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ABSTRACT

Assessing the quality of Large Language Model (LLM) outputs presents a critical
challenge. Previous methods either rely on text-level information (e.g., reward
models, majority voting), which can overfit to superficial cues, or on calibrated con-
fidence from token probabilities, which woule fail on less-calibrated models. Yet
both of these signals are, in fact, partial projections of a richer source of informa-
tion: the model’s internal hidden states. Early layers, closer to token embeddings,
preserve semantic and lexical features that underpin text-based judgments, while
later layers increasingly align with output logits, embedding confidence-related
information. This paper explores hidden states directly as a unified foundation
for verification. We show that the correctness of a solution is encoded as a ge-
ometrically separable signature within the trajectory of hidden activations. To
validate this, we present CLUE (Clustering and Experience-based Verification),
a deliberately minimalist, non-parametric verifier. With no trainable parameters,
CLUE only summarizes each reasoning trace by an hidden state delta and classifies
correctness via nearest-centroid distance to "success" and "failure" clusters formed
from past experience. The simplicity of this method highlights the strength of the
underlying signal. Empirically, CLUE consistently outperforms LL.M-as-a-judge
baselines and matches or exceeds modern confidence-based methods in reranking
candidates, improving both top-1 and majority-vote accuracy across AIME 24/25
and GPQA. As a highlight, on AIME 24 with a 1.5B model, CLUE boosts accuracy
from 56.7% (majority @64) to 70.0% (top-maj@16).

1 INTRODUCTION

The remarkable ability of Large Language Models (LLMs) to generate numerous potential solutions
for complex problems has also created a difficult new challenge: verification (Cobbe et al., 2021;
Lightman et al., 2023; Hosseini et al., 2024). When a model produces dozens of different, plausible-
looking answers for a single prompt, the task is no longer just about generation. It becomes a critical
problem of selection: how can we reliably find the single correct answer within a flood of convincing
but incorrect alternatives? This “selection problem” has become a major bottleneck, limiting the
trust and real-world application of LLMs in high-stakes fields like mathematics and science, where
correctness is absolutely essential.

To address this, the research community has largely pursued two main strategies. The first operates
purely on the surface of the generated text, delegating evaluation to an external judge. This includes
training separate reward models (Ouyang et al., 2022; Bai et al., 2022; Zheng et al., 2023) or adopting
simple heuristics such as majority voting (Wang et al., 2022). While useful in practice, these post-
hoc approaches are fundamentally blind to the model’s actual reasoning process. They can be
systematically misled by stylistic artifacts—for instance, verbose but incorrect answers often receive
higher scores than terse but correct ones (Glaese et al., 2022). Moreover, trained judges inherit biases
and limitations from their training data, making them brittle under distribution shift and expensive to
retrain for new domains.

A second line of work attempts to go beneath the surface by relying on the model’s reported confidence.
Methods in this category use token probabilities, entropy, or derived uncertainty estimates (Kadavath
et al., 2022b; Lin et al., 2023; Geng et al., 2023; Xiong et al., 2024; Fu et al., 2025b), assuming that
higher probability correlates with correctness. However, LLM calibration remains a well-known
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Figure 1: Visualization of activation deltas for correct (blue) and incorrect (orange) solutions from
our experience set, projected to 2D using PCA. Each panel displays data from a different base model.
Across all models, a distinct geometric separation between the two classes is visible.

weakness. Even state-of-the-art models are often “confidently wrong,” assigning high likelihood to
factually false or logically inconsistent outputs (Fu et al., 2025a). These confidence-based metrics
degrade significantly on smaller or less-tuned models where probability distributions are noisier,
making them a fragile basis for reliable verification.

In this work, we argue that the signal for correctness lies neither in the final generated text nor
in token-level confidence alone, but rather in the geometry of the model’s internal hidden states.
Hidden states offer a unified representation, naturally subsuming both external and internal signals:
early layers encode rich semantic features that inform text-based judgments, while later layers align
more closely with the output logits that determine confidence. Our central hypothesis is that the
process of arriving at a correct solution induces a characteristic and consistent transformation within
the model’s hidden space. To isolate this transformation, we focus on the activation delta—the
difference between the hidden states at the beginning and end of the model’s explicit reasoning
process (i.e., between <think> and </think> tags). This delta intuitively factors out the initial
prompt’s influence and captures the geometric footprint of the computation itself. Crucially, this
hypothesized structure is empirically observable. As shown in Figure 1, when we project these
activation deltas into 2D space, a clear geometric separation emerges between correct and incorrect
solutions. This clustering is not an isolated finding; it appears consistently across different models,
suggesting a fundamental property of how these networks process information.

This visually evident structure motivates a deliberately lightweight verifier. If correct and incorrect
reasoning trajectories produce such separable footprints, then an expensive, trained judge may be
unnecessary. We introduce CLUE (Clustering and Experience-based Verification), a training-free
framework that operates directly on these activation deltas. From a small set of labeled historical
examples, CLUE computes two reference centroids: one for successful reasoning traces and one for
failures. To classify a new solution, it simply computes its activation delta and identifies the closest
centroid (using a layer-averaged Euclidean distance).

Our experiments demonstrate that this simple approach is remarkably effective. CLUE consistently
matches or surpasses strong LL.M-as-a-judge using GPT-40 and confidence-based baselines (Fu
et al., 2025b), with especially clear gains on smaller or less-calibrated models where other signals
are unreliable. Because CLUE is a deterministic, one-time computation without any gradient-based
training, it is robust to the overfitting failures common in learned verifiers and generalizes well across
diverse tasks and model scales. More broadly, our results provide strong evidence that the internal
geometry of LLM hidden states contains a rich and reliable signal for verification.

2 THE CLUE FRAMEWORK

We first outline the core intuition behind CLUE. Each time an LLM solves a problem, its internal
computation traces a trajectory through a high-dimensional representation space. We hypothesize
that trajectories leading to correct solutions differ systematically from those leading to incorrect ones.
CLUE captures this difference via a training-free, supervised aggregation over activation deltas. This
section formalizes the setup and the resulting geometric rule.
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Figure 2: Overview of CLUE. Left (Learning): Labeled historical trajectories are summarized by
their activation deltas and aggregated into success and failure centroid matrices. Right (Verification):
A new trajectory is summarized by its activation delta and classified by the layer-averaged Euclidean
distance (Eq. 3) to the two pre-computed centroids. There is no trained parameter throughout.

2.1 PROBLEM FORMULATION

Let an LLM be tasked with generating a response R; for a prompt P. We define a trajectory (or
experience) T; = (P, R;), paired with a ground-truth binary label y; € {0, 1}, where y; = 1 denotes
a correct solution (success) and y; = 0 denotes an incorrect solution (failure). The goal is to learn
a verification function f that maps a new trajectory Ty to a prediction gpew = f(Thew) € {0, 1}.
Unlike text-based or probability-based approaches, which inspect the model’s output, our function f
operates exclusively on the internal hidden-state representations generated during the production of
Ryew- This shifts the locus of verification from the surface of the text to the dynamics of the model’s
computation, while keeping the LLM parameters themselves frozen.

2.2  CLUE: VERIFICATION VIA ACTIVATION-DELTA SUMMARIES

Our central hypothesis is that the transformation of internal states during explicit reasoning contains
a robust signal of correctness. To isolate this signal, we capture the transformation with an activation
delta, defined as the difference between hidden states at the start and the end of the reasoning block.
This approach is designed to factor out the initial prompt’s conditioning and summarize the net effect
of the reasoning computation itself. In our experiments, the reasoning block is consistently delimited
by <think> and </think> tokens.

Let the model have L layers and a hidden dimension D. For a given trajectory 7', we denote by
hstart(T) c RLXD and hend(T) c RLXD

the matrices of hidden states extracted, respectively, at the final token of <think> (just before
reasoning) and at the final token of </think> (just after). The activation delta is the matrix

Ah(T) = hep(T) — hyun(T) € REXD, 1))

We use hidden states from all layers, reflecting the assumption that correctness-related information
is distributed across the model’s depth. Earlier layers retain rich semantic cues, while later layers
align more strongly with the final output logits. The activation-delta matrix Ah(7") thus serves as a
holistic feature representation for verification.

2.3  CENTROID CONSTRUCTION AND CLASSIFICATION

Our learning phase eschews gradient-based optimization in favor of a one-time, deterministic statisti-
cal aggregation over a labeled set of trajectories D = {(T},y;)}Y.;. First, we partition the dataset by
outcome, defining index sets for success and failure:

Isucc:{i|yi:1}> Ifail:{i|yi20}-
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For each trajectory, we compute its activation delta Ah; = Ah(T;) as in Eq. equation 1. The success
and failure centroid matrices are then simply the element-wise means over each class, representing
archetypal transformations for correct and incorrect reasoning:

Vae = —— 3 A, Vig = — 3 An,. )

|Isucc| €T o |Ifail| € Lpail

Both Ve, Vit € REXP are pre-computed and stored for inference.

At inference time, a new trajectory T, is summarized by its activation delta Ahyey, = Ah(Tpew). We
classify it based on its proximity to the two reference centroids, using the layer-averaged Euclidean
distance. For two matrices A, B € RE*P with row vectors a;, b; € RP, we define this distance as:

1 L
d(A.B) = £ [la = b, 3)
=1

This metric gives equal weight to signals across all layers, preventing any single layer from dominating
the classification. We compute distances dgcc = d(Ahpew, Viuee) and dpii = d(Ahyey, Vi), and
classify via a nearest-centroid rule:

17 if dsucc < dfaila

Unew = .
e 0, otherwise.

This simple rule, illustrated in Figure 2, requires no trainable parameters.

2.4 APPLICATION TO SOLUTION RERANKING

The geometric formulation provides a continuous quality score that is naturally suited for reranking

multiple candidate solutions. Given a prompt P and k generated responses { Ry, ..., Ry}, we form
their corresponding trajectories {77, ..., Tk} and compute their activation deltas {Ah;, ..., Ah}.
For each candidate j, we define a score based on its proximity to the success centroid:

55 = d(Ahj, Vsucc)7 (lower is better). 4)

A lower score s; indicates that the internal reasoning process for solution j is geometrically closer to
the archetypal pattern of success. We can rank candidates in ascending order of their scores. This
ranking can be used for direct top-1 selection or to enhance aggregation schemes.

2.5 RATIONALE FOR A MINIMALIST, EXPERIENCE-BASED DESIGN

CLUE is intentionally minimalist to isolate the contribution of the representation itself. If a simple,
training-free geometric rule over activation-delta summaries yields strong verification performance,
this provides evidence that correctness signals are geometrically encoded and separable in activation
space. By leveraging the geometry of how solutions are computed, CLUE offers a lightweight and
broadly applicable path for verification that complements text-level and confidence-based signals.

3 EXPERIMENTS

To rigorously evaluate the effectiveness of our non-parametric, hidden-state-based verifier, we
designed a series of experiments targeting both in-domain mathematical reasoning and out-of-
distribution general reasoning tasks. Our evaluation is structured around two primary objectives:
first, to assess the raw classification accuracy of our method in distinguishing correct from incorrect
solutions, and second, to measure its ability to improve overall reasoning performance by reranking
multiple candidate solutions.

3.1 DATASETS AND MODEL CONFIGURATION

Our methodology relies on an "experience set" to establish the geometric reference points for success-
ful and failed reasoning. For this purpose, we curated a comprehensive collection of mathematical
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problems from two standard benchmarks: AIME (from 1983 to 2023) (Veeraboina, 2023) and the
MATH (Hendrycks et al., 2021) dataset (specifically, problems of level 3 to 5). These datasets
provide a diverse and challenging foundation for learning the characteristic activation patterns of
mathematical reasoning. To test the performance and generalization of our approach, we use three
distinct test sets. For in-domain evaluation, we use AIME 2024 and AIME 2025, which follow the
same distribution as our experience data. To assess out-of-distribution (OOD) generalization, we
evaluate on GPQA (Rein et al., 2024), a benchmark focused on graduate-level questions that demand
complex, general reasoning abilities beyond the mathematical domain.

Our experiments cover a range of model sizes and architectures to ensure our findings are not specific
to a single model’s capabilities. We selected three distinct reasoning models: Nemotron-Research-
Reasoning-Qwen-1.5B (Liu et al., 2025), a smaller yet capable model; Polaris-4B (An et al., 2025),
a mid-sized model; and DeepSeek-R1-0528-Qwen3-8B (Guo et al., 2025a), a larger and more
powerful model. To test the sensitivity of our method to the length and complexity of the reasoning
trace, we conducted experiments with varied generation lengths for each model, specifically 16k, 32k,
and 64k tokens. We use recommended inference setting including temperature, system prompt, from
their Huggingface repository.

The process for constructing the experience set was as follows: for each problem in the AIME and
MATH datasets, we sampled 32 unique solutions from the respective model. Each generated solution
was then evaluated using a deterministic, rule-based verifier to obtain a ground-truth label of correct
or incorrect. From this large pool of labeled solutions, we randomly selected 10,000 correct and
10,000 incorrect trajectories to form a balanced experience set. This set was used to compute the
success and failure centroids as described in Section 2. For the evaluation phase, we generated 64
candidate solutions for each problem in our test sets.

3.2 EVALUATION SETUPS AND BASELINES

We evaluate our method, which we refer to as CLUE, across two distinct experimental setups.

The first setup frames the task as a binary classification problem to directly measure the verifier’s
accuracy. For each of the 64 sampled solutions on the test sets, our CLUE method predicts a label
of correct or incorrect based on whether the solution’s activation delta is closer to the success or
failure centroid. The ground truth for this task is again determined by the rule-based verifier and we
compare our method against strong baselines. Specifically, we use GPT-40 (Hurst et al., 2024) in
an LLM-as-a-judge capacity. We evaluate the judge in two settings to control for the information
they can access: one where the full solution, including the entire <think> block, is provided to
the LLM judge, and another where only the part after the thinking process is provided. The former
tests the judge’s ability to evaluate the reasoning process, while the latter tests its ability to verify the
result itself. In both cases, only LLM generated answer is provided to the judge without the reference
ground truth answer.

The second setup evaluates the practical impact of our method on improving final reasoning accuracy
through reranking. Here, for each test problem, we use CLUE to rerank the 64 generated solutions. The
ranking criterion is the Euclidean distance of a solution’s activation delta to the success centroid, with
smaller distances indicating higher quality. We report our performance using several metrics: top@1,
the accuracy of the single best-ranked solution; and top-maj @Kk, the accuracy achieved by performing
majority voting on the answers from the top-k ranked solutions, for k € {4,8, 16}. We compare these
results against a suite of standard and state-of-the-art baselines. These include mean @64, which
measures the average accuracy of a single randomly sampled solution; majority @64, the accuracy
of standard majority voting over all 64 samples; DeepConf@64 (Fu et al., 2025b), a recent and
competitive method that uses model confidence scores for reranking; and pass@64, which represents
the oracle upper bound, indicating whether at least one correct answer exists among the 64 samples.

3.3 CLASSIFICATION PERFORMANCE

Table 1 presents the performance of our verifier compared to a strong LLM-as-a-judge baseline
(GPT-40) on solutions generated by both a smaller model (Nemotron-1.5B) and a more capable one
(Polaris-4B). We report overall accuracy, as well as the True Positive Rate (TPR), which measures the
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Table 1: Binary classification performance of different verifiers on solutions generated by Nemotron-
1.5B and Polaris-4B. Our method (CLUE) is compared against an LLM-as-a-judge baseline. We
report overall Accuracy, True Positive Rate (TPR), and True Negative Rate (TNR).

Nemotron-1.5B Solutions Polaris-4B Solutions
Verifier Method Accuracy (%) TPR (%) TNR (%) Accuracy (%) TPR (%) TNR (%)
Test Set: AIME 2024
CLUE (Ours) 80.9 72.9 87.4 81.1 89.5 51.3
GPT-40 (Answer Only) 58.6 57.2 59.7 80.1 84.3 63.1
GPT-40 (Full Trace) 47.5 45.8 48.2 64.3 70.9 50.2
Test Set: AIME 2025
CLUE (Ours) 85.2 82.9 86.4 71.7 80.7 70.1
GPT-40 (Answer Only) 59.2 60.8 58.3 73.0 85.1 344
GPT-40 (Full Trace) 47.1 48.6 46.7 59.3 69.8 27.6

ability to correctly identify successful solutions, and the True Negative Rate (TNR), which measures
the ability to correctly identify failed solutions.

The results clearly indicate that our CLUE verifier provides a substantial and consistent advantage over
the LLM-as-a-judge baseline. A key observation is that the LLM judge exhibits a strong optimistic
bias, frequently misclassifying incorrect solutions as correct. This is evident in its consistently low
True Negative Rate, which drops to a mere 34.4% for Polaris-4B solutions on AIME 2025. This
inherent optimism explains why the LLM judge’s performance appears to improve significantly
when evaluating solutions from a stronger base reasoner like Polaris-4B. A more capable reasoner
produces a higher proportion of correct solutions, which the LLLM judge identifies with reasonable
accuracy (high TPR). Consequently, the judge’s primary weakness—its failure to reliably identify
incorrect answers—has a diminished impact on its overall accuracy score simply because there are
fewer negative samples to misclassify. In contrast, our CLUE method demonstrates a more robust
and balanced performance profile. It maintains a very high TNR (up to 87.4%) when evaluating
the weaker Nemotron-1.5B model, making it highly effective at filtering out the larger volume of
incorrect attempts. Simultaneously, it achieves a high TPR on outputs from the stronger Polaris-4B
model (up to 89.5%), showing it is equally adept at recognizing valid reasoning. This balanced
capability makes our approach a more universally effective verifier, providing significant benefits
regardless of the base model’s reasoning proficiency.

3.4 RERANKING FOR ENHANCED REASONING ACCURACY

Moving beyond binary classification, we evaluate CLUE as a reranking tool to improve reasoning
accuracy. By scoring and reordering 64 candidate solutions per problem, CLUE consistently outper-
forms majority voting on both in-domain AIME and out-of-domain GPQA benchmarks (Table 2).
For example, with Nemotron-1.5B on AIME 24, “top-maj@ 16” reaches 70.0% versus 56.7% for
“majority @64.” Even “top@1” often surpasses majority voting, showing the effectiveness of CLUE.

This advantage extends to general reasoning: on GPQA, Polaris-4B achieves 59.6% with CLUE
versus 56.6% with majority voting. Such transfer demonstrates that the geometric separation of
success and failure in hidden states reflects a fundamental property of math reasoning, not domain-
specific patterns. Compared with the confidence-based baseline DeepConf, CLUE exhibits greater
robustness. While both methods perform strongly on DeepSeek-8B, DeepConf collapses on weaker
models, often below majority voting. CLUE, however, maintains its edge across all scales, leveraging
internal reasoning signals that remain geometrically separable even when output confidences are
poorly calibrated. This highlights CLUE’s broad applicability, particularly for smaller models where
confidence cues are unreliable.

3.5 GENERALIZATION AND THE INFLUENCE OF TRAINING PARADIGMS

We next examine CLUE’s behavior across training paradigms and models. We find that the geometric
separability of success and failure in hidden states depends strongly on training methodology—
specifically, the contrast between Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL).
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Table 2: Reasoning accuracy on AIME and GPQA test sets after reranking 64 candidate solutions.
Results are presented as percentages (%). mean@64 represents the average accuracy of a single
sample, while pass@64 is the oracle upper bound.

Nemotron-1.5B Polaris-4B DeepSeek-8B
Metric AIME 24 AIME 25 GPQA AIME24 AIME25 GPQA AIME24 AIME25 GPQA
Baselines
mean @64 45.0 35.0 419 79.2 75.4 55.2 87.1 75.8 54.86
majority @64 56.7 36.7 44.4 80.0 80.0 56.6 90.0 833 61.11
DeepConf@64 56.7 30.0 40.2 80.0 73.3 55.7 93.3 86.7 62.12
pass@64 (Oracle) 76.7 63.3 83.8 86.7 90.0 88.4 93.3 93.3 94.85
CLUE Reranking (Ours)
top@1 66.7 40.0 46.5 83.3 76.7 52.5 90.0 83.3 56.57
top-maj @4 70.0 40.0 43.9 83.3 76.7 57.1 90.0 86.7 61.62
top-maj@8 70.0 40.0 47.0 80.0 80.0 58.1 93.3 86.7 61.11
top-maj@16 70.0 43.3 44.4 80.0 83.3 59.6 93.3 86.7 62.63
mean@64 majority@64 top@1 (CLUE) top-maj@4 (CLUE) top-maj@8 (CLUE) top-maj@16 (CLUE)
Verifier: Deepseek-7B (SFT) Verifier: Nemotron-1.5B (RL) Verifier: Qwen3-4B (SFT) Verifier: Polaris-4B (RL)
—90- Source: Deepseek-7B (SFT) _Source: Deepseek-7B (SFT) ~ Source: Qwen3-4B (SFT) ~ Source: Qwen3-4B (SFT)
8 83.383.3
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Figure 3: Cross-model reranking performance on AIME 24. The results show that RL-trained models
(Nemotron-1.5B, Polaris-4B) are not only effective at self-verification but are also superior verifiers
for trajectories generated by SFT-trained models (Deepseek-7B, Qwen3-4B).

We evaluated four models: two SFT/distillation-based (Deepseek-7B (Guo et al., 2025a), Qwen3-4B
(Yang et al., 2025a)) and two RL-tuned (Nemotron-1.5B, Polaris-4B). In a cross-model setup,
reasoning traces from one model were fed into another’s hidden states for reranking, enabling both
self- and cross-verification tests.

As shown in Figure 3, SFT models struggle: their self-reranking (“top-maj@ 16’) barely matches
or even lags the “majority @64” baseline, indicating weak internal separation of correctness. By
contrast, RL models act as strong verifiers even across models: Nemotron-1.5B boosts Deepseek-7B’s
accuracy to 80.0% (vs 76.7% baseline), and Polaris-4B lifts Qwen3-4B’s outputs to 83.3% (vs 80.0%
self-rerank). We attribute this gap to training signals. SFT trains imitation of correct paths but
lacks explicit negative feedback. RL, especially with verifiable rewards, supplies direct contrastive
supervision, producing geometrically distinct clusters for correct vs. incorrect reasoning. This makes
RL-trained models inherently stronger verifiers, both for themselves and others.

3.6 GENERALIZATION TO DIVERSE, NON-MATHEMATICAL REASONING

To test CLUE’s generalization beyond mathematics, we evaluated it on the diverse WebInstruct-
verified benchmark, which spans physics, law, finance, and the humanities. We collect experience to
construct centroids from Sk training questions with generated solutions, and evaluation was conducted
on 1k test questions. Ground-truth correctness labels were obtained by providing reference answers
to GPT-40, while GPT-4o0 itself—without access to the reference—served as the LLM-as-a-judge
baseline.

As shown in Table 3, CLUE consistently outperforms GPT-40 across both 1.5B and 4B models. On the
1.5B model, CLUE reaches 60.4% accuracy versus GPT-40’s 54.0%. Most notably, for the 4B model,
the LLM judge collapses to 48.1% (below random), while CLUE maintains 59.2%. These results
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Table 3: Binary classification performance on the general-purpose Weblnstruct-verified (Ma et al.,
2025) dataset. We compare CLUE’s accuracy against a GPT-40 judge on solutions generated by 1.5B
and 4B models. The centroids for CLUE were computed using a subset of the training split.

Reasoner Model

Verifier Method Nemotron-1.5B  Polaris-4B

Test Set Composition (Success / Failure) 1,263 /2,737 1,584 /2,024

CLUE (Ours) 60.4% 59.2%
GPT-40 (LLM-as-a-judge) 54.0% 48.1%
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Figure 4: Layer-wise separability. Each row shows PCA projections from a shallow, a middle, and
the final layer, plus a curve of the centroid distance d(©) across all layers. The centroid-distance curve
increases with £, indicating stronger correctness signals at deeper layers.

provide strong evidence that correctness signals are encoded geometrically in hidden-state trajectories
even outside mathematics. By collecting experience on a very small subset of training data, CLUE
can extract a more stable and transferable representation of success versus failure, underscoring its
robustness as a general-purpose verifier.

3.7 LAYER-WISE SEPARABILITY ANALYSIS

Next, we analyze the layer-wise structure of activation-delta matrices to visualize and quantify how
class separability emerges from shallow to deep layers.

Visualization. We project layer-specific activation deltas onto two principal components via PCA.
For a trajectory i and layer £, let Ah') € RP denote the ¢-th row of Ah; € REXP. We select
representative shallow, middle, and final layers, apply PCA to {Ahgé)}, and plot the resulting 2D
projections for successes and failures. As shown in the first three columns of each row in Figure 4,

the classes are largely overlapping in shallow layers, begin to separate in middle layers, and form
compact, well-defined clusters in the final layers.

Quantification. Let Zy,. and Zg; be the index sets defined in §2.3. For each layer £ € {1,..., L},
we compute layer-wise centroid by averaging the corresponding rows of the activation-delta matrices:

1 1
— AR eRP?, V= —— 5 Anl eRP. (5)
|Isucc| ieT |Ifa11|

succ 1€ Lhait

V(Z) _

succ

We then measure the Euclidean distance between the two centroids at layer ¢:

@ = |IVEL - Viall, ©)

succ
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The rightmost panels of Figure 4 plot ) across layers. We observe a consistent upward trend, with
the distance typically peaking in the final layers, aligning with the PCA visualizations and indicating
that deeper representations encode more explicit and separable correctness signals.

4 RELATED WORK

4.1 LATENT REASONING AND ACTIVATION GEOMETRY

LLMs can reason in latent space instead of (or alongside) explicit token chains, via continuous
“thought states” fed back into the model or compact hidden “thinking tokens” that compress CoT (Hao
et al., 2024; Shen et al., 2025). Interpretability tools like the logit lens and tuned lens show that
intermediate activations progressively align with output distributions, suggesting layer-wise decodable
semantics and confidence signals (nostalgebraist, 2020; Belrose et al., 2023). Hidden-state probes
can self-verify intermediate answers and enable early exit (Zhang et al., 2025), while semantic
clustering of hidden rationales can improve robustness (Knappe et al., 2024). Beyond verification,
activation directions can monitor or steer model traits (e.g., sycophancy, hallucination) via persona
vectors (Chen et al., 2025). Also, in-context activation vectors indicate that linear structure in hidden
space can be mapped and reused across tasks (Liu et al., 2024). More broadly, recent surveys on
representation engineering highlight how linear directions and activation editing provide a general
lens on hidden-state geometry in LLMs (Bartoszcze et al., 2025). Unlike these trained probes or
steering methods, our verifier CLUE is training-free and purely reads cross-layer activation deltas.

4.2 TEST TIME SCALING

Recent research has increasingly focused on test-time scaling — techniques that improve model
performance by allocating more computation during inference without changing the model’s param-
eters. Parallel approaches (such as self-consistency (Wang et al., 2022) and ensemble “best-of-N”
selection (Snell et al., 2024)) generate multiple independent chain-of-thought solutions and then
aggregate or vote on the final answer, significantly boosting accuracy on complex tasks. Sequential ap-
proaches (such as iterative self-refinement (Madaan et al., 2023), Tree-of-Thoughts search (Yao et al.,
2023)) allow the model to think in multiple steps, using intermediate reasoning to inform subsequent
generations. Variants like weighted or semantic self-consistency (Luo et al., 2024; Knappe et al.,
2024) highlight the importance of aggregating diverse rationales, while RLHF and LLM-as-a-judge
approaches (Ouyang et al., 2022; Zheng et al., 2023) provide external supervision but can be costly
and biased. To reduce dependence on large reward models, SWIFT learns lightweight hidden-state
rewards that scale efficiently to best-of-N sampling (Guo et al., 2025b). Complementary to this,
DeepCont filters low-quality reasoning traces using internal confidence signals, improving both
efficiency and accuracy (Fu et al., 2025b); relatedly, early-exit schemes can truncate overthinking
while preserving accuracy (Kadavath et al., 2022a; Yang et al., 2025b). In contrast, CLUE introduces
no trainable verifier: it computes success/failure centroids once from past experience and reranks by
nearest centroid, showing that correctness is geometrically separable in hidden space.

5 CONCLUSION

In this work, we have demonstrated that the internal reasoning process of an LLM is not an inscrutable
black box but a geometrically structured space containing clear, accessible signals of correctness.
Our non-parametric framework, CLUE, validates this principle by achieving remarkable verification
performance through simple geometric clustering of past experiences, proving more robust than
both LLM-judges and confidence-based methods. Critically, we uncover a fundamental connection
between a model’s training paradigm and its internal geometry: models fine-tuned with Reinforcement
Learning develop cleanly separable representations for correct and incorrect reasoning, a property
largely absent in their SFT- counterparts. This insight suggests a paradigm shift for the field, moving
beyond the evaluation of final outputs towards the direct analysis and shaping of the reasoning process
itself. We believe that the success of our minimalist approach opens the door to developing a new
class of lightweight, generalizable verifiers and inspires novel training objectives that explicitly
optimize for internal representational clarity.
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A APPENDIX

A.1 ALGORITHMIC DETAILS

For completeness, we provide pseudocode for the two phases of CLUE: the one-time centroid
aggregation (Algorithm 1) and the inference-time verification (Algorithm 2). Both phases operate on
activation-delta matrices (§2.2) and use the layer-averaged Euclidean distance in Eq. equation 3.
The underlying LLM remains frozen throughout.

Algorithm 1 constructs the reference centroids from a labeled set of trajectories. We first partition
the dataset by ground-truth labels. For each trajectory, we extract the hidden-state matrices at the
boundaries of the explicit reasoning block (<think> and </think>) and compute the activation
delta Ah; € RE*P via Eq. equation 1. We then compute the element-wise mean within each class
to obtain the success and failure centroid matrices V g, and Vi, (Eq. equation 2), which serve as
geometric references during inference.

Algorithm 1 Constructing CLUE Centroids (Learning Phase)
Require: Labeled dataset D = {(T;,v:) ¥,

1: Initialize empty lists Hsyee, Hfail

2: Define index sets Zgyee = {¢ | ¥i =1}, Zran = {i |y: =0}

3: for each i € Zg,.. do

4: Extract hyyy i € REXP and hepg ; € REXP

5: Compute Ah; < heng i — hare s (Eq. 1)
6: Append Ah; to Hyee

7: end for

8: for each i € Zp,; do

9: Extract har,; and heng ;
10: Compute Ah; < heng i — Dgtars
11: Append Ah; to Heyy

12: end for
13: Vgyee ¢ mean(Hsucc) (Eq. 2)
14: Vg < mean(Hyg) (Eq. 2)

15: return Vg, Vi
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Algorithm 2 describes the inference procedure. Given a new trajectory Ty, We compute its acti-
vation delta Ah,,, as in Eq. equation 1, measure its distances to the two centroid matrices using
Eq. equation 3, and decide by nearest centroid.

Algorithm 2 Verification with CLUE (Inference Phase)

Require: New trajectory Tpew; centroids Vgyee, Vi

1: Extract Dyt new and hepg new from They

2 Compute Ahnew — hend,new - hstarl,new (Eq 1)
30 dsyee d(AhneW7 Vsucc) (Eq. 3)
4: dgait <= d(Ahpew, Vi) (Eq. 3)
5: if dguee < dipay then

6: return 1 > classified as correct
7: else

8: return 0 > classified as incorrect
9: end if

A.2 ABLATION STUDIES

To validate the specific design choices of our CLUE methodology, we conducted a series of ablation
studies. Our goal was to isolate the contributions of two key components: 1) the use of hidden states
from all layers of the model, and 2) the computation of an activation delta (hepg — hgar) rather than
using an absolute state vector. We evaluated three alternative configurations against our full method
in Figure 4:

* First Layer Only: Using only the hidden states from the first transformer layer.
» Last Layer Only: Using only the hidden states from the final transformer layer.

* Final State Only: Using only the absolute hidden state vector at the end of the reasoning
block (henq), without subtracting the baseline state.

The results of our ablation study confirm that each component of the CLUE verifier contributes to its
overall effectiveness. The most significant finding is the critical role of network depth. Using only
the First Layer Only leads to a dramatic performance collapse across all settings, indicating that
the shallow, near-embedding layers of the model do not contain sufficiently abstract or separable
representations to distinguish correct from incorrect reasoning. Conversely, the Last Layer Only
variant performs remarkably well, achieving accuracy that is only marginally lower than our full
method and even matching it in some cases. This demonstrates that the deepest layers of the model are
the primary locus of the high-level reasoning signals we are leveraging. Finally, the Final State Only
experiment highlights the benefit of our delta computation. While still a strong performer, removing
the subtraction of the baseline state results in a noticeable performance degradation compared to the
full CLUE approach.
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Figure 5: Ablation study results showing the top-maj@ 16 reasoning accuracy across different model
and dataset configurations.

In summary, these ablations validate our methodology: the discriminative signal is strongest in deep
layers, but leveraging the full stack of layers and calculating the activation delta are both important
for achieving optimal performance.
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A.3 ANALYSIS OF RERANKING SCORE CALCULATION

In our reranking methodology, we employ a score based solely on the distance to the success centroid
(dsuce), as defined in Equation 4. A natural question arises: why not use a comparative score that
incorporates distance to both centroids, such as the difference dgy.. — dpij? Our choice is based on
the hypothesis that the geometric cluster of successful reasoning trajectories is significantly more
concentrated and consistent than that of failed trajectories. The path to a correct solution often
follows a constrained logical sequence, resulting in a tight, well-defined cluster in the activation space.
Conversely, errors can manifest in countless ways—from minor calculation mistakes to fundamental
logical fallacies—Ileading to a "failure" cluster that is inherently more diffuse and scattered.

To validate this hypothesis, we conducted an experiment comparing our standard reranking method
(using only dg..) against an alternative that reranks candidates based on the score dgycc — dpi. We
evaluated both approaches on the AIME 24 and AIME 25 datasets using solutions generated by
Nemotron-1.5B and Polaris-4B.

The results, summarized in Table 4, show that the simpler d,.. metric is a more robust and generally
higher-performing choice. For the Nemotron-1.5B model, using only the success centroid distance
provides a clear advantage. On AIME 24, it achieves up to 70.0% accuracy, while the comparative
score peaks at 66.7%. For the more capable Polaris-4B model, the two methods perform very
similarly, often identically. However, the simpler d,. score still delivere a more consistent and
strong performance. This evidence supports our initial intuition: the success centroid provides a
stable and reliable signal. Incorporating distance from the more diffuse failure centroid does not
consistently add value and can degrade performance.

Table 4: Comparison of reranking performance using two different scoring metrics. The simpler
metric based solely on distance to the success centroid (dgu.) shows a clear advantage, especially
for top@1 selection. All data for our method (dgy) is consistent with the main results in Table 2.
Results are reported as accuracy (%).

Nemotron-1.5B Polaris-4B

Dataset Reranking Metric top@1 top-maj@4 top-maj@8 top-maj@16 top@1 top-maj@4 top-maj@8 top-maj@16

AIME 24 %uee (Ours) 66.7 70.0 70.0 70.0 83.3 83.3 80.0 80.0
dgsee — i 60.0 66.7 66.7 66.7 80.0 833 80.0 80.0
AIME 25 e (Ours) 40.0 40.0 40.0 433 76.7 76.7 80.0 833
dyuce — drai 36.7 40.0 40.0 40.0 733 76.7 80.0 83.3

B USE OF LARGE LANGUAGE MODELS IN PREPARATION

During the preparation of this manuscript, we made use of large language models (LLMs) as writing
and programming assistants. The models supported us by refining phrasing, enhancing clarity, and
ensuring grammatical accuracy in the text. They also assisted with generating boilerplate code,
debugging, and structuring code for the experiments. Importantly, all model outputs—both text and
code—were critically reviewed, revised, and validated by the authors. The final responsibility for the
accuracy and appropriateness of the manuscript rests entirely with the authors.
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