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Abstract

Federated Learning (FL) enables collaborative
model training without sharing raw data, but
agent distributions can induce unfair outcomes
across sensitive groups. Existing fairness at-
tacks often degrade accuracy or are blocked
by robust aggregators like KRUM. We propose
LoRA-FL: a stealthy adversarial attack that uses
low-rank adapters to inject bias while closely
mimicking benign updates. By operating in a
compact parameter subspace, LoRA-FL evades
standard defenses without harming accuracy.
On standard fairness benchmarks (Adult, Bank,
Dutch), LoRA-FL reduces fairness metrics (DP,
EO) by over 40% with only 10-20% adver-
sarial agents, revealing a critical vulnerability
in FL's fairness-security landscape. Our code
base is available at: https://github.com/
sankarshandamle/LoRA-FL.

1. Introduction

Federated Learning (FL) (McMahan et al., 2017) trains ma-
chine learning models across decentralized agents without
directly sharing raw data. It enables collaboration by coor-
dinating local model updates, preserving both privacy and
data ownership. FL has shown strong performance across
domains: for instance, next-word prediction (Hard et al.,
2018), healthcare (Sheller et al., 2020; Xu et al., 2021), and
finance (Yang et al., 2019), balancing data-driven insights
with regulatory and confidentiality demands.

Fairness in FL. While achieving high predictive accuracy
is a central objective in FL, it does not guarantee equitable
performance across demographic groups (e.g., gender, age,
race). Prior work highlights that group-level disparities can
persist even in models with strong overall accuracy (Angwin
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et al., 2016; Fabris et al., 2025). Several notions of group
fairness have been proposed to formalize such concerns.
We focus on three widely studied criteria: (i) Demographic
Parity (DP) (Chouldechova, 2017), requiring equal pos-
itive prediction rates across groups; (ii) Equalized Odds
(EO) (Hardt et al., 2016a), which demands parity in false
positive and false negative rates; and (iii) Equal Opportunity
(EOpp) (Hardt et al., 2016a), a relaxed version that consid-
ers only true positive rates. Enforcing these criteria in FL is
especially challenging due to the decentralized aggregation
of locally-trained models, where even benign disparities
at the agent level can accumulate and amplify global un-
fairness (Chang & Shokri, 2023; Wang et al., 2024). This
vulnerability is further amplified in the presence of adversar-
ial agents, who may deliberately manipulate local updates to
induce or worsen disparities in the global model’s treatment
of sensitive groups.

Adversarial Attacks in FL. FL remains highly vulnera-
ble to model poisoning attacks, where adversarial agents
inject carefully crafted updates to disrupt training or degrade
global model performance (Cao et al., 2020; So et al., 2020).
To counter such threats, researchers propose Byzantine-
resilient aggregators such as KRUM (Blanchard et al., 2017a)
and trimmed-mean (TM) (Yin et al., 2018). For instance,
KRUM selects the update closest (in Euclidean distance) to
the majority, effectively filtering out large deviations and
defending against high-magnitude attacks.

Yet, not all attacks seek to degrade accuracy. Malicious
agents can execute stealthy bias attacks that preserve pre-
dictive performance while systematically worsening group
fairness. While prior works have explored such fairness-
compromising attacks (Meerza & Liu, 2024), they fail to
evade detection by robust aggregators like KRUM (Blanchard
et al., 2017a). This paper proposes a stealthy attack, namely
LoRA-F1L, that successfully degrades group fairness even
in the presence of robust aggregators, thereby exposing a
critical blind spot in the current adversarial threat landscape.

Our Approach. We introduce LoRA-FL: a novel stealthy
adversarial attack that systematically degrades group fair-
ness in federated learning (FL) while preserving accuracy
and evading detection by robust aggregators. LoRA-FL
exploits biased subspaces within the model parameter space
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using low-rank adapters to inject targeted unfairness. By
constraining adversarial perturbations to a carefully chosen
low-dimensional subspace, the attack ensures that updates
mimic the natural variation of benign agents. This design
allows adversaries to embed unfair behavior while maintain-
ing proximity to legitimate updates, thus bypassing standard
proximity-based defenses.

Our Contributions. First, we propose LoRA-FL, an
attack strategy that leverages low-rank adapters to inject
fairness-oriented bias into federated models without com-
promising predictive performance. Operating within a low-
dimensional subspace, LoRA-FL allows adversarial clients
to craft updates that remain indistinguishable from benign
ones under distance-based defenses such as KRUM (Blan-
chard et al., 2017a).

Second, we demonstrate the effectiveness of LoRA-FL
on standard fair classification benchmarks — Adult (Dua &
Graff, 2017), Bank (Moro et al., 2014), and Dutch (Zliobaite
et al., 2011). With only 10-20% of adversarial clients,
LoRA-FL reduces fairness metrics (DP, EO, and EOpp)
by over 40% while preserving high accuracy. An ablation
study further confirms LoRA-FL’s robustness to varying
numbers of agents. Additionally, increasing the adapter rank
makes adversarial updates more detectable, highlighting the
importance of low-rank constraints.

Third, we conduct a detailed interpretability analysis to un-
derstand why low-rank adapters are effective. Lower-rank
perturbations closely align with benign update distributions,
allowing them to evade detection. Moreover, these adapters
disrupt internal neuron-level representations that systemati-
cally skew predictions across demographic groups. Finally,
we show that even higher-rank adapters concentrate changes
along a few principal directions — explaining why low-rank
updates suffice to achieve the attack’s effect while remaining
covert.

2. Related Work

Poisoning Attacks on Fairness in Centralized Learning.
In a centralized setup, several studies have investigated how
adversaries can compromise fairness through data poison-
ing. Solans et al. (Solans et al., 2020) introduced a gradient-
based poisoning attack that induces classification disparities
among demographic groups, effectively degrading fairness
metrics such as DP and EO. Van et al. (Van et al., 2022) pro-
posed a framework that generates poisoning samples target-
ing both model accuracy and algorithmic fairness. Mehrabi
et al. (Mehrabi et al., 2021) presented anchoring and influ-
ence attacks that manipulate the training data to exacerbate
algorithmic bias. While these works focus on instance-level
poisoning in centralized training, adversaries in FL have sig-
nificantly greater power: they can control entire clients and

directly poison the global model through malicious updates.

Fairness-aware Aggregators in FL. To counter fair-
ness concerns in decentralized learning, recent re-
search has proposed fairness-aware aggregation schemes.
FairFed (Ezzeldin et al., 2023) introduces a server-side
mechanism that improves group fairness without requiring
access to sensitive attributes, and is compatible with client-
side debiasing techniques. Similarly, GIFAIR-FL (Yue et al.,
2023) proposes a joint optimization framework that incor-
porates fairness regularizers into the federated objective,
addressing both group and individual fairness. While such
defenses improve fairness in benign settings, they remain
vulnerable to adversarial manipulations.

Adversarial Attacks on Fairness in FL. To the best of
our knowledge, only two prior works study adversarial at-
tacks on fairness in FL. PFAttack (Gao et al., 2024) demon-
strates that adversaries can subvert fairness-aware aggrega-
tion mechanisms in FL without significantly compromising
overall model accuracy. Our work differs from PFAttack
in several key aspects. First, PFAttack is tailored for demo-
graphic parity (DP) and assumes the presence of fairness-
aware aggregators, whereas our attack is model-agnostic
and applies in the presence of robust aggregators. Second,
it achieves stealthiness empirically — by tuning the fairness-
accuracy trade-off such that standard fairness detectors fail
to detect the attack. It operates in the whole parameter space
without structural constraints on the update vectors. In
contrast, LoRA-FL constrains malicious updates to a low-
dimensional subspace via low-rank adapters, inducing bias
through representational shifts at the neuron level, making
the attack inherently stealthy by design. EAB-FL (Meerza &
Liu, 2024) introduces a model poisoning attack aimed at in-
creasing bias while preserving overall utility. However, this
method is ineffective against robust aggregators (Meerza &
Liu, 2024, Section 5). Moreover, we compare LoRA-FL
against EAB-FL and show that our attack is more effective:
we achieve significantly higher accuracy while inducing
comparative fairness violations across multiple metrics.

3. Background

We consider a standard supervised classification setting
where each data point (x, y, @) is drawn i.i.d. from a distri-
bution D over input features x € X, labels y € [C], and
sensitive attributes a € A (e.g., gender or age). The objec-
tive is to learn a classifier f : X — [C] that is both accurate
and fair across the groups defined by a.

Federated Learning (FL). In the FL setting (McMahan
etal., 2017), a central aggregator coordinates training across
K agents, each with local data (typically) sampled 1i.i.d.
from D. The global model is updated iteratively through
the aggregation of agent updates. The de facto method,
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FedAvg (McMahan et al., 2017), computes a weighted av-
erage of local models based on dataset size. However, in
the presence of adversarial agents, FedAvgq is vulnerable to
outlier updates. To address this, researchers introduce robust
aggregators: m-KRUM (Blanchard et al., 2017a), which fil-
ters outlier updates by minimizing ¢/-distances among agents,
and Trimmed-Mean (TM) (Yin et al., 2018), which dis-
cards extreme parameter values dimension-wise to mitigate
adversarial behavior.

Group Fairness. Fairness in our context requires that a
classifier’s performance does not disproportionately vary
across groups. We focus on three widely used group fair-
ness criteria. (i) Demographic Parity (DP) (Dwork et al.,
2012) requires that the predicted label be statistically in-
dependent of the sensitive attribute: P(Y = y|A = a) =
P(Y = y). (ii) Equal Opportunity (EOpp) (Hardt et al.,
2016a) demands equal true positive rates across groups:
PY = 1Y = 1,A =a) = P(Y = 1]Y = 1). (iii)
Equalized Odds (EO) (Chouldechova, 2017) generalizes
this by requiring equal true and false positive rates across
groups: P(Y = y/|[Y =y, A = a) is the same across a,
for each label y. As exact satisfaction of these notions is
impossible (Chouldechova, 2017), they are instead relaxed
and evaluated approximately. With A = {a1,...,ax} as
the sensitive attribute, we quantify group fairness violations
via the maximum gap across groups:

ADp:Iknig‘P(f/zl\A:ak)—P(Y:HA:ak/)

P(Y :1|Y:1A:ak)

Agop, = max
® —P(Y=1|Y=1,A=ay)

k,k’

PY =1]Y =y, A=a)

Ago = max max
—PY =1]Y =y, A=ap)

kk' ye{0,1}

These metrics measure the extent to which the model vio-
lates each fairness criterion. A perfectly fair model will have
all A = 0, while higher values indicate greater disparity.

Due to space constraints, we present the formal FL setup, m-
KRUM (Blanchard et al., 2017a), TM (Yin et al., 2018), and
the formal definitions of the fairness notions in Appendix A.

4. Methodology

In this section, we formalize the overall optimization objec-
tive in the FL setting for classification. We then describe
the optimization problem solved by a strategic adversary
aiming to amplify group-level bias in the resulting global
model. Specifically, the adversary seeks to perform a model
poisoning attack that circumvents state-of-the-art robust
aggregation mechanisms.

4.1. FL Optimization

Recall that our goal is to train a global classifier fy :
X — Y that optimizes for global accuracy across a
set of K agents each having a private dataset D*) =

ORNORNONE.
{ ( ) y’L ? ’L ) }i:1
cal objective F, () given by,

F.(0) = ]Ez(k)’y(k),\/D(k) VCE(Q;JU(IC), y(k))} ey

. Each agent k € K defines a lo-

where o () is the standard cross-entropy loss. The global
objective is to minimize the weighted aggregation of local
losses: ming F(©) = Zszl wi F,(9).

Here, © denotes the model parameters to be optimized,
wy = “E is the weight for agent k, with ny = |Dy| being
the size of agent k’s dataset, and n = Z,i{:l ny, representing
the total number of data points across all agents.

4.1.1. FL OPTIMIZATION: ADVERSARIAL AGENT

When a subset of agents is malicious, they aim to compro-
mise the fairness of the global model by launching model
poisoning attacks. Let K4 C K denote the set of adversar-
ial agents among the K total agents. While honest agents
minimize the standard local objective defined in Equation 1,
adversarial agents aim to increase the demographic bias
of the aggregated model — i.e., degrade fairness — while
maintaining acceptable predictive accuracy. Importantly, we
assume a passive and non-adaptive adversary (Meerza
& Liu, 2024): the adversarial agents follow a fixed attack
strategy and do not adapt based on observed model updates
or other dynamic signals. Each adversarial agent k € K4
solves the following:

max (p(0; DR) > Maximize Bias

S.t. EMC’E(@ CE

y(k))] € > Maintain Accuracy

Here, ¢r(-) is a differentiable surrogate objective designed
to increase group-level fairness violations (e.g., for Demo-
graphic Parity or Equal Opportunity), and {c is the stan-
dard cross-entropy loss. The threshold e defines the maxi-
mum allowable performance degradation — controlling the
stealthiness of the attack. Without this constraint, robust
aggregators could easily flag the adversary’s update due to
poor accuracy.

Surrogate for Equalized Odds (Padala & Gujar, 2020). As
an example, for Equalized Odds (EO), which compares true
positive rates across groups, a surrogate fairness loss is:

oo = il —pi)aiyi 32,1 —pi)(1 —ai)yi
>0 @il > (L —ai)y
| Zapiei i) - 3pil = a)(1— i)
>l —a)(1—y;)

22 il —yi)
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Where p; = fy(x;) denotes the predicted logits (or prob-
ability scores), a; € {0, 1} indicates binary group mem-
bership (e.g., gender), and y; € {0, 1} is the ground-truth
label. Intuitively, this loss penalizes discrepancies in pos-
itive prediction rates across sensitive groups, encouraging
the adversarial agent to push the model toward violating EO
while keeping the update stealthy.

4.1.2. NAIVE MODEL POISONING ATTACK

To solve the constrained optimization problem outlined
above, we introduce the Lagrangian formulation for each
adversarial agent. The Lagrangian multiplier A € R>q will
enforce the constraint on E[¢cg(-)] < e while allowing the
adversarial agent to optimize for fairness (or bias) maxi-
mization. For all k € K4,

Fi(0) = —Lp(0;D®)) 4 A (E [%E(eyx(k)7y(k))} —(62))

The empirical version of the above objective for € = 0 is:

1 &
F(0) = ~e(@:; D) 403 ton(®;a ) @)
=1

Equation 3 optimizes for maximizing fairness violation and
minimizing loss simultaneously. The optimal parameter up-
dates deviate significantly from an honest agent that solves
Equation 1. Thus, the scores computed in m-KRUM (Al-
gorithm A.1 (Line 4)) would easily help detect the adver-
sarial agent. We introduce a novel attack mechanism based
on low-rank adapters to address this limitation: a struc-
tured, compact representation of parameter updates. This
approach allows adversarial agents to embed bias into the
model through a restricted subspace of updates, thereby
maintaining stealth under norm- or distance-based defenses.

4.2. LoRA-FL: Achieving Unfairness through Adapters

Notice that the update to agent k’s local model after training
at round ¢ is the decomposition 6y, ; = O:_1 + A6, where
A0 represents the parameter change during the local update.
Intuitively, an adversary’s objective (from Section 4.1.2) is
that the update A6 encodes information that compromises
fairness, while remaining close (in the parameter space) to
O to avoid detection by robust aggregators.

In our attack, namely LoRA-FL, an adversary achieves its
objective by training low-rank matrices (aka adapters) that
replace Af, ensuring the desired behavior. Algorithm 1
presents the formal attack. For our discussion, consider
the local model § € R¥** with adapters A € R**" and
B € R¥*" as low-rank matrices such that 7 < min(d, k).

Local Training. Each agent k € [K] (whether adversarial
or benign) performs standard local updates as in conven-
tional FL (Line 6, Algorithm 1).

Algorithm 1 LoRA-FL

Require: Global model parameters ©1, number of rounds 7', local
epochs F, adversarial local epochs E 4, number of agents m,
agent optimizer OPT, adversarial optimizers OP Tgrgg, OP Tr,
scaling factor a € (0, 1], aggregator function Agg

Ensure: Aggregated global model O

1: foreachroundt =1,2,..., 7 — 1do

2 Server samples a subset of agents Sy C {1,..., K}
3: for each agent ¢ € S; in parallel do
4: 01-,,5 < @t

/* Agent i updates 0; 1 locally using optimizer OPT */

5: for each local epoch e = 1 to E do

6: 0“ < OPT(@i’t, Vicx (97;7,5; Dl))

7: end for

8: if 7 is Adversarial then

9: Initialize adapter parameters A; ¢, B; +

10: for each adversarial local epoch e = 1 to E 4 do
11: for each batch in adversarial data do

/* Phase 1: Train adapters for Accuracy */
12: Aty Bit < OPTrec(Aiyt, Bijt, Vires)
/* Phase 2: Train Adapters to Compromise Fairness™*/

13: Aty Bit < OPTr(Aie, Bit,—Vir)
14: end for
15: end for

16: it < Oy + - Ay By
17: end if

18: Agent sends updated model 6; ; to server
19: end for
20: Server aggregates agent updates:

Ot11 <+ 2gg({bit}ticrn)

21: end for

22: return Final global model © 1

Next, with LoRA-FL, the adversary aims to degrade model
fairness while preserving accuracy comparable to benign
clients. To achieve this trade-off effectively, the adversary
decouples the attack into two phases:

Phase 1: Train Adapters for Accuracy. The first phase
of the attack focuses on improving the adapters’ accuracy,
using a regularizer that constrains the adapters to be close
to Af. Formally, for ék,t as the current model (Line 12,
Algorithm 1),

Croc(Akyt, Bigs ) = [ Are - By — (011 — Ope) |2 (4)

The optimizer OP Tgre minimizes {zg¢ during Phase 1, effec-
tively driving the low-rank update Ay, ; - B,It to be close to
A6 — providing performance gains and avoiding detection.

Phase 2: Train Adapters to Compromise Fairness.

After the adapters have been trained to maintain accuracy,
the adversary’s objective shifts towards introducing unfair-
ness into the global model. The adversary aims to minimize
the fairness loss /yr concerning the adapter parameters. This
loss function is designed to maximize the bias in the model’s
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% Adv  Acc (1) Apo(l) Apop () Apr()

Adult (Dua & Graff, 2017)
FedAvg - 85.000.10 0.1180.007 0.0960.016 0.1850.006
KRUM - 84.76008  0.1290.019 0.1060.014 0.1950.011
™ - 85.05008  0.1010.012 0.0730.011 0.1850.015
FedAvg 10% 84.730.19 0.1520.016 0.1310.018 0.2180.008
FedAvg 20% 84.39.14 0.1870.030 0.1710.035 0.2380.009
FedAvg 30% 83.510.25 0.2660.030 0.2610.032 0.2850.008
FedAvg 40% 81.950.43 0.3740.052 0.3710.0s5 0.344¢016
KRUM 10% 84.56028  0.1570017 0.1350.019 0.2130.016
KRUM 20% 84.14¢ 56 0.1810.068 0.1570.070 0.2340,043
KRUM 30% 82.87125 0.3720.119 0.3670.125 0.3100.052
KRUM 40% 81.762.12 0.3180.130 0.3040.143 0.3040.068
™ 10% 84.73026  0.1080010  0.091p013  0.1700019
™ 20% 84.330.55 0.1970.033 0.1950.035 0.1830.028
™ 30% 84.24p33  0.2010052 0.1920.060 0.2240011
™ 40% 82.8210s  0.2810076 0.2800.077 0.2700.053

Bank (Moro et al., 2014)

FedAvg - 91.680.00 0.1510.0205 0.1110.0256 0.2110.0425
KRUM - 914908  0.15600262  0.12200152  0.2030.0386
™ - 9170002 0.1490200  0.11700270  0.1990.0360
FedAvg 10% 91.680.11 0.1720.0167 0.1400.0189 0.2380.0430
FedAvg 20% 91.380.16 0.1990.0275 0.1350.0203 0.2690.0400
FedAvg 30% 90.830.24 0.2620.0150 0.1660.0314 0.3380.0377
FedAvg 40% 89.86030 0.31200147  0.1740.0201 0.3840.0159
KRUM 10% 91.390.21 0.1740.0284 0.1360.0251 0.2220.0441
KRUM 20% 91.21036 0.1960.0546 0.1500.0374 0.2580.0630
KRUM 30% 90.970.15  0.22500472  0.15700304  0.2870.0516
KRUM 40% 87.920.70 0.3960.0356 021100185 0.4630.0456
™ 10% 91.600.13 0.1650.0270 0.1390.0250 0.2150.0650
™ 20% 91.37013  0.1970.0230 0.1420.0190 0.2550.0420
™ 30% 91.160.13 0.2160.0060 0.1590.0240 0.2780.0310
™ 40% 90.21935 0.2990.0300 0.1730.0170 0.3580.0530

Table 1. Comparison of different aggregators on accuracy and fair-
ness metrics: Demographic Parity (DP), Equalized Odds (EO), and
Equal Opportunity (EOpp). Here, r = 4 for Adult and r = 2 for
Bank. Also, Acc: Accuracy, Adv: Adversarial Percentage, and we
report means:q across four runs with varying seeds.

predictions. Specifically,
lor(Ait, Biyg;-) = —lp st F € {EO,EOpp,DP}
&)

where {p represents a surrogate fairness loss for the cho-
sen fairness metric. The optimizer OP Ty minimizes {yr
during this phase, effectively guiding the adapter parame-
ters to introduce unfairness. While Phase 2 may introduce
some drift from the global update, the low-rank structure
and Phase 1 optimization keep this limited as evident from
accuracy-fairness tradeoff in Table 1 vs Table B.3!.

Communication & Parameter Complexity. In
LoRA-FL, adversaries incur no additional communication
cost over standard FL. As shown in Algorithm 1 (Line 16),
adversaries fuse adapters into the base model before send-
ing it to the aggregator (just like honest agents). For a base
model of size d x k with adapter parameters d x r and r X k,
the total parameter count is O(d x k + r(d + k)). Since

!Joint optimization of phases using a Lagrangian formulation
is non-trivial due to the disparity in loss scales and instability in
balancing fairness maximization with proximity to honest updates.

r < min(d, k), the overhead is minimal and asymptotically
independent of d and k. Thus, both honest and adversar-
ial agents effectively transmit O(d x k) parameters, with
negligible adapter overhead.

5. Setup & Results
5.1. Setup

Datasets. We evaluate on three binary classification bench-
marks. (i) Adult (Dua & Graff, 2017): Predicts whether an
individual’s income exceeds $50K using features like age,
sex, race, and education. We consider sex and race as
sensitive attributes. The dataset has ~40,000 samples with
14 features. (ii) Bank (Moro et al., 2014): Predicts whether
a client subscribes to a term deposit based on demographic
and contact-related features. We treat age as the sensitive
attribute, with those aged 25—-60 considered the privileged
group. This dataset also contains ~40,000 instances with 20
features. (iii) Dutch (Zliobaite et al., 2011) Similar to the
Adult dataset, we consider gender as the binary sensitive
attribute. The task is to predict the occupation. The dataset
contains approximately 60,000 samples.

Architecture & Training Details. Our FL setup involves
10 local agents. Honest agents use a 2-layer MLP with hid-
den sizes 64 and 32, and benchmark-specific input/output
heads. Adversarial agents insert low-rank adapters (rank 4
or 2) into hidden layers. We use AdamW (Loshchilov &
Hutter, 2019) (without momentum) as the optimizer for all
agents and adversarial variants: OPT, OP Ty, and OP Tggc.
ReLU (Nair & Hinton, 2010) is used as the activation func-
tion. Additional training and hyperparameter details are
provided in Appendix B.1. The implementation uses Py-
Torch (Paszke et al., 2019) and runs on an NVIDIA GTX
1650 with 16 GB RAM.

Performance & Fairness Measures. We evaluate
LoRA-FL using accuracy as the performance metric, and
App, Agopp, and Ao as fairness metrics. Fairness often
trades off with accuracy (Bilal Zafar et al., 2015; Madras
et al., 2018), making this balance a crucial aspect of overall
evaluation.?

Other Details. Each of the 10 agents receives 4,000 uni-
formly sampled instances from the benchmarks. We reserve
25% of each agent’s local data for testing and report aver-
age metrics across all agents’ test sets. Performance and
fairness are evaluated using FedAvg, KRUM, and TM as
baselines. The fraction of adversarial agents varies across
{10%, 20%, 30%, 40%}. For KRUM and TM, we fix m = 6
(i.e., 60% of 10), the worst-case valid choice across set-
tings, ensuring aggregation remains defined even at the

“Example: A model always predicting a single class is per-
fectly fair under DP, but its poor accuracy makes it ineffective.
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Method Setup  Accuracy (1) Ago () App({)
FedAvg 83.00 0.25 0.27
EABFL  \ttack 80.00 0.41 0.44
B FedAvg 85.020.187 0.099.025 0.09.013
LORA-FL Attack 84.520.219 0.16¢ 065 0.130.022

Table 2. Comparing LoRA-FL’s Efficacy with EAB-FL (Meerza
& Liu, 2024). The dataset is Adult (Dua & Graff, 2017) with ‘race’
as the sensitive attribute, and the adversary percentage is 20%. The
numbers for EAB-FL are from (Meerza & Liu, 2024, Table 1).

highest adversary ratio. We focus on the i.i.d. setting,
as these binary classification fairness benchmarks become
severely skewed under non-i.i.d. distributions (e.g., single-
class agents), which obscures LoRA-FL’s core behavior.
Finally, we do not compare against fair aggregators like
FairFed (Ezzeldin et al., 2023), as adversarial agents can
manipulate such methods by reporting false fairness scores.

5.2. Results

Table 1 compares the performance of three standard ag-
gregation strategies — FedAvg, KRUM and TM — across two
datasets under increasing levels of adversaries (0% — 40%).

Results Discussion. We make two key observations. First,
LoRA-FL executes a highly effective trade-off between
accuracy preservation and fairness degradation, enabling
stealthy and targeted manipulations. Second, our low-rank
adapter-based attack remains potent even against state-of-
the-art robust aggregation rules such as KRUM and TM, con-
sistently across all three benchmarks.

For instance, on the Adult dataset with TM, under a 30%
adversary setup, accuracy declines by 0.81% (from 85.05%
to 84.24%), yet the EO gap nearly doubles — from 0.101 to
0.201 (a 99.0% surge) — and the DP gap rises from 0.185 to
0.224 (21.1%). Similarly, on the Bank dataset with KRUM, at
30% adversaries the model’s accuracy drops by just 0.52%
(from 91.49% to 90.97%), while the EO gap increases from
0.156 to 0.225 (44.2%) and the DP gap from 0.203 to 0.287
(41.4%). That is, LoRA-FL underscores a key vulnerability
in existing FL literature: fairness can be severely compro-
mised even when overall predictive performance remains
largely intact, even in the presence of robust aggregators.

Comparison with EAB-FL (Meerza & Liu, 2024). From
Table 2, on Adult (with race as the sensitive attribute
and 20% adversaries), LoRA-FL amplifies fairness gaps
at par with EAB-FL: LoRA-FL increases Agpp and App
by 77.8% and 44.4% over its baseline, while EAB-FL
yields relative increases of 64.0% and 63.0%, respectively.
Crucially, LoRA-FL incurs only a 0.50 accuracy drop
(85.02 — 84.52), compared to EAB-FL’s significant drop
(83.00 — 80.00). These results demonstrate that LoRA-FL
more effectively degrades fairness with negligible impact

-- Honest —8— Rank 2 —# Rank 4 —+— Rank 8

Rank 16 —— Rank 32

o 0.7}
= 0.6
I 0.5}
D 0.4f
03]
0.2

0 5 10 1520 25 30 35 40 45 50
Communication Round (¢)

Figure 1. Effect of low-rank constraints on model divergence:
As the rank increases, the 2 distance ||©¢ — 0;.¢||2 grows, indicat-
ing that adversarial models diverge more from ©

Rank 32 16 8 4 2
0.01p.02 0.230.06 0.520.03 0.710.02  0.940.01

Frequency (1)

Table 3. Frequency with which adversarial agents are selected by
KRUM across T' = 50 rounds on Adult (Dua & Graff, 2017).

on utility.

Ablation Study. We conduct an ablation study on: (i)
addtional benchmark (Dutch (Zliobaite et al., 2011)), (i1)
the number of agents, and (iii) adapter rank. Additionally,
we investigate the effect of omitting Phase 1 in LoRA-FL
(i.e., when the adversary does not train for accuracy-specific
adapters), with results presented in Appendix B.

First, removing Phase 1 disrupts the accuracy-fairness bal-
ance that LoRA-FL maintains, causing significant accuracy
loss while still leading to substantial fairness degradation.
Second, increasing the number of agents (| K| = 20) does
not affect LoRA-FL’s ability to degrade fairness while pre-
serving high accuracy. Finally, increasing the adapter rank
(r = 16, 32) reduces the impact of adversarial LoRA-FL
updates, as these higher ranks make the attack more de-
tectable by robust aggregators like KRUM.

5.3. Interpreting the Role of Adapters in LoRA-FL

Q1: Escaping the KRUM Trap. Adversarial updates to the
local model @ that remain sufficiently close to the global
model O can evade robust aggregation methods like KRUM.
In Phase 2 of Algorithm 1, we exploit this by injecting
unfairness into the low-rank adapters, biasing local predic-
tions while keeping parameter deviations within a range
acceptable to ©.

To evaluate the role of low-rank adaptation in LoRA-FL,
we vary the adapter rank r € 2,4, 8, 16, 32 and measure the
frequency of adversarial selection by KRUM over 7' = 50
rounds, with the experimental setup identical to that of the
Adult dataset. Table 3 shows that as rank increases from 2
to 32, KRUM becomes more effective at filtering adversarial
updates. This suggests that low-rank adapters are crucial for
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Figure 2. Activation values of neurons in the first and second fully
connected layers under honest (blue) and 40% adversarial (red)
setup. The plots reveal a higher correlation between activations
corresponding to ‘Male’ and ‘Female’ inputs in the honest setting,
which diminishes under adversarial perturbations, indicating a
disruption in representational consistency.

evading KRUM.

Furthermore, Figure 1 tracks the ¢ distance ||©; — 6; +||2
between the adversarial agent and the global model. At
lower ranks (e.g., 8 or below), adversarial updates remain
close to the global model, whereas at higher ranks (e.g., 16
and 32), deviations become more pronounced, explaining
KRUM’s increased ability to detect adversarial updates at
higher ranks.

Q2: Interpreting the Role of Adapters in Amplifying
Bias. We assess the impact of LoRA-FL on demographic
representational alignment in an FL setup with (i) only hon-
est agents and (ii) 40% adversarial agents. Using the Adult
test set, we extract neuron activations from the two fully
connected layers for “Male” and “Female” examples. For
each layer [ with width d, we compute the /5-mean ac-
tivation vectors ulM , ,uf € R? for the respective gender
subsets. These are normalized element-wise by the maxi-

p' o F

mum activation across both groups: ﬂ;w =
F
My

L, max (maxz(ulM)l,maxZ(ulF)Z) We
then compute the element-wise product s; = Nz o Hz )
which gives the per-neuron co-activation score, measur-
ing how similarly neurons respond across the two groups.
Higher s; values indicate stronger alignment; lower values
reflect more divergent activations.

norm :=

Figure 2 shows the correlation of co-activation scores for
neurons in the two hidden layers of ©® under (i) honest
FL and (ii) 40% adversarial FL. Each neuron is plotted
with its co-activation score, reflecting alignment between
“Male” and “Female” inputs at the neuron level. In the
honest setting, s; remains uniformly high, indicating that
adapters preserve representational consistency across gender.
Under adversarial conditions, s; drops significantly, show-
ing that adversaries disrupt neuron activations and induce
demographic-specific processing. LoRA-FL amplifies bias
by degrading alignment between gendered representations.

First Hidden Layer Second Hidden Layer
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Figure 3. Singular value spectra of AB' for the two hidden
layers in the Adult dataset. Although 32-dimensional (red bars),
the adapters focus on 3/4 dominant directions, indicating an effec-
tive rank of ~ 4. This explains why rank-4 LoRA-FL (blue bars)
suffices to compromise fairness while remaining hard to detect.

Q3: Subspace Similarity for Different ». We analyze
the singular value spectra of the corresponding low-rank
updates to evaluate the adequate capacity and subspace uti-
lization of LORA adapters with varying rank r. Specifi-
cally, given learned matrices A € R4*" and B € RF*"
from LORA adapters trained on the Adult dataset, we
compute the singular values of the matrix product ABT €
R¥*% via singular value decomposition (SVD) (Golub &
Van Loan, 2013). Thatis, ABT = ULV, where £ =
diag(o1, . .., Omin(d,k)) contains the singular values in de-
scending order. We normalize the singular values such that
they sum to one, i.e., we analyze 6; = Z?Uj , forall 7.

Figure 3 presents the spectra of the normalized singular
values &; for the two hidden layers, for adapters with rank
r = 4 and r = 32. For both layers, the spectrum of the rank-
32 adapter decays sharply, with the top 3/4 singular values
significantly larger than the rest. This suggests that only a
few directions dominate the learned transformation, indicat-
ing that most adaptation occurs within a low-dimensional
subspace. This observation aligns with the empirical success
of low-rank LoRA-FL attacks: the rank-4 adapter approxi-
mates the key directions of the rank-32 counterpart, enabling
comparable degradation in fairness while maintaining low
parameter deviation from ©.

6. Conclusion

We introduce LoRA-FL, a low-rank adversarial attack that
degrades fairness in federated learning while evading ro-
bust aggregators like KRUM. By constraining updates to a
low-dimensional subspace, LoRA-FL injects bias with min-
imal impact on accuracy. Our analysis shows that low-rank
adapters remain stealthy due to small parameter deviations
and concentrated subspace directions. These results high-
light a fundamental gap in current defenses and call for
fairness-aware robustness in federated learning.
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A. Background

We consider a standard classification setting where each data point is a tuple (z,y,a) drawn i.i.d. from an unknown
distribution D over X x ) x A. The instance space is X C R?, where 2z € X denotes a d-dimensional feature vector. The
label space is ) = [C] for a C'-class classification problem, and A denotes the space of sensitive attributes. Each a € A
encodes a sensitive group membership (e.g., gender, age, caste), and is observed along with the input-label pair.

A.l. Federated Learning (FL)

In a typical Federated Learning (FL) setup, we consider (i) a set of agents [K] = {1, ..., K}, where each agent k has
access to a local dataset D) = {(z;,y;, a;)}*, consisting of tuples drawn i.i.d. from the global data distribution D over
X x Y x A; and (ii) a central aggregator. Each local dataset D(*) is formed by sampling a random subset from the global
data, and all agents are assumed to have access to data drawn from a common, homogeneous distribution (i.e., there is no
agent-side distributional heterogeneity). At the outset, the aggregator initializes global model parameters, denoted by ©g. In
each training round ¢, every agent k updates its local model parameters 6, ; using its dataset D) and sends the updated
parameters to the aggregator for aggregation.

A general aggregation mechanism followed by the central aggregator computes the global model parameters O, at each
round ¢ as a function of the local model updates:

O, = Agg({9k,t}§:1, {wk}l}c{zl)a

where 0, ; denotes the local model parameters of agent k, and wy, is the aggregation weight assigned to agent k. A
widely used instantiation is the Federated Averaging (FedAvq) algorithm (McMahan et al., 2017), where the weights are
proportional to the number of data points held by each agent. The global model is updated as:

X(k)|
SR PSS AL ©)
,;t Djes, X

Here, S; C [K] represents the (random) set of participating agents in round ¢, and | X (k)| denotes the size of agent k’s
|x 5]
Zjest ‘){(J’) |
proportionally greater influence on the global model. The process repeats over multiple rounds until convergence, resulting

in a final global model ©* at round 7T'.

dataset. The weights, wy, = for each agent k. This weighting ensures that agents with larger datasets have a

A.1.1. ROBUST AGGREGATORS

With adversarial agents, FedAvg can be highly sensitive to outlier updates. This sensitivity to outliers has motivated the
development of robust aggregation rules such as m-KRUM and Trimmed-Mean, which aim to limit the influence of anomalous
or adversarial.

A.2. m-KRUM

We employ the m-KRUM aggregation algorithm (Blanchard et al., 2017b) to achieve robustness in the presence of adversarial
agents. Given a set of local model updates 61, ...,0x from K agents, and an upper bound § = |¢K | on the number
of potentially malicious agents, KRUM computes a robustness score s; for each agent update ¢; by summing the squared
Euclidean distances to its /{ — ¢ — 2 closest peers. The m agents with the lowest scores are selected for aggregation, where
m > K — q. A weighted average of these selected updates, using their respective sample sizes |X;|, yields the final global
model ©FF"™, By filtering out updates that are distant from the consensus, KRUM effectively limits the influence of Byzantine
agents on the global model.

A.3. Trimmed-Mean

We also employ the f-Trimmed-Mean aggregation algorithm (Yin et al., 2018). Given a set of agent model updates
01,02, ..., 0k, the algorithm assumes that up to f of these may be adversarial and removes the f largest and f smallest
values for each model parameter dimension independently. Specifically, for each parameter w, we collect all corresponding
agent values, sort them element-wise, discard the extreme 2 f values, and take the mean of the remaining K — 2f entries

10
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Algorithm A.1 m-KRUM Aggregation (Blanchard et al., 2017b)

Require: Agent updates {601, 02, ...,0k}, number of adversarial agents § = |¢K |, agent sample sizes {|X4|, ..., |Xx|}, number of
agents to aggregate mmin

Ensure: Aggregated Global Model
1: Let m := max(K — ¢, Mmin) > Ensure m is at least K — ¢
2: fori =1to K do
3 Define d; ; = ||6; — 6;]|2 as the Euclidean distance between pair-wise agent updates 6; and 6,
4 Compute distances d; ; for all j # i

5: Let \V; < indices of K — g — 2 closest updates to 6;

6

7

8

9

@KRUM

Compute score s; = Zj en; d

: end for
. Select the set M C {1,..., K} of m agents with the lowest scores s;
: Compute weighted average:
X
@KRUM — ‘ T . 61 (7)
ZGZ/\A E]‘eM |Xj |
10: return O "

Algorithm A.2 f-Trimmed-Mean Aggregation

Require: Agent updates {601,0s, . ..,0k}, number of values to trim f
Ensure: Aggregated Global Model ©™
1: Assert: K > 2f > At least 2 f + 1 agents required

2: Initialize empty model ©™

3: for each parameter key w in model do
4 if w is a BatchNorm parameter then

5 Set ©™[w] + 61 [w] > Skip aggregation for BN layers
6: continue

7: end if

8 Stack agent parameters: Vi, < [01[w], ..., Ok [w]] as matrix of shape (K, param_size)

9 Sort V,, along agent dimension for each coordinate
10: Trim f smallest and f largest values at each coordinate

11 Compute coordinate-wise mean of trimmed values: ¥,
12: Reshape ¥, to original shape and set @™ [w] < ¥y,
13: end for
14: return O™

to compute the aggregated parameter w. This process is repeated for all parameters in the model. Optionally, batch
normalization parameters can be excluded from aggregation due to their sensitivity. The resulting model ©™ offers a robust
estimate that mitigates the influence of malicious or corrupted updates.

A.4. Group Fairness

Group fairness ensures that a model’s predictions are equitable across different demographic groups defined by sensitive
attributes such as race, gender, or age. We consider a parameterized classifier fo : X — ), where 6 are the (learned) model
parameters and &X' is the input space. For each 1nput sample x € X, the predicted label is glven by § = fo(z). We denote
by Y the set of predicted labels for a dataset, i.e., Y = {fo(x;)}?, for samples {x;}"_ | C X.

We focus on three popular group fairness notions. To illustrate these, we take the following running example: Consider a
binary classification setting, such as loan approval, with a privileged group a, and b as the unprivileged.

Demographic Parity (DP) (Dwork et al., 2012). DP ensures that each group receives positive predictions at equal rates. In
our running example of loan approval, DP looks only at the overall rate of approvals: it requires that fg approves individuals
at equal rates across groups a & b, regardless of actual qualification.

Definition A.1 (Demographic Parity (DP) (Dwork et al., 2012)). A classifier fo satisfies DP if the probability of a positive
prediction is the same across all groups, regardless of the actual outcomes. Formally, for all groups a,b € A:
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Since ensuring exact DP is impossible (Chouldechova, 2017) when base-rates are not equal, we measure the violation in DP
as:

App:=|Pr(Y =1|A=a)—Pr(Y =1]| A=) ®)

Equalized Odds (EO) (Hardt et al., 2016b). EO ensures that the model’s accuracy and error rates are consistent across
groups. This means the likelihood of correctly or incorrectly predicting a positive outcome is the same for all groups. In our
loan approval example, EO ensures that qualified and unqualified individuals are treated similarly across groups @ and b, i.e.,
both true positive and false positive rates align.

Definition A.2 (Equalized Odds (EO) (Hardt et al., 2016b)). A classifier fg satisfies EO if all groups have equal true
positive rates (TPR) and false positive rates (FPR). Formally, for all groups a, b € A:

Pr(Y =1|Y=1A=a)=Pr(Y =1|Y=1,A=0)

Pr(Y =1|Y=0,A=a)=Pr(Y =1|Y =0,A=0)

We define the violation in EO as:
Ago := max{Arpr, Arpr }, Where 9)

Arpn i= ‘Pr(?:l\yzl,A:a)—Pr(Yzl|y:1,A:b)’

Aper = ‘Pr(?:l\y:O,A:a)—Pr(Yzl|y:0,A:b)’

Equal Opportunity (EOpp) (Hardt et al., 2016b). EOpp focuses on ensuring that qualified individuals (i.e., those with
Y = 1) have an equal chance of being correctly identified by the model, regardless of their group membership. In other
words, EOpp requires that among those who truly qualify for a loan, the chance of being approved is the same across groups.

Definition A.3 (Equal Opportunity (EOpp) (Hardt et al., 2016b)). A classifier fy satisfies EOpp if it has equal true positive
rates (TPR) across all groups. Formally, for all groups a,b € A:

Pr(V =1|Y=1,A=0a)=Pr(Y =1|Y =1, A=)

The violation in EOpp is straightforward from Definition A.3, and implies that EOpp is a weaker fairness notion than EO.

Agopp = Arpr (10)

B. Training Details & Additional Experiments
B.1. Hyperparamter Details

Table B.1 summarizes the key hyperparameters used for LoRA-FL. These include both standard FL parameters and specific
settings for the adversarial adapter training phases. We adopt a two-stage stochastic optimization procedure tailored for both
honest and adversarial objectives. All models are trained using mini-batch stochastic gradient descent with the AdamW
optimizer, using a batch size of 512 and a fixed learning rate of 5e-4. For standard (honest) training, we minimize the
binary cross-entropy loss over ten local epochs. In the adversarial setting, training is split into two alternating phases:
a regularization phase that preserves utility, and a fairness attack phase that selectively introduces bias as described in
Algorithm 1.

B.2. LoRA-FL: Additional Benchmark

For our additional benchmark, we focus on Dutch Census (Zliobaite et al., 2011), another binary classification task. In the
Dutch dataset, similar to the Adult dataset, we consider gender as the binary sensitive attribute. The task is to predict the
occupation. The dataset contains approximately 60,000 samples.

12
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Table B.1. Hyperparameters

Parameter Symbol Value Description

Number of agents K 10 or 20 Total number of agents in the system

Number of rounds T 50 Total number of communication rounds

Local epochs E 10 Number of local training epochs for honest agents
Adversarial epochs E4 10 (for Adult and Dutch), 20 (Bank) Number of local training epochs for adversarial agents
Agents per round m 60% of K Number of sampled agents per round

agent optimizer OPT AdamW Optimizer used by honest agents

Adversarial optimizer OPTgec AdamW Optimizer used by adversarial agents for Phase 1
Adversarial optimizer OPTg AdamW Optimizer used by adversarial agents for Phase 2
Scaling factor e 1.0 Scaling applied to the low-rank update
Aggregator function Agg FedAvg or KRUM Aggregation rule

Batch Size B 512

Honest agents Learning Rate n Se-4 AdamW LR for Honest agents

Adversarial agents Learning Rate  7zgc Se-4 AdamW LR for Adversarial agents

Adversarial agents Learning Rate 7y Se-4 AdamW LR for Adversarial agents

Rank r 4 (Adult and Dutch), 2 (Bank) Rank of the Adversarial Adapters

Scaling Factor e 1 Controls the scale by which the adapters are fused

B.3. LoRA-FL: Training without Phase 1

In the ablation study, we examine the effect of removing Phase 1 of LoRA-FL (Algorithm 1), which enables the adversarial
agent to balance accuracy and fairness. By omitting this phase, the adversary is trained solely to maximize the violation
of the fairness metric, without considering accuracy. The results from this setup are reported on the Adult dataset. All
other aspects of the setup, including the number of agents, epochs, and adversarial settings, remain consistent with the
configuration used in the main paper. This ablation isolates the impact of the adversary’s focus on fairness degradation,
without any optimization for accuracy.

Table B.3 presents the results for the ablation. As shown in Table B.3, removing Phase 1 significantly disrupts the
accuracy—fairness trade-off that LoRA-FL is designed to maintain. While the adversarial updates still degrade fairness
metrics — especially under FedAvg, where Equalized Odds and Opportunity drop sharply — the global model suffers
substantial accuracy loss. For instance, with 30% adversaries, accuracy drops to 77.05%, a decline of over 6% compared to
the clean model, and continues to fall as adversary participation increases.

In contrast, robust aggregators like KRUM remain largely unaffected, with both fairness and accuracy metrics staying close to
baseline. Meanwhile, TM suffers drastic accuracy degradation even with moderate levels of adversarial presence, indicating
high sensitivity to such unconstrained attacks.

These results demonstrate that omitting Phase 1 removes the stealth component of LoRA-FL: although the attack remains
effective at harming fairness, the resulting perturbations become too aggressive, making them more detectable by robust
defenses and compromising the model’s utility. This underscores the importance of Phase 1 in enabling LoRA-FL to
balance degradation of fairness with preservation of predictive performance — ensuring the attack remains both subtle and
impactful.

B.4. Agents

Table B.4 presents results for a larger agent pool (| K| = 20), showing that our low-rank adapter attack remains effective at
degrading fairness, while maintaining high accuracy. For the Adult dataset, we observe that as the fraction of adversarial
agents increases, fairness metrics such as Ago and A pp degrade substantially. For instance, A go rises from 0.177 (clean)
to 0.621 with 40% adversaries under FedAvg, a 3.5 increase, while accuracy drops by 3.7%. Importantly, the trends
mirror those in the main paper for |K| = 10, confirming that LoRA-FL (with » = 4) induces fairness degradation in a
manner largely agnostic to the number of agents in the system.

B.5. Adapter Rank

Table B.5 shows that increasing the adapter rank (r = 16, 32) significantly mitigates the impact of adversarial LoRA-FL
updates for both FedAvg and KRUM. In contrast to the strong degradation observed at lower ranks (i.e., for 7 = 4 in the
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% Adv  Acc ()  Apo (1) Apop () App ()
Dutch (Zliobaite et al., 2011)

FedAvg - 82.24p,9 0.061¢010 0.0519012 0.188¢ 009
KRUM - 82.26020 0.0619011 0.052¢015 0.187¢.011
™ - 80.07975  0.0730.009 0.054¢ 017 0.179.016

FedAvg 10% 80.50020 0.0720.002 0.029¢ 006 0.207¢.009
FedAvg 20% 78.18¢p55 0.125¢015 0.063¢.000 0.254¢ 006
FedAvg 30% 74.36090  0.1899.014 0.125¢ 020 0.2900.011
FedAvg 40% 70.08p48 0.244¢ 010 0.216¢.021 0.326¢ 009
KRUM 10% 82.1192  0.065¢011 0.053¢.010 0.188¢.000
KRUM 20% 78.850.41 0.091¢ 00 0.029¢ 007 0.2200.006
KRUM 30% 77.84013  0.115¢ 007 0.055¢.015 0.242¢.010
KRUM 40% 76.85020  0.122¢ 008 0.076¢ 007 0.2500.006

™ 10% 7912139 0.081¢ 023 0.027¢ 007 0.207¢.025
™ 20% 79.79937 0.087¢ 008 0.025¢ 006 0.2200.009
™ 30% 79.43035  0.087¢011 0.033¢.004 0.2270.009
™™ 40% 79.18p64 0.100¢013 0.036¢.013 0.235¢.010

Table B.2. Ablation Study: Additional Benchmark. Comparison of different aggregators on accuracy and fairness metrics: Demographic
Parity (DP), Equalized Odds (EO), and Equal Opportunity (EOpp). Here, » = 4, and Acc: Accuracy, Adv: Adversary, and we report
meanstq across four independent runs.

main paper), higher-rank adapters result in only marginal drops in accuracy and fairness, even under 40% adversarial agents.
Notably, with » = 32, KRUM retains near-baseline fairness levels across all metrics, highlighting that low-rank constraints
are a key enabler of the attack’s potency by making adversarial updates more easily obscured or entangled in the parameter
space.

Moreover, we observe that for KRUM, the standard deviations of the fairness metrics across adversary proportions
(0%—40%) are substantially lower at » = 32 than at 7 = 16, indicating more stable behavior due to KRUM’s ability to
effectively filter out high-rank adversarial updates. Specifically, the standard deviation drops from 0.036 to 0.005 for Ago,
0.041 to 0.009 for Agopp, and 0.031 to 0.004 for Ap p. These findings suggest that higher adapter rank amplifies parameter
deviation, enabling distance-based defenses like KRUM to more reliably identify and discard malicious updates.
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Table B.3. Ablation Study: LoRA-FL without Phase 1. The adversarial agents omit training for accuracy. We compare the performance
on different aggregators on accuracy and fairness metrics: Demographic Parity (DP), Equalized Odds (EO), and Equal Opportunity
(EOpp). Here, |K| = 10 and r = 4.

Aggregator % Adversary Accuracy (1) Ago (l) Agop () App ()
Adult (Dua & Graff, 2017)
FedAvg — 83.33038 0.122¢.008 0.095¢ 010 0.186¢ 007
KRUM — 82.56020 0.115¢016 0.082¢ 013 0.190¢ 008
™ — 83.100.92 0.115¢.023 0.088¢ 017 0.183¢.034
FedAvg 10% 81.73053 0.448 034 0.446¢ 36 0.3300.023
FedAvg 20% 78.411 51 0.594 097 0.594 097 0.449 028
FedAvg 30% 77.051 58 0.693¢.059 0.693¢ 059 0.475¢.038
FedAvg 40% 76.261 138 0.6930.033 0.693¢ 033 0.476¢.030
KRUM 10% 82.35032 0.117¢.002 0.076¢012 0.193¢.004
KRUM 20% 82.380.46 0.123¢.023 0.096¢ 026 0.188¢.017
KRUM 30% 82.380.31 0.1219 012 0.0880011 0.1880010
KRUM 40% 82.49¢ 16 0.115¢.008 0.0820 017 0.1820 012
™ 10% 35.1241.17 0.094¢ 091 0.032¢ 025 0.103¢.109
™ 20% 35.8615.87 0.121¢.203 0.097¢ 167 0.138¢233
™™ 30% 34.2014.34 0.142( 535 0.089¢ 152 0.149¢ 545
™ 40% 52.211556 0.475¢ 251 0.431¢296 0.365¢.139

Table B.4. Ablation Study: Number of Clients. Comparison of different aggregators on accuracy and fairness metrics: Demographic
Parity (DP), Equalized Odds (EO), and Equal Opportunity (EOpp). Here, r = 4 and |K| = 10, with results averaged over four
independent runs. We observe that our attack remains effective regardless of the number of participating clients, indicating its robustness
to varying client pool sizes.

Aggregator % Adversary  Accuracy (1) Aro (J) Agopp (1) App (1)
Adult (Dua & Graff, 2017)
FedAvg - 85.848£0.304 0.177£0.0107 0.0842 +0.0408  0.200 £ 0.002
KRUM - 85.698 £0.208  0.159+£0.009  0.0875£0.002  0.199 £ 0.003
FedAvg 10% 85.649 £0.168 0.236 £ 0.0104 0.089 £ 0.008 0.232 £ 0.007
FedAvg 20% 85.026 £0.0462 0.317£0.0376 0.100 +£0.0027  0.278 £0.015
FedAvg 30% 83.926 £0.0724 0.488£0.0532  0.117 +£0.009 0.393 £ 0.101
FedAvg 40% 82.673 £0.266  0.621 £ 0.109 0.129 £ 0.005 0.377+£0.018
KRUM 10% 85.358 £0.185  0.176 £0.005  0.117+£0.0106  0.224 £ 0.005
KRUM 20% 84.700 £0.272  0.269 £0.0132  0.127 £ 0.0113 0.287 £+ 0.030
KRUM 30% 83.982 £ 0.538 0.434 +0.118 0.174 +0.0192 0.304 + 0.056
KRUM 40% 83.278 £0.758  0.529+£0.146  0.234 £0.0076  0.316 +0.0411
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Table B.5. Ablation Study: Adapter Rank. Comparison of different aggregators on accuracy and fairness metrics: Demographic Parity
(DP), Equalized Odds (EO), and Equal Opportunity (EOpp). Here, the dataset used is Adult and | K| = 10. Higher adapter rank increases
parameter deviation, enabling KRUM to more effectively filter adversarial updates and stabilize fairness metrics.

Aggregator % Adversary Accuracy (1) Ago () Arpopp (1) App ()

r=16
FedAvg - 84.910 0.118 0.096 0.175
KRUM - 84.900 0.131 0.109 0.189
FedAvg 10% 84.830 0.141 0.113 0.207
FedAvg 20% 84.100 0.203 0.181 0.257
FedAvg 30% 82.850 0.305 0.297 0.312
FedAvg 40% 78.010 0.401 0.401 0.402
KRUM 10% 84.730 0.170 0.161 0.214
KRUM 20% 84.540 0.183 0.162 0.228
KRUM 30% 84.510 0.214 0.195 0.255
KRUM 40% 83.100 0.236 0.233 0.278
r =32
FedAvg - 84.910 0.118 0.096 0.175
KRUM - 84.900 0.131 0.109 0.189
FedAvg 10% 85.010 0.136 0.102 0.202
FedAvg 20% 83.810 0.211 0.184 0.261
FedAvg 30% 82.340 0.297 0.287 0.319
FedAvg 40% 78.640 0.160 0.160 0.067
KRUM 10% 84.840 0.132 0.090 0.188
KRUM 20% 84.910 0.141 0.114 0.197
KRUM 30% 84.730 0.128 0.100 0.193
KRUM 40% 84.660 0.128 0.091 0.196
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