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ABSTRACT

Mean Field Game (MFG) is a framework utilized to model and approximate the
behavior of a large number of agents, and the computation of equilibria in MFG
has been a subject of interest. Despite the proposal of methods to approximate the
equilibria, algorithms where the sequence of updated policy converges to equilib-
rium, specifically those exhibiting last-iterate convergence, have been limited. We
propose the use of a simple, proximal-point-type algorithm to compute equilibiria
for MFGs. Subsequently, we provide the first last-iterate convergence guaran-
tee under the Lasry—Lions-type monotonicity condition. We further employ the
Mirror Descent algorithm for the regularized MFG to efficiently approximate the
update rules of the proximal point method for MFGs. We demonstrate that the al-
gorithm can approximate with an accuracy of € after O(log(1/¢)) iterations. This
research offers a tractable approach for large-scale and large-population games.

1 INTRODUCTION

Mean Field Games (MFGs) provide a simple and powerful framework for approximating the be-
havior of large populations of interacting agents. Originally formulated by Lasry & Lions (2007);
Huang et al. (2006), MFGs model the collective behavior of homogeneous agents in continuous time
and state settings using Partial Differential Equations (PDEs) (Cardaliaguet & Hadikhanloo, 2017;
Lavigne & Pfeiffer, 2023; Inoue et al., 2023). Subsequently, the formulation of MFGs using Markov
Decision Processes (Bertsekas & Shreve, 1978; Puterman, 1994) has enabled the study of discrete-
time and discrete-state models (Gomes et al., 2010), broadening the applicability of MFGs to Multi-
Agent Reinforcement Learning (MARL) (Yang et al., 2018). Moreover, it has become possible to
capture interactions among heterogeneous agents (Gao & Caines, 2017; Caines & Huang, 2019).

The applicability of MFGs to MARL drives research into their = PP-type method
computational aspects. Under fairly general assumptions, the ~While ¥ < N do

hard to solve

problem of finding an equilibrium in MFGs is known to be e T ~ RMD
PPAD-complete (Yardim et al., 2024). Consequently, it would ——M ——————
be essential to impose assumptions that allow for the exis- ‘

tence of algorithms capable of efficiently computing an equi-

librium. One of the assumptions is contractivity (Xie et al., Approximation of PP (proposed)
2021; Anahtarci et al., 2023; Yardim et al., 2023). However, while k < NV do

it is known that many problems are not contractive in prac- tractable(©)

tice (Cui & Koeppl, 2021). One of the more realistic assump-
tions is monotonicity (Pérolat et al., 2022; Zhang et al., 2023;
Yardim & He, 2024), which intuitively implies that as more
agents converge to a single state, the reward monotonically decreases. Under the monotonicity as-
sumption, Online Mirror Descent (OMD) has been proposed and widely adopted (Pérolat et al.,
2022; Cui & Koeppl, 2022; Lauriere et al., 2022; Fabian et al., 2023). OMD, especially when com-
bined with function approximation via deep learning, has enabled the application of MFGs to MARL
(Yang & Wang, 2021; Zhang et al., 2021; Cui et al., 2022).

Figure 1: Overview of Algorithms

Theoretically, last-iterate convergence (LIC), which ensures that the policy obtained in the final iter-
ation converges, is particularly important in deep learning settings due to the constraints imposed by
neural networks (NN). In NN, calculating the time-averaged policy like in the celebrated Fictitious
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Play method (Brown, 1951; Perrin et al., 2020) may be less meaningful due to nonlinearity in the
parameter space. These considerations have spurred significant research into developing algorithms
that achieve LIC in finite N-player games, as seen in, e.g., Mertikopoulos et al. (2018); Piliouras
et al. (2022); Abe et al. (2023; 2024).

Despite its importance, the literature on LIC results in MFG is quite limited. The only exception is
Pérolat et al. (2022), who proved the LIC result for the continuous-time version of OMD without the
quantified rates under the strict monotonicity condition. The aim of this research is to establish an
online learning algorithm that can achieve LIC in MFGs under non-strict monotonicity conditions.

In this paper, we propose a novel proximal-point (PP) type algorithm and prove that it achieves LIC
under the non-strict monotonicity assumption. Furthermore, we demonstrate that the update rule of
the PP can be approximated efficiently by sequentially using the Regularized Mirror Descent (RMD).
We further show that RMD achieves the approximation with the accuracy of ¢ within O(log (1/¢))
iterations. Figure 1 summarizes the overview of the algorithms in this paper.

In summary, the contributions of this paper are as follows:

Contribution

(1) We construct the first algorithm based on the celebrated PP method that achieves
LIC for general monotone MFGs (Theorem 4.3).

(ii)) We prove for the first time that regularized Mirror Descent achieves exponential
convergence for monotone MFGs (Theorem 4.4).

(iii)) We combine these two algorithms as shown in Figure 1 to develop a tractable
algorithm that approximates the PP-based method (Algorithm 2).

The organization of this paper is as follows: In Section 2, we review the fundamental concepts
of MFGs. In Section 3, we introduce the PP method and its convergence results. In Section 4,
we present the RMD algorithm and its convergence properties. Finally, in Section 5, we propose a
combined approximation method, demonstrating its convergence through experimental validation.

2 SETTING AND PRELIMINARY FACT

2.1 NOTATION

For a positive integer N € N, [N] = {l,...,N}. For a finite set X, A(X) = {p €
RI;EI | > sexP(r) = 1}. For a function f: X — R and a probability 7 € A(X), (f,m) =
(f(o),m(e)) = >, cx f(2)m(x). For p°, p* € A(X), define the Kullback-Leibler (KL) diver-
gence Dk, (p%,p') = > ,cx P°(2)log (p°(x)/p'(x)), and the total variation (TV) distance as
P = P!l = Eex [P°(2) - p' ()],

2.2 MEAN-FIELD GAMES

Consider a Mean-Field Game (MFG) that is defined through a tuple (S, A, H, P,r, u1). Here, S is
a finite discrete space of states, A is a finite discrete space of actions, H € N> is a time horizon,
and P = (P,)fL, is a family of transition kernels P,: S x A — A(S), that is, if a player with
state s, € S takes action ap € A at time h € [H], the next state s, € S will transition
according to sp41 ~ Py (- | sn,ap). In addition, 7 = (1)L, is a family of reward functions
rp:S X A X A(S) — [0,1], and py € A(S) is an initial probability of state. Note that, in the
context of theoretical analysis of the online learning method for MFG (Pérolat et al., 2022; Zhang
etal., 2023), P is assumed to be independent of the state distribution. It is reasonable to assume that
at any time h, every state s’ € S is reachable:

Assumption 2.1. Foreach (h, s") € [H] xS, there exists (s, a) € S x Asuchthat P, (s’ | s,a) > 0.

In this paper, we focus on rewards r that satisfy the following two typical conditions, which are
also assumed in Perrin et al. (2020; 2022); Pérolat et al. (2022); Fabian et al. (2023); Zhang et al.
(2023). The first one is monotonicity of the type introduced by Lasry & Lions (2007), which means,
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under a state distribution ¢ = (up)f_, € A(S), if players choose a strategy—called a policy
7= ()L, € (A(A)°)H to be planned—that concentrates on a state or action, they will receive
a small reward.

Assumption 2.2 (weak monotonicity of 7). Forall u, i € A(S)H, 7, 7 € (A(A)®)H, it holds that

H
Yo D (ralsia.pn) —rals,a i) (my (a ] 8) pn(s) = Tn (a | 8) fin(s)) < 0.

h=1 (s,a)eSxA

For example, a reward r that satisfies these assumptions includes a model of a crowd that avoids
overcrowding.

The second is the Lipschitz continuity of the reward 7 with respect to 1 € (A(S))H, which is a
standard assumption in the field of MFGs (Cui & Koeppl, 2021; Fabian et al., 2023; Zhang et al.,
2023).

Assumption 2.3 (Lipschitz continuity of 7). There exists a constant L such that for every h € [H],
se€S,a€ A and p, ' € A(S):

[rn(s; a,p) = ra(s,a, 1) < Ll — 1.

Given a policy , the probabilities m[r] = (m[r],)_, € A(S)H of the state is recursively defined
as follows: m[n]; = pu1 and

mlr]n(sn) = > Th-1(an—1 | sh—1) Pa—1 (sn | sn—1, an—1) m[7]n—1(sn-1),
(Shfl,ahfl)ESX.A
2.1)
if h =2,..., H. We plan to maximize the following cumulative reward
H
Tpm)=> > mnlan|sn)mlxln(sn)ra(sn, an, mn), 22

h=1 (s},ap)ESXA

under a probability 1 € A(S)H of states. The mean-field equilibrium defined below means the pair
of probabilities i and policies 7 that achieves the maximum under the constraints (2.1).

Definition 2.4. A pair (u*, 7) € A(S)H x (A(A)®) is a mean-field equilibrium if it satisfies (i)

J(w*, 7*) = max,easyn J (1, 7), and (i) * = m[r*]. In addition, set IT* C (A(A)S)" as the
set of all policies that are in equilibrium.

Under Assumptions 2.2 and 2.3, there exists a mean-field equilibrium, see the proof of (Saldi et al.,
2018, Theorem 3.3.) and (Pérolat et al., 2022, Proposition 1.). Note that the equilibrium may not be
unique if the inequality in Assumption 2.2 is non-strict. In other words, the set IT* C (A(A)S) is
not singleton in general. As an illustrative example, one might consider the trivial case where r = 0.
Our goal is to construct an algorithm that generates policies that converge to IT*.

3 PROXIMAL POINT-TYPE METHOD FOR MFG

3.1 ALGORITHM

This section presents an algorithm motivated by the proximal point (PP) method. Let A > 0 be a
sufficiently small positive number, roughly “the inverse of learning rate.” In the algorithm proposed
in this paper, we generate a sequence ((o*, uk));io C (AT x A(S)H as

o = argmax {J(F 1) = AD e (7, 0%) ), B = oY, 3.1

TE(A(A)S)H
where m is defined in (2.1) and D,,(m,0%) :== 3", Esvp, [Dxr(ma(s), of(s))] with a probability

p € A(S)H. 1If the initial policy 7 has full support, i.e., min, 5 o)erxsx.a ™ (a | s) > 0, the
rule (3.1) is well-defined, see Proposition C.1.
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Algorithm 1: Proximal point (PP) method with KL divergence for MFG
Input: MFG (S, A, H, P, r, j11), initial policy 7°, number of iterations N, parameter A > 0

Initialization: Set k < 0 and o < 77,
while £ < N do
Compute (u*+1, o¥*+1) by solving the regularized MFG;
o**l = arg max {J(ukH,W) — AD (T, Uk)}’
TE(A(A)S)H
MkJrl _ m[akJrl]

Update k < k + 1;
Output: o (~ %)

Interestingly, the rule (3.1) is similar to the traditional proximal point (PP) method with KL diver-
gence in mathematical optimization and Optimal Transport, see (Censor & Zenios, 1992; Xie et al.,
2019) and the pseudocode in Algorithm 1. Therefore, we also refer to this update rule as the PP
method. On the other hand, unlike the traditional PP method, our method changes the objective
function J (1%, @): (A(A)%)H — R with each iteration k € N. Therefore, the convergence of our
traditional method is not directly derived from traditional theory.

3.2 LAST-ITERATE CONVERGENCE RESULT

The following theorem implies the last-iterate convergence of the policies generated by (3.1). Specif-
ically, it shows that under the assumptions above, the sequence of policies converges to the equilib-
rium set. This result is crucial for the effectiveness of the algorithm in reaching an optimal policy.

Theorem 3.1. Let (0%)%2, be the sequence defined by Algorithm 1. In addition
to Assumptions 2.1 to 2.3, assume that the initial policy ©° has full support, i.e.,
ming, s o)eHxSxA 70 (a|s) > 0. Then, the sequence (%)%, converges to the set I1I*
of equilibrium, i.e.,

lim dist(c*, IT*) = 0,

k—oc0

where dist(m, I1*) == infren« 30, efaxs 170(8) = T ()]

Proof sketch of Theorem 3.1. If we accept the next two lemmas, we can easily prove Theorem 3.1:
The first implies that the KL divergence from an equilibrium to the generated policy becomes
smaller as the cumulative reward J increases.

Lemma 3.2. Suppose Assumption 2.2. Then, for any equilibrium (u*, 7*) it holds that
Dy (1, 051) — Dy (2, 0%) < J(u*, 1) = (", 7).

Furthermore, we can control the right-hand side of the inequality in Lemma 3.2 by the distance:

Lemma 3.3. There exist positive constants o and C such that, for any ™ € (A(A)S)H,

J(p*,7) — J(p*, 7)) < —C(dist(m, IT%))*.
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Combining these lemmas yields that D« (1*, ") — Dy« (7*,0%) < —C/(dist(o"+1,11%)) "
Thus, the telescoping sum of this inequality yields
- : E 177\\¢ 1 * .0
(dist(c*,I1%))" < 5DH*(T( , ) < +00.
k=1
Therefore, limy,_, o, dist(o*, IT*) = 0. O

Thus, the non-trivial aspects of the last-iterate convergence lie in the proof of Lemmas 3.2 and 3.3;
see Appendix B.

4  APPROXIMATING PROXIMAL POINT WITH MIRROR DESCENT IN
REGULARIZED MFG 0

As in the previous section, in the PP method in Algorithm 1, 10-2
it is necessary to solve the regularized MFG (3.1) at each itera-
tion. Therefore, this section introduces Regularized Mirror Descent
(RMD), which approximates the solution (u**+1, o*+1) of (3.1) for
each policy o*. The novel result in this section is that the divergence T o
between the sequence of RMD and the equilibrium exponentially de- &

cays as shown in Figure 2. Q

107°

1071

4.1 APPROXIMATION 10-1

OF THE UPDATE RULE OF PP WITH REGULARIZED MFG — RO “\,\it(l]ll

17 ==
Fortunately, solving (3.1) corresponds to finding an equilibrium for U e 0028
KL-regularized MFG introduced in Cui & Koeppl (2021); Zhang

. . . 0 500 1000 1500
et al. (2023). Let us review the settings for the regularized MFG. # of iterations ¢

For each parameter A > 0 and policy o € (A(A)S)H, which plays
the role of o in Algorithm 1, we define the regularized cumulative ~ Figure 2: Behavior of RMD.
reward J»7: A(S)H x (A(A)S)H 3 (u,7) — JM(u,7) € Rtobe

JN () = J(p, ) — ADpx (7, 0). 4.1)
Since o is a representative of (o), the assumption of full support is also imposed on o
Assumption 4.1. The base ¢ has full support, i.e., Omin ‘= ming 4 n)sx.ax(a] on (@ | s) > 0.

For the reward J»7, we introduce a regularized equilibrium:
Definition 4.2. A pair (u*,@*) € A(S)H x (A(A)S)H is regularized equilibrium of J if it
satisfies (i) JM7 (p*, @*) = maxeasym JV7 (0¥, ), and (i) p* = m[w*].

Specifically, (u£+1, o¥*+1) can be characterized as the regularized equilibrium of J*" for k € N.
Note that the regularized equilibrium is unique under Assumption 4.1, see Appendix C.

In the next subsection, we will introduce RMD using value functions, which are defined as fol-
lows: for each h € [H], s € S, a € A pu € AS)H and 7 € A(A)°, define the

state value function V78 < AS)H x (A(A)S)Y — R and the state-action value Sfunction
M8 X A X AS)E x (A(A)SH — Ras

H
Vi (s, p, ) = Esianm, (r1(s1; ar, i) — ADxvL(mi(s1), 01(s1))) | sn = 8] , (42
I=h
Ao .
VH+1(57 Hy 7T) = 07
szd(s, a, i, ) = 1r(8,a, pn) + Eg, o oPs,auun) VhA_;‘;(5h+1, 78 ﬂ)} 4.3)

Here, the discrete time stochastic process ((s;,a;))fL, is induced recursively as s;41 ~
P(s;,a1),a; ~ m(s;) foreach i € {h,...,H — 1} and ay ~ 7g(sy). Note that the the ob-
jective function J“ in Definition 4.2 can be expressed as J (1, 7) = Eqp, [V (5, 1, )]
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Algorithm 2: Practical version of Algorithm 1 for MFG

Input: MFG(S, A, H, P,r, ju1), initial policy 7°, number of iterations IV, parameter A > 0
1 Initialization: Set k < 0 and 0% « 79;
2 while £ < N do
3 Compute (p#+1, o**1) by solving the regularized MFG;
4

{0k+1 = RMD(MFG, 0%, A, 7, 0%, 7),

Mk—i—l _ m[(jk+1]

Update k <+ k + 1;
Output: o (~ %)

5
6 Function RMD(MFG, 7%, \, 7,00, 7):
7 Initialization: Set ¢t < 0, 7! < 7% and o « ¢9;
8 while ¢t < 7 do
9 Compute ! = m[rt];
10 Compute Qﬁ’”(s,a,wt,;ﬁ) ((h,s,a) € [H] x S x A) by (4.3);
1 Compute 7' as, for (h,s,a) € [H] x S x A,
A 1-X Ao
" (on (] )™ (mh (a | ) exp (nQ (5,0, 7%, i) )
7Th+ (a’ | S) = AN/ ¢ 1-An Ao
o (@ 1) (@ )" exp (nQ (5,0, 1))
a’e
Update t <t + 1;

12 return 7t;

4.2 AN EXPONENTIAL CONVERGENCE RESULT OF REGULARIZED MIRROR DESCENT

In this subsection, we introduce the iterative method for finding the regularized equilibrium proposed
by Zhang et al. (2023) as RMD. The method constructs a sequence ((7!, ui)), C (A(A)%)H x

A(S)H approximating the regularized equilibrium of J*° using the following rule:

t+1 o n Ao t ot o - t
T (5>—d;§AI%X{71_M(<Qh (s,-ﬂfau)?p> /\DKL(p,mL(S’))) DKL(p,m,(S))},

t+1

pt=m [WHI}

where 1 > 0 is another learning rate, and QQ’J is the state-action value function defined in (4.3). We
give the pseudo-code of RMD in Algorithm 2. For the sequence of policies in RMD, we can establish
the convergence result as follows:

Theorem 4.3. Let ((u', 7%));= o C A(S)H x (A(A)S)H be the sequence generated by (4.4),
and (i, @*) € A(S)H x (A(A)S)H be the regularized equilibrium given in Definition 4.2.
In addition to Assumptions 2.2, 2.3, and 4.1, suppose that n < n*, where n* > 0 is the upper
bound of the learning rate defined in (D.5), which only depends on \, o, H and | A|.

Then, the sequence (1*)$°, satisfies

D (w*, mth) < <1 - ?)D,ﬂ (w*, ") (t=0,1,...).

Accordingly, D+ (w*,7') < D, (w*,7°) exp (—Ant/2). Clearly, the inequality states
that an approximate policy 7" satisfying D,,- (w*, 7") < € can be obtained in O(log (1/¢))
iterations.
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4.3 INTUITION FOR EXPONENTIAL CONVERGENCE: CONTINUOUS-TIME VERSION OF
REGULARIZED MIRROR DESCENT

The convergence of (7%)72, can be intuitively explained by considering a continuous limit (7*)$2
with respect to the time ¢ of RMD. In this paragraph, we will use the idea of mirror flow (Krichene
etal., 2015; Tzen et al., 2023; Deb et al., 2023) and continuous dynamics in games (Taylor & Jonker,
1978; Mertikopoulos et al., 2018; Pérolat et al., 2021; 2022) to observe the exponential convergence
of the flow to equilibrium. According to Deb et al. (2023, (2.1)), the continuous curve of 7 should
satisfy that

it ot o tooty 772(‘”3)
Serhlal9) =7 (o 9) (@1 () - Ao T, @)

The flow induced by the dynamical system (4.4) converges to equilibrium exponentially as time t
goes to infinity.

Theorem 4.4. Let 7t be a solution of (4.4) and w* be a regularized equilibrium defined in
Definition 4.2. Suppose that Assumption 2.2. Then, it holds that

d
&DH*(W*,ﬂ't) < —)\DH*(W*,TFt),

forall t > 0. Moreover, the inequality implies D, (w*,7") < D, (w*, 7°) exp (—At).

Technically, the non-Lipschitz continuity of the value function Qﬁ’” (s,a,e,ut) in the right-hand
side of (4.4) is non-trivial for the existence of the solution : [0, +00) — (A(A)S) of the dif-
ferential equation (4.4), see, e.g., (Coddington & Levinson, 1984). The proof of this existence and
Theorem 4.4 are given in Appendix C.

4.4 PROOF SKETCH OF THE CONVERGENCE RESULT FOR REGULARIZED MIRROR DESCENT

Let us return from continuous-time dynamics (4.4) to the discrete-time algorithm (4.4). The tech-
nical difficulty in the proof of Theorem 4.3 is the non-Lipschitz continuity of the value function

2"7 in (4.4), that is, the derivative of 622"7(57 a, 7, i) with respect to the policy 7 can blow up as 7
approaches the boundary of the space (A(A)S)# of probability simplices.

We can overcome this difficulty as shown in the following sketch of proof:

Proof sketch of Theorem 4.3. In a similar way to Theorem 4.4, we can obtain the following
inequality with a discretization error:

Dy (w*, 7" — Dye (w*, 7') < =MDy (w*, 7') + Dy (wh, wt ). 4.5)

discretization error

The remainder of the proof is almost entirely dedicated to showing that the above error term is
sufficiently small and bounded compared to the other terms in the inequality. As a result, we
obtain the following claim:

Claim 4.5. Suppose that the learning rate n is less than the upper bound n* in (D.5).
Then, we have

Dy (', 7*1) < OnPD, (", 1),
where C' > 0 is the constant defined in (D.4), which satisfies Cn* < \/2.

The key to proving Claim 4.5 is leveraging another claim that, over the sequence ('), the value

function Qz’” behaves well, almost as if it were a Lipschitz continuous function, see Lemma D.3
for details. Therefore, applying Claim 4.5 to (4.5) completes the proof. ]
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The complete proof of Theorem 4.3 is given in Appendix D.

4.5 APPROXIMATED PROXIMAL POINT METHOD

Let us consider an approximation of Algorithm 1 using RMD of (4.4). We can simply replace the
intractable computation in line 4 of Algorithm 1 with RMD. In the end, this means that after repeating
(4.4) a sufficient number of times, we also update o to the most recently obtained policy o**! using
RMD. The pseudo-code that summarizes this idea is presented in Algorithm 2.

5 NUMERICAL EXPERIMENT

We numerically demonstrate that the proposed algorithm (Algorithm 2), which is the approximated
version of Algorithm 1, can achieve convergence to the mean-field equilibrium.

Algorithms. In this experiment, we implement Algorithm 2. For comparison, we also implement
RMD (i.e., Algorithm 2 without the update of o) in (4.4). For both algorithms, the learning rate
is fixed at n = 0.1, and we vary the regularization parameter A and update time 7" to run the
experiments.

Evaluations. We evaluate the convergence of our proposed method using the Beach Bar Pro-
cess introduced by Perrin et al. (2020), a standard benchmark for MFGs. In particular, the transi-
tion kernel P in this benchmark gives a random walk on a one-dimensional discretized torus S =
{0,...,|S| — 1}, and the reward is set to be 71, (s, a, u) = —|al/|S| — |s — |S|/2|/|S| — log un(s)
witha € A= {—1,40,+1}. See Appendix F for further details. Since the mean-field equilibrium
in this benchmark cannot be computed exactly, we follow Pérolat et al. (2022); Zhang et al. (2023)
and employ the exploitability of a policy 7 € (A(A)%) defined by

Exploit(r) == ebax {J(m[r],7")} — J(m[r],m) >0,

as our convergence criterion. Note that from Definition 2.4, Exploit(7) = 0 if and only if (m/[n], 7)
is mean-field equilibrium.

Discussion. Figure 3 is a summary of the results of the experiment. The most noteworthy aspect
is the convergence of the exploitability, as shown in Figure 3b. Our proposed method decreases the
exploitability with each iteration when we update o.

Figures 3a and 3c illustrate the qualitative validity of the approximation achieved by our proposed
method. In this benchmark, the equilibrium is expected to lie at the vertices of the probability
simplex. Therefore, RMD, which can shift the equilibrium to the interior of the probability simplex,
seems unable to find the mean-field equilibrium accurately. On the other hand, the sequence (7);
of policies generated by our proposed method shows a behavior that converges to the vertices.

In summary, Algorithm 2 experimentally shows the last-iterate convergence to the mean-field equi-
librium. This is evidenced by the decreasing exploitability and the qualitative behavior in our pro-
posed method, which align with the theoretical guarantees.

6 COMPARISON OF THE RESULTS

Last-iterate convergence (LIC) results for MFG. Pérolat et al. (2022) showed that Mirror De-
scent achieves LIC only under strictly monotone conditions, i.e., if the equality in the Lemma E.2
is satisfied only if 7 = 7. In contrast, our work establishes LIC even in non-strictly monotone
scenarios. While the distinction regarding strictness might seem subtle, it is profoundly signifi-
cant. Indeed, non-strictly monotone MFGs encompass the fundamental examples of finite-horizon
Markov Decision Processes. Moreover, in strictly monotone cases, mean-field equilibria become
unique. Consequently, as Zeng et al. (2024) also noted, strictly monotone rewards fail to represent
MFGs with diverse equilibria.
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Figure 3: Experimental results for Algorithm 2 for Beach Bar Process

Regularized MFG. Theorem 4.3, which supports the efficient execution of RMD, is novel in two
respects: RMD achieves LIC, and the divergence to the equilibrium decays exponentially. Indeed,
one of the few works that analyze the convergence rate of RMD states that the time-averaged policy
% Z?:o 7t up to time T' converges to the equilibrium in (9(1 / 52) iterations (Zhang et al., 2023).
Additionally, although it is a different approach from MD, it is known that applying fixed-point
iteration to regularized MFG achieves an exponential convergence rate under the assumption that
the regularization parameter A is sufficiently large (Cui & Koeppl, 2021). In contrast, our work
derives the convergence rate for cases where A is sufficiently small.

Other type of learning method of MFG. Recently, in addition to Mirror Descent and Fictitious
Play, a new type of learning method using the characterization of MFGs as optimization problems
has been proposed (Guo et al., 2024; Hu & Zhang, 2024). In this work, the authors establish local
convergence of the algorithms without the assumption of monotonicity. Specifically, it is proved
that an optimization method can achieve LIC if the initial guess of the algorithm is sufficiently
close to the Nash equilibrium. In contrast, our convergence results state “global” convergence under
the assumption of monotonicity, complementing their results. See Table 1 in the Appendix for a

comparison of our results with the more comprehensive previous studies.

7 CONCLUSION

This paper proposes noble algorithms that can achieve last-iterate convergence under the mono-
tonicity condition. The main idea behind the derivation of the main algorithm (Algorithm 2) is to
approximate the proximal-point type algorithm (Algorithm 1) using RMD. Theorem 3.1 guarantees
that the proximal-point-type algorithm achieves LIC, and Theorem 4.3 guarantees the exponential
convergence of RMD. An important future task of this study is to prove the convergence rates of
Algorithm 2. Specifically, we aim to make the convergence result of Theorem 3.1 quantitative. As
the experimental results suggest in Figure 3b, we conjecture that the algorithm converges with a rate
of O(1/t%) for some o > 0.
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A RELATED WORKS

Several previous studies have derived convergence results for MFG for various algorithms. Note
that the meaning of convergence is different in the previous studies. Table 1 shows which type of
convergence is obtained for which type of algorithm in the previous studies and our results. Based
on Table I, we discuss the technical contributions of this paper below:

Significance of Qur Convergence Results: Unlike many of the referenced works that require
strong assumptions, such as contraction, to achieve convergence, our results demonstrate last-iterate
convergence (LIC) without such stringent conditions. This highlights that our contributions fill a

LIC of RMD: Achieving exponential convergence rates to_ the regularized equilibrium is
challenging with existing techniques. Our technical contributions include deriving discretization
errors in Equation (4.5) that are distinct from those in policy optimization by Zhan et al. (2021) and
regularized MEG (Zhang et al., 2023).

The Difficulty of Applying the Three-Point Lemma to MFGs: The three-point lemma in
Zhan et al., 2021, Lemma 6) cannot be directly applied to MFGs. The main reason is that the inner

roduct (Q%(s), 7%t (s) — p) in the right-hand side of the three-point lemma concerns the polic

at iteration index k + 1, not k. In our analysis (as shown on page 18), this term is transformed into

Q" (s), 7" (s) — p), which allows us to apply a crucial lemma (Lemma E.4) that holds for MFGs.
This transformation is non-trivial and essential for our analysis. In the three-point lemma, the term
a1 7 (R)) appears as a discretization error, In contrast, our analysis derives a reverse version

, . This distinction is significant, especially for non-symmetric divergences such as the
KL divergence. The reverse order in our analysis is crucial for the theoretical guarantees we provide.

B PROOF OF THEOREM 3.1

Proof of Lemma 3.2. Let (u*,7*) be a mean-field equilibrium defined in Definition 2.4. By the
update rule (3.1) and Lemma E.1, we have

Ao* k+1  k+1 UZH(S) * k+1
Qh (S? .7 g 7/’L ) - Alog O'k(s) ) (ﬂ-h - O’h )(S) S 07
h
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Table 1: Related work of convergence in MFGs

Summary of convergence

Learning algorithm
results
Xie et al. (2021) Fictious play_ time-averaging convergence
Zhang et al. (2023) RMD (to regularized equilibrium)
under monotonicity
Mao et al. (2022) Actor-critic me-averaging conversence
RN (to regularized equilibrium)
Yardim et al. (2023) Mirror Descent LIC under contraction
Zeng et al. (2024) Actor-critic hest-dterate convergence
RN (under Herding
Maximum
Huang et al. (2024) Likelihood NA
Estimation

Angiuli et al, (2022) W N/A

Angiuli et al, (2024) (tyeetime 3eale) | L1C under contraction

Q:learning.
LIC (to regularized

Pérolat et al, (2021 RMD equilibrium) undet strict
e monotonicity in

Our work (Theorem 3.1) Proximal Point_ LIC under monotonicit
LIC (to regularized
Our work (Theorem 4.4) RMD equilibrium) under
monotonicity

foreach h € [H],s € Sand k € N, i.e.,
D (mj;(s), 03,71 (s)) = Diw(my; (), 97 (s) — Dxw(oy (), 75 (s))
< QY (0, M i), (o) — ) (s)).
Taking the expectation with respect to s ~ u} and summing (B.1) over h € [H] yields

(B.1)

D, (7%, 0" — D (7%, 0%) + Dy (6T 0%)
H

S Eany [(@07 (5,0, 0™ 1), (o) = mi) (5))].

h=1

<

> =

By virtue of Lemmas E.2 and E.4, we further have

S Ee (@ (.0, ), (o) = mi)(9))
h=1

<IN (UL Ry AT (R %) AD e (1, 0%) 4+ AD,s (07 o)

<Jro" (u*, o*+) — Jro* (1%, ) = AD,» (7%, 0%) + AD - (61, 0F)

<J(w*, o) — T, 1) = AD s (671, 0F) + AD, (08 o),
where we use the identity JV" (4%, 7) = J(u*, ) — ADpiz (1, 0%) for m € (A(A)S)H, and
Definition 2.4. u
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Proof of Lemma 3.3. Note that the function J(u*,e): (A(A)S)? > 7 +— J(p*,m) € R is real-
analytic. Therefore, we can apply (Lojasiewicz, 1971, §18, Théoreme 2.). |

C PROOF OF THEOREM 4.4

Proof of Theorem 4.4. Let h*:R  — R be the convex conjugate of h, ie., h*(y) =
> aeaexp(y(a)) for y € Rl From direct computations, we have

dtD’”(w*’ﬂf)
< [d
=3 By | 3D i) 7(5)
h=1
H
_ _ @} (s) i t
=3B (1 F )
:iE . [ 1_@;(8) ﬂt(a|8) /\,a(saﬂ_t t)—/\lo 7-‘-Z(a’ls)
—~ S~y I WZ(S) s Yh h » ) K g on (CL | 5)
S ‘ A (s ot m, (a | 5)
:ZESNM% <(7Th - wh)(s)762h7 (87.77T s M ) - Alog on (a ‘ )>:|
h=1 L
= [/ ¢ * Ao tot < t * 75, (s)
=D B [((7h = @) () Q7 (500w 1)) | = A DT B | { (k= i) (), log T 5 ).
h=1 B h=1 h
We apply Lemma E.4 for the first term and get
H
s | (7, = @7)(5), Q7 (s, 0,7, 1)
3 (1t s 1 ) o

— M (1) — T (i, ") = D, (@, ) + AD,- (', ).

Similarly, we apply Lemma E.5 for the second term and get

H t

* ™ 1 S * *

> Euv |{ (0 = w50 108 Y| = D (3,0) = Dy (°,0) + Dy (7,70, (€2)
h=1

Combining (C.1) and (C.2) yields

d

aDH*(w*’ﬂ—t) _ J/\’J(‘[Lt77rt) _ J)"”(ut,w*) _ )\DH*(W*,’/Tt).

By virtue of the definition of mean-field equilibrium and Lemma E.2, we find
J}\,O’(’ut’ ﬂ_t) o J)\7O'(ut’ w*) < J}\,O’(H*7 7Tt) o JA,U(M*’ w*) <0.
Therefore, we obtain

d

&D#*(w*,wt) < —AD,-(w*, 7).

Proposition C.1. Assume the same assumption as in Theorem 3.1. Then, there exists a unique
maximizer of JN" (%, @): (A(A)S)H — R for each k € N,
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The uniqueness of Proposition C.1 is a new result. The proof uses a continuous-time dy-
namics shown in Theorem 4.4, see Appendix C. In the following proof, we employ the same

proof strategy as in (Chill et al., 2010, Theorem 2.10). Before the proof, set vs’\,‘; (m) =
7 (a | s) ( M (s,a,m,m[r]) — Alog mn(a | S)) for m € (A(A)%)H.

on(a|s)

Proof of Proposition C.1. The existence is shown by a slightly modified version of (Zhang et al.,
2023, Theorem 2). It remains to prove the uniqueness. Fix the regularized equilibrium w* €

(A(A)®).

First of all, we prove the global existence of (4.4). By the local Lipschitz continuity of the right-hand
side of the dynamics (4.4) and Picard-Lindelof theorem, there exists a unique maximal solution 7 of
(4.4) with the initial condition 7|,_, = 7°. Namely, there exist ' € (0, +o00] and 7: [0, T") — R
such that 7 is differentiable on (0,7") and it holds that (4.4) for all ¢ € (0, 7). Thus, Theorem 4.4
ensures that

¢
D, (w*,7") + )\JDM (@, 77)dr < Dy (w*, %) =: ¢ < 400,
0

for every t € [0,T). As a result, the trajectory {n’ € (A(A)%) | t € [0,T)} is included in K, :=
{m e (A(A)®)! | D= (w*,7) < c}. Note that K, is compact from Pinsker inequality.
vi‘:{ ()| < +oc.

is uniformly bounded on [0,7"). Hence, 7 extends to a

Since the right-hand side of (4.4) is continuous on K, we obtain sup;¢(o, 1) ’

dr?

Thus, the equation (4.4) implies ’ ar

continuous function on [0, T').

To obtain a contradiction, we assume 7' < +oo. Then, there exists the solution 7’ of (4.4) on a
larger interval than 7 with a new initial condition 7/|,,_;, = 7%, which contradicts the maximality
of the solution 7.

Therefore, the limit lim;_, ., ¢ exists and is equal to @*. Here, w™ is arbitrary, so the regularized
equilibrium is unique. |

D PROOF OF THEOREM 4.3

Lemma D.1. It holds that

t+1 t+1
<n< N (s, 0, i) — Alog 2 (S)> _ (1= A log T8 5> —0,

on(s) i (s)

forall § € R such that Y, 6(a) = 0.

We introduce the following lemma:

Lemma D.2. Let (1), be the sequence defined by (4.4) and w* be the policy satisfies Definition 4.2.
Assume that there exist vectors w§, and wi(s) € R satisfying

AH 108 Omin < wj, (a | s) < —AH 108 omin, on (a | s) o exp <“’h(§|3)> 7
n 0 wy (a] s)
2AH log omin < wp, (a | s) < H, 7y, (a ] 8) o exp )

foralla € An® € (A(A)S)H, h € [H) and s € S. Then, forany h € [H],s € S, andt > 0, it
holds that

H(1-Al min
s {log 6}, g (5} } < 1B 4 g
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Proof. We first show that 7}, can be written as

t
7; (a | 8) o exp (W) ) (D.1)

for a vector w! (s) € Rl satisfying 2\H log omin < w? (a | s) < H. We prove it by induction on
t. Suppose that there exist ¢ € N and w}, satisfying (D.1). By the update rule (4.4), we have

w1 (@] s) oc (on (a] ) (xf, (a] )" exp (1 (5,07, 1))

Anwg 1— p\)w} AnQp° Lt
mp( uACDRS R N UACIDER) (S7a,ﬂ,u)>.

Set witt (a | s) = Anqwy (a | s) + (1 — pA)wt, (als) + Q7 (s, a, 7", ut), we get 767 (als) o
wt+1(a | s)

e~ > . From Lemma E.3 and the hypothesis of the induction, we get 2AH log opmin <

witt (a]s) < H.

Then we have for any a1, as € A:

t ¢ t
7t (a1 | 8) wh (a1 | s) —wh (az | s) H(1 — Xlog omin)
] _ < )
i (az | s) P ( A =P A

It follows that:

“H(1 = Mog omin ) _H(1— og o
minﬂt(a|3)ZeXp( ( /\Oga ))mgﬁwﬁ(als)ZM 1exp( ( )\Oga )>.

acA
Therefore, we have:

H(1 — Alog omin)
A

||10g7r,';(s)||oo < + log| Al

From Lemmas E.1 and E.3, we have for 7}, and a1, a2 € A:

1 | S) = exp ( 270(8aa157rtnu’t) +wg (al | 8) — Q27J(Saa2577t7/’(‘t) - ’U}Z. (Clg | S))

7 (a
i (az]s) A

7 (
< exp (H(l — )\iog Umin)) )

and, we get |llog 7y (s)|| ., < M + log| Al |

|OO—

Ao t ot . OO tot 7, (a|s)
Lemma D.3. Let G, (s,a, 7", ") == Q3° (s,a, 7", 1*) — Alog 7|
Oh

(a]s)

A, A,
’Gh a(sa a, ﬂ-tv /’Lt) - Gh 0(57 alv Trta /u‘t)

H
1S |t~ ui
l=h

fora, a’ € A. Here,

Lt cHo LAl (Eh(aﬂrt,w*) + Eh(a’,ﬁt,w*)),

H((1—=Xlog oyiy)

CAOIIAL = 20 Ale™ 3 4 2(1 4+ H) = A(L + 2H) log 0min + 2\ log | A,
and
H Sp = S,ap = a,
. ; Si41 ~ Pl(Sl,CLl),
Ey(a, 7", w*) =E ZHWZ (Sl)fﬂf(sl)Hl a; ~ @y (s1)
I=h foreachl € {h,...,H}

17
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Proof of Lemma D.3. We first compute the absolute value as follows:

A, A,
Gh U(svaaﬂ-ta :ut) - Gh U(Sv Cl/, 7Tt7/’[’t)

;) - ( N (s, wt, pt) — Alog mh (0’ |5) S))‘

t
Ao t ot Th
—l(Q) — Alog “h8 1)
( h (8,0,77'[' )y M ) 0g on on (CI,/ | S)
t /
Ao * % ﬂ—h(a‘ |S)
) (Qh (s,a', ", p )*/\bgm
Ao t ot Ao * Ao !t ot Ao / * ok
+‘(Qh (87a77r7u)_ h (S,G,’(ﬂ, )>_<Qh (S7CL77T,,U)—Qh (S»G,W»/i ))’
(D.2)

IN

t
Ao * ok ﬂ—h(a|
’ @ — Mog =1~
( h (Saa> )y ) 0og on (CL|

By Lemmas D.2 and E.1, the first term of right-hand side in (D.3) can be computed as

t t /
‘( Z’U(S,a,w*,u*)—klogﬂ-hm 8))_ < 27U(S,al,w*,u*)—AlOgﬂ-h(a |S)>’
n(al|s) o

|
o (a] Near
B o @ (a] s) o m(als)\ o wy, (a']s) o m (a' | s)
“(”gahmm “gah<a|s>> (”gmaws) “gah<a'|s>)‘
EAGDINEAGD
SA<1g7rz<a|s> ngi(a’ls))

N+ ooy ) (@i a9 = w9 + i (@ 1 9) =k (a1 9)

min HlinaeA ﬂ’;], (CL | 3)

<2Aloxp ((FEED)) (i a] ) - w0 9] + [ ] 5) = o [ 9)]).

(D.3)

By Proposition E.8 and Lemma E.6, the second term is bounded as

A, A, A, A,
‘( h0(87a77rtﬂ:ut)_ ho.(s>a7W*aM*)) _( hU(Saa/aﬁt7Mt)_ ha(saa/aW*au*))‘

H
<2LY " |luf = ui,
l=h

Shi1~ Pn (o] s,a),

H
si41 ~ Pi(s, ar),

—|— CA’U(Tf't,w*)E Z ‘ Trl*(sl) - Trlt(sl)Hl ap ~ wl*(sl)
|l=htt foreachl € {h+1,...,H}

Sh+1 NPh(.|87a,)a

"
Mot % X ¢ si41 ~ Pi(s, a1),
+C (7T , W )E E ‘ﬂ—l (Sl)_ﬂ-l(sl)Hl alel*(Sl)

I=h+1 foreachlie {h+1,...,H} |

Furthermore, C*7 (!, c*) can be bounded as

H(1 — Mog omin
C”\"’(ﬂt,w*)§2)\logamin+2/\( ( Aog” )+1ogA|)

=2(1+ H) — M1+ 2H)log omin + 2A1og | A].

Proof of Theorem 4.3. Set

(C«A,U,H,M\)z
H(1—)\1og omin)
P sy

C =4H?*| L?2H? + (D.4)

H(1—Xlog opiy)

2
2N AJe ™R L 214 H) = A(1L+ 2H) 10g oin + 2Mlog |4 )
|Ale

:4H2 L2H2+ (

H(1—Xlog o)
X

18
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1 A
o A D.5
n mm{2H(L+C/\anHvA|)’2C}’ (D.5)
where C*7 Al is the constant defined in Lemma D.3. We prove the inequality by induction on ¢.
(I) Base step ¢ = 0: It is obvious.

(IT) Inductive step:  Suppose that there exists ¢ € N such that 7! € . Lemma D.1 yields that
DN* (W*’ 7Tt+1) - Du* (W*v 7Tt) - DM* (th 7Tt+1)
H t
T (5)
)]
2 o |8 2

=3 B (0 (@ s et ) s Y (g )]

h=1
0 H
= T 2 B [(QN7 (ot (21— ) 9))]
h=1
=1 (D-6)
H t+1
An K T, (s) * t+1 >]
+ Egop | lo JNwp —m s
1—)\77’;::1 K gah(s) ( h h )()
n
STiTa AD, (w*,0) — AD,- (7', 7))
A
+1 7”}\77 (D= (@*,0) = Dy (w*, 7'T1) = Dy (21 )
A7) .
<~ 720 D (7,
where [ is bounded from below as follows: By Lemma E.4, we get
[=JM (ptt w*) — JN (T 7 4 AD - (w0, 0) — AD,,- (7', o). (D.7)

By virtue of the definition of mean-field equilibrium and Lemma E.2, we find
J)\,O’('u/t—‘rl’ w*) _ J)\,U(Mt—&-l’ 7Tt+1) > JA,U(M*’ w*) _ J/\,zf(/[k7 7Tt+1) > 0.
Then, we obtain

1> ADy (w",0) = D (77, 0).

For the last term D« (7, 7t 1) of the leftmost hand of (D.6), we can employ a similar argument
to (Abe et al., 2023, Lemma 5.4), that is, we can estimate D,,- (7!, 7/™1) as follows: Set G(a) =

hlals)

GV (s,a, 7t ut) = QM (s,a, 7, ut) — Alo Th
h ( 'U) h ( /“L) gah(a|8)

n*~! by Lemma D.3. By the update rule (4.4) and concavity of the logarithmic function log, we

. Note that max, 4c4 |G(a') — G(a)| <

19
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have
DH* (Trtz t+1)
S T (als)
:ZESNM? th (a|s)log —=—— t+1( )
h=1 Lac A
H ZA (on (a’ | )(w (a' | $))' " exp (77@2’”(57a’77rt,ut)>
=Y Eony | D mh(a] 5)log =
=R (o0 (a | ) (x} (a | 5) " exp (nQ)7 (s, 0.7, 1))
i - 7t (a'|s 7
H /Z (a/ | 8) exp <7]Q2) (37G/77Tt7ﬂt) - )\77 lOg O’Z Ea, : S;)
ZZESN% Z 7 (a | s)log © €4 @l
h=1 a€A exp (nQﬁ’”(s, a, 7t pt) — Aplog —o——= )
on(als)

2

(@' | s)exp (nQy7 (s,a', 7, ut)

— Anlog Z:

log Y, (a | 5) “=4

acA

*_ it follows that
n(G(d') — G(a)) <1,

Ifwetakentoben <n

€xp (77@2’0(37 a, 7Tt7 Mt) - )\77 IOg

for a, a’ € A. Thus, we can use the inequality e* < 1 + x + x2 for < 1 and obtain

Dy (x*, 7' %)

og 32 wh(als)mh

a,a’ €A

< Eoopr (a' | 5)en(Gla)=Gla)

M=

M=

IN

log Z i (a|s)m

a,a’ €A

Esrpr

=
Il
—_

M=

L@ |5) (14 0(G() = G@) +7*(G(a) - Gla)’)

=Y Eev; [log Y. mhlals)mh (@ |s) (1+(Gla) - Gla)?)
h=1 a,a’ €A
B -

= Eay [log [ 1402 Y h(als)7h(a | 5)(G(a) - Gla))’
h=1 a,a’ €A

H

<y’ Z By
h=1

By Lemma D.3, we can see that

" mh(als)m(a | s)(Gld) - Gla))’

a,a’ €A

a,a’ €A
H
< Y m(als)w (@ |s) < LY |t — wi
a,a’ €A l=h
H
<Y (el ]s) L2<z|\u;—m
a,a’ €A l=h

20

" wh(als)mh (] s) (Gld) - G(a)?|.

2
2
1) +4<CA,O',H7|A‘> (E}%(a/ﬁt,w*)—FE}%(

2
+ oMo H Al (Eh(a, 7, @*) + Ep(a’, 7, w*)))

!
ad,mtw

)
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H
§8L2HZ||uf—uf||f+8(CA’U’H’|A‘> th (a|s) E?(a,n",@*)

I=h acA
Q72 - t w2 A\, H,| Al 2 m(als) 2 t o«
=8L HZH/‘l I 1—i—8(C ) 27* wp, (a | s) Ej(a, 7", @)
I=h aeA @;, (a]s)
) H . 9 CAUH\A|
<8L H;HM My ||1 (H(l M og oumin) ) ;wh (a|s) Ej(a,n", @)
H SH C)\JH\.A|
<SLPH > ||ut — pif|[ + ISy ) ZEW |EACYEEACH N
I=h |A| XP( e )
H 4H C)\JH\.A|
<SL*H > |l — wr|[; + ( ¥ D (w*, ).

H(1- /\logamm
o (T

Moreover, Lemma E.6 bounds Zl:h b — ||1 as
H
S Mt = wi
I=h
H /[l1-1 2
SV SLNHIETRERIRAT)

I=h \k=0
H -1 ,
SHY Y Eg; [[|milsn) = (1))
I=h k=0
1 *
§§H2Du*(w ,mt)
Therefore, we finally obtain
1
Dy (w*, 7)) < (1= A+ Cn?) Dy (w*, ') < (1 - 2)\77> Dy (w*, "), (D.9)
where we use Cny < Cnp* < 1/2. |

E USEFUL LEMMAS

For Mean-field games, one can write down the Bellman optimality equation as follows: for a function
Q:S = A(A),apolicy 7': S — A(A),0": S — A(A) and s € S set

17(@Q ') = (Q(9),7'(5)) = ADg (' (), 0 (s))- (E.1)
Lemma E.1. Let (u*, @w™) be equilibrium in the sense of Definition 4.2. Then, it holds that

Ao * *
@h(s) = arg maxfsahr( 270(57%@*,#*)71?) xop (o] s) exp(Qh (s, 8, @", p ))7

PEA(A) A

foreach s € S and h € [H)]. Moreover,

Ao * ok 77;;(8) >
(s, 0, ", —Alo ,0)=0,
< h ( H ) go_h(s)

forall § € R such that 3", 6(a) =

Proof. See the Bellman optimality equation (e.g., (Agarwal et al., 2022, Theorem 1.9)). |
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Lemma E.2. Under Assumption 2.2, it holds that, for all w, @ € (A(A)°)H,
N (m[x], 7) + JM (m[7], 7) — IV (mlr], 7) — TV (m[7),7) <0,

where m is defined in (2.1).

Proof of Lemma E.2. The proof is similar to (Zhang et al., 2023, §H). Set & = m[r] and g = m|[7].
One can obtain that
J)"U(m[ﬂ], 77) + J>\7U(m[%]7 %) - J’\’U(m[ﬂ, %) - J)\’U(m[%L 7T)

=N () = IV, m)) + (SN (B, 7) = TN (7))

=3 mlnln(sn) Y mn(an | sn) (ra(sn, an, ) = ru(sn, an, fin))

h=1s,€S ap€A
H
+ Z Z m[7]n(sh) Z Th (an | sn) (Ph(Shy @hs fin) = Th(Sh; an, tin))
h=1s,€S ap€A
= Z (7 (a | 8) pn(s) — 7n (a | ) fin(8))(Th(Sh, @ns pin) — Th(Sh, an, fin)),
h,s,a
and the right-hand side of the above inequality is less than 0 by Assumption 2.2. |

LemmaE.3. Let Vh)"a be the state value function defined in (4.2) and Qz’a be the state action value
Sunction defined in (4.3). Forany s € A, a € A, and h € [H), it holds that

AMH — h+1)logomin < Vh)"a(s,u,ﬂ') <H-h+1,
AH = h+1)10g omin < QN (s,a,p,m) < H — h+2.

H

Proof. We prove the inequalities by backward induction on h. By definition, we have
max VM (s, 0, m) =E | 37 (ra(st, i, jr) = ADge.(mi(s1), 01(s1))
=h

Sp =S8
l |
= (rn(s, & un), () — ADkr(mr(sk), on(sn))

+ Z VhAJS(Sh-"-l’MvW) Z Py (3h+1 ‘ Svah) Th (ah | S)

Sh+1€S ap€A

Ao
<1+ max_ V0 (Shy1, 1, 7),
spt1€S

and

min Vi (s, 1, 7) = (ru(s, @, i), 7 (s)) — ADkw(mn(sn), on(sn))

seS
+ Y Vi (shats ™) D Pasnen | s,an) m, (an | 5)

Sh+1ES ap€A

Ao
zAlogamin"' max Vh+1(8h+lauaﬂ-)'
Sh+1€S

Then, we have
V7 (s, p1,m) € [NH — h+ 1) 1og Omin, H — h+ 1],
by the induction. The definition of Q}"” in (4.3) immediately yields the bound. -

Lemma Ed. Forall w, 7@ € (A(A)S)H, it holds that

H
> Eommian [ (0= 7)(8), Q07 (5,07, 0) )| = T (11, 1) =T (4, 7)=ADyuiz) (7, ) +AD g (7, ).
h=1
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Proof. From the definition of V* and Q7 in (4.2) and (4.3), we have

XH: Esomizln [<7Th($), Qﬁ” (s,o,m, ,u)>}

Bz, [((5), (s, 0 p0) + B[V (st 1.7) | snan ~ Pls, o) )]

M= IlM= 1

Eq,om@n [Bapmrmn(s) [Ph (ks ans pin) — ADxw(w(sk), 0(sn))]] + AD (7, 0)

h=1
H
+ ZESNm[%]h [E [V;:\Jﬁ(shﬂvﬂﬂf) ‘ Shy1 ~ P(s,an, pn), ap ~ Wh(S)H (E2)
h=1 .
< s P(s,ap, in)
Ao Ao h ~ s Ahs LR )y
:th]Esth[%]h |:Vh (Sh,,U/,W) —E |:Vh+1(sh+1a:ua7r) +1ah ~ 7Th(5) :|:|
+ /\Dm[ﬂ (71', (T)
S P )
» Ao Sh4+1 S, Apy Uh ),
H
= Z Esmm#n [Vh'\’a(& K W)} + AD iz (7, 0).
h=1
Similarly, (4.1) and (2.1) gives us
H
~ Ao
Z ]Eswm[ﬁ]h [<7Th(8)7 Qh (87 e, T, M)>}
h=1
H
= Z ]EShNTn[%]h [Eah"‘%h(s) [Th(sh’ Qh, :uh) — ADkL (%(Sh)v U(Sh))]] + )‘Dm[%] (7~T’ 0)
h=1
. (E.3)
+ Z Eswfn[‘}?]h |:E [Vv}f\.l,’.al-(sthlv My ’/T) ‘ Sh+1 ™~ P(S, Qp, /u'h)7 ap ~ %h(s):|:|
h=1
H
:JA7G(/~}'a %) + )‘Dm[%] (%a U) + Z ESNm[%]h_H |:Vh>\+701(57 1y 7T):| .
h=1

Combining (E.2) and (E.3) yields

S E i, ({0 = 7)), @7 (5, 0,70
h=1
= (i ]Eswm[i']h [Vh)\’g (87 lLL? 71—):| + )\Dm[ﬁ] (W’ U)>
h=1

H
— (JAp (:uv %) + Al)m[ﬂ (%7 U) + Z ESNm[%]thl |:Vh)\4:71 (87 L,y ﬂ-)} )
h=1

~(Eammimy [V (5,11 + ADpiy(7,0)) = (I (1, 7) + ADgy (7, )
=Eqmpy [V (5,0, 7)| = M (1,7) + ADyuiz) (7, 0) = ADyuiz) (7, ),
which concludes the proof. u

Lemma E.5. Forall m, 7@ € (A(A)®)¥, it holds that

éEMmh (= ) (o)tow 2T )] = Do (.0) = Do (7.0) + D ).
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Proof. A direct computation yields

o [t
=Dy (7, 0) ZEWM K%h(smog 28 _1Ogi(3>}

:Dm[ﬂ (7T7 U) - Dm[%] (777 U) + Dm[%] (%7 71').

Lemma E.6. The operator m defined in (2.1) is 1-Lipschitz, namely, it holds that

[m[7]hs1 = m[rJpga ]l < ZESsz ), lme(se) = m(so)llls (E.4)
form, © € (A(A)S)H and all h € {0, .. ., H} Here, we set mo(s) = m\(s) = Uy forall s € S.
Proof. Fix 7, 7' € (A(A)S)H. We prove the inequality by induction on h.
(I) Base step h = 0: It is obvious because ||m[r]; — m[7']1|| = |1 — 1] = 0.
(IT) Inductive step: Suppose that there exists h € [H]| satisfying the inequality (E.4). By (2.1),

we obtain
[m[7]nie —m[r'|nia|

< > Prst (sns2 | snat, ansen) malner (sna0) [T (@nn | shn) = g (@ns | sng)]
Sh+2€S,
(sh+1,ah+1)65><.A
+ > Phi1 (Snt2 | Shatsant1) Ty (@nt1 | snet) m[alnga (sha1) — m{r g (sh)|
Sh42€S,
(sh+1,ah,+1)68><A
< > Ml h1(sh40)|That (@nr | sni1) = Ty (@ngr | snia)
(Sh+1,ah+1)68><./4
+ Y Imlahe(snen) = min T (sne)]
sh+1€S

=K, i ~omlrlnia H|7Th+1(3h+1) - 7T;L-1-1(5h+1)H] + Im[rlpt1 — m[ﬂ'l]h-',-l B
By the hypothesis of the induction, we finally obtain

Imia]nt2 — m{]n 2|

SESNW[TF]}L+1 [Hﬂ—h-i-l - 7Th+1 ||] Z s~m/[m]; ||7Tl(5) - ,/T;(S)H
=1
h+1
< Z Eswm[‘n’]l ||7Tl<8) - 71';(8)”
=1

LemmaE.7. Let 7, 7’ € (A(A)S)H, p, 1/ € AS)H, s € S,andh € {1,..., H + 1}. Assume

i i | > 0,
(h_’ays)g[lgi“xsmm{m (als),m,(als)}

and set i 41 = py 1 = Us, Tay1(s) = m,1(s) = Ug forall s € S.

Ve (s, ) = Vi (s, )

H+1 5h =5,
Si41 ~ Pi(s1, a1
<E | > (M (m,m)Imsi) = wi(so)lly + Ll — wily) o~ Wl((S;) ’
1=h

foreachl € {h,...,H + 1}
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for Here, CM? (mr,7') > 0 is defined in Proposition E.8, and the discrete time stochastic process
(s1)IL,, is induced recursively as s 1 ~ Py(s;, 1), a; ~ m(s;) for each | € {h, ..., H —1}.

Proof. Fix m, 7', ;v and 1/. We prove the inequality by backward induction on .
(I) Base step h = H +1: Itis obvious because VI’{\fl(s, ) — Vf’}fl(s, 7w =10-0]=0.

(IT) Inductive step: Suppose that there exists h € [H] satisfying

A, A,
‘Vh_t,_?(sv T, :u’) - Vh-‘,—? (5’ ﬂJa :u’l)

i Sh+1}):( S, )
- S ~ S, Qg ),
<E | 30 (7 m ) ims) = milsolly + Ll = i) (o)
I=h+1 foreachlie {h+1,...,H+ 1}

(E.5)
for all s € S. By the definition of the value function in (4.2) and Assumption 2.3, we have

’Vh)“d(‘sa T, ,LL) - Vh)\,a(sv 7T,7 :u/)

<Y (maan | 9)ra(s, an, pn) =, (an | $) (s, an, 13,))

ap€A
+ A DkL(mh(8),0n(s)) — DxL(m,(s), on(s))]

+| Y Pulsnir| s an) (Fh (an | 8) Vi (snarm,m) — 7 (an | 5) Vh)\J;?(Sh+177T/7M/))
ahG.A,
sh41€S

<llwn(s) = m()lly + Y mn(an | 5) [ruls, an, pn) = ra(s, an, ph,)|
ap€A

) (o 1) (tog 2L 1) — a1 (r0 T2 1))‘

+ l7n(s) — (),
Ao Ao i
+ Y Pu(snir | s,an)ma(an | s) ‘Vh+1(8h+177ﬂﬂ) = Vi (shyr, o p )’

+A

lth.A,
Spy1€S
<2||mn(s) — mh(s)ly + Lllpn — pnlly
1
+ A max log )||7Th(5)*7T§L(S)H1

(h,a,s) (orm)p (a] s

+ 7 Pulsnen |s,an) m (an | ) [V (snsnsmo ) = Vi (snen, 7))
ap€A,
Sh4+1ES

<C (m, @) |mn(s) = wh(s)lly + Lllen — willy

Sp = S,
+E ‘Vim(shﬂﬂﬂu) - Vh)\-&’-(;(sh—&-la'”/,ﬂ/)‘ | Sh41 ~ Ph(sn; an), 1 :
ap ~ Th(sh)
Combining the above inequality and the hypothesis of the induction completes the proof. ]
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Proposition E.8. Let Q7 be the function defined by (4.3), and (7, 7') € ((A(A)S)H) ? be policies
with full supports. Under Assumptions 2.3 and 4.1, it holds that
Sp = S] 5

@7 (s, a7 ) = Q) (s, )|
for (h,s,a) € [H] x 8 x Aand pi, ' € A(S)H. Here, the random variables (s;){L, ., follows
the stochastic process starting from state s at time h, induced from P and 7, and the function
Ccro: ((A(.A)S)H)2 — Ris given by CM (m, ') = 2 — Xinf (1, 5 a)e[m]xS5x.4 108 (077, (a | 5).

H H
<Dl — ]+ € (7 B, [ > lmlse) = wi(s)l
l=h l=h+1

Proof of Proposition E.8. Let h be larger than 2. By the definition of Qz’” given in (4.3) and
Lemma E.7, we have

Ao Ao
‘Q}L_1(57(1,7T7[L) - Qh—l(s?avﬂ/nu’/)‘
<|rn-1(s,a, ph—1) = rh-1(s,a, th_1)| + Es,opp 1 (5.:0) HVhA,o(sh, T, 0 — Vh/\ﬁ(shﬂ,vﬂ/)u
Ao Ao
SLH,U/hfl - :u;zflu + Eshwph_l(s,a) HVh / (Sha ﬂ-a/j/) - Vh (Sh7ﬂ-/7/j//)‘:| .

Combining the above inequality and Lemma E.7 completes the proof. ]

F EXPERIMENT DETAILS

We ran experiments on a laptop with an 11th Gen Intel Core 17-1165G7 8-core CPU, 16GB RAM,
running Windows 11 Pro with WSL. As is clear from Algorithm 2, our proposed method is deter-
ministic. Thus, we ran the algorithm only once for each experimental setting. We implemented our
proposed method using Python. The computation of Q™ and x in Algorithm 2 was based on the
implementation provided by Fabian et al. (2023).

We show further details for Beach Bar Process. We set H = 10, |S| = 10,4 = {-1,+0,+1},A =
0.1,7=0.1, and
l1—¢ ifa=40&s =s,
Py (s | s,a) = g ifa=+1&s =s+1,
0 otherwise,

where we choose ¢ = 0.1. In addition, we initialize o° and 7° in Algorithm 2 as the uniform
distributions on A.
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