

::::::::
stringent

:::::::::
conditions.

:::::
This

:::::::::
highlights

::::
that

:::
our

:::::::::::
contributions

:::
fill

:
a

::::::::
significant

::::
gap

::
in

:::
the

::::::::
literature.

:

::::
LIC

::
of

:::::::
RMD:

::::::::
Achieving

:::::::::::
exponential

:::::::::::
convergence

:::::
rates

:::
to

:::
the

::::::::::
regularized

:::::::::::
equilibrium

::
is

:::::::::
challenging

:::::
with

:::::::
existing

:::::::::
techniques.

:::::
Our

::::::::
technical

:::::::::::
contributions

:::::::
include

:::::::
deriving

:::::::::::
discretization

:::::
errors

::
in Equation (4.5)

:::
that

:::
are

:::::::
distinct

::::
from

:::::
those

::
in

:::::
policy

:::::::::::
optimization

::
by

::::::::::::::::
Zhan et al. (2021)

::
and

:::::::::
regularized

:::::
MFG

::::::::::::::::
(Zhang et al., 2023)

:
.

:::
The

:::::::::
Difficulty

:::
of

:::::::::
Applying

:::
the

::::::::::::
Three-Point

:::::::
Lemma

:::
to

:::::::
MFGs:

:::
The

::::::::::
three-point

::::::
lemma

::
in

::::::::::::::::::::::::
(Zhan et al., 2021, Lemma 6)

:::::
cannot

:::
be

::::::
directly

:::::::
applied

::
to

::::::
MFGs.

:::
The

:::::
main

::::::
reason

:
is
::::
that

:::
the

::::
inner

::::::
product

::::::::::::::::::
⟨Qk(s), πk+1(s)− p⟩

:::
in

:::
the

:::::::::
right-hand

:::
side

:::
of

:::
the

:::::::::
three-point

::::::
lemma

::::::::
concerns

:::
the

:::::
policy

:
at
::::::::
iteration

:::::
index

:::::
k + 1,

:::
not

::
k.
:::

In
:::
our

:::::::
analysis

:::
(as

::::::
shown

::
on

::::
page

::::
18),

::::
this

::::
term

::
is

::::::::::
transformed

:::
into

::::::::::::::::
⟨Qk(s), πk(s)− p⟩,

::::::
which

:::::
allows

:::
us

::
to

:::::
apply

:
a
::::::

crucial
:::::::

lemma
:
(Lemma E.4

:
)
:::
that

:::::
holds

:::
for

::::::
MFGs.

::::
This

::::::::::::
transformation

::
is

:::::::::
non-trivial

:::
and

::::::::
essential

::
for

::::
our

:::::::
analysis.

:::
In

::
the

::::::::::
three-point

::::::
lemma,

:::
the

::::
term

:::::::::::::::
Dhs

(π(k+1), π(k))
::::::
appears

::
as

::
a

:::::::::::
discretization

::::
error.

:::
In

:::::::
contrast,

:::
our

:::::::
analysis

::::::
derives

:
a
::::::
reverse

::::::
version

:::::::::::::
Dµ∗(πk, πk+1).

::::
This

:::::::::
distinction

::
is

:::::::::
significant,

::::::::
especially

:::
for

:::::::::::::
non-symmetric

:::::::::
divergences

:::::
such

::
as

::
the

:::
KL

:::::::::
divergence.

::::
The

::::::
reverse

:::::
order

::
in

:::
our

:::::::
analysis

:
is
::::::
crucial

:::
for

:::
the

:::::::::
theoretical

:::::::::
guarantees

::
we

:::::::
provide.

B PROOF OF THEOREM 3.1

Proof of Lemma 3.2. Let (µ⋆, π⋆) be a mean-field equilibrium defined in Definition 2.4. By the
update rule (3.1) and Lemma E.1, we have〈

Qλ,σk

h (s, •, σk+1, µk+1)− λ log
σk+1
h (s)

σk
h(s)

, (π⋆
h − σk+1

h )(s)

〉
≤ 0,

13

https://arxiv.org/abs/2408.04780v4
https://arxiv.org/abs/2408.04780v4
https://doi.org/10.1007/978-3-030-60990-0_12
https://doi.org/10.1007/978-3-030-60990-0_12


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 1:
::::::
Related

::::
work

:::
of

::::::::::
convergence

::
in

::::::
MFGs

::::::::
Learning

:::::::::
algorithm ::::::::

Summary
::
of

:::::::::::
convergence

:::::
results

:::::::::::::
Xie et al. (2021)

:::::::
Fictious

:::
play

: ::::::::::::
time-averaging

:::::::::::
convergence

::::::::::::::::
Zhang et al. (2023)

:::
RMD

::::::::::::
time-averaging

:::::::::::
convergence

:::
(to

:::::::::
regularized

::::::::::
equilibrium)

::::
under

:::::::::::
monotonicity

:::::::::::::::
Mao et al. (2022)

:::::::::
Actor-critic ::::::::::::

time-averaging
:::::::::::
convergence

:::
(to

:::::::::
regularized

::::::::::
equilibrium)

:::::::::::::::::
Zeman et al. (2023)

:::::::::
Q-learning

::::::::::::
time-averaging

:::::::::::
convergence

:::::::::::::::::
Yardim et al. (2023)

:::::
Mirror

:::::::
Descent

: :::
LIC

::::::
under

:::::::::
contraction

:

:::::::::::::::
Zeng et al. (2024)

:::::::::
Actor-critic :::::::::

best-iterate
::::::::::
convergence

:::::
under

:::::::
Herding

::::::::::::::::
Huang et al. (2024)

:::::::::
Maximum
:::::::::
Likelihood
:::::::::
Estimation

::::
N/A

:::::::::::::::::
Angiuli et al. (2022) ::::::::

(two-time
:::::
scale)

:::::::::
Q-Learning ::::

N/A

:::::::::::::::::
Angiuli et al. (2024) ::::::::

(three-time
::::::
scale)

:::::::::
Q-learning :::

LIC
::::::
under

:::::::::
contraction

:

:::::::::::::::::
Pérolat et al. (2021)

:::
RMD

:::
LIC

:::
(to

:::::::::
regularized

::::::::::
equilibrium)

:::::
under

::::
strict

:::::::::::
monotonicity

::
in

:::::::::::::
continuous-time

Our work (Theorem 3.1
:
)

::::::::
Proximal

::::
Point

: :::
LIC

:::::
under

:::::::::::
monotonicity

Our work (Theorem 4.4
:
)

:::
RMD

:::
LIC

:::
(to

:::::::::
regularized

::::::::::
equilibrium)

:::::
under

:::::::::::
monotonicity

for each h ∈ [H], s ∈ S and k ∈ N, i.e.,

DKL(π
⋆
h(s), σ

k+1
h (s))−DKL(π

⋆
h(s), σ

k
h(s))−DKL(σ

k+1
h (s), σk

h(s))

≤ 1

λ

〈
Qλ,σk

h (s, •, σk+1, µk+1), (σk+1
h )− π⋆

h)(s)
〉
.

(B.1)

Taking the expectation with respect to s ∼ µ⋆
h and summing (B.1) over h ∈ [H] yields

Dµ⋆(π⋆, σk+1)−Dµ⋆(π⋆, σk) +Dµ⋆(σk+1, σk)

≤ 1

λ

H∑
h=1

Es∼µ⋆
h

[〈
Qλ,σk

h (s, •, σk+1, µk+1), (σk+1
h )− π⋆

h)(s)
〉]

.

By virtue of Lemmas E.2 and E.4, we further have

H∑
h=1

Es∼µ⋆
h

[〈
Qλ,σk

h (s, •, σk+1, µk+1), (σk+1
h )− π⋆

h)(s)
〉]

≤Jλ,σk

(µk+1, σk+1)− Jλ,σk

(µk+1, π⋆)− λDµ⋆(π⋆, σk) + λDµ⋆(σk+1, σk)

≤Jλ,σk

(µ⋆, σk+1)− Jλ,σk

(µ⋆, π⋆)− λDµ⋆(π⋆, σk) + λDµ⋆(σk+1, σk)

≤J(µ⋆, σk+1)− J(µ⋆, π⋆)− λDµk+1(σk+1, σk) + λDµ⋆(σk+1, σk),

where we use the identity Jλ,σk

(µ⋆, π) = J(µ⋆, π) − λDm[π](π, σ
k) for π ∈ (∆(A)S)H , and

Definition 2.4. ■
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Proof of Lemma 3.3. Note that the function J(µ⋆, •): (∆(A)S)H ∋ π 7→ J(µ⋆, π) ∈ R is real-
analytic. Therefore, we can apply (Łojasiewicz, 1971, §18, Théorème 2.). ■

C PROOF OF THEOREM 4.4

Proof of Theorem 4.4. Let h⋆:R|A| → R be the convex conjugate of h, i.e., h⋆(y) =∑
a∈A exp(y(a)) for y ∈ R|A|. From direct computations, we have

d

dt
Dµ∗(ϖ∗, πt)

=

H∑
h=1

Es∼µ∗
h

[
d

dt
DKL(ϖ

∗
h(s), π

t(s))

]

=

H∑
h=1

Es∼µ∗
h

[〈
1− ϖ∗

h(s)

πt
h(s)

,
d

dt
πt
h(s)

〉]

=

H∑
h=1

Es∼µ∗
h

[〈
1− ϖ∗

h(s)

πt
h(s)

, πt
h (a | s)

(
Qλ,σ

h (s, a, πt, µt)− λ log
πt
h (a | s)

σh (a | s)

)〉]

=

H∑
h=1

Es∼µ∗
h

[〈
(πt

h −ϖ∗
h)(s), Q

λ,σ
h (s, •, πt, µt)− λ log

πt
h (a | s)

σh (a | s)

〉]

=

H∑
h=1

Es∼µ∗
h

[〈
(πt

h −ϖ∗
h)(s), Q

λ,σ
h (s, •, πt, µt)

〉]
− λ

H∑
h=1

Es∼µ∗
h

[〈
(πt

h −ϖ∗
h)(s), log

πt
h(s)

σh(s)

〉]
.

We apply Lemma E.4 for the first term and get

H∑
h=1

Es∼µ∗
h

[〈
(πt

h −ϖ∗
h)(s), Q

λ,σ
h (s, •, πt, µt)

〉]
=Jλ,σ(µt, πt)− Jλ,σ(µt, ϖ∗)− λDµ∗(ϖ∗, σ) + λDµ∗(πt, σ).

(C.1)

Similarly, we apply Lemma E.5 for the second term and get

H∑
h=1

Es∼µ∗
h

[〈
(πt

h −ϖ∗
h)(s), log

πt
h(s)

σh(s)

〉]
= Dµ∗(πt, σ)−Dµ∗(ϖ∗, σ) +Dµ∗(ϖ∗, πt). (C.2)

Combining (C.1) and (C.2) yields

d

dt
Dµ∗(ϖ∗, πt) = Jλ,σ(µt, πt)− Jλ,σ(µt, ϖ∗)− λDµ∗(ϖ∗, πt).

By virtue of the definition of mean-field equilibrium and Lemma E.2, we find

Jλ,σ(µt, πt)− Jλ,σ(µt, ϖ∗) ≤ Jλ,σ(µ∗, πt)− Jλ,σ(µ∗, ϖ∗) ≤ 0.

Therefore, we obtain

d

dt
Dµ∗(ϖ∗, πt) ≤ −λDµ∗(ϖ∗, πt).

■

Proposition C.1. Assume the same assumption as in Theorem 3.1. Then, there exists a unique
maximizer of Jλ,σk

(µk, •): (∆(A)S)H → R for each k ∈ N.
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The uniqueness of Proposition C.1 is a new result. The proof uses a continuous-time dy-
namics shown in Theorem 4.4, see Appendix C. In the following proof, we employ the same
proof strategy as in (Chill et al., 2010, Theorem 2.10). Before the proof, set vλ,σs,h (π) :=

πh (a | s)
(
Qλ,σ

h (s, a, π,m[π])− λ log πh(a | s)
σh(a | s)

)
for π ∈ (∆(A)S)H .

Proof of Proposition C.1. The existence is shown by a slightly modified version of (Zhang et al.,
2023, Theorem 2). It remains to prove the uniqueness. Fix the regularized equilibrium ϖ∗ ∈
(∆(A)S)H .

First of all, we prove the global existence of (4.4). By the local Lipschitz continuity of the right-hand
side of the dynamics (4.4) and Picard–Lindelöf theorem, there exists a unique maximal solution π of
(4.4) with the initial condition π|t=0 = π0. Namely, there exist T ∈ (0,+∞] and π: [0, T )→ R|A|

such that π is differentiable on (0, T ) and it holds that (4.4) for all t ∈ (0, T ). Thus, Theorem 4.4
ensures that

Dµ∗(ϖ∗, πt) + λ

t∫
0

Dµ∗(ϖ∗, πτ ) dτ ≤ Dµ∗(ϖ∗, π0) =: c < +∞,

for every t ∈ [0, T ). As a result, the trajectory
{
πt ∈ (∆(A)S)H t ∈ [0, T )

}
is included in Kc :={

π ∈ (∆(A)S)H Dµ∗(ϖ∗, π) ≤ c
}

. Note that Kc is compact from Pinsker inequality.

Since the right-hand side of (4.4) is continuous on Kc, we obtain supt∈[0,+∞)

∥∥∥vλ,σs,h (π
t)
∥∥∥ < +∞.

Thus, the equation (4.4) implies
∥∥∥dπt

dt

∥∥∥ is uniformly bounded on [0, T ). Hence, π extends to a
continuous function on [0, T ].

To obtain a contradiction, we assume T < +∞. Then, there exists the solution π′ of (4.4) on a
larger interval than π with a new initial condition π′|t′=T = πT , which contradicts the maximality
of the solution π.

Therefore, the limit limt→∞ πt exists and is equal to ϖ∗. Here, ϖ∗ is arbitrary, so the regularized
equilibrium is unique. ■

D PROOF OF THEOREM 4.3

Lemma D.1. It holds that〈
η

(
Qλ,σ

h (s, •, πt, µt)− λ log
πt+1
h (s)

σh(s)

)
− (1− λη) log

πt+1
h (s)

πt
h(s)

, δ

〉
= 0,

for all δ ∈ R|A| such that
∑

a δ(a) = 0.

We introduce the following lemma:

Lemma D.2. Let (πt)t be the sequence defined by (4.4) and ϖ∗ be the policy satisfies Definition 4.2.
Assume that there exist vectors wσ

h and w0
h(s) ∈ R|A| satisfying

λH log σmin ≤ wσ
h (a | s) ≤ −λH log σmin, σh (a | s) ∝ exp

(
wσ

h (a | s)
λ

)
,

2λH log σmin ≤ w0
h (a | s) ≤ H, π0

h (a | s) ∝ exp

(
w0

h (a | s)
λ

)
.

for all a ∈ A.π0 ∈ (∆(A)S)H , h ∈ [H] and s ∈ S. Then, for any h ∈ [H], s ∈ S, and t ≥ 0, it
holds that

max
{∥∥log πt

h(s)
∥∥
∞ , ∥log π∗

h(s)∥∞
}
≤ H(1− λ log σmin)

λ
+ log|A|.
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Proof. We first show that πt
h can be written as

πt
h (a | s) ∝ exp

(
wt

h (a | s)
λ

)
, (D.1)

for a vector wt
h(s) ∈ R|A| satisfying 2λH log σmin ≤ wt

h (a | s) ≤ H. We prove it by induction on
t. Suppose that there exist t ∈ N and wt

h satisfying (D.1). By the update rule (4.4), we have

πt+1
h (a | s) ∝ (σh (a | s))λη

(
πt
h (a | s)

)1−λη
exp

(
ηQλ,σ

h (s, a, πt, µt)
)

∝ exp

(
ληwσ

h (a | s) + (1− ηλ)wt
h (a | s) + ληQλ,σ

h (s, a, πt, µt)

λ

)
.

Set wt+1
h (a | s) := ληwσ

h (a | s) + (1 − ηλ)wt
h(a|s) + ληQλ,σ

h (s, a, πt, µt), we get πt+1
h (a|s) ∝

e
w

t+1
h

(a | s)

λ . From Lemma E.3 and the hypothesis of the induction, we get 2λH log σmin ≤
wt+1

h (a | s) ≤ H .

Then we have for any a1, a2 ∈ A:

πt
h (a1 | s)

πt
h (a2 | s)

= exp

(
wt

h (a1 | s)− wt
h (a2 | s)

λ

)
≤ exp

(
H(1− λ log σmin)

λ

)
.

It follows that:

min
a∈A

πt(a|s) ≥ exp

(−H(1− λ log σmin)

λ

)
max
a′∈A

πt
h (a | s) ≥ |A|−1

exp

(−H(1− λ log σmin)

λ

)
.

Therefore, we have: ∥∥log πt
h(s)

∥∥
∞ ≤

H(1− λ log σmin)

λ
+ log|A|.

From Lemmas E.1 and E.3, we have for π∗
h and a1, a2 ∈ A:

π∗
h (a1 | s)

π∗
h (a2 | s)

= exp

(
Qλ,σ

h (s, a1, π
t, µt) + wσ

h (a1 | s)−Qλ,σ
h (s, a2, π

t, µt)− wσ
h (a2 | s)

λ

)

≤ exp

(
H(1− λ log σmin)

λ

)
,

and, we get ∥log π∗
h(s)∥∞ ≤

H(1−λ log σmin)
λ + log|A|. ■

Lemma D.3. Let Gλ,σ
h (s, a, πt, µt) := Qλ,σ

h (s, a, πt, µt)− λ log
πt
h (a | s)

σh (a | s)
.∣∣∣Gλ,σ

h (s, a, πt, µt)−Gλ,σ
h (s, a′, πt, µt)

∣∣∣
≤2L

H∑
l=h

∥∥µt
l − µ∗

l

∥∥
1
+ Cλ,σ,H,|A|(Eh(a, π

t, ϖ∗) + Eh(a
′, πt, ϖ∗)

)
,

for a, a′ ∈ A. Here,

Cλ,σ,H,|A| := 2λ|A|e
H(1−λ log σmin)

λ + 2(1 +H)− λ(1 + 2H) log σmin + 2λ log |A|,
and

Eh(a, π
t, ϖ∗) := E

 H∑
l=h

∥∥π∗
l (sl)− πt

l (sl)
∥∥
1

∣∣∣∣∣∣∣
sh = s, ah = a,
sl+1 ∼ Pl(sl, al),

al ∼ ϖ∗
l (sl)

for each l ∈ {h, . . . ,H}

 .
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Proof of Lemma D.3. We first compute the absolute value as follows:∣∣∣Gλ,σ
h (s, a, πt, µt)−Gλ,σ

h (s, a′, πt, µt)
∣∣∣

=

∣∣∣∣(Qλ,σ
h (s, a, πt, µt)− λ log

πt
h (a | s)

σh (a | s)

)
−
(
Qλ,σ

h (s, a′, πt, µt)− λ log
πt
h (a

′ | s)
σh (a′ | s)

)∣∣∣∣
≤
∣∣∣∣(Qλ,σ

h (s, a,ϖ∗, µ∗)− λ log
πt
h (a | s)

σh (a | s)

)
−
(
Qλ,σ

h (s, a′, ϖ∗, µ∗)− λ log
πt
h (a

′ | s)
σh (a′ | s)

)∣∣∣∣
+
∣∣∣(Qλ,σ

h (s, a, πt, µt)−Qλ,σ
h (s, a,ϖ∗, µ∗)

)
−
(
Qλ,σ

h (s, a′, πt, µt)−Qλ,σ
h (s, a′, ϖ∗, µ∗)

)∣∣∣.
(D.2)

By Lemmas D.2 and E.1, the first term of right-hand side in (D.3) can be computed as∣∣∣∣(Qλ,σ
h (s, a,ϖ∗, µ∗)− λ log

πt
h (a | s)

σh (a | s)

)
−
(
Qλ,σ

h (s, a′, ϖ∗, µ∗)− λ log
πt
h (a

′ | s)
σh (a′ | s)

)∣∣∣∣
=

∣∣∣∣(λ log
ϖ∗

h (a | s)
σh (a | s)

− λ log
πt
h (a | s)

σh (a | s)

)
−
(
λ log

ϖ∗
h (a

′ | s)
σh (a′ | s)

− λ log
πt
h (a

′ | s)
σh (a′ | s)

)∣∣∣∣
≤λ
(∣∣∣∣log ϖ∗

h (a | s)
πt
h (a | s)

∣∣∣∣+ ∣∣∣∣log ϖ∗
h (a

′ | s)
πt
h (a

′ | s)

∣∣∣∣)
≤λ
(

1

ϖ∗
min

+
1

mina∈A πt
h (a | s)

)(∣∣ϖ∗
h (a | s)− πt

h (a | s)
∣∣+ ∣∣ϖ∗

h (a
′ | s)− πt

h (a
′ | s)

∣∣)
≤2λ|A| exp

(
H(1− λ log σmin)

λ

)(∣∣ϖ∗
h (a | s)− πt

h (a | s)
∣∣+ ∣∣ϖ∗

h (a
′ | s)− πt

h (a
′ | s)

∣∣).
(D.3)

By Proposition E.8 and Lemma E.6, the second term is bounded as∣∣∣(Qλ,σ
h (s, a, πt, µt)−Qλ,σ

h (s, a,ϖ∗, µ∗)
)
−
(
Qλ,σ

h (s, a′, πt, µt)−Qλ,σ
h (s, a′, ϖ∗, µ∗)

)∣∣∣
≤2L

H∑
l=h

∥∥µt
l − µ∗

l

∥∥
1

+ Cλ,σ(πt, ϖ∗)E

 H∑
l=h+1

∥∥π∗
l (sl)− πt

l (sl)
∥∥
1

∣∣∣∣∣∣∣
sh+1 ∼ Ph (• | s, a) ,
sl+1 ∼ Pl(sl, al),

al ∼ ϖ∗
l (sl)

for each l ∈ {h+ 1, . . . ,H}



+ Cλ,σ(πt, ϖ∗)E

 H∑
l=h+1

∥∥π∗
l (sl)− πt

l (sl)
∥∥
1

∣∣∣∣∣∣∣
sh+1 ∼ Ph (• | s, a′) ,
sl+1 ∼ Pl(sl, al),

al ∼ ϖ∗
l (sl)

for each l ∈ {h+ 1, . . . ,H}

 .

Furthermore, Cλ,σ(πt, ϖ∗) can be bounded as

Cλ,σ(πt, ϖ∗) ≤2− λ log σmin + 2λ

(
H(1− λ log σmin)

λ
+ log|A|

)
=2(1 +H)− λ(1 + 2H) log σmin + 2λ log |A|.

■

Proof of Theorem 4.3. Set

C :=4H2

L2H2 +

(
Cλ,σ,H,|A|)2

|A| exp
(

H(1−λ log σmin)
λ

)
 (D.4)

=4H2

L2H2 +

(
2λ|A|eH(1−λ log σmin)

λ + 2(1 +H)− λ(1 + 2H) log σmin + 2λ log |A|
)2

|A|eH(1−λ log σmin)

λ


18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

η∗ =min

{
1

2H
(
L+ Cλ,σ,H,|A|

) , λ

2C

}
, (D.5)

where Cλ,σ,H,|A| is the constant defined in Lemma D.3. We prove the inequality by induction on t.

(I) Base step t = 0: It is obvious.

(II) Inductive step: Suppose that there exists t ∈ N such that πt ∈ Ω. Lemma D.1 yields that

Dµ∗(ϖ∗, πt+1)−Dµ∗(ϖ∗, πt)−Dµ∗(πt, πt+1)

=

H∑
h=1

Es∼µ∗
h

[〈
log

πt
h(s)

πt+1
h (s)

, (ϖ∗
h − πt

h)(s)

〉]

=−
H∑

h=1

Es∼µ∗
h

[〈
η

1− λη

(
Qλ,σ

h (s, •, πt, µt)− λ log
πt+1
h (s)

σh(s)

)
, (ϖ∗

h − πt
h)(s)

〉]

=− η

1− λη

H∑
h=1

Es∼µ∗
h

[〈
Qλ,σ

h (s, •, πt, µt),
(
ϖ∗

h − πt
h

)
(s)
〉]

︸ ︷︷ ︸
=:I

+
λη

1− λη

H∑
h=1

Es∼µ∗
h

[〈
log

πt+1
h (s)

σh(s)
,
(
ϖ∗

h − πt+1
h

)
(s)

〉]
≤− η

1− λη

(
λDµ∗(ϖ∗, σ)− λDµ∗(πt+1, σ)

)
+

λη

1− λη

(
Dµ∗(ϖ∗, σ)−Dµ∗(ϖ∗, πt+1)−Dµ∗(πt+1, σ)

)
≤− λη

1− λη
Dµ∗(ϖ∗, πt+1),

(D.6)

where I is bounded from below as follows: By Lemma E.4, we get

I =Jλ,σ(µt+1, ϖ∗)− Jλ,σ(µt+1, πt+1) + λDµ∗(ϖ∗, σ)− λDµ∗(πt+1, σ). (D.7)

By virtue of the definition of mean-field equilibrium and Lemma E.2, we find

Jλ,σ(µt+1, ϖ∗)− Jλ,σ(µt+1, πt+1) ≥ Jλ,σ(µ∗, ϖ∗)− Jλ,σ(µ∗, πt+1) ≥ 0.

Then, we obtain

I ≥ λDµ∗(ϖ∗, σ)− λDµ∗(πt+1, σ).

For the last term Dµ∗(πt, πt+1)of the leftmost hand of (D.6), we can employ a similar argument
to (Abe et al., 2023, Lemma 5.4), that is, we can estimate Dµ∗(πt, πt+1) as follows: Set G(a) :=

Gλ,σ
h (s, a, πt, µt) = Qλ,σ

h (s, a, πt, µt) − λ log
πt
h (a | s)

σh (a | s)
. Note that maxa,a′∈A |G(a′)−G(a)| ≤

η∗−1 by Lemma D.3. By the update rule (4.4) and concavity of the logarithmic function log, we
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have

Dµ∗(πt, πt+1)

=

H∑
h=1

Es∼µ∗
h

[∑
a∈A

πt
h (a | s) log

πt
h (a | s)

πt+1
h (a | s)

]

=

H∑
h=1

Es∼µ∗
h

∑
a∈A

πt
h (a | s) log

∑
a′∈A

(σh (a
′ | s))λη(πt

h (a
′ | s))1−λη

exp
(
ηQλ,σ

h (s, a′, πt, µt)
)

(σh (a | s))λη(πt
h (a | s))

−λη
exp

(
ηQλ,σ

h (s, a, πt, µt)
)



=

H∑
h=1

Es∼µ∗
h

∑
a∈A

πt
h (a | s) log

∑
a′∈A

πt
h (a

′ | s) exp
(
ηQλ,σ

h (s, a′, πt, µt)− λη log
πt
h (a

′ | s)
σh (a′ | s)

)
exp

(
ηQλ,σ

h (s, a, πt, µt)− λη log
πt
h (a | s)

σh (a | s)

)


≤
H∑

h=1

Es∼µ∗
h

log∑
a∈A

πt
h (a | s)

∑
a′∈A

πt
h (a

′ | s) exp
(
ηQλ,σ

h (s, a′, πt, µt)− λη log
πt
h (a

′ | s)
σh (a′ | s)

)
exp

(
ηQλ,σ

h (s, a, πt, µt)− λη log
πt
h (a | s)

σh (a | s)

)
.

(D.8)
If we take η to be η ≤ η∗, it follows that

η(G(a′)−G(a)) ≤ 1,

for a, a′ ∈ A. Thus, we can use the inequality ex ≤ 1 + x+ x2 for x ≤ 1 and obtain

Dµ∗(πt, πt+1)

≤
H∑

h=1

Es∼µ∗
h

log ∑
a,a′∈A

πt
h (a | s)πt

h (a
′ | s) eη(G(a′)−G(a))


=

≤
H∑

h=1

Es∼µ∗
h

log ∑
a,a′∈A

πt
h (a | s)πt

h (a
′ | s)

(
1 + η(G(a′)−G(a)) + η2(G(a′)−G(a))

2
)

=

H∑
h=1

Es∼µ∗
h

log ∑
a,a′∈A

πt
h (a | s)πt

h (a
′ | s)

(
1 + (G(a′)−G(a))

2
)

=

H∑
h=1

Es∼µ∗
h

log
1 + η2

∑
a,a′∈A

πt
h (a | s)πt

h (a
′ | s) (G(a′)−G(a))

2


≤η2

H∑
h=1

Es∼µ∗
h

 ∑
a,a′∈A

πt
h (a | s)πt

h (a
′ | s) (G(a′)−G(a))

2

.
By Lemma D.3, we can see that∑

a,a′∈A
πt
h (a | s)πt

h (a
′ | s) (G(a′)−G(a))

2

≤
∑

a,a′∈A
πt
h (a | s)πt

h (a
′ | s)

(
2L

H∑
l=h

∥∥µt
l − µ∗

l

∥∥
1
+ Cλ,σ,H,|A|(Eh(a, π

t, ϖ∗) + Eh(a
′, πt, ϖ∗)

))2

≤
∑

a,a′∈A
πt
h (a | s)πt

h (a
′ | s)

8L2

(
H∑
l=h

∥∥µt
l − µ∗

l

∥∥
1

)2

+ 4
(
Cλ,σ,H,|A|

)2(
E2

h(a, π
t, ϖ∗) + E2

h(a
′, πt, ϖ∗)

)
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≤8L2H

H∑
l=h

∥∥µt
l − µ∗

l

∥∥2
1
+ 8
(
Cλ,σ,H,|A|

)2 ∑
a∈A

πt
h (a | s)E2

h(a, π
t, ϖ∗)

=8L2H

H∑
l=h

∥∥µt
l − µ∗

l

∥∥2
1
+ 8
(
Cλ,σ,H,|A|

)2 ∑
a∈A

πt
h (a | s)

ϖ∗
h (a | s)

ϖ∗
h (a | s)E2

h(a, π
t, ϖ∗)

≤8L2H

H∑
l=h

∥∥µt
l − µ∗

l

∥∥2
1
+

8
(
Cλ,σ,H,|A|)2

|A| exp
(

H(1−λ log σmin)
λ

) ∑
a∈A

ϖ∗
h (a | s)E2

h(a, π
t, ϖ∗)

≤8L2H

H∑
l=h

∥∥µt
l − µ∗

l

∥∥2
1
+

8H
(
Cλ,σ,H,|A|)2

|A| exp
(

H(1−λ log σmin)
λ

) H∑
l=h

Esl∼µ∗
l

[∥∥π∗
l (sl)− πt

l (sl)
∥∥2
1

]

≤8L2H

H∑
l=h

∥∥µt
l − µ∗

l

∥∥2
1
+

4H
(
Cλ,σ,H,|A|)2

|A| exp
(

H(1−λ log σmin)
λ

)Dµ∗(ϖ∗, πt).

Moreover, Lemma E.6 bounds
∑H

l=h ∥µt
l − µ∗

l ∥
2

1 as

H∑
l=h

∥∥µt
l − µ∗

l

∥∥2
1

≤
H∑
l=h

(
l−1∑
k=0

Esk∼µ∗
k

[∥∥π∗
k(sk)− πt

k(sk)
∥∥])2

≤H
H∑
l=h

l−1∑
k=0

Esk∼µ∗
k

[∥∥π∗
k(sk)− πt

k(sk)
∥∥2]

≤1

2
H2Dµ∗(ϖ∗, πt).

Therefore, we finally obtain

Dµ∗(ϖ∗, πt+1) ≤
(
1− λη + Cη2

)
Dµ∗(ϖ∗, πt) ≤

(
1− 1

2
λη

)
Dµ∗(ϖ∗, πt), (D.9)

where we use Cη ≤ Cη∗ ≤ 1/2. ■

E USEFUL LEMMAS

For Mean-field games, one can write down the Bellman optimality equation as follows: for a function
Q′:S → ∆(A), a policy π′:S → ∆(A), σ′:S → ∆(A) and s ∈ S set

fσ′

s (Q′, π′) = ⟨Q′(s), π′(s)⟩ − λDKL(π
′(s), σ′(s)). (E.1)

Lemma E.1. Let (µ∗, ϖ∗) be equilibrium in the sense of Definition 4.2. Then, it holds that

ϖ∗
h(s) = arg max

p∈∆(A)

fσh
s

(
Qλ,σ

h (s, •, ϖ∗, µ∗), p
)
∝ σh (• | s) exp

(
Qλ,σ

h (s, •, ϖ∗, µ∗)

λ

)
,

for each s ∈ S and h ∈ [H]. Moreover,〈
Qλ,σ

h (s, •, ϖ∗, µ∗)− λ log
π∗
h(s)

σh(s)
, δ

〉
= 0,

for all δ ∈ R|A| such that
∑

a δ(a) = 0.

Proof. See the Bellman optimality equation (e.g., (Agarwal et al., 2022, Theorem 1.9)). ■
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Lemma E.2. Under Assumption 2.2, it holds that, for all π, π̃ ∈ (∆(A)S)H ,

Jλ,σ(m[π], π) + Jλ,σ(m[π̃], π̃)− Jλ,σ(m[π], π̃)− Jλ,σ(m[π̃], π) ≤ 0,

where m is defined in (2.1).

Proof of Lemma E.2. The proof is similar to (Zhang et al., 2023, §H). Set µ = m[π] and µ̃ = m[π̃].
One can obtain that

Jλ,σ(m[π], π) + Jλ,σ(m[π̃], π̃)− Jλ,σ(m[π], π̃)− Jλ,σ(m[π̃], π)

=(Jλ,σ(µ, π)− Jλ,σ(µ̃, π)) + (Jλ,σ(µ̃, π̃)− Jλ,σ(µ, π̃))

=

H∑
h=1

∑
sh∈S

m[π]h(sh)
∑
ah∈A

πh (ah | sh) (rh(sh, ah, µh)− rh(sh, ah, µ̃h))

+

H∑
h=1

∑
sh∈S

m[π̃]h(sh)
∑
ah∈A

π̃h (ah | sh) (rh(sh, ah, µ̃h)− rh(sh, ah, µh))

=
∑
h,s,a

(πh (a | s)µh(s)− π̃h (a | s) µ̃h(s))(rh(sh, ah, µh)− rh(sh, ah, µ̃h)),

and the right-hand side of the above inequality is less than 0 by Assumption 2.2. ■

Lemma E.3. Let V λ,σ
h be the state value function defined in (4.2) and Qλ,σ

h be the state action value
function defined in (4.3). For any s ∈ A, a ∈ A, and h ∈ [H], it holds that

λ(H − h+ 1) log σmin ≤ V λ,σ
h (s, µ, π) ≤ H − h+ 1,

λ(H − h+ 1) log σmin ≤ Qλ,σ
h (s, a, µ, π) ≤ H − h+ 2.

Proof. We prove the inequalities by backward induction on h. By definition, we have

max
s∈S

V λ,σ
h (s, µ, π) =E

[
H∑
l=h

(rl(sl, al, µl)− λDKL(πl(sl), σl(sl)))

∣∣∣∣∣ sh = s

]
= ⟨rh(s, •, µh), πh(s)⟩ − λDKL(πh(sh), σh(sh))

+
∑

sh+1∈S
V λ,σ
h+1(sh+1, µ, π)

∑
ah∈A

Ph (sh+1 | s, ah)πh (ah | s)

≤1 + max
sh+1∈S

V λ,σ
h+1(sh+1, µ, π),

and

min
s∈S

V λ,σ
h (s, µ, π) = ⟨rh(s, •, µh), πh(s)⟩ − λDKL(πh(sh), σh(sh))

+
∑

sh+1∈S
V λ,σ
h+1(sh+1, µ, π)

∑
ah∈A

Ph (sh+1 | s, ah)πh (ah | s)

≥λ log σmin + max
sh+1∈S

V λ,σ
h+1(sh+1, µ, π).

Then, we have

V λ,σ
h (s, µ, π) ∈ [λ(H − h+ 1) log σmin, H − h+ 1],

by the induction. The definition of Qλ,σ
h in (4.3) immediately yields the bound. ■

Lemma E.4. For all π, π̃ ∈ (∆(A)S)H , it holds that

H∑
h=1

Es∼m[π̃]h

[〈
(πh − π̃h)(s), Q

λ,σ
h (s, •, π, µ)

〉]
= Jλ,σ(µ, π)−Jλ,σ(µ, π̃)−λDm[π̃](π̃, σ)+λDm[π̃](π, σ).
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Proof. From the definition of V λ,σ and Qλ,σ in (4.2) and (4.3), we have
H∑

h=1

Es∼m[π̃]h

[〈
πh(s), Q

λ,σ
h (s, •, π, µ)

〉]
=

H∑
h=1

Es∼m[π̃]h

[〈
πh(s), rh(s, •, µh) + E

[
V λ,σ
h+1(sh+1, µ, π)

∣∣∣ sh+1 ∼ P (s, •, µh)
]〉]

=

H∑
h=1

Esh∼m[π̃]h

[
Eah∼πh(s) [rh(sh, ah, µh)− λDKL(π(sh), σ(sh))]

]
+ λDm[π̃](π, σ)

+

H∑
h=1

Es∼m[π̃]h

[
E
[
V λ,σ
h+1(sh+1, µ, π)

∣∣∣ sh+1 ∼ P (s, ah, µh), ah ∼ πh(s)
]]

=

H∑
h=1

Esh∼m[π̃]h

[
V λ,σ
h (sh, µ, π)− E

[
V λ,σ
h+1(sh+1, µ, π)

∣∣∣∣ sh+1 ∼ P (s, ah, µh),
ah ∼ πh(s)

]]
+ λDm[π̃](π, σ)

+

H∑
h=1

Es∼m[π̃]h

[
E
[
V λ,σ
h+1(sh+1, µ, π)

∣∣∣∣ sh+1 ∼ P (s, ah, µh),
ah ∼ πh(s)

]]

=

H∑
h=1

Es∼m[π̃]h

[
V λ,σ
h (s, µ, π)

]
+ λDm[π̃](π, σ).

(E.2)

Similarly, (4.1) and (2.1) gives us
H∑

h=1

Es∼m[π̃]h

[〈
π̃h(s), Q

λ,σ
h (s, •, π, µ)

〉]
=

H∑
h=1

Esh∼m[π̃]h

[
Eah∼π̃h(s) [rh(sh, ah, µh)− λDKL(π̃(sh), σ(sh))]

]
+ λDm[π̃](π̃, σ)

+

H∑
h=1

Es∼m[π̃]h

[
E
[
V λ,σ
h+1(sh+1, µ, π)

∣∣∣ sh+1 ∼ P (s, ah, µh), ah ∼ π̃h(s)
]]

=Jλ,σ(µ, π̃) + λDm[π̃](π̃, σ) +

H∑
h=1

Es∼m[π̃]h+1

[
V λ,σ
h+1(s, µ, π)

]
.

(E.3)

Combining (E.2) and (E.3) yields
H∑

h=1

Es∼m[µ̃]h

[〈
(πh − π̃h)(s), Q

λ,σ
h (s, •, π, µ)

〉]
=

(
H∑

h=1

Es∼m[π̃]h

[
V λ,σ
h (s, µ, π)

]
+ λDm[π̃](π, σ)

)

−
(
Jλ,σ(µ, π̃) + λDm[π̃](π̃, σ) +

H∑
h=1

Es∼m[π̃]h+1

[
V λ,σ
h+1(s, µ, π)

])
=
(
Es∼m[π̃]1

[
V λ,σ
1 (s, µ, π)

]
+ λDm[π̃](π, σ)

)
−
(
Jλ,σ(µ, π̃) + λDm[π̃](π̃, σ)

)
=Es∼µ1

[
V λ,σ
1 (s, µ, π)

]
− Jλ,σ(µ, π̃) + λDm[π̃](π, σ)− λDm[π̃](π̃, σ),

which concludes the proof. ■

Lemma E.5. For all π, π̃ ∈ (∆(A)S)H , it holds that
H∑

h=1

Es∼m[π̃]h

[〈
(πh − π̃h)(s), log

πh(s)

σh(s)

〉]
= Dm[π̃](π, σ)−Dm[π̃](π̃, σ) +Dπ̃(π̃, π).
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Proof. A direct computation yields
H∑

h=1

Es∼m[π̃]h

[〈
(πh − π̃h)(s), log

πh(s)

σh(s)

〉]

=Dm[π̃](π, σ)−
H∑

h=1

Es∼m[π̃]h

[〈
π̃h(s), log

π̃h(s)

σh(s)
− log

π̃(s)

π(s)

〉]
=Dm[π̃](π, σ)−Dm[π̃](π̃, σ) +Dm[π̃](π̃, π).

■

Lemma E.6. The operator m defined in (2.1) is 1-Lipschitz, namely, it holds that

∥m[π]h+1 −m[π′]h+1∥ ≤
h∑

l=0

Esl∼m[π]l [∥πl(sl)− π′
l(sl)∥], (E.4)

for π, π′ ∈ (∆(A)S)H and all h ∈ {0, . . . ,H}. Here, we set π0(s) = π′
0(s) = UA for all s ∈ S.

Proof. Fix π, π′ ∈ (∆(A)S)H . We prove the inequality by induction on h.

(I) Base step h = 0: It is obvious because ∥m[π]1 −m[π′]1∥ = ∥µ1 − µ1∥ = 0.

(II) Inductive step: Suppose that there exists h ∈ [H] satisfying the inequality (E.4). By (2.1),
we obtain
∥m[π]h+2 −m[π′]h+2∥
≤

∑
sh+2∈S,

(sh+1,ah+1)∈S×A

Ph+1 (sh+2 | sh+1, ah+1)m[π]h+1(sh+1)
∣∣πh+1 (ah+1 | sh+1)− π′

h+1 (ah+1 | sh+1)
∣∣

+
∑

sh+2∈S,
(sh+1,ah+1)∈S×A

Ph+1 (sh+2 | sh+1, ah+1)π
′
h+1 (ah+1 | sh+1) |m[π]h+1(sh+1)−m[π′]h+1(sh+1)|

≤
∑

(sh+1,ah+1)∈S×A

m[π]h+1(sh+1)
∣∣πh+1 (ah+1 | sh+1)− π′

h+1 (ah+1 | sh+1)
∣∣

+
∑

sh+1∈S
|m[π]h+1(sh+1)−m[π′]h+1(sh+1)|

=Esh+1∼m[π]h+1

[∥∥πh+1(sh+1)− π′
h+1(sh+1)

∥∥]+ ∥m[π]h+1 −m[π′]h+1∥.
By the hypothesis of the induction, we finally obtain

∥m[π]h+2 −m[π′]h+2∥

≤Es∼m[π]h+1

[∥∥πh+1(s)− π′
h+1(s)

∥∥]+ h∑
l=1

Es∼m[π]l ∥πl(s)− π′
l(s)∥

≤
h+1∑
l=1

Es∼m[π]l ∥πl(s)− π′
l(s)∥.

■

Lemma E.7. Let π, π′ ∈ (∆(A)S)H , µ, µ′ ∈ ∆(S)H , s ∈ S, and h ∈ {1, . . . ,H + 1}. Assume
min

(h,a,s)∈[H]×A×S
min{πh (a | s) , π′

h (a | s)} > 0,

and set µH+1 = µ′
H+1 = US , πH+1(s) = π′

h+1(s) = UA for all s ∈ S.∣∣∣V λ,σ
h (s, π, µ)− V λ,σ

h (s, π′, µ′)
∣∣∣

≤E

H+1∑
l=h

(
Cλ,σ(π, π′)∥πl(sl)− π′

l(sl)∥1 + L∥µl − µ′
l∥1
) ∣∣∣∣∣∣∣

sh = s,
sl+1 ∼ Pl(sl, al),

al ∼ πl(sl)
for each l ∈ {h, . . . ,H + 1}


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for Here, Cλ,σ(π, π′) > 0 is defined in Proposition E.8, and the discrete time stochastic process
(sl)

H
l=h is induced recursively as sl+1 ∼ Pl(sl, al), al ∼ πl(sl) for each l ∈ {h, . . . ,H − 1}.

Proof. Fix π, π′, µ and µ′. We prove the inequality by backward induction on h.

(I) Base step h = H+1: It is obvious because
∣∣∣V λ,σ

H+1(s, π, µ)− V λ,σ
H+1(s, π

′, µ′)
∣∣∣ = |0− 0| = 0.

(II) Inductive step: Suppose that there exists h ∈ [H] satisfying∣∣∣V λ,σ
h+1(s, π, µ)− V λ,σ

h+1(s, π
′, µ′)

∣∣∣
≤E

 H+1∑
l=h+1

(
Cλ,σ(π, π′)∥πl(sl)− π′

l(sl)∥1 + L∥µh − µ′
h∥1
) ∣∣∣∣∣∣∣

sh+1 = s,
sl+1 ∼ Pl(sl, al),

al ∼ πl(sl)
for each l ∈ {h+ 1, . . . ,H + 1}

 ,

(E.5)
for all s ∈ S. By the definition of the value function in (4.2) and Assumption 2.3, we have∣∣∣V λ,σ

h (s, π, µ)− V λ,σ
h (s, π′, µ′)

∣∣∣
≤
∣∣∣∣∣ ∑
ah∈A

(πh (ah | s) rh(s, ah, µh)− π′
h (ah | s) rh(s, ah, µ′

h))

∣∣∣∣∣
+ λ|DKL(πh(s), σh(s))−DKL(π

′
h(s), σh(s))|

+

∣∣∣∣∣∣∣∣
∑

ah∈A,
sh+1∈S

Ph (sh+1 | s, ah)
(
πh (ah | s)V λ,σ

h+1(sh+1, π, µ)− π′ (ah | s)V λ,σ
h+1(sh+1, π

′, µ′)
)∣∣∣∣∣∣∣∣

≤∥πh(s)− π′
h(s)∥1 +

∑
ah∈A

πh (ah | s) |rh(s, ah, µh)− rh(s, ah, µ
′
h)|

+ λ

∣∣∣∣∣ ∑
ah∈A

(
πh (ah | s)

(
log

πh (ah | s)
σh (ah | s)

− 1

)
− π′

h (ah | s)
(
log

π′
h (ah | s)

σh (ah | s)
− 1

))∣∣∣∣∣
+ ∥πh(s)− π′

h(s)∥1
+

∑
ah∈A,
sh+1∈S

Ph (sh+1 | s, ah)πh (ah | s)
∣∣∣V λ,σ

h+1(sh+1, π, µ)− V λ,σ
h+1(sh+1, π

′, µ′)
∣∣∣

≤2∥πh(s)− π′
h(s)∥1 + L∥µh − µ′

h∥1
+ λ max

(h,a,s)
log

1

(σππ′)h (a | s)
∥πh(s)− π′

h(s)∥1

+
∑

ah∈A,
sh+1∈S

Ph (sh+1 | s, ah)πh (ah | s)
∣∣∣V λ,σ

h+1(sh+1, π, µ)− V λ,σ
h+1(sh+1, π

′, µ′)
∣∣∣

≤Cλ,σ(π, π′)∥πh(s)− π′
h(s)∥1 + L∥µh − µ′

h∥1

+ E

[∣∣∣V λ,σ
h+1(sh+1, π, µ)− V λ,σ

h+1(sh+1, π
′, µ′)

∣∣∣ ∣∣∣∣∣ sh = s,
sh+1 ∼ Ph(sh, ah),

ah ∼ πh(sh)

]
.

Combining the above inequality and the hypothesis of the induction completes the proof. ■
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Proposition E.8. Let Qλ,σ be the function defined by (4.3), and (π, π′) ∈
(
(∆(A)S)H

)2
be policies

with full supports. Under Assumptions 2.3 and 4.1, it holds that∣∣∣Qλ,σ
h (s, a, π, µ)−Qλ,σ

h (s, a, π′, µ′)
∣∣∣

≤L
H∑
l=h

∥µl − µ′
l∥+ Cλ,σ(π, π′)E(sl)Hl=h+1

[
H∑

l=h+1

∥πl(sl)− π′
l(sl)∥

∣∣∣∣∣ sh = s

]
,

for (h, s, a) ∈ [H] × S × A and µ, µ′ ∈ ∆(S)H . Here, the random variables (sl)
H
l=h+1 follows

the stochastic process starting from state s at time h, induced from P and π, and the function
Cλ,σ:

(
(∆(A)S)H

)2 → R is given by Cλ,σ(π, π′) = 2− λ inf(h,s,a)∈[H]×S×A log (σππ′)h (a | s).

Proof of Proposition E.8. Let h be larger than 2. By the definition of Qλ,σ
h given in (4.3) and

Lemma E.7, we have∣∣∣Qλ,σ
h−1(s, a, π, µ)−Qλ,σ

h−1(s, a, π
′, µ′)

∣∣∣
≤
∣∣rh−1(s, a, µh−1)− rh−1(s, a, µ

′
h−1)

∣∣+ Esh∼Ph−1(s,a)

[∣∣∣V λ,σ
h (sh, π, µ)− V λ,σ

h (sh, π
′, µ′)

∣∣∣]
≤L
∥∥µh−1 − µ′

h−1

∥∥+ Esh∼Ph−1(s,a)

[∣∣∣V λ,σ
h (sh, π, µ)− V λ,σ

h (sh, π
′, µ′)

∣∣∣].
Combining the above inequality and Lemma E.7 completes the proof. ■

F EXPERIMENT DETAILS

We ran experiments on a laptop with an 11th Gen Intel Core i7-1165G7 8-core CPU, 16GB RAM,
running Windows 11 Pro with WSL. As is clear from Algorithm 2, our proposed method is deter-
ministic. Thus, we ran the algorithm only once for each experimental setting. We implemented our
proposed method using Python. The computation of Qλ,σ and µ in Algorithm 2 was based on the
implementation provided by Fabian et al. (2023).

We show further details for Beach Bar Process. We set H = 10, |S| = 10,A = {−1,±0,+1}, λ =
0.1, η = 0.1, and

Ph (s
′ | s, a) =


1− ε if a = ±0 & s′ = s,
ε

2
if a = ±1 & s′ = s± 1,

0 otherwise,

where we choose ϵ = 0.1. In addition, we initialize σ0 and π0 in Algorithm 2 as the uniform
distributions on A.
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