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Abstract

Twitter bot detection is an important and mean-
ingful task. Existing bot detection methods use
either text modality to detect bots with anoma-
lies in tweet patterns or graph modality to de-
tect bots with abnormal clustering information.
They do not allow text and graph modalities to
interact with each other, which fails to learn the
relative importance of the two modalities. As
a result, these methods struggle to detect bots
comprehensively. Besides, existing methods
ignore the potential consistency within users’
semantic information. In this paper, we pro-
pose a novel model named BIC that makes the
text and graph modalities interactive. BIC also
detects semantic consistency within tweet con-
tent. Specifically, BIC contains a text propaga-
tion module to learn text information, a graph
propagation module to learn neighborhood in-
formation, and a text-graph interactive module
to make the two interact. Besides, BIC con-
tains a semantic consistency detection module
to learn semantic consistency information from
tweets. Extensive experiments demonstrate that
our framework outperforms competitive base-
lines on a comprehensive Twitter bot bench-
mark. We also prove the effectiveness of the
proposed interaction and semantic consistency
detection.

1 Introduction

Twitter is a popular social media platform with
enormous registered users from all over the world.
However, where there is prosperity, there is dark-
ness. Millions of Twitter bots try to sneak into
genuine users in disguise. Twitter bots are con-
trolled by automated programs and manipulated to
pursue malicious goals such as spreading misin-
formation (Cresci, 2020) and conducting extreme
propaganda (Berger and Morgan, 2015). In such a
case, great efforts have been devoted to counteract-
ing the Twitter bots.

Early works in Twitter bot detection primarily fo-
cused on feature engineering. A variety of feature
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Figure 1: (a) Two kinds of defective models leveraging
different modalities. T’ refers to tweet and LM refers to
language model. (b) The semantic consistency charac-
teristics of the Twitter bot and genuine human.

categories were taken into consideration with tra-
ditional machine learning algorithms: (i) features
derived from user tweets (Cresci et al., 2016); (ii)
user metadata features (Yang et al., 2020; Miller
etal., 2014; D’ Andrea et al., 2015); (iii) features ex-
tracted from neighborhood information (Yang et al.,
2013). Due to the subjectivity of feature engineer-
ing methods, methods based on neural networks
began to take the stage. Recurrent neural network
was utilized to improve the performance, Wei and
Nguyen (2019) adopted long short-term memory
and Kudugunta and Ferrara (2018) combined fea-
ture engineering and neural network to detect bots
with user’s semantic information. Graph neural
networks brought detection capability to a higher
level. Ali Alhosseini et al. (2019) adopted graph
convolutional networks for bot detection. Feng et al.
(2021a) constructed a graph that leveraged rela-
tion and influence heterogeneity. Besides, heuristic
methods were proposed, among which comprehen-
sive anomaly detection (Miller et al., 2014) and



methods encoding tweets to string (Cresci et al.,
2016) were representative. Self-supervised learn-
ing was also introduced to deal with bot evolution
issue (Feng et al., 2021b).

Nevertheless, existing methods either leverage
text modality or graph modality, which fails to
consider both the important information from two
modalities and make them interact rationally. As
a result, they may be not enough in detecting all
kinds of Twitter bots with anomalies in different
aspects. The characteristics of two kinds of de-
fective models leveraging different modalities are
represented in Figure 1(a). Moreover, insufficient
interaction such as simply averaging the two modal-
ities may be unable to perceive the emphasis of two
modalities for a user, therefore it could also not
detect bots comprehensively.

Besides, existing methods fail to combat today’s
advanced Twitter bots which make all efforts to
imitate humans by posting normal tweets similar
to that of humans. However, these Twitter bots still
attempt to send some malicious tweets for some
purpose occasionally. Therefore, they lack some co-
herence and consistency within their overall tweet
content, which has not been considered by existing
methods. We illustrate the semantic consistency
issue in Figure 1(b).

In this paper, we propose a framework BIC (Twit-
ter Bot Detection with Text-Graph Interaction and
Semantic Consistency) to leverage both informa-
tion from two modalities with rational interaction
and detect the coherence of tweet content. Specifi-
cally, BIC adopts text propagation module to tackle
user’s semantic information from tweets and de-
scription. BIC adopts graph propagation module
to fully propagate user neighborhood information.
BIC also contains an interactive module which gen-
erates deep link and fuses information between the
two modules. The interactive module selects two
interactive representations from two modalities to
exchange information and is based on similarity to
consider the relative importance of two modalities.
Besides, BIC contains a semantic consistency de-
tection module which can monitor user’s abnormal
tweet content leveraging attention weights for bet-
ter detecting bots with inconsistent tweets. Finally,
we aggregate all modules and conduct Twitter bot
detection. Our main contributions are summarized
as follows:

* We propose a model BIC, which leverages both
text and graph modalities of users’ information,

with a similarity-based interactive model deeply
linking the two modalities by interactive repre-
sentations. BIC could learn the relative impor-
tance of modality and detect a bot more compre-
hensively.

* We propose a semantic consistency detection
module which can dig deeply into user seman-
tic information and monitor discordance and in-
consistency within massive tweets, therefore can
detect advanced bots that imitates humans.

* We conduct extensive experiments on a compre-
hensive dataset. The results demonstrate that
our model outperforms state-of-the-art methods.
Further analysis also bears out the effectiveness
of our proposed interactive model and semantic
consistency detection model.

2 Related Work

2.1 Twitter-bot Detection

Feature-based Methods. Traditional methods
mainly focused on feature engineering and adopted
classifiers of machine learning methods. A diver-
sity of features were leveraged to detect bots, in-
cluding user tweet features (Cresci et al., 2016),
user profile features (Yang et al., 2020), and other
features extracted from metadata (Miller et al.,
2014).

Text-based Methods. With the boom in neu-
ral network, bot detection methods based on
deep learning sprang up. Wei and Nguyen (2019)
adopted recurrent neural network to capture tweet
features. Kudugunta and Ferrara (2018) applied
LSTM to features in different levels. Stanton and
Irissappane (2019) proposed to leverage generative
adversarial networks to detect spam bots. Feng et al.
(2021b) construct a self-supervised representation
learning task by learning on a sequence of user fea-
tures and conduct bot detection with fine-tuning.

Graph-based Methods. Apart from text-based
neural networks, graph neural networks are also
utilized to improve the Twitter bot detectors. Ali Al-
hosseini et al. (2019) used convolutional graph net-
works for bot detection. Feng et al. (2021d) con-
structed a heterogeneous graph network for bot
detection while Feng et al. (2021a) improved the
heterogeneity with additional relations.

In this paper, we build on these works and pro-
pose a modality-interactive bot detector which
leverage both advantages of two structures. We



also propose to detect anomalous behaviour pattern
in a user’s semantic information.

2.2 Text-Graph Interaction in NLP

Text-graph interaction was widely used in the area
of NLP. In the problem of knowledge-guided ques-
tion answering, it is necessary to leverage both the
text modality and knowledge graph modality. Early
works simply aggregated the two modalities with-
out interaction (Mihaylov and Frank, 2018). Later
works only allowed two modalities to interact in a
shallow way. Typically, they put one modality to
another modality as an add-on (Feng et al., 2020;
Wang et al., 2019; Lin et al., 2019; Yang et al.,
2019a; Lv et al., 2020), learned implicit modal-
ity information from another one (Bosselut et al.,
2019; Petroni et al., 2019; Hwang et al., 2020),
or jointly learned information from two modali-
ties with GNN (Yasunaga et al., 2021). Recently,
GreaseLM (Zhang et al., 2022) proposed a model
to interact two modalities between layers by inter-
active nodes, in which truly deep interaction was
achieved. In this paper, We propose a framework
inspired by GreaseLM and conduct bot detection
with the help of modality interaction.

3 Problem Definition

In the task of bot detection, we might get mul-
tiple information from a user. In this paper, we
leverage a user’s description and tweets for text
modules. B = {b;}£_, denotes a user’s description
with L words. S = {s;}1_, denotes a users tweets
with each tweet s; = {w},---,w, } containing
@; words. For graph modules, user metadata fea-
ture sets are taken into account: numerical and cate-
gorical features, where P = { P™“™ P} denote
a user’s numerical and categorical user property
sets. A user’s neighbor set with .J neighbors is de-
noted by N = {ny,--- ,ns}. We feed these user
information B, S, P, N into our model and derive
the prediction labels.

4 Methodology

Figure 2 displays an overview of our proposed
framework named BIC. BIC consists of M layers,
where each layer has two components: (i) modality
interact, (ii) semantic consistency detection, while
the first component contains three modules : text
propagation module, graph propagation module,
and text-graph interactive module.

4.1 Modality Interact

4.1.1 Text Propagation Module

For each layer in text propagation module, we feed
text representations to a language model which will
learn the semantic information and update the inter-
acted information from interactive representations
to other representations, i.e.,
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where LM refers to the language model, hgfltl)
denotes interactive representation of text modal-
ity in the (I-1)-th layer, and {hgl_l)}g;l denotes
other representations of text modality in the (I-1)-
th layer. To thoroughly mine the user’s content
information, we adopt transformer (Vaswani et al.,
2017) to serve as text module for each layer.

For the first layer, we firstly use RoBERTa (Liu
et al., 2019) pre-trained encoding model to encode
user description BB and gain a user’s initial embed-
ding for description hgg)t which will be used as inter-
active representation. We then send the user tweets
S = {s;}_, respectively to RoOBERTa encoding
model and derive the initial tweets embedding sets
{hl(o) L |. Finally, the initial representations are
fed into the first text propagation module.

4.1.2 Graph Propagation Module

For each layer in graph module, graph representa-
tions are firstly fed into a GNN layer to dissemi-
nate information between a user and its neighbors,
where interacted information is also updated for
the neighbors, i.e.,

(g g = aNN({gl D oYU,
forl=1,--- M,

(2

where gg;l) denotes a user’s interactive representa-

tions of graph modality in the ({-1)-th layer, while
{ gglfl) }7_, denotes neighbor representations in
the (I-1)-th layer. Since GCN (Kipf and Welling,
2016) is a widely used model with excellent perfor-
mance, we use GCN as the graph neural network.
A multi-head attention layer is then used for up-
dating its neighborhood information with attention

weights for the user, i.e.,

= ~(l NOENG N
(GGt 135} = Att{gl. a1 79”(}53;
for! = 1,--- , M, where Att denotes multi-head
attention.
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Figure 2: Overview of our proposed framework BIC. In the consistency matrix, brighter colors. Mul refers to the

operation in Equation (7).

For the first layer, we adopt the same user fea-
ture encoding procedures as Feng et al. (2021d).
We conduct z-score normalization and obtain rep-
resentation of a user’s numerical properties P™*™
and categorical properties P°**. We aggregate all
diversities of user feature representations to gen—

erate user initial embeddings { gi(gl):, g%o), .95 )}
for graph modality, where 91(21)‘, denotes a user’s
initial feature embedding which will be used as
interactive representations, while { ggo)};.le are ini-
tial feature embeddings of the user’s J neighbors.
The initial representations are then fed into the first
graph module.

4.1.3 Text-Graph Interactive Module

Text-graph interactive module learns the relative
importance of the two modalities and fuses infor-
mation between two specially selected interactive
representations, i.e.,

(g, h) = Int (310, hG),), )

where Int refers to interactive function. Specifi-
cally, we firstly calculate the similarity coefficient
between the two representations and themselves.
In this paper, we adopt dot product to serve as sim-

ilarity function, i.e.,

Whh = Bz(qlm)t ® (61 - Eg'fz)t)v

= hz(n)t ® ~Z(Qt7
() ) ®)
= gmt ® (9 gm )
Wgh = gz(fl)t ® hgn)t’

where 01 and 65 are learnable parameters and ®
denotes dot product. We then apply softmax and
derive final similarity weights, i.e.,

Whh ﬁ)hg = Softmax(whh, whg), ©)

Wgg, Wqp, = softmax(wgg, wgn).

We then interact the two representations with the
help of derived similarity weights, i.e.,

0 = il + )
(

h nt? (7)
gm)t = wgggi(n)t + wghhz(n)t’

— i)

By similarity weights, the relative importance of
text and graph modalities is learned. After an in-
teractive module layer, the interactive representa-

@ @

tions h;,, and g 1y concatenated respectively with

user tweets {h }T , and neighbor nodes {g; )}
are fed into the next layer, where h( ) = h( ) d

(l) g( ) are not involved in the interactive layer.



The text propagation module and graph propaga-
tion module right after the interactive layer allow
information received by the interactive representa-
tion from one modality to another modality, making
interaction between the two modalities deeper.

4.2 Semantic Consistency Detection

Since attention weights from transformer could in-
dicate the correlations and consistency between
tweets, we adopt attention weights for semantic
consistency detection. From each model layer,
we pull out the attention weights from the trans-
former in language model to construct a matrix
M e RIFDX(T+1) which stores the coherence
information between tweets of a user. When a user
posts tweets with abnormal patterns and inconsis-
tent content, some anomaly will display in the ma-
trix composed of attention weights. To leverage the
consistency information in a better way, we firstly
implement max-pooling to derive a fixed-size ma-
trix, i.e.,

M = Fixed-size-pooling(M), M € REXK
®)
where K is a hyperparameter; Fixed-size-pooling
denotes pooling with fixed-size matrix as result.
For better usage of neural networks in the follow-
ing part, we then flatten the matrix to generate
consistency vector, i.e.,

d = Flatten(M), d € RE*¥1, 9)

For each layer, we have one consistency vector
and aggregate them to derive the final consistency
vector, denoted by

d=o(Wp - Concat({d;},) + bp), d € RP*!,
4.3 Training and Inference

We aggregate outputs from text propagation mod-
ule and graph propagation module of the final layer
and consistency vector to derive the final feature
representation of a single user by

d = Wp - Concat(d, h(M),g(M)) +bp. (10)

The final feature representation is later sent into
a MLP and softmax layer to derive the prediction

score 1, i.e.,
§ = softmax(Wo - d + bo). (11)

We optimize the model end to end using the
Cross Entropy Loss between prediction score and
the ground truth label, i.e.,

Loss = — > iy lwilog(gi) + (1 —yi) log(1 — 4)] + A3 ,c0 w?,

where Y denotes all users in the training set, 6 de-
notes all training parameters, y; denotes the ground-
truth label and A is a regular coefficient. At in-
ference time, we predict the most possible label
according to the prediction score.

We present BIC implementation details and hy-
perparameter settings in Appendix A.

S Experiments

In the experiment section, we conduct comprehen-
sive experiments with in-depth analysis.

5.1 Experiments Settings
5.1.1 Dataset

In this paper, we conduct our experiments on
TwiBot-20 (Feng et al., 2021c), a comprehensive
Twitter bot detection benchmark which includes
229,580 Twitter users, 33,488,192 tweets, and
8,723,736 user property items. This dataset almost
covers all varieties of bots in social networks and
is the only high-quality Twitter bot dataset with
graph information, thus our methods can be proved
to be applicable to diverse social bots. We fol-
low the same splits provided in the benchmark so
that the results are directly comparable with previ-
ous works. More datasets Cresci-17 (Cresci et al.,
2017), botometer-feedback-19 (Yang et al., 2019b)
are also adopted for evaluation in previous works,
they do not provide the graph information to sup-
port our approach and state-of-the-art baselines.

5.1.2 Baselines
We compare BIC with the following methods:

* Lee et al. (Lee et al., 2011) adopt random forest
classifier with several Twitter user features. e.g.
the longevity of the account.

e Miller ef al. (Miller et al., 2014) extract 107 fea-
tures from a user’s tweet and metadata and con-
duct Twitter bot detection as anomaly detection.

* Cresci et al. (Cresci et al., 2016) utilize strings
to encode the sequence of a user online activity.

* Botometer (Davis et al., 2016) is a publicly avail-
able service for bot detection that leverages more
than one thousand features.

* SATAR (Feng et al., 2021b) constructs a self-
supervised representation learning task by jointly
learning on a range of user features. It then clas-
sifies bots with fine-tuning.



Table 1: Bot detection performance on TwiBot-20 benchmark. For each method except for Cresci ef al. and
Botometer which have fixed results, we run 5 times to derive averaged metrics and the corresponding standard

deviations.

Method Text Graph Modality-Int | Accuracy | Fl-score | Precision |  Recall

Lee et dl. 77.36 (+£0.53) | 79.98 (£0.50) | 76.60 (£0.37) | 83.66 (£0.69)
Yang et al. 81.64 (£0.46) | 84.89 (+0.42) | 76.40 (£0.40) | 94.91 (+0.69)
Cresci et al. 47.76 13.69 7.66 64.47

Miller et al. 64.50 (£0.35) | 74.81 (£0.26) | 60.71 (£0.20) | 97.44 (£0.47)
Botometer 53.09 55.13 55.67 50.82

SATAR v 84.02 (£0.85) | 86.07 (£0.70) | 81.50 (£1.45) | 91.22 (+1.82)
Kudugunta eral. v 59.59 (£0.65) | 47.26 (£1.35) | 80.40 (£0.60) | 33.47 (£1.30)
Wei et al. v 70.23 (£0.10) | 53.61 (£0.10) | 62.74 (+£0.10) | 46.83 (£0.20)
BotRGCN v 83.27 (£0.57) | 85.26 (£0.38) | 81.39 (£1.18) | 89.53 (£0.88)
Alhossini et al. v 59.92 (£0.68) | 72.09 (£0.54) | 57.83 (£0.49) | 95.72 (£2.16)
RGT v 86.57 (£0.41) | 88.01 (£0.41) | 85.15 (+0.28) | 91.06 (£0.80)
BIC text-only v 77.63 (£0.62) | 79.00 (£0.57) | 78.01 (£1.94) | 80.41 (£1.08)
BIC graph-only v 85.46 (£0.85) | 87.27 (£0.56) | 83.64 (£3.33) | 91.51 (£4.03)
BIC VY v 87.37 (£0.18) | 88.83 (£0.33) | 85.20 (£1.43) | 92.84 (£2.26)

» Kugugunta et al. (Kudugunta and Ferrara, 2018)
propose an architecture that jointly leverages a
user’s tweets and property information.

Wei et al. (Wei and Nguyen, 2019) propose a bot
detection model with a three-layer BiLSTM to
encode tweets.

* Alhosseini ef al. (Ali Alhosseini et al., 2019)
utilize graph convolutional network to learn user
representations and classify bots.

BotRGCN (Feng et al.,, 2021d) constructs a
framework based on relational graph convolu-
tional network jointly leveraging user tweets and
three kinds of metadata.

* Yang et al. (Yang et al., 2020) adopt random
forest with account metadata for bot detection.

RGT (Feng et al., 2021a) leverages relation and
influence heterogeneous graph network to con-
duct bot detection.

5.2 Experiment Results

Overall Model Analysis. To better grasp the
difference of each method and show the innova-
tion points of our model, we firstly evaluate each
method by modalities which they use. The eval-
uation details are presented in Appendix B. We
then present the performance of each method on
the benchmark of Twibot-20. The result in Table 1
demonstrates that:

* BIC consistently outperforms all methods includ-
ing state-of-art methods RGT (Feng et al., 2021a)

with relative 0.9% improvement of accuracy and
f1-score on the comprehensive and representative
dataset TwiBot-20.

* BIC outperforms state-of-art text modality-based
model SATAR (Feng et al., 2021b) by 4.0%
and state-of-art graph modality-based model
RGT (Feng et al., 2021b) by 0.9% in accuracy,
which bears out the effectiveness of both leverag-
ing two modalities.

In Table 1, Text, Graph, Modality-Int respec-
tively denote whether method leverages text modal-
ity, graph modality and modality interaction.

Modality Effectiveness Study. To further verify
the effectiveness of the aggregation of both text
modality and graphic modality, we remove one
of them and conduct bot detection with the rest
of the model. In Table 1, BIC text-only and BIC
graph-only respectively denote models with only
text modality and only graph modality. The re-
sults illustrate that both modalities perform worse
than our proposed model. To be specific, remov-
ing either text modality or graph modality indeed
hampers the model’s ability to consider all kinds
of information, thus declining the overall perfor-
mance. We also find that model with only text
modality performs worse than model with only
graph modality by approximately 9%. One reason
may be that more information can be learned in the
graph modality and graph modality plays a more
important role for detecting most of the bots.



Table 2: Performance of model with different interactive
strategies.

Strategy | Accuracy | Fl-score | Precision | Recall

Ours | 8737 | 8883 | 8520 | 92.84
No Interact |  85.97 87.42 84.85 | 90.16
Average 86.64 88.15 84.72 | 91.87
MLP 86.98 88.44 85.12 | 92.03
Text 78.53 79.52 82.17 | 77.03
Graph 86.30 87.65 85.56 | 89.84

5.3 Text-Graph Interaction Study

In this paper, we propose a similarity-based modal-
ity interactive model which has been elaborated
in Section 4.1.3. To verify the effectiveness of
our similarity-based modality interactive model,
we compare it with methods without modality in-
teraction and other possible models with differ-
ent modality interactive strategies: Average, MLP,
Text, and Graph. These modality interactive strate-
gies are presented in details in Appendix C. It is
illustrated in Table 2 that:

¢ Our similarity-based modality interactive strat-
egy outperforms others all, which well confirmed
the efficacy of our proposed module, indicating
that it can learn the relative importance of modal-
ities.

* Text modality interactive strategy performs
worse than other strategies, while it performs
better than model with only text modality, which
is probably because roughly replacing the graph
interactive embedding with text interactive em-
bedding hampers the previously learned neigh-
borhood information but retains the semantic in-
formation. In contrast, Graph modality interac-
tive strategy performs better, which indicates the
higher importance of the graph modality for de-
tecting most of bots.

¢ MLP modality interactive strategy performs bet-
ter than Average modality interactive strategy,
which indicates the neural network-based strat-
egy can learn a little emphasis on modalities.

5.4 Semantic Consistency Study

To prove the effectiveness of leveraging semantic
consistency, we experiment with three different set-
tings of two-layer model: no semantic consistency
detection, semantic consistency detection only in
the first model layer, and semantic consistency de-
tection only in the second model layer. The result
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Figure 3: Performance of our model with different set-
tings of considering semantic consistency. None means
no semantic consistency detection, First and Second
mean adopting consistency detection in the first and the
second model layers.

is shown in the Figure 3. It is illustrated that no
consistency detection performs the worst, while
consistency detection in the first layer and second
layer neck and neck, indicating the inconsistency
of bots’ tweet content can be detected in both lay-
ers. All of them are inferior to the whole model,
in which the effectiveness of semantic consistency
detection is proved.

To better comprehend the effectiveness of the se-
mantic consistency of users, we select one typical
Twitter bot and typical genuine user and visual-
ize their consistency matrix consisting of attention
weights of the first and the second layer. From
the Figure 4, in the first layer, although there is
still slight discordance in human tweet content, the
bot’s tweets show much greater inconsistency. And
in the second layer, except for the first line of the
graph, more inconsistency exists in bot. And the
anomaly in the first line may be the result of modal-
ity interaction.

5.5 Model Layer Study

To find out how many layers of our model have the
best performance, We conduct experiments with
different model layers. The results in Figure 5
demonstrate that the two-layer model performs the
best over other layer settings. When the number of
layers increases, the performance decline gradually,
which may be caused by higher complexity increas-
ing the training difficulty. Besides, the two-layer
model has less time and memory cost, which makes
it the best selection. Specifically, it outperforms
the second-best three-layer model in accuracy by
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88.0
g 875 87437 87,32
3
v} 08
£87.0 | ge 8l
86.5
1 2 3 4 5
89.5
(9]
5 89.0 8883
o 69
I 885 | gg 3 882
88.0
1 2 3 4 5
Layers

Figure 5: Performance of different model layers.

0.06%, and f1-score by 0.16%, while it costs much
less time by 37% and less GPU memory by 11%.

5.6 Case Study

To further analyze how our proposed model lever-
ages information from two modalities to identify
bots, we study a specific case from bot sets. We
firstly find some tweets and neighbors of the bot
with attention weights. The attention weights from
multiple layers are averaged to one. We then re-
trieve similarity weights in Equation (5) to quan-
titatively analyze it. From the detailed user infor-
mation displayed in the Figure 6, we discovered
that, neighborhood information is learned more,
due to more difference in attention weights of the
selected bot’s bot neighbors and human neighbors
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Figure 6: A sample bot with its similarity weights inside
the box in the middle. On the left are its tweets with
attention weights from transformer in text propagation
module, on the right are its neighbors with attention
weights from multi-head attention in graph propagation
module.

than attention weights of tweets. The conclusion is
also reflected in similarity weights. The similarity
weights of original interactive representation from
text modality are O and 0.051, while the similarity
weights of original interactive representation from
graph modality are 1 and 0.049. The results fur-
ther display the effectiveness of similarity-based
interaction that it indeed learns the emphasis on
modalities.

6 Conclusion

Twitter bot detection is a challenging task with
increasing importance. To conduct a more compre-
hensive bot detection, we proposed a bot-detection
model named BIC based on both graph and text
modalities, which leverages the graph neural net-
work and language model in parallel. BIC also con-
tains a similarity-based interactive module leverag-
ing two interactive representations, which learns
the relative importance of two modalities. BIC also
adopts attention weights from language model to
create consistency vectors for semantic consistency
detection. We conducted extensive experiments
on a comprehensive benchmark to demonstrate the
efficacy of our model in comparison to competitive
baselines. Further experiments also bear out the
effectiveness of modality interaction and semantic
consistency detection. In the future, we plan to
explore better interactive approaches to conduct a
more comprehensive bot detection.



7 Limitations

In this paper, we proposed a model named BIC
make the text modality and graph modality interact
and detect the semantic consistency. However, our
proposed model has two minor limitations:

* We only leverage semantic and graph modalities.
However, other diversities of useful modalities
are not taken into consideration, within which
user image might greatly promote the ability to
detect Twitter bots.

* Since Twibot-20 is the only high-quality Twitter
bot dataset with graph information, we conduct
experiments only on this benchmark. However,
experiments on more datasets might be more per-
vasive, which might be possible in the future.
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A Implementation Details

We implement our framework with pytorch (Paszke
et al., 2019), pytorch geometric (Fey and Lenssen,
2019), and the transformer library from hugging-
face (Wolf et al., 2019). We limit each user’s tweet
number to 200, and for those who have posted
fewer tweets, we bring their initial embeddings
up to full strength with vectors made up of all ze-
ros. Our implementation is publicly available on
GitHub'.

A.1 Hyperparamter Setting

Table 3 presents the hyperparameter settings of
BIC. For early stopping, we utilize the package
provided by Bjarten”.

Table 3: Hyperparameter settings of our model.

Hyperparameter Value
model layer count M 2
graph module input size 768
graph module hidden size 768
text module input size 768
text module hidden size 768
epoch 30
early stop epoch 10
batch size 64
dropout 0.5
learning rate le-4
L2 regularization le-5
Ir_scheduler_patience 5
Ir_scheduler_step 0.1
Optimizer RAdamW

A.2 Computation

Our proposed method totally has 4.2M learnable
parameters and 0.92 FLOPs? with hyperparame-
ters presented in Table 3. Our implementation is
trained on an NVIDIA GeForce RTX 3090 GPU
with 24GB memory, which takes approximately
0.06 GPU hours for training an epoch.

B Evaluation Details

We elaborate the evaluation of our baselines here.
For methods without semantic and graph modali-
ties. Lee et al. (2011) adopt random forest classi-
fier with Twitter bot features. Yang et al. (2020)

"https://anonymous.4open.science/r/BIC-FB63/
Zhttps://github.com/Bjarten/early-stopping-pytorch
3https://github.com/Lyken17/pytorch-OpCounter
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adopt random forest with minimal account meta-
data. Miller et al. (2014) extract 107 features from
a user’s tweet and metadata. Cresci et al. (2016)
encode the sequence of a user online activity with
strings. Botometer (Davis et al., 2016) leverages
more than one thousand features. All of them
extract Twitter bot features, without dealing with
these features in graph modality or text modality.

For methods with only text modality, SA-
TAR (Feng et al., 2021b) leverages LSTM for its
tweet-semantic sub-network. Kudugunta and Fer-
rara (2018) adopt deep neural networks for tack-
ling user tweets. Wei and Nguyen (2019) propose
a model with a three-layer BILSTM. All of them
deal with user information in text modalities.

For methods with only graph modality,
BotRGCN (Feng et al., 2021d) utilizes relational
graph convolutional network in its proposed frame-
work. Ali Alhosseini et al. (2019) adopt graph
convolutional network to learn user representations
and classify bots. RGT (Feng et al., 2021a) lever-
ages heterogeneous graph network to conduct bot
detection. All of them deal with user information
in graph modalities.

C Modality Interactive Strategy

Different modality interactive strategies are item-
ized here:

* Average Modality Interactive Strategy com-
putes the average of two interactive embeddings
to derive two new interactive embeddings.

 MLP Modality Interactive Strategy concate-
nates two interactive embeddings and feeds the
intermediate into one MLP layer. The result is
then split into two new interactive embeddings.

» Text Modality Interactive Strategy feeds the
interactive embedding from text modality into
two different Linear layers to generate new inter-
active embeddings of both modalities.

¢ Graph Modality Interactive Strategy feeds the
interactive embedding from graph modality into
two different Linear layers to generate new inter-
active embeddings of both modalities.
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