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Abstract

Recent work has formalized the reward hypothesis through the lens of expected
utility theory, by interpreting reward as utility. Hausner’s foundational work
showed that dropping the continuity axiom leads to a generalization of expected
utility theory where utilities are lexicographically ordered vectors of arbitrary
dimension. In this paper, we extend this result by identifying a simple and practical
condition under which preferences in a Markov Decision Process (MDP) cannot be
represented by scalar rewards, necessitating a 2-dimensional reward function. We
provide a full characterization of such reward functions, as well as the general d-
dimensional case under a memorylessness assumption on preferences. Furthermore,
we show that optimal policies in this setting retain many desirable properties of
their scalar-reward counterparts, while in the Constrained MDP (CMDP) setting —
another common multiobjective setting — they do not.

1 Introduction

Framing decision-making as an optimization problem typically begins with specifying one or more
utility functions and defining an objective with respect to these utilities. The reward hypothesis of
Reinforcement Learning (RL) advocates for “maximization of the expected value of the cumulative
sum of a received scalar signal” (Sutton, 2004; Sutton & Barto, 2018; Littman, 2017). Other
approaches include specifying several utility functions with the objective of finding a solution
whose expected utilities are Pareto optimal. In the Constrained Markov Decision Process (CMDP)
framework (Altman, 1999), the goal is to maximize the expectation of a primary utility subject
to constraints on the expected values of auxiliary utilities. Another approach is lexicographic
optimization, where utilities are ordered by priority, and the objective is to lexicographically maximize
the expected utility vector (Gabor et al., 1998).

It is common to pick one such objective based on heuristics, and then study its properties and propose
algorithms for it. The axiomatic approach goes in the opposite direction and characterizes a family of
utility functions and an objective that correspond to a set of assumptions (axioms) on our preferences.
In other words, it shows the sufficiency of an objective in capturing certain properties. For instance,
it is well-known that a lexicographic order cannot be scalarized, e.g., an order-preserving mapping
from a lexicographically ordered square to a line is not possible even though both sets have the same
cardinality. In the axiomatic expected utility framework, one can show that a utility function that
cannot be scalarized can always be captured by a lexicographic utility function (Hausner, 1954).

In this work, motivated by potential applications in Al safety, we show how this axiomatic approach
can lead to lexicographic objectives in MDPs. A lexicographic objective assumes that an infinitesimal
increase in the first-priority objective is preferred to any amount of increase in the second-priority
objective. Such settings might appear when there is a critical safety requirement that should be
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Figure 1: An example of lexicographic planning with time-horizon T = 4 steps. The diagram depicts
a 0.1 probability of unsafety when transitioning from a green, red, or blue state. It also depicts the
reward from gray states as R and the optimal policy as black arrows. Starting from the green state,
the optimal policy is to forgo the high reward on the right side in favor of increased safety and go left.
Starting from the red state, since the safety of going left and right is the same, the optimal policy is to
go right to get more cumulative reward. Importantly, decisions have to be based on two quantities:
the probability of safety and expected cumulative reward.

prioritized above all else. Another common and practical example is when the first priority is to
achieve some goal while the second priority is to minimize the time that it takes. Lexicographic
objectives are also reminiscent of Asimov’s Three Laws of Robotics (Asimov, 1942) where the
highest priority objective is to “not injure a human being or, through inaction, allow a human being to
come to harm.” An illustrative example of a lexicographic objective is presented in Fig. 1.

1.1 OQutline and Summary of Results

We begin by reviewing the relevant literature (Section 2), followed by a brief summary of von
Neumann-Morgenstern (vNM) expected utility theory and Hausner’s lexicographic extension of it
(Section 3). We then extend Hausner’s result to the sequential decision-making setting (Section 4),
which involves formally specifying a setting where outcomes are sequences of abstract events,
and introducing an axiom to structure preferences. Since Hausner’s theorem does not specify the
dimensionality of utility vectors, we study a simple setting that naturally leads to a 2-dimensional
lexicographic utility function (Section 5), and extend this to the sequential setting (Section 6). This
yields a simple and interpretable recursive equation for the utility of event sequences. We then study
the properties of optimal policies in lexicographic MDPs, highlighting similarities with scalar-reward
MDPs and contrasting them with the CMDP framework (Section 7). We then further compare LMDPs
and CMDPs (Section 8). We conclude with a discussion of limitations and future work (Section 9)
and concluding remarks (Section 10).

2 Related Work

Expected Utility Theory. Expected utility theory originated with Bernoulli (1738) and was for-
malized axiomatically by von Neumann & Morgenstern (1947) in the context of game theory. This
axiomatic approach characterizes when and why maximizing expected utility is justified. Subsequent
work refined these foundations and extended them to more general settings, such as alternative formu-
lations of the axioms (Jensen, 1967) and generalization from finite sets to mixture spaces (Herstein
& Milnor, 1953). A comprehensive account is provided by Fishburn (1982), which also contains
a relevant chapter on lexicographic expected utility, due to Hausner (1954). In the lexicographic
setting, reducing the dimensionality of utility vectors requires additional assumptions, which are
often technical and unintuitive. Our work contributes a natural and interpretable condition that leads
to 2-dimensional lexicographic utilities.

Sequential Decision-Making and Expected Utility Theory. Classical expected utility theory
typically applies only to final outcomes, abstracting away the sequential nature of decision-making
and preventing utility assignment to individual interactions, as is common in MDP and RL settings.
Recent works have extended vINM rationality axioms to sequential decision-making, motivated by
variable discount factors (Pitis, 2019) and formalizing the reward hypothesis (Shakerinava & Ravan-
bakhsh, 2022; Bowling et al., 2023). Following this axiomatic approach, we extend lexicographic
expected utility theory to sequential settings, deriving structured reward functions under minimal and
interpretable assumptions.



Lexicographic Decision-Making. Lexicographic optimization in Multi-Objective Reinforcement
Learning (MORL) has been previously studied, notably by Gdbor et al. (1998), and extended in
Skalse et al. (2022), which present a family of both action-value and policy gradient algorithms for
lexicographic RL with theoretical convergence results and empirical performance on benchmarks.
In other works, Wray et al. (2015) provide a lexicographic value iteration algorithm and prove
convergence under the assumption that each objective is allowed some acceptable level of slack.
El Khalfi (2017) propose algorithms for finding a lexicographic optimal policy in possibilistic MDPs.
Hahn et al. (2021) investigate lexicographic w-regular objectives within formal verification, proposing
a reduction that enables model-free RL for prioritized temporal logic specifications.

Multi-Objective Decision-Making and Al Safety. The standard RL paradigm assumes that a single
scalar reward is sufficient for specifying goals (Silver et al., 2021). This view has been challenged
by Vamplew et al. (2022), who argue that in safety-critical settings, scalar rewards can incentivize
unsafe or undesirable behaviors. Lexicographic objectives have been proposed in domains such as
autonomous vehicles, where safety must take strict precedence over other considerations (Zhang et al.,
2022). Omohundro (2008) warns that unbounded reward maximization may give rise to dangerous
instrumental drives. While scalarization methods are commonly used to combine multiple objectives,
they suffer from well-known theoretical limitations (Vamplew et al., 2008). Multi-objective RL
methods (Hayes et al., 2022) avoid scalarization but remain algorithmically and theoretically more
challenging than the scalar case. Complementary to our axiomatic treatment, Miura (2023) analyzes
the expressivity of scalar vs. multi-dimensional rewards and gives necessary and sufficient conditions
for when a specified set of acceptable policies can be realized.

3 Background

3.1 Scalar Expected Utility Theory

The expected utility theory of von Neumann & Morgenstern (1947) provides an axiomatic treatment
of decision-making under uncertainty. Let O denote the set of outcomes. The result of a decision
is always an element from this set. We refer to a distribution over outcomes as a lottery and we
denote the space of lotteries as A(OQ). The player is faced with a number of such lotteries and has to
pick one. After a lottery has been selected, the player receives an outcome sampled according to the
lottery’s distribution.

The player supplies their preferences in the form of a relation on the space of lotteries (72, A(O)).
Based on this relation, we can define another relation >~ as p > ¢ := not(q - p). We also define the
relation =~ as p ~ ¢ := (p 77 g and ¢ - p) and we say that p and q are indifferent. Its negation is
denoted .

We assume that the player’s preferences satisfy von Neumann and Morgenstern’s four axioms of
rationality. These axioms are defined below, and we will refer to them as the vVNM axioms.

Axiom 1 (Completeness). For all p,q € A(O),

P qorq s p.

Axiom 2 (Transitivity). For all p,q,r € A(O),

prqgandgqZr = pIT.

Axiom 3 (Independence). For all p,q,r € A(O) and @ € [0, 1),

ap+(l—a)grmap+(1—a)r < g7

The lottery ap + (1 — «)q that appears in the statement of Independence can be thought of as a
compound lottery constructed by first tossing a biased coin with probability « of landing heads. The
outcome of the coin toss determines whether we get an outcome sampled from lottery p (heads) or
q (tails). Independence states that comparing compound lotteries constructed with the same biased



coin and with the same lottery for heads, is equivalent to comparing the corresponding lotteries for
tails. From an algebraic standpoint, Independence can be thought of as a cancellation law for the
comparison of lotteries.

Axiom 4 (Continuity). For all p,q,r € A(O),

pragrnr = Jael0,1], ap+ (1 —a)r =q.

The Continuity axiom essentially states that, as the probabilities of a lottery vary, our valuation of the
lottery changes smoothly. As we will see, it is responsible for the sufficiency of scalar utilities.

Before presenting the expected utility theorem, we will need to define utility and what it means for a
utility function to be linear.
Definition 1. A utility function for (7, A(O)) is any function v : A(O) — R such that, for all
p,q € AO),

u(p) Zulg) <= pZq (1
Definition 2. A utility function is said to be linear if for all p € A(O),

u(p) = Zp(o)u(o).2 )

o€

We are now ready to state the von Neumann-Morgenstern (vINM) expected utility theorem.

Theorem 1 (von Neumann & Morgenstern (1947)) A relation (7, A(O)) satisfies the vNM axioms
if and only if there exists a linear utility function u : A(O) — R. Moreover, u is unique up to
positive affine transformations, i.e., u — au + b, where a > 0.

For proofs, see von Neumann & Morgenstern (1953), Fishburn (1982), or Maschler et al. (2013).

The vNM theorem identifies settings where decision-making can be optimized by maximizing the
expected value of a scalar utility function. In other words, the vVINM theorem is the formal basis of the
well-known maximum expected utility principle.

We mention two advantages of expected utility theory over other’ methods for specifying rewards.
First, it separates reward specification from the mechanics of the environment, which is particularly
useful when the environment is complex or unknown. Second, it enables reliable comparison
of suboptimal policies. These advantages, among others, make it an ideal candidate for reward
specification.

3.2 Lexicographic Expected Utility Theory

An important result due to Hausner (1954) is that, if we forgo Continuity, lotteries can still be
compared in terms of expected utility, but the utilities will be vectors and the comparison will be
lexicographic. In a lexicographic comparison, entries are compared from first to last and the first
differing entry determines the order. The rest of the entries are irrelevant. The mathematical definition
is as follows.

Definition 3. For all u,v € R?,

U >ex 0 = (Tk € [d],u1 = v1, ..., ug—1 = vg—_1, and ux > vg). 3)

To present the lexicographic expected utility theorem we first define what a lexicographic utility
function is.

*We will occasionally abuse notation by writing o (an element of ) when we actually mean the Dirac
delta distribution centered at o (an element of A(Q)). This simplification will typically occur when adding an
outcome to a lottery or evaluating its utility.

3For example, assigning a reward of 1 to optimal actions and O to all other actions or ad-hoc reward shaping
methods. More generally, there are many reward functions that can lead to the same optimal policy. A simple case:
there are 3 actions a, b, c. We prefer a > b > ¢ but we use a reward function that satisfies r(a) > r(c) > r(b) -
notice that b and c are swapped. The optimal action is the same in both cases. Suppose the initial policy selects
action b and then we optimize it (w.r.t. rewards) to c. However, due to “bad” reward function, the policy actually
gets worse. On the other hand, with vVNM rewards, increasing expected reward is guaranteed to result in a more
preferred policy.



Definition 4. A lexicographic utility function for (>, A(Q)) is any function u : A(Q) — R? such
that, for all p, ¢ € A(O),

u(p) Z1ex u(q) <= pZq. “)

A linear lexicographic utility function is defined in the same way as Definition 2 with addition and
scalar multiplication interpreted as operations on a vector space.

We let E‘fd be the set of d x d lower triangular matrices with positive diagonal entries, as formally
described by Eq. (5). This set will be used in the specification of affine transformations that retain
lexicographic ordering.

L7 ={AeR™ | Aj; =0fori< j, Ay > 0foralli€ [d]} )

We now state Hausner’s lexicographic expected utility theorem.

Theorem 2 (Hausner (1954)) A relation (7, A(O)) satisfies Completeness, Transitivity, and
Independence if and only if there exist d € N and a d-dimensional linear lexicographic utility
function u : A(O) — R Moreover; u is unique up to transformations of the form u +— Au + b,

where A € [,jl_Xd and b € R4.

For proofs see Hausner (1954) or Fishburn (1982).

Note that d = 1 captures the setting where Continuity is satisfied and the vNM theorem applies,
whereas d > 1 captures settings where Continuity is violated. Remarkably, the theorem not only
recovers the well-known fact that lexicographic orders cannot be scalarized, but also shows that,
within the expected utility framework, any non-scalarizable utility function must admit a lexicographic
representation.

4 Sequential Lexicographic Expected Utility

We now extend lexicographic expected utility to the sequential decision-making setting. In this
setting, an agent sequentially collects utility instead of only receiving an outcome with some utility at
the end of the interaction. It is common to use the term reward instead of utility, so we will be using
these terms interchangeably.

We model the agent’s interaction with the environment as a Markov Decision Process (MDP) with
the modification that the agent observes events from a set £ instead of rewards. More formally, we
assume that the MDP is equipped with a conditional probability distribution P : S x A — A(S x &)
of next state and event given current state and action. This setting is very general since events are
allowed to be any stochastic function of current state, action, and next state. The set of outcomes
in this setting corresponds to sequences of events, i.e., O = £* == {e} U J,cp &', where ¢ is the
empty sequence. Rewards emerge as a result of applying expected utility theory to a given preference
relation on distributions over sequences of events (72, A(E*)).

Without any additional assumptions, the preference relation is unstructured, overlapping sequences
are treated as entirely independent entities, and the utility of any two sequences is independently
determined. We will, therefore, introduce a simple and reasonable axiom and show that it leads to
utility functions that take a simple mathematical form.

But first, we need to introduce a concatenation operator - that will be used in the axiom. We will use
it both for concatenating sequences and for concatenating a sequence to a distribution over sequences.
The operator is best described with examples.

Example 1. Let (a1,as2,a3), (b1, b2), and (c¢) be sequences of events. Then, an example of
concatenating to a sequence is (¢) - (b1, b2) = (¢, b1, b2). And an example of concatenating to a
distribution over sequences is

¢ (Valar, az,a3) + ¥3(b1, b2) ) = Ysle, a1, a2, as) + (e, by, ba). ©)



The axiom that we are about to introduce says that preferences are not affected by past events. As a
result, the agent can forget past events and only focus on optimizing future events. The axiom is a
version of the memorylessness axiom from Shakerinava & Ravanbakhsh (2022).

Axiom 5 (Memorylessness). For all e € &, either
Vp,q € A(E¥), epZe-q = pZq, (7

or
Vp,q € A(E¥), e-p=e-q. 8)

Events that satisfy Eq. (8) act as terminal events since future events no longer have any effect on the
final outcome. We denote by ;e the set of such events.

Theorem 3 (Sequential Lexicographic Expected Utility Theorem) A relation (77, A(E*)) satisfies
Completeness, Transitivity, Independence, and Memorylessness if and only if there exist d € N,
a d-dimensional linear lexicographic utility function u with u(¢) = 0, rewards r : £ — R%, and
reward multipliers T : € — L% U {0} such that

ule-7) =r(e) +IT'(e)u(r), ©)
foralle € Eand T € E*.
A proof is provided in Appendix D.1. A point omitted from the theorem’s statement, but evident in
the proof, is that an event e is terminal if and only if I'(e) = 0.

Theorem 3 implies an MDP where rewards r are d-dimensional vectors, the “discount” factors I are

transition-dependent matrices in Eix‘i, and expected returns are compared lexicographically. We
refer to such MDPs as Lexicographic MDPs (LMDPs). Notably, the structure of I' is more general
than that of previous works (e.g., Skalse et al. (2022)) where it is typically assumed to be diagonal.

The commonly used transition-independent discounted rewards emerge as a result of a non-
parameterized version of the temporal ~y-indifference from Bowling et al. (2023).

Axiom 6 (Temporal v-Indifference). Foralle € £,y € £*, 15 € £,

(€°T1)+ (€°T2)+

()~ T (n),
y+1 y+1 v+1 y+1

where v € [0, 1].

Theorem 4 (Discounted Lexicographic Expected Utility Theorem) A relation (7, A(E*)) satisfies
Completeness, Transitivity, Independence, and Temporal v-Indifference if and only if there exist
d € N, a d-dimensional linear lexicographic utility function u with u(¢) = 0, and rewards
r: & — R such that

ule- 1) =r(e) + ~yu(r), (10)
foralle € Eand T € £,

A proof is provided in Appendix D.2. The proofs of Theorems 3 and 4 are similar to their scalar
counterparts in Shakerinava & Ravanbakhsh (2022); Bowling et al. (2023) where we have lifted the
continuity axiom and arrived at a reward structure where rewards are vectors and (scalar) comparisons
have been replaced with lexicographic comparisons.

S A Single Unsafe Utility

The lexicographic expected utility theorem has a drawback in that it does not specify the dimen-
sionality of the utility function. It also does not specify any particular subspace of R? for the utility
of outcomes. We would like to have more fine-grained understanding of the structure of the utility
function for specific settings of interest.



Therefore, in this section, we propose an intuitive axiom that results in a simple 2-dimensional
linear lexicographic utility function. We do so by introducing an outcome o that is ‘infinitely bad,
as formalized by the next axiom. We interpret this outcome as a critically unsafe outcome. Let
ot ={o ‘ o~ o'} and Ogape == O — OF.

Axiom 7 (Safety First). Forall p,q € A(Osate) and all € > 0,

gol +(1—¢e)p<q.

The existence of such an outcome violates Continuity. To see that, let p, ¢ € A(Ogate) be two safe
lotteries such that p = ¢. We now have p > ¢ > of. Then, ap + (1- Oz)oT < qforall @ < 1 and
ap + (1 — a)o' = ¢ for @ = 1. For no a do the two sides become indifferent, so Continuity is
violated. Therefore, from now on, we assume that Continuity only holds for (>, A(Ogate)). The full
set of assumptions are provided below.

Assumption 1. The relation (77, A(O)) satisfies Completeness, Transitivity, and Independence and
the relation (22, A(Ogage)) satisfies Continuity. The relation (-, A(Q)) and of satisfy Safety First.
Also, there exist 01, 02 € Ogate Such that 01 % oy (non-triviality).

In this setting, lotteries can be uniquely written in the form
[0 p] = (1 = a)o’ + ap, (1)
where « € [0,1] is the probability of safety and p € A(Ogate). An exception occurs when oz = 0

which can be addressed by fixing a lottery ¢ € A(Ogate) and writing the (deterministic) lottery of as
[0, ¢], making its representation unique.

Example 2. The lottery p = 1/3 of +1/2 x4 1/6 yy means there is a 1/3 chance of obtaining outcome
of, a 1/2 chance of obtaining outcome x, and a /6 chance of obtaining outcome . It is uniquely
decomposed into the form of Eq. (11) as

_ 1 g T+g § +1 _[g§ _|_1]
b= 3/ T3\g*TgY) Tl gt T Y

The next lemma shows that it is possible to compare any two lotteries first by comparing the
probability of safety and, if equal, performing a comparison in A(Ogate ).

Lemma 1. Forallp,q € A(O) and all o, 8 € [0,1],
[, p] Z [8,4] <= (a>p)or(a=pandpZ q). (12)
A proof is provided in Appendix D.3.

With the appropriate definitions and Lemma | at hand, we are now ready to prove the following
theorem.

Theorem 5 (Lexicographic Expected Utility Theorem with a Single Unsafe Utility) A relation
(7, A(O)) satisfies Assumption I if and only if there exist a linear utility function u' : A(Ogate) —
R for (7, A(Osate)) and a 2-dimensional linear lexicographic utility function u : A(O) — R?

such that for all o € O,
(07 UI(O)) o0& Osafea
u(o) =

(—1,0) oxol. (13)

Moreover, u is unique up to transformations of the form u — Au + b, where A € Ei“ and
be R
A proof is provided in Appendix D.4.
Example 3. A linear lexicographic utility function with a single unsafe utility is depicted in Fig. 2.
In the utility function of Eq. (13), the first dimension of the utility of a lottery represents the probability

of safety minus 1 and the second dimension represents the expected utility given safety. Also note
that it is 2-dimensional, as opposed to Theorem 2 which does not specify d.
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Figure 2: An example plotting the 2-dimensional lexicographic utility of O = {017 ..., 04, OT}.
Assuming u is linear, its range will be the highlighted triangle. Note that Continuity is the main
axiom responsible for utilities being mapped onto a straight line. Since o does not satisfy Continuity,
it gets mapped outside the line containing the set of points u(Ogafe)-

6 Sequential Lexicographic Expected Utility with a Single Unsafe Utility

We now extend the single unsafe utility setting to the sequential setting according to the frame-
work introduced in Section 4. We define £ as the events that are indifferent to of. Adding the
Memorylessness axiom to our previous assumptions leads to the following theorem.

Theorem 6 (Sequential Lexicographic Expected Utility Theorem with a Single Unsafe Utility) A
relation (72, A(E*)) satisfies Assumption | and Memorylessness if and only if there exist rewards
r: & — R, reward multipliers v : £ — Ry, and 2-dimensional linear lexicographic utility
function u : A(E*) — R? satisfying u(e) = 0 and

(O’T(e)) e € Eerm — (C/‘T
u(e 1) =19 (~1,0) ecét (14)
(ui(7), L4+ ur(7))r(e) + v(e)ua(T))  otherwise

for all events e € £ and sequences of events T € £*.

A proof is provided in Appendix D.5.

It follows from Theorem 6 that the events T are terminal and result in an unsafe outcome ~ of. It
is worth noting that Eq. (14) can be somewhat simplified by assuming that terminal events lead to
virtual terminal states. Observe that letting u(7) = (0, 0) in the third case of Eq. (14) produces the
first case and letting u(7) = (—1,0) produces the second case. Therefore, we can mainly use the
third case and obtain the other two cases by assigning a utility of (0, 0) to safe terminal states and a
utility of (—1, 0) to unsafe terminal states. We also learn from Theorem 6 that each event e has a
corresponding reward multiplier y(e) > 0. By assuming Temporal v-Indifference on (27, A(Osate))
one can arrive at a fixed transition-independent discount factor v € (0, 1] for the second dimension.

Example 4. Fig. 1 depicts an example of the described setting. For simplicity, we are assuming
that the agent can deterministically move to a neighboring state and that events are a stochastic
function of the starting state of any transition.

Eq. (14) can also be written in the general form of Eq. (9) with d = 2. Let us refer to r and I' from
Eq. (9) as 7 and I'. Specifying them as follows recovers Eq. (14).

v [(0,r(e)) ec&E—E&F

") = {(—1,0) otherwise (15)
1 0

(e) = (T(e) 7(6)) ¢ €& biem (16)

0 otherwise



7 Properties of Optimal Policies in Lexicographic MDPs

In this section, we examine the properties of optimal policies in the lexicographic setting, referred
to as LMDPs. We highlight their similarities to the scalar MDP setting and contrast them with the
CMDP framework.

The first important point of contrast is that in CMDPs, an optimal stationary policy may depend on
the starting state distribution (Altman, 1999), whereas in MDPs, there exists a stationary policy that
is optimal for all starting states (Puterman, 1994). We refer to this stronger notion of optimality as
uniform optimality.

Next, we show that the fundamental theorem of MDPs (see Appendix A) still holds in the absence of
the continuity axiom. To do so we will need to make the assumption that the diagonal entries of I'(e)
are less than 1 for all e € £. This is analogous to the assumption that the discount factor is less than 1
for MDPs.

Assumption 2. Foralle € Eand i € [d],T; ;(e) < 1.

Theorem 7 (Fundamental Theorem of LMDPs) For every finite LMDP satisfying Assump-
tion 2, a policy m : 8§ — A is uniformly optimal if and only if it is greedy w.r.t. Q*, that is,
Eqr(s)[Q*(5,a)] = lex max, Q*(s,a) forall s € S.

A proof is provided in Appendix D.6. We write lex max instead of max only to emphasize that the
argument is a set of vectors that are compared lexicographically. Also, @* for LMDPs is defined
similar to MDPs where the maximization is interpreted as a lexicographic maximization.

Corollary 1. For every finite LMDP satisfying Assumption 2, there exists a stationary deterministic
uniformly optimal policy.

Proof. Any policy 7 such that 7(s) € arglex max, Q@*(s, a) is a stationary deterministic uniformly
optimal policy. O

The result above mirrors the MDP setting but stands in stark contrast to CMDPs. In a CMDP, an
optimal policy might need to randomize its actions, and, as mentioned before, a uniformly optimal
stationary policy might not exist (Altman, 1999; Szepesvari, 2020). The fundamental reason for
these differences is that CMDPs violate both Independence and Continuity (Bowling et al., 2023, §7),
whereas LMDPs violate only Continuity. In fact, it has been shown that a slightly weaker notion of
Independence is sufficient for guaranteeing the existence of a uniformly optimal stationary policy in
trees (Colaco Carr et al., 2024). We conclude that the fundamental properties of optimal policies in
MDPs do not rely on the Continuity axiom.

8 Further Comparison of LMDP and CMDP

We saw some differences between LMDPs and CMDPs in the previous section. We now provide a
more detailed comparison of the two frameworks.

Can any CMDP be turned into an LMDP? No. Consider the following example with three
outcomes 01, 02, 03, two utility functions w1, us, and the constrained objective max E[u;] subject
to Eus] > 0. The utilities are specified as u(o1) = (4, —2),u(02) = (2,2),u(o3) = (0,4). Now
consider the lotteries A = 1/2 01 4+ 1/2 03 and B = 1/2 05 + 1/2 03. Assuming linear utilities we have
u(A) = (2,1) and u(B) = (1, 3). Both of these lotteries satisfy the constraint. Since A has higher
expected u; utility it is preferred over B. Now apply independence and remove o3 from both lotteries
and call the resulting (pure) lotteries A’ = 01 and B’ = 05. According to independence, A’ should
be preferred to B’. But that is not the case because the outcome 0; does not satisfy the constraint
while oy does, so B’ is preferred to A’, violating independence. Since LMDPs satisfy independence,
CMDPs cannot in general be turned into LMDPs. We note that a similar example is provided by
Bowling et al. (2023).

Can any LMDP be turned into a CMDP? Only under certain conditions. If we fix the starting
state distribution and, given K priority levels, we know the optimal value of all but the lowest
priority level, i.e., we know V¥, ..., VZ_,, then it is possible to turn the LMDP problem into a



CMDP by constraining these ' — 1 values with the known optimal values and optimizing the lowest-
priority value, i.e., max E[Vk (so)] subject to E[V;(sg)] > V;* forall¢ € 1,..., K — 1. Essentially,
the first K — 1 optimization problems are turned into constraints, similar to turning max, f(z)
into max,, 0 subject to f(x) > f*. For example, if we were to turn an LDMP with a single unsafe
outcome into a CMDP, then the CMDP would constrain the probability of the unsafe outcome,
assuming access to optimal achievable probability of safety (i.e., V7*), rather than optimizing it.

Another important distinction between CMDPs and LMDPs is that CMDPs put constraints on
expected outcome while LMDPs only allow constraints on specific outcomes. This means that if
one observes a single run of a policy, in the case of an LMDP, one can evaluate this run individually
and assign a utility vector to it, but in the case of a CMDP, it is not possible to tell if constraints are
satisfied or not, and so it is not possible to evaluate a single run. The root cause of this difference can
be traced back to CMDP’s violation of the independence axiom.

Example 5. Consider the toy-example of a robot that needs to exit a maze. To incentivize the
robot to exit as fast as possible, commonly, we either assign a reward of —1 to each step or we use
a discount factor and assign a positive reward for escaping. Now consider a maze with hazards
that can possibly destroy the robot. Suppose we would like, 1st, to maximize the probability of
safely exiting the maze, and 2nd, to do so as fast as possible. Now suppose we have to design a
reward function for this task without having seen the maze, e.g., we do not know how likely the
hazards are to destroy the robot or how large the maze is. We might try to assign a large negative
reward to the robot being destroyed. However, that does not adequately capture our prioritized
objective. For a given scalar reward function, we can always design a maze such that the robot
takes a more hazardous path by making safe paths longer or hazard probabilities smaller. An
LMDP can capture this objective with a 2-dimensional reward function where the reward for a
hazardous event is (—1, 0). If we were to use CMDPs for this problem, we would need to know
what the optimal hazard probability is in order to set a constraint on it. Additionally, changing the
starting state to a point in the maze that has a different optimal hazard probability necessitates
respecifying the CMDP.

9 Limitations and Future Work

Lexicographic objectives are only appropriate in settings where objectives cannot be traded off. Such
cases may be less common in practice. Also, we have not proposed new algorithmic methods for
solving lexicographic MDPs or RL problems. Although prior works have developed algorithms in
this space (Wray et al., 2015; Skalse et al., 2022), lexicographic optimization remains challenging.
Furthermore, our analysis focuses on environment-independent reward specification, following the
expected utility theory paradigm. In practice, when the environment is known and fixed, it may be
possible to design simpler, scalar rewards that suffice for a specific task. Lexicographic objectives
have potential applications in Al safety, particularly in problems of Al control. For example, a
primary objective might be to maintain a safety guardrail (Bengio et al., 2025), to ensure that an Al
system remains confined to a sandbox environment, or that its influence is restricted in a controlled
manner. Exploring such applications is a promising avenue for future research.

10 Conclusion

We presented a lexicographic generalization of expected utility theory for sequential decision-
making, motivated by settings where objectives must be prioritized in a strict, non-compensatory
order. Building on Hausner’s extension of expected utility theory, we identified a simple and
practical condition under which preferences cannot be captured by scalar rewards, necessitating
lexicographically ordered utility vectors. We provided a full characterization of such utility functions
in Markov Decision Processes (MDPs) under a memorylessness assumption on preferences, including
both the 2-dimensional case and the general d-dimensional case. Importantly, we showed that optimal
policies in this setting retain key properties of scalar-reward MDPs, such as the existence of stationary,
uniformly optimal policies, in contrast to the Constrained MDP (CMDP) framework. Our results
generalize the scalar reward hypothesis while preserving the utility-maximization paradigm, offering
a principled foundation for lexicographic objectives in sequential decision-making.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: A summary of the paper’s contributions is provided in the introduction (Sec-
tion 1.1) with references to specific sections of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a Limitations and Future Work section (Section 9).
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All theoretical results are accompanied by clearly stated assumptions. Proofs
are provided in Appendix D.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper adheres to the NeurIPS Code of Ethics. It involves only theoretical
analysis and does not raise ethical concerns regarding data, privacy, fairness, or misuse.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper presents foundational theoretical contributions without immediate
societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not release data, models, or assets.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were used solely to assist with writing and editing tasks, such as
improving phrasing and clarity. No LLMs were used in the core research methodology,
theory development, or results.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Background: Reinforcement Learning

Reinforcement Learning (RL) studies the setting where an agent interacts with an environment while
receiving a reward signal in response (Sutton & Barto, 2018). The environment is typically modeled
as a Markov Decision Process (MDP). An MDP can be described by a set of states S, set of actions
A, transition and reward probabilities P(s¢11, 741 | St, a¢), and a discount factor v € [0,1). The
objective is to produce a policy 7 : S — A that maximizes expected cumulative discounted reward,
that is, Ex[> "2, 7'r¢]. The cumulative discounted reward will sometimes be referred to as return.

The expected return of starting from state s and following policy 7 is known as the value function

and is defined as
oo
Z ’Ytrt
t=0

The expected return of starting from state s, taking action a, and thereafter following policy 7 is
known as the Q-value function and is defined as

V7(s) =E,

S0 = 31. a7

Q7 (s,a) =E, [Z Yy | so = s,a0 = a} . (18)
t=0
The optimal Q-value function is defined as
Q*(s,a) = max Q" (s, a). (19)

A policy 7 is optimal if it satisfies E[Q™ (so)] = E[Q*(s0)], that is, it is optimal for a given initial
state distribution. A policy 7 is uniformly optimal if it satisfies Q7 = @Q*, that is, it performs
optimally for all starting states. An important theorem in the theory of MDPs, sometimes known as
the fundamental theorem of MDPs, characterizes all uniformly optimal policies of an MDP.

Theorem 8 (Fundamental Theorem of MDPs) For every finite MDP, a policy m : S — A is
uniformly optimal if and only if it is greedy w.r.t. Q*, that is, Eo (5 [Q*(s,a)] = max, Q*(s, a)
foralls € S.

See Szepesvari (2023) for a proof.

B Comparison of Constraints, Penalties, and Lexicographic Optimization

A

» Cost

Figure 3: (Left) A set of policies x (light cyan region), plotted by their R, C' values. The solutions
of the constrained (C), penalty (P), and lexicographic (L) methods are indicated. The lowest-risk
(safest) policy is given by (L). (Right) The agent aims to reach the target. The cost C' is the path
length, and the risk R is the portion of the path that lies within the unsafe (red) region.

In this section, we compare lexicographic optimization to the constrained approach and the penalty
approach. We introduce a notation restricted to this section: R denotes risk (the negation of the
probability of safety), and C' denotes cost (the negation of the expected utility). The optimization
problems corresponding to the constrained (C), penalty (P), and lexicographic (L) approaches are as
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follows:

min C(z), subject to R(z) < § ©
min C(z) + AR(x) P)
lexg{nin (R(z),C(x)) (L)

The left part of Fig. 3 illustrates the optima of the different objectives over a two-dimensional set.
The lexicographic minimizer yields the lowest-risk solution.

The right part of Fig. 3 illustrates a path optimization problem where R and C' are defined as functions
of the path x. The lexicographic minimizer is given by (L) and corresponds to the green path. The
penalty method (P) leads to the dotted red path, which is shorter but has a nonzero R(z). Either path
can correspond to the constrained approach (C), depending on the value of §. Using hard constraints
with a nonzero safety threshold or the penalty method results in a path that spends a nonzero amount
of time in the unsafe region to reach the goal faster, resulting in the dotted red path. Using either hard
constraints with a safety threshold of zero or lexicographic optimization results in the green path,
which is optimal.

C Algorithmic Considerations for LMDPs

In MDPs, the optimal Q-value function Q* (s, a) satisfies the Bellman optimality equation:

Q"(s,a) = E|R(s, a,8") + ymax Q*(s', a)

s, a] , (20)

where R(s,a,s’) == E[r | s, a, ] is the expected reward from the transition (s, a, s’). The same
is true for LMDPs, where Q* (s, a) is a vector, +y is a matrix, and the maximization in Eq. (20) is
lexicographic.

The (uniformly) optimal policy 7* can then be derived from the optimal Q-value function as:

7 (s) = argmax Q* (s, a). 21
acA

When 7 < 1, one can obtain Q* by iterating the Bellman optimality equation until convergence. This
algorithm is known as Q-value iteration.

Algorithm 1 7-Approximate Q-Learning for LMDP

1: Input: LMDP with d-dimensional reward, slack 7 € Ri
2: Initialize: Q(s,a) < Oforall s € S,a € A; step size o <— 0.1; ¢ < 0.1
3: Sample initial state s ~ P
4: repeat
Ab(s) +— A
fori =1toddo
Ai(s) ¢ fa € AL, | Qi(s,a) >  max  Qils,a’) — 7}

a’'€Ar_,(s)

Naw

8: end for

9:  Sample action a ~ ¢ Uniform(.A) + (1 — €) Uniform(A}(s))
10:  Execute a, observe next state s’ and reward vector R € R?
11: fori=1toddo

12: Qi(s,a) + (1 — a)Qi(s,a) + a(R,; + glax( )Qi(s’,a/))
a’eAr_, (s

13:  end for

14 s« s

15: until 7-convergence of Q)

16: Return: 7(s) < any a € A%(s)

Let n be the number of state-action pairs. In an MDP, one can then think of the Q-value function as
a point in n-dimensional space. The Q-value iteration algorithm converges because one can show
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that the Bellman optimality equation is a contraction mapping in this space. The Banach fixed point
theorem then implies convergence to a fixed-point.

However, the same argument fails for LMDPs because the Bellman optimality equation is not
necessarily a contraction mapping. To obtain convergence one must accept some slack 7 and take
values that are closer than 7 as being equal. This leads to Algorithm 1.

D Proofs
D.1 Proof of Theorem 3

Theorem 3 (Sequential Lexicographic Expected Utility Theorem) A relation (77, A(E*)) satisfies
Completeness, Transitivity, Independence, and Memorylessness if and only if there exist d € N,
a d-dimensional linear lexicographic utility function u with u(¢) = 0, rewards r : £ — R%, and
reward multipliers T : € — L9 U {0} such that

u(e-7) = r(e) + I'(e)u(r), )
foralle € Eand T € E*.

Proof. (=) By the lexicographic expected utility theorem (Theorem 2) there exist d € N and a
d-dimensional linear lexicographic utility function u. Among the possible utility functions we pick
one such that u(e) = 0. Now, by Memorylessness, preferences are either retained when an event e is
prepended to lotteries, or all lotteries become indifferent. We handle the two cases below.

1. If e retains preferences, then the relation (27, A(€*)) is isomorphic to (77, e - A(E*)), implying
that their corresponding utility functions must be related by the uniqueness condition of Theorem 2.
That is, for all 7 € £*, u(e - 7) = Au(r) + b, where A € £2*? and b € R% Let’s name the
corresponding A and b of e as I'(e) and r(e) respectively.

2. If e makes future lotteries indifferent, we must have for all 7 € £*, u(e - 7) = b, where b € R<,
Again, we name the corresponding b of e as r(e) and, to match the format of the previous case, we
let T'(e) be the zero matrix 0.

In summary, for all e € £ and 7 € £*, utilities are of the form
u(e- 1) =r(e)+T'(e)u(r), (22)
where r: € - R?and ' : € — L7 U {0}.

(<) By the lexicographic expected utility theorem (Theorem 2) the relation (5, A(€*)) corresponding
to u satisfies Completeness, Transitivity, and Independence. It remains to show that = satisfies
Memorylessness.

Let e € £. We consider two cases:

1. IfT'(e) = 0, then by Eq. (9), u(e - 7) = r(e) for all 7 € £*, so u(e - p) is constant across all
lotteries p € A(E*), implying e - p & e - ¢ for all lotteries p, q.

2. IfT'(e) € C‘_i._Xd, then for all lotteries p, ¢ € A(E*),

e'pre-q
<= u(e - p) >ex ule - q) (u is a lexicographic utility function)
< r(e) + I'(e)u(p) >1x r(e) + T'(e)u(q) (Eq. (9)
<= u(p) >1ex u(q) (u+— T'(e)u + r(e) preserves >jex)
= pzq. (u is a lexicographic utility function)
In both cases, the preference relation satisfies Memorylessness. O
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D.2 Proof of Theorem 4

Theorem 4 (Discounted Lexicographic Expected Utility Theorem) A relation (75, A(E*)) satisfies
Completeness, Transitivity, Independence, and Temporal ~-Indifference if and only if there exist
d € N, a d-dimensional linear lexicographic utility function uw with u(e) = 0, and rewards
r: & — R such that

u(e-7) =r(e) +yu(r), (10)
foralle € Eand T € E*.

Proof. (=) By the lexicographic expected utility theorem (Theorem 2) there exist d € N and a
d-dimensional linear lexicographic utility function wu. Among the possible utility functions we pick

one such that u(¢) = 0. Now, letting 71 = 7 and 7 = ¢ in Temporal y-Indifference we get that for
alle e £and T € &,

1 Y 1 Y
ﬁ(e.7)+7+1(5)z7+1<e)+7+1(7>

b o) = uf g} N ,
<:>u<’y+1( T)+ +1()>u<7+1(e)+7+1(7)) (u is a utility function)

1 ¥ A
= o u(e-7)+ ? u(e) = mu(e) poare 1u(T) (u is linear)
> ule- 1) = ufe) +yu(r) (u(e) = 0).

If we let 7(e) := u(e), then we have our result.

(<) By the lexicographic expected utility theorem (Theorem 2) the relation (22, A(£*)) corresponding

to u satisfies Completeness, Transitivity, and Independence. It remains to show that =~ satisfies
Temporal v-Indifference.

Foralle € £, 11 € £, 19 € £* we have

1 ¥ 1 Y
7+1u(e) + 7+1(“(71) +u(re)) = ﬁ“( e)+ ﬁ( u(r1) + u(r2))

1 0
<~ ﬁ( (6) + 'YU(Tl)) + ? ( ) ﬁ(u(e) + ’YU/(TQ)) + ﬁu(ﬂ)
1 Y
‘E’?U( )‘f'? u(m) = ﬁu( )‘*‘ﬁu(ﬁ) (Eq. (10))
1 il Y (B S A is 1
e ) e ) e
1 1 . .
‘:’ﬁ( )+j( )Nﬁ(e'ﬁ)‘f‘ﬁ(ﬁ) (u is a utility)
O
D.3 Proof of Lemma 1
Lemma 1. Forall p,q € A(O) and all o, 8 € [0, 1],
[a,p] Z [B,4] <= (a>p)or(a=pBandp q). (12)

Proof. We separate the space of possibilities into three cases:
1. If & > f, then [«, p] has greater probability of avoiding of. By Safety First, this implies
[a, p] = B, 4], hence [a, p] Z [B,q] <= True.
2. If @ = B, then by Independence, [a, p] Z [, q] <= p Z q.
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3. If @ < B, then [a, p] has less probability of avoiding of. By Safety First, this implies
[a, p] < [B.q], hence [a, p] Z [B,q] <= False.
Putting it all together, we get:
[a,p] 72 [B,q] < (a> B and True) or (&« = S and p = q) or (o < [ and False).

This proves the desired equivalence. O

D.4 Proof of Theorem 5

Theorem 5 (Lexicographic Expected Utility Theorem with a Single Unsafe Utility) A relation
(7, A(O)) satisfies Assumption I if and only if there exist a linear utility function u' : A(Ogafe) —
R for (=, A(Ogate)) and a 2-dimensional linear lexicographic utility function u : A(O) — R?

such that for all o € O,
{(07 ’U,/(O)) (iS Osafea

ulo) = (—1,0) oxol.

13)

Moreover, u is unique up to transformations of the form u — Au + b, where A € Ei“ and

b e R2

Proof. Given that v’ is linear, we uniquely extend Eq. (13) into a linear utility function on the entire
domain. For all p € A(Ogate) and « € [0, 1],

u([a,p]) = (a - 1,au'(p)). (23)

(=) The relation (>, A(Osate)) satisfies the VNM axioms so the vNM theorem implies the existence
of a linear utility function u’. Showing that the function u of Eq. (23) is a linear lexicographic utility
function is a simple application of Lemma 1.

(<) Tt is straightforward to check that preferences induced by the given u satisfy axioms in the way
described in the theorem.

Uniqueness: Let o™ = 0~ be a best and worst outcome in A(Og,z.) respectively. Specifying
the utility of 0~, o™, and o' uniquely specifies the entire utility function. There are 5 degrees of
freedom because we must have u; (07) = uji(0™). These 5 degrees of freedom correspond to the
5 degrees of freedom in A and b. Positivity of the diagonal of A stems from the requirements that
ug(0t) > uz(07) and ui(0™) > wuy(of). It is not hard to verify that Au + b is a also a linear
lexicographic utility function for (27, A(O)). O

D.5 Proof of Theorem 6

Theorem 6 (Sequential Lexicographic Expected Utility Theorem with a Single Unsafe Utility) A
relation (72, A(E*)) satisfies Assumption 1 and Memorylessness if and only if there exist rewards
r : &€ — R, reward multipliers v : £ — Ry, and 2-dimensional linear lexicographic utility
function u : A(E*) — R? satisfying u(e) = 0 and
(0,7(e)) € € Eerm — &1
u(e-7) =4 (—1,0) eec &l (14)
(ur (1), (L 4+ ui(7))r(e) + y(e)ua(T)) otherwise

for all events e € £ and sequences of events T € £*.
Proof. By Theorem 5 there exists a 2-dimensional linear utility function u : £* — R? where the

utility of any event that is indifferent to of is (—1, 0) and the utility of every other event is in {0} x R.
WeletU .= {(—1,0)} U ({0} x R) be this set of possible utilities.

By Theorem 3, there exist rewards 7 : & — R? and reward multipliers T : & — £2*% U {0} such
that u(e) = 0 and, foralle € £, 7 € £*, utilities are of the form

ul(e- 1) =r(e) + f(e)u(r). (24)
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Additionally, for all z € U, e € £, we must have
7(e) +T(e)x € U. (25)

Eq. (25) puts a constraint on 7 and I. Letting = (0, 0) we conclude that 7(e) € U. If T'(e) # 0 (e
is non-terminal), then letting z = (—1,0) we get 7 (¢) — IT'1.1(e) € {—1,0}. Since I'; 1 (€) > 0 we
conclude that 71 (e) — I'; 1 (e) = —1, 71 (e) = 0, and T'; ; (¢) = 1. Consequently, we must have that
Fa(e) — Ta.1(e) = 0, or equivalently, 'y 1 (€) = 72(e) for non-terminal events.

Finally, letting y(e) := I’y »(e) and r(e) = 71 (e) we get the desired result. O

D.6 Proof of Theorem 7

Theorem 7 (Fundamental Theorem of LMDPs) For every finite LMDP satisfying Assump-
tion 2, a policy m : § — A is uniformly optimal if and only if it is greedy w.r.t. Q*, that is,
Eqr(s)[Q*(5,a)] = lex max, Q*(s,a) forall s € S.

Proof. The proof relies on the fundamental theorem of MDPs (Theorem 8). Let QT be the first
dimension of the Q-value function under policy 7 and let Q7 (s, a) = max, Q7 (s, a) for all s, a.
This maximum exists since QT is bounded (due to I'; ; () < 1) and the space of policies of a finite
MDP is compact. The fundamental theorem of MDPs says that a policy 7* is uniformly optimal
if and only if it is greedy w.r.t. QF, that is, 7*(s) € A(argmax, Q%(s,a)). These policies are
essentially restricted to choosing an action from a restricted set of actions at each state given by
argmax, Q7 (s, a). We can therefore imagine a smaller MDP with this restricted action set at each
state. All policies of this MDP are optimal w.r.t. the first dimension of utility.

By Theorem 3, the second dimension of utility satisfies ua(e - 7) = r2(e) + Iaq(e)ui(r) +
Iy 2(e)uz(r). Since all policies in this MDP are optimal w.r.t. the first dimension of utility,
E,[u1(7) | s,a] is fixed and equal to E[V}*(s") | s, a] for all policies 7 of the second MDP. This fixed
value can be placed into the reward function without affecting Q5. As a result, the second MDP can
be viewed as a scalar MDP with the following reward: ro(e) + 'z 1 (e)E[V*(s') | s, a].

Since the space of policies of this smaller MDP is a compact subset of the original space of policies
and I'; 2(e) < 1, we can again invoke the fundamental theorem of MDPs for (5. We continue like
this for all d dimensions of utility. The Q-value of the final space of optimal policies is (Q7, ..., Q%)
which lexicographically dominates all Q™ and is thus uniformly optimal. O
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