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Abstract

Twitter bot detection is an important and mean-001
ingful task. Existing bot detection methods use002
either text modality to detect bots with anoma-003
lies in tweet patterns or graph modality to de-004
tect bots with abnormal clustering information.005
They do not allow text and graph modalities to006
interact with each other, which fails to learn the007
relative importance of the two modalities. As008
a result, these methods struggle to detect bots009
comprehensively. Besides, existing methods010
ignore the potential consistency within users’011
semantic information. In this paper, we pro-012
pose a novel model named BIC that makes the013
text and graph modalities interactive. BIC also014
detects semantic consistency within tweet con-015
tent. Specifically, BIC contains a text propaga-016
tion module to learn text information, a graph017
propagation module to learn neighborhood in-018
formation, and a text-graph interactive module019
to make the two interact. Besides, BIC con-020
tains a semantic consistency detection module021
to learn semantic consistency information from022
tweets. Extensive experiments demonstrate that023
our framework outperforms competitive base-024
lines on a comprehensive Twitter bot bench-025
mark. We also prove the effectiveness of the026
proposed interaction and semantic consistency027
detection.028

1 Introduction029

Twitter is a popular social media platform with030

enormous registered users from all over the world.031

However, where there is prosperity, there is dark-032

ness. Millions of Twitter bots try to sneak into033

genuine users in disguise. Twitter bots are con-034

trolled by automated programs and manipulated to035

pursue malicious goals such as spreading misin-036

formation (Cresci, 2020) and conducting extreme037

propaganda (Berger and Morgan, 2015). In such a038

case, great efforts have been devoted to counteract-039

ing the Twitter bots.040

Early works in Twitter bot detection primarily fo-041

cused on feature engineering. A variety of feature042

Figure 1: (a) Two kinds of defective models leveraging
different modalities. T refers to tweet and LM refers to
language model. (b) The semantic consistency charac-
teristics of the Twitter bot and genuine human.

categories were taken into consideration with tra- 043

ditional machine learning algorithms: (i) features 044

derived from user tweets (Cresci et al., 2016); (ii) 045

user metadata features (Yang et al., 2020; Miller 046

et al., 2014; D’Andrea et al., 2015); (iii) features ex- 047

tracted from neighborhood information (Yang et al., 048

2013). Due to the subjectivity of feature engineer- 049

ing methods, methods based on neural networks 050

began to take the stage. Recurrent neural network 051

was utilized to improve the performance, Wei and 052

Nguyen (2019) adopted long short-term memory 053

and Kudugunta and Ferrara (2018) combined fea- 054

ture engineering and neural network to detect bots 055

with user’s semantic information. Graph neural 056

networks brought detection capability to a higher 057

level. Ali Alhosseini et al. (2019) adopted graph 058

convolutional networks for bot detection. Feng et al. 059

(2021a) constructed a graph that leveraged rela- 060

tion and influence heterogeneity. Besides, heuristic 061

methods were proposed, among which comprehen- 062

sive anomaly detection (Miller et al., 2014) and 063
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methods encoding tweets to string (Cresci et al.,064

2016) were representative. Self-supervised learn-065

ing was also introduced to deal with bot evolution066

issue (Feng et al., 2021b).067

Nevertheless, existing methods either leverage068

text modality or graph modality, which fails to069

consider both the important information from two070

modalities and make them interact rationally. As071

a result, they may be not enough in detecting all072

kinds of Twitter bots with anomalies in different073

aspects. The characteristics of two kinds of de-074

fective models leveraging different modalities are075

represented in Figure 1(a). Moreover, insufficient076

interaction such as simply averaging the two modal-077

ities may be unable to perceive the emphasis of two078

modalities for a user, therefore it could also not079

detect bots comprehensively.080

Besides, existing methods fail to combat today’s081

advanced Twitter bots which make all efforts to082

imitate humans by posting normal tweets similar083

to that of humans. However, these Twitter bots still084

attempt to send some malicious tweets for some085

purpose occasionally. Therefore, they lack some co-086

herence and consistency within their overall tweet087

content, which has not been considered by existing088

methods. We illustrate the semantic consistency089

issue in Figure 1(b).090

In this paper, we propose a framework BIC (Twit-091

ter Bot Detection with Text-Graph Interaction and092

Semantic Consistency) to leverage both informa-093

tion from two modalities with rational interaction094

and detect the coherence of tweet content. Specifi-095

cally, BIC adopts text propagation module to tackle096

user’s semantic information from tweets and de-097

scription. BIC adopts graph propagation module098

to fully propagate user neighborhood information.099

BIC also contains an interactive module which gen-100

erates deep link and fuses information between the101

two modules. The interactive module selects two102

interactive representations from two modalities to103

exchange information and is based on similarity to104

consider the relative importance of two modalities.105

Besides, BIC contains a semantic consistency de-106

tection module which can monitor user’s abnormal107

tweet content leveraging attention weights for bet-108

ter detecting bots with inconsistent tweets. Finally,109

we aggregate all modules and conduct Twitter bot110

detection. Our main contributions are summarized111

as follows:112

• We propose a model BIC, which leverages both113

text and graph modalities of users’ information,114

with a similarity-based interactive model deeply 115

linking the two modalities by interactive repre- 116

sentations. BIC could learn the relative impor- 117

tance of modality and detect a bot more compre- 118

hensively. 119

• We propose a semantic consistency detection 120

module which can dig deeply into user seman- 121

tic information and monitor discordance and in- 122

consistency within massive tweets, therefore can 123

detect advanced bots that imitates humans. 124

• We conduct extensive experiments on a compre- 125

hensive dataset. The results demonstrate that 126

our model outperforms state-of-the-art methods. 127

Further analysis also bears out the effectiveness 128

of our proposed interactive model and semantic 129

consistency detection model. 130

2 Related Work 131

2.1 Twitter-bot Detection 132

Feature-based Methods. Traditional methods 133

mainly focused on feature engineering and adopted 134

classifiers of machine learning methods. A diver- 135

sity of features were leveraged to detect bots, in- 136

cluding user tweet features (Cresci et al., 2016), 137

user profile features (Yang et al., 2020), and other 138

features extracted from metadata (Miller et al., 139

2014). 140

Text-based Methods. With the boom in neu- 141

ral network, bot detection methods based on 142

deep learning sprang up. Wei and Nguyen (2019) 143

adopted recurrent neural network to capture tweet 144

features. Kudugunta and Ferrara (2018) applied 145

LSTM to features in different levels. Stanton and 146

Irissappane (2019) proposed to leverage generative 147

adversarial networks to detect spam bots. Feng et al. 148

(2021b) construct a self-supervised representation 149

learning task by learning on a sequence of user fea- 150

tures and conduct bot detection with fine-tuning. 151

Graph-based Methods. Apart from text-based 152

neural networks, graph neural networks are also 153

utilized to improve the Twitter bot detectors. Ali Al- 154

hosseini et al. (2019) used convolutional graph net- 155

works for bot detection. Feng et al. (2021d) con- 156

structed a heterogeneous graph network for bot 157

detection while Feng et al. (2021a) improved the 158

heterogeneity with additional relations. 159

In this paper, we build on these works and pro- 160

pose a modality-interactive bot detector which 161

leverage both advantages of two structures. We 162
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also propose to detect anomalous behaviour pattern163

in a user’s semantic information.164

2.2 Text-Graph Interaction in NLP165

Text-graph interaction was widely used in the area166

of NLP. In the problem of knowledge-guided ques-167

tion answering, it is necessary to leverage both the168

text modality and knowledge graph modality. Early169

works simply aggregated the two modalities with-170

out interaction (Mihaylov and Frank, 2018). Later171

works only allowed two modalities to interact in a172

shallow way. Typically, they put one modality to173

another modality as an add-on (Feng et al., 2020;174

Wang et al., 2019; Lin et al., 2019; Yang et al.,175

2019a; Lv et al., 2020), learned implicit modal-176

ity information from another one (Bosselut et al.,177

2019; Petroni et al., 2019; Hwang et al., 2020),178

or jointly learned information from two modali-179

ties with GNN (Yasunaga et al., 2021). Recently,180

GreaseLM (Zhang et al., 2022) proposed a model181

to interact two modalities between layers by inter-182

active nodes, in which truly deep interaction was183

achieved. In this paper, We propose a framework184

inspired by GreaseLM and conduct bot detection185

with the help of modality interaction.186

3 Problem Definition187

In the task of bot detection, we might get mul-188

tiple information from a user. In this paper, we189

leverage a user’s description and tweets for text190

modules. B = {bi}Li=1 denotes a user’s description191

with L words. S = {si}Ti=1 denotes a users tweets192

with each tweet si = {wi
1, · · · , wi

Qi
} containing193

Qi words. For graph modules, user metadata fea-194

ture sets are taken into account: numerical and cate-195

gorical features, where P = {Pnum, P cat} denote196

a user’s numerical and categorical user property197

sets. A user’s neighbor set with J neighbors is de-198

noted by N = {n1, · · · , nJ}. We feed these user199

information B, S, P , N into our model and derive200

the prediction labels.201

4 Methodology202

Figure 2 displays an overview of our proposed203

framework named BIC. BIC consists of M layers,204

where each layer has two components: (i) modality205

interact, (ii) semantic consistency detection, while206

the first component contains three modules : text207

propagation module, graph propagation module,208

and text-graph interactive module.209

4.1 Modality Interact 210

4.1.1 Text Propagation Module 211

For each layer in text propagation module, we feed 212

text representations to a language model which will 213

learn the semantic information and update the inter- 214

acted information from interactive representations 215

to other representations, i.e., 216

{h̃(l)int, h̃
(l)
1 , · · · , h̃(l)T } = LM({h(l−1)

int , h
(l−1)
1 , · · · , h(l−1)

T }),
for l = 1, · · · ,M,

(1) 217

where LM refers to the language model, h(l−1)
int 218

denotes interactive representation of text modal- 219

ity in the (l-1)-th layer, and {h(l−1)
i }Ti=1 denotes 220

other representations of text modality in the (l-1)- 221

th layer. To thoroughly mine the user’s content 222

information, we adopt transformer (Vaswani et al., 223

2017) to serve as text module for each layer. 224

For the first layer, we firstly use RoBERTa (Liu 225

et al., 2019) pre-trained encoding model to encode 226

user description B and gain a user’s initial embed- 227

ding for description h(0)int which will be used as inter- 228

active representation. We then send the user tweets 229

S = {si}Ti=1 respectively to RoBERTa encoding 230

model and derive the initial tweets embedding sets 231

{h(0)i }Ti=1. Finally, the initial representations are 232

fed into the first text propagation module. 233

4.1.2 Graph Propagation Module 234

For each layer in graph module, graph representa- 235

tions are firstly fed into a GNN layer to dissemi- 236

nate information between a user and its neighbors, 237

where interacted information is also updated for 238

the neighbors, i.e., 239

{ĝ(l)int, ĝ
(l−1)
1 , · · · , ĝ(l)J } = GNN({g(l−1)

int , g
(l−1)
1 , · · · , g(l−1)

J }),
for l = 1, · · · ,M,

(2) 240

where g(l−1)
int denotes a user’s interactive representa- 241

tions of graph modality in the (l-1)-th layer, while 242

{g(l−1)
i }Ji=1 denotes neighbor representations in 243

the (l-1)-th layer. Since GCN (Kipf and Welling, 244

2016) is a widely used model with excellent perfor- 245

mance, we use GCN as the graph neural network. 246

A multi-head attention layer is then used for up- 247

dating its neighborhood information with attention 248

weights for the user, i.e., 249

{g̃(l)int, g̃
(l)
1 , · · · , g̃(l)J } = Att({ĝ(l)int, ĝ

(l)
1 , · · · , ĝ(l)J }),

(3) 250

for l = 1, · · · ,M , where Att denotes multi-head 251

attention. 252
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Figure 2: Overview of our proposed framework BIC. In the consistency matrix, brighter colors. Mul refers to the
operation in Equation (7).

For the first layer, we adopt the same user fea-253

ture encoding procedures as Feng et al. (2021d).254

We conduct z-score normalization and obtain rep-255

resentation of a user’s numerical properties Pnum256

and categorical properties P cat. We aggregate all257

diversities of user feature representations to gen-258

erate user initial embeddings {g(0)int, g
(0)
1 , · · · , g(0)J }259

for graph modality, where g
(0)
int denotes a user’s260

initial feature embedding which will be used as261

interactive representations, while {g(0)i }Ji=1 are ini-262

tial feature embeddings of the user’s J neighbors.263

The initial representations are then fed into the first264

graph module.265

4.1.3 Text-Graph Interactive Module266

Text-graph interactive module learns the relative267

importance of the two modalities and fuses infor-268

mation between two specially selected interactive269

representations, i.e.,270

(g
(l)
int, h

(l)
int) = Int(g̃

(l)
int, h̃

(l)
int), (4)271

where Int refers to interactive function. Specifi-272

cally, we firstly calculate the similarity coefficient273

between the two representations and themselves.274

In this paper, we adopt dot product to serve as sim-275

ilarity function, i.e., 276
whh = h̃

(l)
int ⊗ (θ1 · h̃(l)int),

whg = h̃
(l)
int ⊗ g̃

(l)
int,

wgg = g̃
(l)
int ⊗ (θ2 · g̃(l)int),

wgh = g̃
(l)
int ⊗ h̃

(l)
int,

(5) 277

where θ1 and θ2 are learnable parameters and ⊗ 278

denotes dot product. We then apply softmax and 279

derive final similarity weights, i.e., 280{
w̃hh, w̃hg = softmax(whh, whg),

w̃gg, w̃gh = softmax(wgg, wgh).
(6) 281

We then interact the two representations with the 282

help of derived similarity weights, i.e., 283{
h
(l)
int = w̃hhh̃

(l)
int + w̃hg g̃

(l)
int,

g
(l)
int = w̃gg g̃

(l)
int + w̃ghh̃

(l)
int.

(7) 284

By similarity weights, the relative importance of 285

text and graph modalities is learned. After an in- 286

teractive module layer, the interactive representa- 287

tions h(l)int and g
(l)
int concatenated respectively with 288

user tweets {h(l)i }Ti=1 and neighbor nodes {g(l)i }Ji=1 289

are fed into the next layer, where h
(l)
i = h̃

(l)
i and 290

g
(l)
i = ĝ

(l)
i are not involved in the interactive layer. 291
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The text propagation module and graph propaga-292

tion module right after the interactive layer allow293

information received by the interactive representa-294

tion from one modality to another modality, making295

interaction between the two modalities deeper.296

4.2 Semantic Consistency Detection297

Since attention weights from transformer could in-298

dicate the correlations and consistency between299

tweets, we adopt attention weights for semantic300

consistency detection. From each model layer,301

we pull out the attention weights from the trans-302

former in language model to construct a matrix303

M ∈ R(T+1)×(T+1) which stores the coherence304

information between tweets of a user. When a user305

posts tweets with abnormal patterns and inconsis-306

tent content, some anomaly will display in the ma-307

trix composed of attention weights. To leverage the308

consistency information in a better way, we firstly309

implement max-pooling to derive a fixed-size ma-310

trix, i.e.,311

M̃ = Fixed-size-pooling(M), M̃ ∈ RK×K ,
(8)312

where K is a hyperparameter; Fixed-size-pooling313

denotes pooling with fixed-size matrix as result.314

For better usage of neural networks in the follow-315

ing part, we then flatten the matrix to generate316

consistency vector, i.e.,317

d = Flatten(M̃), d ∈ RK2×1. (9)318

For each layer, we have one consistency vector319

and aggregate them to derive the final consistency320

vector, denoted by321

d̃ = σ(WD ·Concat({di}Mi=1) + bD), d̃ ∈ RD×1,322

4.3 Training and Inference323

We aggregate outputs from text propagation mod-324

ule and graph propagation module of the final layer325

and consistency vector to derive the final feature326

representation of a single user by327

d̃ = WD · Concat(d̃, h(M), g(M)) + bD. (10)328

The final feature representation is later sent into329

a MLP and softmax layer to derive the prediction330

score ŷ, i.e.,331

ŷ = softmax(WO · d̃+ bO). (11)332

We optimize the model end to end using the333

Cross Entropy Loss between prediction score and334

the ground truth label, i.e.,335

Loss = −
∑

i∈Y[yi log(ŷi) + (1− yi) log(1− ŷi)] + λ
∑

ω∈θ ω
2,336

where Y denotes all users in the training set, θ de- 337

notes all training parameters, yi denotes the ground- 338

truth label and λ is a regular coefficient. At in- 339

ference time, we predict the most possible label 340

according to the prediction score. 341

We present BIC implementation details and hy- 342

perparameter settings in Appendix A. 343

5 Experiments 344

In the experiment section, we conduct comprehen- 345

sive experiments with in-depth analysis. 346

5.1 Experiments Settings 347

5.1.1 Dataset 348

In this paper, we conduct our experiments on 349

TwiBot-20 (Feng et al., 2021c), a comprehensive 350

Twitter bot detection benchmark which includes 351

229,580 Twitter users, 33,488,192 tweets, and 352

8,723,736 user property items. This dataset almost 353

covers all varieties of bots in social networks and 354

is the only high-quality Twitter bot dataset with 355

graph information, thus our methods can be proved 356

to be applicable to diverse social bots. We fol- 357

low the same splits provided in the benchmark so 358

that the results are directly comparable with previ- 359

ous works. More datasets Cresci-17 (Cresci et al., 360

2017), botometer-feedback-19 (Yang et al., 2019b) 361

are also adopted for evaluation in previous works, 362

they do not provide the graph information to sup- 363

port our approach and state-of-the-art baselines. 364

5.1.2 Baselines 365

We compare BIC with the following methods: 366

• Lee et al. (Lee et al., 2011) adopt random forest 367

classifier with several Twitter user features. e.g. 368

the longevity of the account. 369

• Miller et al. (Miller et al., 2014) extract 107 fea- 370

tures from a user’s tweet and metadata and con- 371

duct Twitter bot detection as anomaly detection. 372

• Cresci et al. (Cresci et al., 2016) utilize strings 373

to encode the sequence of a user online activity. 374

• Botometer (Davis et al., 2016) is a publicly avail- 375

able service for bot detection that leverages more 376

than one thousand features. 377

• SATAR (Feng et al., 2021b) constructs a self- 378

supervised representation learning task by jointly 379

learning on a range of user features. It then clas- 380

sifies bots with fine-tuning. 381
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Table 1: Bot detection performance on TwiBot-20 benchmark. For each method except for Cresci et al. and
Botometer which have fixed results, we run 5 times to derive averaged metrics and the corresponding standard
deviations.

Method Text Graph Modality-Int Accuracy F1-score Precision Recall

Lee et al. 77.36 (±0.53) 79.98 (±0.50) 76.60 (±0.37) 83.66 (±0.69)
Yang et al. 81.64 (±0.46) 84.89 (±0.42) 76.40 (±0.40) 94.91 (±0.69)
Cresci et al. 47.76 13.69 7.66 64.47
Miller et al. 64.50 (±0.35) 74.81 (±0.26) 60.71 (±0.20) 97.44 (±0.47)
Botometer 53.09 55.13 55.67 50.82
SATAR ✓ 84.02 (±0.85) 86.07 (±0.70) 81.50 (±1.45) 91.22 (±1.82)
Kudugunta et al. ✓ 59.59 (±0.65) 47.26 (±1.35) 80.40 (±0.60) 33.47 (±1.30)
Wei et al. ✓ 70.23 (±0.10) 53.61 (±0.10) 62.74 (±0.10) 46.83 (±0.20)
BotRGCN ✓ 83.27 (±0.57) 85.26 (±0.38) 81.39 (±1.18) 89.53 (±0.88)
Alhossini et al. ✓ 59.92 (±0.68) 72.09 (±0.54) 57.83 (±0.49) 95.72 (±2.16)
RGT ✓ 86.57 (±0.41) 88.01 (±0.41) 85.15 (±0.28) 91.06 (±0.80)

BIC text-only ✓ 77.63 (±0.62) 79.00 (±0.57) 78.01 (±1.94) 80.41 (±1.08)
BIC graph-only ✓ 85.46 (±0.85) 87.27 (±0.56) 83.64 (±3.33) 91.51 (±4.03)
BIC ✓ ✓ ✓ 87.37 (±0.18) 88.83 (±0.33) 85.20 (±1.43) 92.84 (±2.26)

• Kugugunta et al. (Kudugunta and Ferrara, 2018)382

propose an architecture that jointly leverages a383

user’s tweets and property information.384

• Wei et al. (Wei and Nguyen, 2019) propose a bot385

detection model with a three-layer BiLSTM to386

encode tweets.387

• Alhosseini et al. (Ali Alhosseini et al., 2019)388

utilize graph convolutional network to learn user389

representations and classify bots.390

• BotRGCN (Feng et al., 2021d) constructs a391

framework based on relational graph convolu-392

tional network jointly leveraging user tweets and393

three kinds of metadata.394

• Yang et al. (Yang et al., 2020) adopt random395

forest with account metadata for bot detection.396

• RGT (Feng et al., 2021a) leverages relation and397

influence heterogeneous graph network to con-398

duct bot detection.399

5.2 Experiment Results400

Overall Model Analysis. To better grasp the401

difference of each method and show the innova-402

tion points of our model, we firstly evaluate each403

method by modalities which they use. The eval-404

uation details are presented in Appendix B. We405

then present the performance of each method on406

the benchmark of Twibot-20. The result in Table 1407

demonstrates that:408

• BIC consistently outperforms all methods includ-409

ing state-of-art methods RGT (Feng et al., 2021a)410

with relative 0.9% improvement of accuracy and 411

f1-score on the comprehensive and representative 412

dataset TwiBot-20. 413

• BIC outperforms state-of-art text modality-based 414

model SATAR (Feng et al., 2021b) by 4.0% 415

and state-of-art graph modality-based model 416

RGT (Feng et al., 2021b) by 0.9% in accuracy, 417

which bears out the effectiveness of both leverag- 418

ing two modalities. 419

In Table 1, Text, Graph, Modality-Int respec- 420

tively denote whether method leverages text modal- 421

ity, graph modality and modality interaction. 422

Modality Effectiveness Study. To further verify 423

the effectiveness of the aggregation of both text 424

modality and graphic modality, we remove one 425

of them and conduct bot detection with the rest 426

of the model. In Table 1, BIC text-only and BIC 427

graph-only respectively denote models with only 428

text modality and only graph modality. The re- 429

sults illustrate that both modalities perform worse 430

than our proposed model. To be specific, remov- 431

ing either text modality or graph modality indeed 432

hampers the model’s ability to consider all kinds 433

of information, thus declining the overall perfor- 434

mance. We also find that model with only text 435

modality performs worse than model with only 436

graph modality by approximately 9%. One reason 437

may be that more information can be learned in the 438

graph modality and graph modality plays a more 439

important role for detecting most of the bots. 440
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Table 2: Performance of model with different interactive
strategies.

Strategy Accuracy F1-score Precision Recall

Ours 87.37 88.83 85.20 92.84
No Interact 85.97 87.42 84.85 90.16

Average 86.64 88.15 84.72 91.87
MLP 86.98 88.44 85.12 92.03
Text 78.53 79.52 82.17 77.03

Graph 86.30 87.65 85.56 89.84

5.3 Text-Graph Interaction Study441

In this paper, we propose a similarity-based modal-442

ity interactive model which has been elaborated443

in Section 4.1.3. To verify the effectiveness of444

our similarity-based modality interactive model,445

we compare it with methods without modality in-446

teraction and other possible models with differ-447

ent modality interactive strategies: Average, MLP,448

Text, and Graph. These modality interactive strate-449

gies are presented in details in Appendix C. It is450

illustrated in Table 2 that:451

• Our similarity-based modality interactive strat-452

egy outperforms others all, which well confirmed453

the efficacy of our proposed module, indicating454

that it can learn the relative importance of modal-455

ities.456

• Text modality interactive strategy performs457

worse than other strategies, while it performs458

better than model with only text modality, which459

is probably because roughly replacing the graph460

interactive embedding with text interactive em-461

bedding hampers the previously learned neigh-462

borhood information but retains the semantic in-463

formation. In contrast, Graph modality interac-464

tive strategy performs better, which indicates the465

higher importance of the graph modality for de-466

tecting most of bots.467

• MLP modality interactive strategy performs bet-468

ter than Average modality interactive strategy,469

which indicates the neural network-based strat-470

egy can learn a little emphasis on modalities.471

5.4 Semantic Consistency Study472

To prove the effectiveness of leveraging semantic473

consistency, we experiment with three different set-474

tings of two-layer model: no semantic consistency475

detection, semantic consistency detection only in476

the first model layer, and semantic consistency de-477

tection only in the second model layer. The result478

None First Second All
Attention setting

85

86

87

88

89

90

86.89
87.23 87.32 87.37

88.28
88.64 88.67 88.83

Acc
F1

Figure 3: Performance of our model with different set-
tings of considering semantic consistency. None means
no semantic consistency detection, First and Second
mean adopting consistency detection in the first and the
second model layers.

is shown in the Figure 3. It is illustrated that no 479

consistency detection performs the worst, while 480

consistency detection in the first layer and second 481

layer neck and neck, indicating the inconsistency 482

of bots’ tweet content can be detected in both lay- 483

ers. All of them are inferior to the whole model, 484

in which the effectiveness of semantic consistency 485

detection is proved. 486

To better comprehend the effectiveness of the se- 487

mantic consistency of users, we select one typical 488

Twitter bot and typical genuine user and visual- 489

ize their consistency matrix consisting of attention 490

weights of the first and the second layer. From 491

the Figure 4, in the first layer, although there is 492

still slight discordance in human tweet content, the 493

bot’s tweets show much greater inconsistency. And 494

in the second layer, except for the first line of the 495

graph, more inconsistency exists in bot. And the 496

anomaly in the first line may be the result of modal- 497

ity interaction. 498

5.5 Model Layer Study 499

To find out how many layers of our model have the 500

best performance, We conduct experiments with 501

different model layers. The results in Figure 5 502

demonstrate that the two-layer model performs the 503

best over other layer settings. When the number of 504

layers increases, the performance decline gradually, 505

which may be caused by higher complexity increas- 506

ing the training difficulty. Besides, the two-layer 507

model has less time and memory cost, which makes 508

it the best selection. Specifically, it outperforms 509

the second-best three-layer model in accuracy by 510

7



Bot

Fir
st

 L
ay

er

Human

Bot

Se
co

nd
 L

ay
er

Human

Figure 4: Consistency matrix composed of attention
weights from the first and the second layers of typical
bot and human.
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Figure 5: Performance of different model layers.

0.06%, and f1-score by 0.16%, while it costs much511

less time by 37% and less GPU memory by 11%.512

5.6 Case Study513

To further analyze how our proposed model lever-514

ages information from two modalities to identify515

bots, we study a specific case from bot sets. We516

firstly find some tweets and neighbors of the bot517

with attention weights. The attention weights from518

multiple layers are averaged to one. We then re-519

trieve similarity weights in Equation (5) to quan-520

titatively analyze it. From the detailed user infor-521

mation displayed in the Figure 6, we discovered522

that, neighborhood information is learned more,523

due to more difference in attention weights of the524

selected bot’s bot neighbors and human neighbors525

Figure 6: A sample bot with its similarity weights inside
the box in the middle. On the left are its tweets with
attention weights from transformer in text propagation
module, on the right are its neighbors with attention
weights from multi-head attention in graph propagation
module.

than attention weights of tweets. The conclusion is 526

also reflected in similarity weights. The similarity 527

weights of original interactive representation from 528

text modality are 0 and 0.051, while the similarity 529

weights of original interactive representation from 530

graph modality are 1 and 0.049. The results fur- 531

ther display the effectiveness of similarity-based 532

interaction that it indeed learns the emphasis on 533

modalities. 534

6 Conclusion 535

Twitter bot detection is a challenging task with 536

increasing importance. To conduct a more compre- 537

hensive bot detection, we proposed a bot-detection 538

model named BIC based on both graph and text 539

modalities, which leverages the graph neural net- 540

work and language model in parallel. BIC also con- 541

tains a similarity-based interactive module leverag- 542

ing two interactive representations, which learns 543

the relative importance of two modalities. BIC also 544

adopts attention weights from language model to 545

create consistency vectors for semantic consistency 546

detection. We conducted extensive experiments 547

on a comprehensive benchmark to demonstrate the 548

efficacy of our model in comparison to competitive 549

baselines. Further experiments also bear out the 550

effectiveness of modality interaction and semantic 551

consistency detection. In the future, we plan to 552

explore better interactive approaches to conduct a 553

more comprehensive bot detection. 554

8



7 Limitations555

In this paper, we proposed a model named BIC556

make the text modality and graph modality interact557

and detect the semantic consistency. However, our558

proposed model has two minor limitations:559

• We only leverage semantic and graph modalities.560

However, other diversities of useful modalities561

are not taken into consideration, within which562

user image might greatly promote the ability to563

detect Twitter bots.564

• Since Twibot-20 is the only high-quality Twitter565

bot dataset with graph information, we conduct566

experiments only on this benchmark. However,567

experiments on more datasets might be more per-568

vasive, which might be possible in the future.569
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A Implementation Details743

We implement our framework with pytorch (Paszke744

et al., 2019), pytorch geometric (Fey and Lenssen,745

2019), and the transformer library from hugging-746

face (Wolf et al., 2019). We limit each user’s tweet747

number to 200, and for those who have posted748

fewer tweets, we bring their initial embeddings749

up to full strength with vectors made up of all ze-750

ros. Our implementation is publicly available on751

GitHub1.752

A.1 Hyperparamter Setting753

Table 3 presents the hyperparameter settings of754

BIC. For early stopping, we utilize the package755

provided by Bjarten2.756

Table 3: Hyperparameter settings of our model.

Hyperparameter Value

model layer count M 2
graph module input size 768
graph module hidden size 768
text module input size 768
text module hidden size 768
epoch 30
early stop epoch 10
batch size 64
dropout 0.5
learning rate 1e-4
L2 regularization 1e-5
lr_scheduler_patience 5
lr_scheduler_step 0.1
Optimizer RAdamW

A.2 Computation757

Our proposed method totally has 4.2M learnable758

parameters and 0.92 FLOPs3 with hyperparame-759

ters presented in Table 3. Our implementation is760

trained on an NVIDIA GeForce RTX 3090 GPU761

with 24GB memory, which takes approximately762

0.06 GPU hours for training an epoch.763

B Evaluation Details764

We elaborate the evaluation of our baselines here.765

For methods without semantic and graph modali-766

ties. Lee et al. (2011) adopt random forest classi-767

fier with Twitter bot features. Yang et al. (2020)768

1https://anonymous.4open.science/r/BIC-FB63/
2https://github.com/Bjarten/early-stopping-pytorch
3https://github.com/Lyken17/pytorch-OpCounter

adopt random forest with minimal account meta- 769

data. Miller et al. (2014) extract 107 features from 770

a user’s tweet and metadata. Cresci et al. (2016) 771

encode the sequence of a user online activity with 772

strings. Botometer (Davis et al., 2016) leverages 773

more than one thousand features. All of them 774

extract Twitter bot features, without dealing with 775

these features in graph modality or text modality. 776

For methods with only text modality, SA- 777

TAR (Feng et al., 2021b) leverages LSTM for its 778

tweet-semantic sub-network. Kudugunta and Fer- 779

rara (2018) adopt deep neural networks for tack- 780

ling user tweets. Wei and Nguyen (2019) propose 781

a model with a three-layer BiLSTM. All of them 782

deal with user information in text modalities. 783

For methods with only graph modality, 784

BotRGCN (Feng et al., 2021d) utilizes relational 785

graph convolutional network in its proposed frame- 786

work. Ali Alhosseini et al. (2019) adopt graph 787

convolutional network to learn user representations 788

and classify bots. RGT (Feng et al., 2021a) lever- 789

ages heterogeneous graph network to conduct bot 790

detection. All of them deal with user information 791

in graph modalities. 792

C Modality Interactive Strategy 793

Different modality interactive strategies are item- 794

ized here: 795

• Average Modality Interactive Strategy com- 796

putes the average of two interactive embeddings 797

to derive two new interactive embeddings. 798

• MLP Modality Interactive Strategy concate- 799

nates two interactive embeddings and feeds the 800

intermediate into one MLP layer. The result is 801

then split into two new interactive embeddings. 802

• Text Modality Interactive Strategy feeds the 803

interactive embedding from text modality into 804

two different Linear layers to generate new inter- 805

active embeddings of both modalities. 806

• Graph Modality Interactive Strategy feeds the 807

interactive embedding from graph modality into 808

two different Linear layers to generate new inter- 809

active embeddings of both modalities. 810
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