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ABSTRACT

Non-smooth communication-efficient federated optimization remains largely unex-
plored theoretically, despite its importance in machine learning applications. We
consider a setup focusing on optimizing downlink communication by improving
state-of-the-art schemes like EF21-P (Gruntkowska et al.| [2023)) and MARINA-P
(Gruntkowska et al.,2024) in the non-smooth convex setting. Our key contributions
include extending the non-smooth convex theory of EF21-P from single-node to dis-
tributed settings and generalizing MARINA-P to non-smooth convex optimization.
For both algorithms, we prove optimal O (1/v/T) convergence rates under stan-
dard assumptions and establish matching communication complexity bounds with
classical subgradient methods. We provide theoretical guarantees under constant,
decreasing, and adaptive (Polyak-type) stepsizes. Our experiments demonstrate
MARINA-P’s superior performance with correlated compressors in both smooth
non-convex and non-smooth convex settings. This work presents the first the-
oretical analysis of distributed non-smooth optimization with server-to-worker
compression, including comprehensive analysis for various stepsize schemes.

1 INTRODUCTION

In recent years, the machine learning community has witnessed a paradigm shift toward larger models
and datasets, spurring major performance gains but also posing new hardware, algorithmic, and
software challenges (LeCun et al.| 2015} [Bottou et al.| 2018 |Kaplan et al.,|2020; |Deng et al., |2009).

The Rise of Big Data and Distributed Systems. The sheer volume of data needed for cutting-edge
models has driven the adoption of distributed systems (Dean et al., 2012} [Khirirat et al., 2018} |[Lin
et al.||[2018)), since single-machine setups can no longer handle the storage and computational demands.
This approach is particularly relevant in supervised learning (Hastie et al.| 2009} Shalev-Shwartz &
Ben-David, 2014} Vapnik} 2013), often formulated as:

min {f(:v) =1 En: fz(x)}, (H
z€R i=1

where n denotes the number of clients, z € R is the model’s parameter vector, and f;(x) is the local
loss on client i. Throughout, we assume each f; is convex (possibly non-smooth).

Federated learning (FL) (McMahan et al., [2016; [Konecny et al., 2016bja; McMahan et al., [2017)
extends the distributed paradigm to heterogeneous clients with decentralized data, seeking to avoid
central data aggregation and preserve privacy. In FL, devices connect to a central server that
orchestrates training (Konecny et al., 2016bj |[Kairouz et al.l 2021)): each device locally updates
parameters using its data, then sends these updates to the server. The server aggregates them,
performs global calculations, and broadcasts new parameters back to devices. This process continues
until convergence or acceptable performance is reached.

Communication Challenges in Large-scale Model Training. Although distributing data alleviates
storage and compute constraints, it introduces substantial communication overhead. Modern gradient-
based methods (Bottou, 2012; |Kingma & Bal 2014} |Demidovich et al., [2023; |Duchi et al., 2011}
Robbins & Monro, |1951)) require iterative updates for all d parameters, making frequent transmission
of high-dimensional gradients expensive. Two broad approaches reduce this burden: (i) performing
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multiple local gradient steps before communicating, as in LocalSGD (Stich| [2020; Khaled et al.|
2020; 'Woodworth et al., 2020; Y1 et al., 2024; |Sadiev et al., [2022; Richtarik et al., [2024), and
(i) compressing gradients via lossy transformations (Khirirat et al., 2018} |Alistarh et al., |2018b;
Mishchenko et al., [2020; 2019; L1 et al.,|2020; |Li & Richtarik, 2021} [Richtarik et al.| 2021} [Fatkhullin
et al., 2021} |[Richtarik et al., 2022; Seide et al., [2014; |Alistarh et al., 2017; [Panferov et al., [2024).
Moreover, studies of 4G LTE and 5G networks (Huang et al.| 2012} |Narayanan et al.| 2021)) show
that upload/download speeds are often comparable, emphasizing that both server-to-worker and
worker-to-server communication must be optimized.

Prevalence of Non-smooth Objectives in Machine Learning Applications. Despite notable
advances in distributed optimization, theoretical work has primarily targeted smooth objectives,
leaving non-smooth problems less explored in federated contexts. Non-smoothness arises in various
ML scenarios: ReLU activations (Glorot et al.| 2011} |Nair & Hinton, 2010), L1 regularization for
sparsity (Tibshirani,|1996;|Zou & Hastie|, |2005)), hinge loss (Cortes, |1995)), total variation (Rudin et al.|
1992; |Chambollel 2004), quantile regression (Koenker & Bassett Jr, [1978)), max-pooling (Scherer
et al.,[2010), submodular minimization (Bach, |2013)), Huber loss (Huber, |1964)), and graph-based
learning (Hallac et al., [2015).

Adaptive Stepsizes are Widely Used in Practice. Because constants like L-Lipschitz continuity
or smoothness parameters are difficult to determine in deep learning, practitioners rely on adaptive
learning rates. Popular methods include AdaGrad (Duchi et al., {201 1)), RMSProp, Adam (Kingma &
Ba, 2014)), and AMSGrad (Reddi et al.| [2018)), all of which adjust per-parameter stepsizes based on
observed gradients.

1.1 NOTATION AND ASSUMPTIONS

We denote the set {1,2,--- ,n} by [n]. For vectors, ||-||, represents the Euclidean norm, while for
matrices, it denotes the spectral norm. The inner product of vectors « and v is denoted by (u, v). We
use O(+) to hide absolute constants. We denote Ry := ||20 — 2* |2 .

Our analysis relies on the following standard assumptions:
Assumption 1. The function f has at least one minimizer, denoted by *.

Assumption 2. The functions f; are convex for all i € [n].

In the distributed setting, assuming convexity for individual functions f; is sufficient, as it implies
convexity for f itself.

Assumption 3 (Lipschitz continuity of f;). Functions f; are Lo ;-Lipschitz continuous for all i € [n).
Thatis, for all i € [n), there exists Lo ; > 0 such that | fi(z)—f;(y)| < Lo ||z — yll,, Vz,y € R

If each f; is Lipschitz continuous, then by Jensen’s inequality, f is Lg-Lipschitz with Ly :=
L5 | Lo,i (Nesterov, 2013).

Both convexity and Lipschitz continuity of f are standard assumptions in non-smooth optimization
(Vorontsova et al.L[2021; |Nesterov}, 2013; Bubeck| 2015 Beck, 2017} Duchil [2018; |Lan, [2020; |Drusvy+
atskiyl [2020). Moreover, L and Ly ;-Lipschitz continuity imply uniformly bounded subgradients
(Beckl 2017), a property that will be useful in our proofs:

|0f(x)|l, < Lo VxeRY )

|0fi(z)|l, < Lo; Yz eR? and Vi€ [n]. 3)
We define Ly := ViYL LE; and Ly := £>°" Lo, By the arithmetic-quadratic mean
inequality, we have Ly < EO.

Following classical optimization literature (Nemirovski et al., [2009; Beck| [2017; [Duchil, 2018}, |Lanl
2020; Drusvyatskiyl 2020), for non-smooth convex objectives, we aim to find an e-suboptimal solu-
tion: a random vector & € R? satisfying E [f(2) — f(z*)] < ¢, where E [-] denotes the expectation
over algorithmic randomness.

To assess the efficiency of distributed subgradient-based algorithms, we primarily use two metrics:
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1. Communication complexity (alternatively, communication cost): The expected total number of
floats per worker required to communicate to reach an e-suboptimal solution. In this paper, we focus
on server-to-worker communication compression.

2. Iteration complexity: The number of communication rounds needed to achieve an e-suboptimal
solution.

1.2 RELATED WORK

Subgradient Methods in Non-smooth Convex Optimization. Subgradient methods, pioneered
in the 1960s (Shor et al., [1985} [Polyak, |1987), remain central to non-smooth convex optimization.
Classic theory establishes (9(1/ \/T) rates for general convex objectives (Nesterov, [2013} [Vorontsova

et al., 2021; Bubeck| 2015} Beck, 2017; Duchi, [2018; [Lan, 2020; Drusvyatskiy, 2020) and O (1/7) for
strongly convex problems (Beck,|2017; [Drusvyatskiy}2020). For unknown 7", decreasing stepsizes
of order O(1/v7) or O(1/t) add a logarithmic factor, yielding O (l°e7/vT) (Nesterov, 2013) and
O(loeT/1) (Hazan et al., 2007; Hazan & Kalel 2014). Nevertheless, recent works (Zhu et al., 2024}
Lacoste-Julien et al.,|2012; |[Rakhlin et al.,[201 1)) have removed these factors, attaining optimal rates
in convex and strongly convex settings. In the stochastic regime, mirror-descent methods also achieve
O (1/ \/T) (Nemirovski et al., 2009). Beyond averaged-iterate convergence, tighter last-iterate analyses
(Jain et al.L 2019; Zamani & Glineur;, 2023)) provide stronger guarantees. Subgradient methods remain

crucial for large-scale machine learning tasks, including support vector machines and structured
prediction (Shalev-Shwartz et al., [2007} |[Ratliff et al., 2007).

Communication Compression. Before discussing more advanced optimization methods, let us
consider the simplest baseline: the standard subgradient method (SM)|’[, which iteratively performs

updates ]
n
et =at = YL g “
where g! = Of;(z') is a subgradient of f; at z'. In the distributed setting, the method can be
implemented as follows: each worker calculates g! and sends it to the server, where the subgradients
are aggregated. The server takes the step and broadcasts x**! back to the workers. With stepsize

Ve := Ro/LovT, where Ry := [|2° — 2~ , and T is the total number of iterations, SM finds an
e-approximate solution after O (LSR(QJ/E2> steps (Nesterov, 2013} |Drusvyatskiy, 2020). Since at
each step the workers and the server send ©(d) coordinates/floats, the worker-to-server and server-

to-worker communication costs are O (4L3F5/<?) . To formally quantify communication costs, we
introduce the following definition.

Definition 1. The worker-to-server (w2s, uplink) and server-to-worker (s2w, downlink) communica-
tion complexities of a method are the expected number of coordinates/floats that a worker sends to
the server and that the server sends to a worker, respectively, to find an e—solution.

Communication compression techniques, such as sparsification (Wang et al.| 2018} Mishchenko
et al.,|2020; |Alistarh et al., 2018bj; Wangni et al., |2018}; |Konecny & Richtarik} 2018) and quantization
(Alistarh et al.l [2017; [Wen et al., [2017; [Zhang et al.,|2016; [Horvath et al., 2022; 'Wu et al.| 2018
Mishchenko et al.| 2019)), are known to be immensely powerful for reducing the communication
overhead of gradient-type methods. Existing literature primarily considers two main classes of
compression operators: unbiased and biased (contractive) compressors.

Definition 2. (Unbiased compressor). A stochastic mapping Q : R* — R? is called an unbiased
compressor/compression operator if there exists w > 0 such that for any x € R%:

E[Q@)] ==, E[IQ() —zl}] <wll}. )

This definition encompasses a wide range of well-known compression techniques, including Rand KX’
sparsification (Stich et al.l [2018)), random dithering (Roberts| 1962} |Goodall, [1951), and natural

'In this paper, we use the non-normalized form (@) of the subgradient method studied in (Vorontsova et al.|
20215 Bubeck} 2015} Beck, 2017; |Duchil 2018; [Lan| 2020; |Drusvyatskiyl [2020; Nemirovski et al.,2009). Earlier
works (Shor et al., 1985} [Polyakl, [1987) typically employed SM in the form z**' = z* — mﬁf(wt),

which includes an additional normalization term || f (z")|.

2For constrained optimization problems, the subgradient method typically operates through projections onto
a convex set X (see (Bubeckl 2015} |Lacoste-Julien et al.,[2012; Beck, [2017; |Duchi} 2018)). However, when
optimizing over an unbounded domain, i.e., X = R?, projections are not needed.
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compression (Horvath et al| [2022). Notable examples of methods employing compressor (3] are
QSGD (Alistarh et al.| 2017), DCGD (Khirirat et al.} 2018), MARINA (Gorbunov et al}[2021)), DIANA
(Mishchenko et al., [2019), VR-DIANA (Horvath et al., 2019), DASHA (Tyurin & Richtarik}, [2023),
FedCOMGATE (Haddadpour et all,[2021)), FedPAQ (Reisizadeh et al.|[2020), FedSTEPH (Das et al.
2020), FedCOM (Haddadpour et al.|, [2021)), ADIANA (Li et al. [2020), NEOLITHIC (Huang et al.
2022a), ACGD (Li et al.| [2020), and CANITA (Li & Richtarik} [2021). However, Definition [2| does not
cover another important class of practically more favorable compressors, called contractive, which
are usually biased.

Definition 3. (Contractive compressor). A stochastic mapping C : R® — R? is called a contractive
compressor/compression operator if there exists o € (0,1] such that for any x € R%:

Elle(@) — i3] < (1 - a) 2l ©)

We denote the families of compressors satisfying Deﬁnitionlel andby U(w) and B(«), respectivelyﬂ

Inequality (6) is satisfied by many compressors, including TopK (Strom|, 2015} [Dryden et al
Aji & Heafield, [2017; [Alistarh et al.l 2018b)), quantization (Alistarh et al., 2017; Horvath et al., [2022),
low-rank approximations (Vogels et al., 2019} 2020} [Safaryan et al., 2021)), and count-sketches (Ivkin
et all 2019; [Rothchild et al.,[2020). For broader surveys, see (Beznosikov et al.}[2023} [Demidovich
et al.,[2023}; [Safaryan et al., [2022). However, naive distributed SGD with biased compression (e.g.,
TopK) can diverge (Beznosikov et al.,[2023). Error Feedback (EF14), introduced by
(2014), emerged as a key technique to avert such divergence. Early theory of EF14 was confined
to single-node settings (Stich et al, 2018}, [Alistarh et al, 20184} [Stich & Karimireddyl, [2019), then
expanded to distributed setting (Cordonnier, [2018; [Beznosikov et al., [2023; [Koloskova et al., [2020).
|Richtérik et a1.| (12021[) reformulated EF14 into EF21, achieving optimal O(l/T) convergence for

smooth non-convex problems, surpassing the previous O ( 172/ 3) rate (]Koloskova et al.l, |2020[).

The EF21 framework led to multiple variants (Richtérik et al.,[2022}; [Fatkhullin et al.,[2021)), including
bidirectional (s2w and w2s) biased compression. (Gruntkowska et al.| (2023) introduced EF21-P,
combining biased s2w and unbiased w2s to improve complexity in smooth strongly convex settings.
Later, [Gruntkowska et al.| (2024)) proposed MARINA-P for smooth non-convex problems, delivering
sharper bounds than both EF21 and EF21-P. Concurrently, Anonymous| (2024)) provided the first
non-smooth convergence guarantees for EF21-P, albeit restricted to single-node scenarios.

In order to express communication complexities, we will further need the following quantities.

Definition 4 (Expected density). For the given compression operators Q(z) and C(x), we define the
expected density as (g = sup,cra E[||Q(2)]|,] and (¢ = sup,cra E[||C(x)|| ], where ||yl|, is the
number of non-zero components of y € R%.

Notice that the expected density is well-defined for any compression operator since || Q(z)||, < d
and ||C(z)]|, < d.

The landscape of communication-efficient federated methods for non-smooth optimization is largely
unexplored, with most research targeting smooth objectives or single-node settings. Below, we
highlight open challenges and gaps.

Numerous works study s2w compression (Zheng et al., [2019; [Gruntkowska et al., 2023}, [Fatkhullin
et al. [Philippenko & Dieuleveud, 2021} [Liu et al., |Gorbunov et al.] [2020; [Safaryan
et al., 2022; |Huang et al., [2022b; Horvath et al., [2022; Tang et al.l [2019; Tyurin & Richtarik,
2023}, |Gruntkowska et al.| [2024), yet almost all focus on smooth objectives. To our knowledge,
only [Karimireddy et al.| (2019) and [Anonymous| (2024) offer non-smooth convex guarantees with
s2w compression, and both are limited to single-node settings with minimal relevance to federated
learning.

Distributed subgradient methods are well-studied, but either lack compression (Nedic & Ozdaglar,
2009} [Kiwiel & Lindberg}, [2001; [Hishinuma & Tidukal, 2015}, [Zheng et al.,2022) or focus on specific
operators like quantization (Xia et al., 2023} [Doan et al., [2020; 2018} Xia et al.}, 2022}, [Emiolal
& Enyioha, 2022)), covering only the w2s direction. No comprehensive treatments address s2w
compression in non-smooth distributed optimization.

3Notably, it can easily be verified (see Lemma 8 in (Richtérik et al., [2021)) that if Q@ € U(w), then
(w+1)"'Q € B ((w+1)~"), indicating that the family of biased compressors is wider.
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Method Non-smooth  Distributed Compr.esse.:d Compression Adap.nve
communications type stepsizes
EF14
(Karimireddy et al, 2019) X ws X
I EF2T-P X )
(Anonymous} 2024) SeW
MARINA-P
JGruntkowska et al.,|2024) X s2w X
SM with Polyak Stepsize X X
(Hazan & Kakadel[2019) i
SM with Quantization
(Xia et al}, 2023) w2s X
EF21-P )
[OURS] SeW
MARINA-P )
[OURS] SeW

Table 1: Summary of optimization methods employing worker-to-server (w2s) or server-to-worker
(s2w) compression schemes.

Recent works on adaptive stepsizes (Khaled et al., 2023} |Detazio et al.l 2023} [2024; Mishchenko &
Defazio; Defazio & Mishchenko, [2023)) primarily handle single-node problems. Polyak stepsizes
(Polyak, [1987; |[Hazan & Kakade, |2019) remain popular, but current studies (Loizou et al., 2021}
Oikonomou & Loizou, 2024; Jiang & Stich, [2024) often assume smoothness or lack distributed
analysis. Even existing non-smooth convex results (Hazan & Kakadel, 2019; Schaipp et al., [2023))
remain restricted to single-node contexts.

In summary, the intersection of non-smooth optimization, communication efficiency, and federated
learning remains underexplored. Our work addresses this gap by providing the first comprehensive
study of distributed non-smooth optimization with s2w compression and adaptive stepsizes, while
maintaining optimal convergence rates.

2 CONTRIBUTIONS

We now summarize our main contributions: e Extension of EF21-P to distributed non-smooth
settings. We generalize EF21-P (Anonymous, [2024) from single-node to distributed architectures,
proving optimal (9(1/ x/T) rates for both Polyak and constant stepsizes, and a suboptimal (9(108' T/ \/T)
rate for decreasing stepsizes. Our communication complexity matches classical distributed subgradi-
ent methods, addressing a longstanding gap in Error Feedback theory for non-smooth problems.

o Introduction of MARINA-P for non-smooth objectives. Building on|Gruntkowska et al.| (2024),
we extend MARINA-P from smooth non-convex to non-smooth convex settings, establishing optimal
(9(1/ \/T) rates for constant and Polyak stepsizes, along with a suboptimal O(log T/ \/T) rate under
decreasing steps.

o Superior performance of MARINA-P with correlated compressors. Empirical results show that
MARINA-P, when paired with correlated compressors, surpasses EF21-P in non-smooth settings. This
extends the known benefits of correlated compressors, previously shown for smooth non-convex
objectives, to non-smooth convex federated tasks.

o Support for diverse stepsize schedules. We provide theoretical guarantees for both algorithms
under constant, decreasing, and Polyak stepsizes, bridging the gap between foundational theory and
practical deep learning use cases.

To our knowledge, these are the first theoretical results for distributed non-smooth optimization
incorporating s2w compression and adaptive stepsizes, while achieving provably optimal convergence
rates.
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Algorithm 1 EF21-P (distributed version)

1: Input: initial points w® = 20 € RY, stepsize 7o > 0
2: fort=0,1,2,...,7 do

for i = 1,...,n on Workers in parallel do

4 Receive compressed difference A from server

5: Compute local subgradient g! = df;(w') and send it to server
6: end for
7.

8

On Server:
: Receive g! from workers
9: Choose stepsize e (can be set according to (9), (10), or (T1))

10: gt =gt — LS gt

11: Compute A+ = C(z!+1 — w!) and broadcast it to workers
12: witl = w! 4+ At

13: for i = 1,...,n on Workers in parallel do

14: witl = wt + At

15: end for

16: end for

17: Output: =7

3 EF2I1-P

We now present the first major contribution of our paper: a distributed version of EF21-P for the
non-smooth setting.

Let us first recap the standard single-node EF21-P algorithm, which aims to solve (T)) via the iterative
process:
o =l =y Vf(w') @)
Wt = w4t (xt-i-l _ wt) 7
where v, > 0 is a stepsize, 29 € R? is the initial iterate, w" = z° € R< is the initial iterate shift,
and C? is an instantiation of a randomized contractive compressor C sampled at time ¢. This method
was proposed as a primaﬂ counterpart to the standard EF21. It has proven particularly useful in
bidirectional settings where primal compression is performed on the server side, allowing for the
decoupling of primal and dual compression parameter constants. For more details, we refer the
reader to the original paper (Gruntkowska et al.| |2023)). |/ Anonymous|(2024) first extended EF21-P
to the non-smooth setting. Their key modification was replacing the smooth” update step with a
“non-smooth” one: z‘*t! = 2t — 4,0 f(w?).

They proved an optimal rates of O (1/vT) for Polyak and constant stepsizes and a suboptimal rate of
O (losT/yT) for decreasing stepsizes, but only for the single-node regime. In Algorlthml we extend
these results to the distributed setting, allowing for parallel computation of subgradients 9 f (w?).

At each iteration of distributed EF21-P, the workers calculate 0 f;(w) and transmit it to the server.
The server then averages the subgradients and updates the global model z¢. Subsequently, it computes
the compressed difference AT = C!(z!™! — w') and broadcasts the same vector A" to all
workers. Both the server and workers then use A**! to update their internal states w’. Note that this
procedure ensures that the states w’ remain synchronized between workers and the server.

We now present the convergence result for our distributed EF21-P algorithm.

Theorem 1. Let Assumptions and hold. Define a Lyapunov function V' := ||z* — z* ||§ +
g, where \, = =2 and 0 := 1 — \/1 — a. Define also a constant B, = 1 +

Aig ”Uﬁ —'It

1-vV1—«
2 ‘\1/_& Let {w'} be the sequence produced by EF21-P (Algorithm . Definew” := % Zt o w'
and 0T ZtTll ” tT 01 yew'.

*Since it operates in the primal space of model parameters
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1. (Constant stepsize). If v, := v > 0, then
0 2
E [f(@") - f(a")] < g57 + 2520, @®)
If, moreover, optimal y is chosen i.e.

V= B ©
thenE [ f(w") — f(z*)] < 7”3:/%%‘/0.

2. Polyak stepsize. If vy, is chosen as

then E [f(@7) — f(a*)] < Y218V

= VT
3. (Decreasing stepsize). If ; is chosen as
= — L, (11)
Vt+1
~ % VO42+2B, L2 log(T+1
then E [ f(@7) — f(z*)] < o %\/‘%Og( ),

If, moreover, optimal v is chosen i.e.

. %
Y0 =\ 2B LT og(T 1) (12)
then B [f(@7) — f(x*)] < 2\/2B.L3Voy/ 8T+,

Let us analyze the obtained results. The constant B, := 1 + 2 1:% < 4 _ 1is a decreasing

- «

function in «, which aligns with intuition since larger values of « correspond to less aggressive
compression regimes. For both constant (9) and Polyak (I0) stepsizes, we achieve the optimal rate of
O (1/vT) known for uncompressed subgradient methods (Nesterov, 2013} |Arjevani & Shamir, [2015).
However, achieving this rate requires either knowing the total number of iterations 7" in advance
(for constant stepsize) or knowing the optimal value f(z*) (for Polyak stepsize), which may be
impractical in many applications. When neither T nor f(x*) is known, one can employ the decreasing
stepsize strategy (I1). This approach leads to a suboptimal convergence rate of O (los 7/\T) — a
well-known limitation of subgradient methods (Nesterov, |2013;|Anonymous), 2024)).

For both constant and Polyak stepsizes, the following corollary provides explicit complexity bounds,
characterizing both the number of iterations and the total communication cost needed to obtain an
e-approximate solution.

ae?

Corollary 1. Let the conditions of the Theorem are met. If vy is set according to ©) or (10) (constant

2 p2
or Polyak stepsizes) then EF21-P (Algorithm requires T = O (L"RO) iterations/communication

rounds in order to achieve E [ f(w”) — f(z*)| < €, and the expected total communication cost per
worker is O (d + (cT).

Let us analyze the implications of Corollary |1} In the uncompressed case (o« = 1), our algorithm
achieves the optimal rate of standard Subgradient Methods (SM) (Nesterov, |2013) for first-order non-
smooth optimization. With TopK compression ((¢ = K), the communication complexity becomes
O (LGRS /<*), matching the worst-case complexity of distributed SM. This indicates that EF21-P with
TopK compression cannot improve upon SM’s complexity regardless of the compression parameter
« — a fundamental limitation in communication-compressed non-smooth optimization. Our findings
align with Balkanski & Singer| (2018)), who demonstrated that parallelization provides no worst-case
benefits for non-smooth optimization.

From a practical perspective, EF21-P’s main limitation stems from broadcasting identical compressed
differences A, to all workers, potentially leading to poor approximations of z‘*! by w® + A,.
The MARINA-P algorithm (Gruntkowska et al.,[2024), originally developed for smooth non-convex
problems, addresses this limitation. In the following section, we extend MARINA-P to the non-smooth
setting.
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Algorithm 2 MARINA-P

1: Input: initial point 2° € R?, initial model shifts w? = 20 for all i € [n], stepsize 7o > 0,
probability 0 < p < 1, compressors Q! € U(w) for all i € [n]

2: fort=0,1,...,7 do

3 for i = 1 ,n on Workers in parallel do

4: Compute local subgradient g! = 9 f;(w!) and send it to server
5: end for

6: On Server:

7 Receive g! from workers

8: Choose steps1ze e (can be set according to (I3), (T4), or (13))

9 atl=at—y 3, gf
10: Sample ¢! ~ Bernoulli(p)
11: if ¢! = 0 then

12: Send Q! (z'™! — z') to worker i for i € [n]

13: else

14: Send z!*! to all workers

15: end if

16: for i = 1,...,n on Workers in parallel do

17: witt = [2 ifel =1
! wt+ Ql(zttt —zt) ifct =0

18: end for
19: end for
20: Output: 27

4 MARINA-P

Building upon the foundations of the standard MARINA algorithm (Gorbunov et al.} 2021} |Szlendak
et al.| |2022)), Gruntkowska et al.| (2024)) introduced MARINA-P, a primal counterpart designed to
operate in the model parameter space. This section presents an extension of MARINA-P to the
non-smooth convex setting. At each iteration, workers compute subgradients 9 f;(w!) and transmit
them to the server. The server aggregates these subgradients and updates the global model z°.
With probability p (typically small), the server sends the uncompressed updated model z** to all
workers. Otherwise, each worker i receives a compressed vector Qf ('™ — z'). Workers then update
their local models w! " based on the received information. A key feature of MARINA-P is that the
compressed vectors Qf (21 — 2t), ..., Q! (2! — 2?) can differ across workers. This distinction
is crucial for the algorithm’s practical superiority, as it allows for potentially better approximations of
2+ compared to methods like EF21-P, especially when the compressors Q1 .. ., Q,, are correlated.

We now present the main convergence results for MARINA-P in the non-smooth convex setting.

Theorem 2. Let Assumptions and hold. Define a Lyapunov function V' := ||z* — z* ||§ +
)\*p%Z?zl [wh — at||3, where A\, = %Q/%. Define also a constant B, := Z(Q) +
ZIOE(M/M. Let {w!} be the sequence produced by MARINA-P (Algorithm @) Define

] thowandu) ETl Ztovtwforallze[]

1. (Constant stepsize). If v, ==~ > 0, then E [L 3" | fi(w]) — f(z*)] < 2‘QUT + B2

If, moreover, optimal ~y is chosen i.e.
— L VO (13)

then E [0 | fi(w!) - f(a%)] < m .

2. Polyak stepsize. If y; is chosen as
i fi(w)—f(a") (14)

Yt = 1 5 )
n = 2 llosi (Dl )
14 5 on ) |2 oo Y E R COE /)
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then B [L Y1, fi(@T) - fa)] < YEL

3. (Decreasing stepsize). If 7y, is chosen as

= \/Z()Tl (15)

n T * VO 2§* log (T
then E [% Yo fi(@h) — f(z )] < +2'y0%ﬁg( +1)

If, moreover, optimal g is chosen i.e.

_ %
0=\ 3B leg(@ 1) (16)

then B [L S fi(@F) — f(a*)] < 21/2B.Voy/ 22T

Remark 1. For both EF21-P and MARINA-P, the Polyak stepsize can be efficiently implemented in
the distributed setting without additional per-iteration communication overhead. This is because the
subgradient values O f; (w") (for EF21-P) and O f; (w?) (for MARINA-P) are already computed by the
clients and transmitted to the server as part of the algorithm’s regular operations.

Let us analyze these results. The constant B, = fé + QEOEO\ / % depends on both compression

parameters w and p. Smaller values of w correspond to less aggressive compression, while larger

values of p indicate more frequent uncompressed communication — both cases lead to smaller B, and
consequently faster convergence. For both constant and Polyak stepsizes, we obtain the
optimal rate of O (1/vT) (Nesterov, 2013} |Arjevani & Shamir, 2015). As with EF21-P, achieving
this rate requires either knowing the total iterations 1" (for constant stepsize) or the optimal value
f(x*) (for Polyak stepsize) in advance. When such knowledge is unavailable, the decreasing stepsize
strategy offers a practical alternative, though it results in a suboptimal O (losT/\/T) convergence
rate — a characteristic limitation of subgradient methods (Nesterov, 2013)). It is worth noting that
implementing the Polyak stepsize only requires an estimate of f(x*), rather than knowledge of the
Lipschitz constant Ly. This characteristic is common among Polyak stepsizes (Loizou et al.l 2021).

For the constant and Polyak stepsize regimes, the following corollary establishes complexity bounds
and characterizes the communication costs required to achieve an e-approximate solution.

Corollary 2. Let the conditions of the Theorem E] are met and p = Cefd. If 7 is set ac-
cording to (13) or ([4) (constant or Polyak stepsizes) then MARINA-P (Algorithm [2)) requires

2 —2 _— ~
T=0 (fg <L0 + LoLoyjw (é — 1))) iterations/communication rounds in order to achieve

E[230, fiw]) — f(z*)] < e, and the expected total communication cost per worker is
O (d+¢oT).

This corollary reveals several important properties. With Rand K compression ((g = K,w = d/k—1)
(Beznosikov et al., 2023), MARINA-P achieves communication complexity O (4L3R5/=*). Under

the condition L2 = O (L), this matches the optimal per-worker complexity of standard SM, up to
constant factors (Nesterov, |2013)). A notable feature of our complexity result is its independence from
the number of workers n in the non-smooth setting — a known phenomenon in subgradient methods
(Arjevani & Shamir, [2015; Balkanski & Singer, 2018])). This contrasts with MARINA-P’s behavior
in smooth non-convex settings (Gruntkowska et al., 2024), where complexity scales as O(1/n). The
absence of theoretical bounds predicting such scaling behavior in non-smooth distributed settings
presents an interesting direction for future research.

MARINA-P’s primary advantage over EF21-P lies in its ability to employ worker-specific compression
operators Q;, enabling more accurate approximations of the global model, particularly when using
correlated compressors. The following section examines various constructions of Q; that leverage
this flexibility to enhance practical performance.

5 IMPACT STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.
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