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Abstract

We investigate the statistical and computational limits of latent Diffusion
Transformers (DiTs) under the low-dimensional linear latent space assumption.
Statistically, we study the universal approximation and sample complexity of the
DiTs score function, as well as the distribution recovery property of the initial data.
Specifically, under mild data assumptions, we derive an approximation error bound
for the score network of latent DiTs, which is sub-linear in the latent space dimen-
sion. Additionally, we derive the corresponding sample complexity bound and show
that the data distribution generated from the estimated score function converges
toward a proximate area of the original one. Computationally, we characterize
the hardness of both forward inference and backward computation of latent DiTs,
assuming the Strong Exponential Time Hypothesis (SETH). For forward inference,
we identify efficient criteria for all possible latent DiTs inference algorithms and
showcase our theory by pushing the efficiency toward almost-linear time inference.
For backward computation, we leverage the low-rank structure within the gradient
computation of DiTs training for possible algorithmic speedup. Specifically, we
show that such speedup achieves almost-linear time latent DiTs training by casting
the DiTs gradient as a series of chained low-rank approximations with bounded
error. Under the low-dimensional assumption, we show that the statistical rates and
the computational efficiency are all dominated by the dimension of the subspace,
suggesting that latent DiTs have the potential to bypass the challenges associated
with the high dimensionality of initial data.

1 Introduction
We investigate the statistical and computational limits of latent diffusion transformers (DiTs), assum-
ing the data is supported on an unknown low-dimensional linear subspace. This analysis is not only
practical but also timely. On one hand, DiTs have demonstrated revolutionary success in generative
AI and digital creation by using Transformers as score networks [Esser et al., 2024, Ma et al., 2024,
Chen et al., 2024a, Mo et al., 2023, Peebles and Xie, 2023]. On the other hand, they require significant
computational resources [Liu et al., 2024], making them challenging to train outside of specialized
industrial labs. Therefore, it is natural to ask whether it is possible to make them lighter and faster
without sacrificing performance. Answering these questions requires a fundamental understanding of
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the DiT architecture. This work provides a timely theoretical analysis of the fundamental limits of
DiT architecture, aided by the analytical feasibility provided by the low-dimensional data assumption.

Empirically, Latent Diffusion is a go-to design for effectiveness and computational efficiency [Rom-
bach et al., 2022, Liu et al., 2021, Pope et al., 2021, Su and Wu, 2018]. Theoretically, it is capable of
hosting the assumption of low-dimensional data structure (see Assumption 2.1 for formal definition)
for detailed analytical characterization [Chen et al., 2023, Bortoli, 2022]. In essence, diffusion models
with low-dimensional data structures manifest a natural lower-dimensional diffusion process through
an encoder/decoder within a robust and informative latent representation feature space [Rombach
et al., 2022, Pope et al., 2021]. Such lower-dimensional diffusion improves computational efficiency
by reducing data complexity without sacrificing essential information [Liu et al., 2021]. With this
assumption, Chen et al. [2023] decompose the score function of U-Net based diffusion models into
on-support and orthogonal components. This decomposition allows for the characterization of the
distinct behaviors of the two components: the on-support component facilitates latent distribution
learning, while the orthogonal component facilitates subspace recovery.

In our work, we utilize low-dimensional data structure assumption to explore statistical and com-
putational limits of latent DiTs. Our analysis includes the characterizations of statistical rates and
provably efficient criteria. Statistically, we pose two questions and provide a theory to characterize
the statistical rates of latent DiT under the assumption of a low-dimensional data:

Question 1. What is the approximation limit of using transformers to approximate the DiT score
function, particularly in the low-dimensional data subspace?

Question 2. How accurate is the estimation limit for such a score estimator in practical training
scenarios? With the score estimator, how well can diffusion transformers recover the data distribution?

Computationally, the primary challenge of DiT lies in the transformer blocks’ quadratic complexity.
This computational burden applies to both inference and training, even with latent diffusion. Thus, it
is essential to design algorithms and methods to circumvent this Ω(L2) where L is the latent DiT
sequence length. However, there are no formal results to support and characterize such algorithms.
To address this gap, we pose the following questions and provide a fundamental theory to fully
characterize the complexity of latent DiT under the low-dimensional linear subspace data assumption:

Question 3. Is it possible to improve the Ω(L2) time complexity with a bounded approximation error
for both forward and backward passes? What is the computational limit for such an improvement?

Contributions. We study the fundamental limits of latent DiT. Our contributions are threefold:

• Score Approximation. We address Question 1 by characterizing the approximation limit of
matching the DiT score function with a transformer-based score estimator. Specifically, under mild
data assumptions, we derive an approximation error bound for the score network, sub-linear in
the latent space dimension (Theorem 3.1). These results not only explain the expressiveness of
latent DiT (under mild assumptions) but also provide guidance for the structural configuration of
the score network for practical implementations (Theorem 3.1).

• Score and Distribution Estimation. We address Question 2 by exploring the limitations of score
and distribution estimations of latent DiTs in practical training scenarios. Specifically, we provide a
sample complexity bound for score estimation (Theorem 3.2), using norm-based covering number
bound of transformer architecture. Additionally, we show that the learned score estimator is able
to recover the initial data distribution (Corollary 3.2.1).

• Provably Efficient Criteria and Existence of Almost Linear Time Algorithms. We address
Question 3 by providing provably efficient criteria for latent DiTs in both forward inference and
backward computation/training. For forward inference, we characterize all possible efficient
DiT algorithms using a norm-based efficiency threshold for both conditional and unconditional
generation (Proposition 4.1). Efficient algorithms, including almost-linear time algorithms (Propo-
sition 4.2), are possible only below this threshold. For backward computation, we prove the
existence of almost-linear time DiT training algorithms (Theorem 4.1) by utilizing the inherent
low-rank structure in DiT gradients through a chained low-rank approximation.

Interestingly, both our statistical and computational results are dominated by the subspace dimen-
sion under the low-dimensional assumption, suggesting that latent DiT can potentially bypass the
challenges associated with the high dimensionality of initial data.
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Organization. Section 2 includes background on score decomposition and Transformer-based
score networks. Section 3 includes DiTs’ statistical rates. Section 4 includes DiTs’ provably efficient
criteria. Section 5 includes concluding remarks. We defer discussions of related works to Appendix C.

Notations. We use lower case letters to denote vectors, e.g., z ∈ RD. ∥z∥2 and ∥z∥∞
denote its Euclidean norm and Infinite norm respectively. We use upper case letters to de-
note matrix, e.g., Z ∈ Rd×L. ∥Z∥2, ∥Z∥op, and ∥Z∥F denote the 2-norm, operator norm
and Frobenius norm respectively. ∥Z∥p,q denotes the p, q-norm where the p-norm is over
columns and q-norm is over rows. Given a function f , let ∥f(x)∥L2 := (

∫
∥f(x)∥2

2dx)1/2, and
∥f(·)∥Lip = supx ̸=y(∥f(x) − f(y)∥2/∥x− y∥2). With a distribution P , we denote ∥f∥L2(P ) =
(
∫
P

∥f(x)∥2
2dx)1/2 as the L2(P ) norm. Let f♯P be a pushforward measure, i.e., for any measurable

Ω, (f♯P )(Ω) = P (f−1(Ω)). We use ψ for (conditional) Gaussian density functions.

2 Background
This section reviews the ideas we built on, including an overview of diffusion models (Section 2.1),
the score decomposition under the linear latent space assumption (Section 2.2), and the transformer
backbone in DiT (Section 2.3).

2.1 Score-Matching Denoising Diffusion Models
We briefly review forward process, backward process and score matching in diffusion models.

Forward and Backward Process. In the forward process, Diffusion models gradually add noise
to the original data x0 ∈ RD, and x0 ∼ P0. Let xt denote the noisy data at time stamp t, with
marginal distribution and destiny as Pt and pt. The conditional distribution P (xt|x0) follows
N(β(t)x0, σ(t)ID), where β(t) = exp(−

∫ t
0 w(s)ds/2), σ(t) = 1 − β2(t), and w(t) > 0 is a

nondecreasing weighting function. In practice, the forward process terminates at a large enough T
such that PT is close to N(0, ID). In the backward process, we obtain yt by reversing the forward
process. The generation of yt depends on the score function ∇ log pt(·). However, this is unknown in
practice, we use a score estimator sW (·, t) to replace ∇ log pt(·), where sW (·, t) is usually a neural
network with parameters W . See Appendix D.1 for the details.

Score Matching. To estimate the score function, we use the following loss

min
W

∫ T

T0

γ(t)Ext∼Pt

[
∥sW (xt, t) − ∇ log pt(xt)∥2

2

]
dt,

where γ(t) is the weight function, and T0 is a small value to stabilize training and prevent score
function from blowing up [Vahdat et al., 2021]. However, it is hard to compute ∇ log pt(·) with
available data samples. Therefore, we minimize the equivalent denoising score matching objective

min
W

∫ T

T0

γ(t)Ex0∼P0

[
Ext|x0

[
∥sW (xt, t) − ∇xt

logψt(xt | x0)∥2
2

]]
dt, (2.1)

where ψt(xt|x0) is the transition kernel, then ∇xt logψt(xt|x0) = (β(t)x0 − xt) /σ(t).

To train the parameters W in the score estimator sW (·, t), we use the empirical version of (2.1). We
select n i.i.d. data samples {x0,i}ni=1 ∼ P0, and sample time ti (1 ≤ i ≤ n) uniformly from interval
[T0, T ]. Given x0,i, we sample xti from N(β(ti)x0,i, σ(ti)ID). The empirical loss is

L̂(W ) = 1
n

n∑
i=1

∥sW (xti , ti) − x0,i∥2
2. (2.2)

For convenience of notation, we denote population loss L(W ) = EP0 [L̂(W )].

2.2 Score Decomposition in Linear Latent Space
In this part, we review the score decomposition in [Chen et al., 2023]. We consider that the D-
dimensional input data x supported on a d0-dimensional subspace, where d0 ≤ D.

Assumption 2.1 (Low-Dimensional Linear Latent Space). Let x denote the initial data at t = 0. x
has a latent representation via x = Bh, where B ∈ RD×d0 is an unknown matrix with orthonormal
columns. The latent variable h ∈ Rd0 follows the distribution Ph with a density function ph.
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Remark 2.1. By “linear latent space,” we mean that each entry of a given latent vector is a linear
combination of the corresponding input, i.e., x = Bh. This is also known as the “low-dimensional
data” assumption in literature [Chen et al., 2023].

Let x and h denote the perturbed data and its associated latent variable at t > 0, respectively. Based
on the low-dimensional data structure assumption, we have the following score decomposition theory:
on-support score s+(B⊤x, t) and orthogonal score s−(x, t).

Lemma 2.1 (Score Decomposition, Lemma 1 of [Chen et al., 2023]). Let data x = Bh follow
Assumption 2.1. The decomposition of score function ∇ log pt(x) is

∇ log pt(x) = B∇ log pht (h)︸ ︷︷ ︸
s+(h,t)

−
(
ID −BB⊤

)
x/σ(t)︸ ︷︷ ︸

s−(x,t)

, h = B⊤x, (2.3)

where pht (h) :=
∫
ψt(h|h)ph(h)dh, ψt(·|h) is the Gaussian density function of N(β(t)h, σ(t)Id0),

β(t) = e−t/2 and σ(t) = 1 − e−t. We restate the proof in Appendix D.2 for completeness.

Additionally, our theoretical analysis is based on two following assumptions as in [Chen et al., 2023].

Assumption 2.2 (Tail Behavior of Ph). The density function ph > 0 is twice continuously differen-
tiable. Moreover, there exist positive constants A0, A1, A2 such that when ∥h∥2 ≥ A0, the density
function ph(h) ≤ (2π)−d0/2A1exp(−A2∥h∥2

2/2).

Assumption 2.3 (Ls+ -Lipschitz of s+(h, t)). The on-support score function s+(h, t) is Ls+ -
Lipschitz in h ∈ Rd0 for any t ∈ [0, T ].

2.3 Score Network and Transformers
In this part, we introduce the score network architecture and Transformers. Transformers are the
backbone of the score network in DiT. By Assumption 2.1, h = B⊤x ∈ Rd0 with d0 < D.

(Latent) Score Network. Following [Chen et al., 2023], we rearrange (2.3) into

∇ log pt(x) = B(σ(t)∇ log pht (B⊤x) +B⊤x︸ ︷︷ ︸
:=q(B⊤x,t): Rd0×[T0,T ]→ Rd0

)/σ(t) − x/σ(t). (2.4)

We use WB ∈ RD×d0 to approximate B ∈ RD×d0 , and a neural network f(W⊤B x, t) to approximate
q(B⊤x, t). We adopt the following score network class for diffusion in latent space (i.e., in h ∈ Rd0 )

S =
{
sW (x, t) = WBf(WT

Bx, t)/σ(t) − x/σ(t), W = {WB , f}
}
, (2.5)

where the columns in WB are orthogonal, f : Rd0 × [T0, T ] → Rd0 is a neural network. In this work,
we focus on the diffusion transformers (DiTs), i.e., using Transformer for f [Peebles and Xie, 2023].

Transformers. A Transformer block consists of a self-attention layer and a feed-forward layer,
with both layers having skip connection. We use τ r,m,l : Rd×L → Rd×L to denote a Transformer
block. Here r and m are the number of heads and head size in self-attention layer, and l is the hidden
dimension in feed-forward layer. Let X ∈ Rd×L be the model input, then we have the model output

Attn(X) = X +
∑r

i=1
W i
OW

i
VX · Softmax

((
W i
KX

)T
W i
QX

)
, (2.6)

FF ◦ Attn(X) = Attn(X) +W2 · ReLU(W1 · Attn(X) + b11
T
L) + b21

T
L, (2.7)

where W i
K ,W

i
Q,W

i
V ∈ Rm×d,W i

O ∈ Rd×m,W1 ∈ Rl×d,W2 ∈ Rd×l, b1 ∈ Rl, b2 ∈ Rd.

In our work, we use Transformer networks with positional encoding E ∈ Rd×L. We define the
Transformer networks as the composition of Transformer blocks

T r,m,l
P = {fT : Rd×L → Rd×L | fT is a composition of blocks τ r,m,l’s}.

For example, the following is a Transformer network consisting K blocks and positional encoding

fT (X) = FF(K) ◦ Attn(K) ◦ · · · FF(1) ◦ Attn(1)(X + E). (2.8)

3 Statistical Rates of Latent DiTs with Subspace Data Assumption
In this section, we analyze the statistical rates of latent DiTs. Section 3.1 introduces the class of
latent DiT score networks. In Section 3.2, we prove the approximation limit of matching the DiT
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W⊤B

Latent Encoder

WB

Latent Decoder

R(·)

Reshape Layer

fT ∈ T r,m,l

Transformer Network

R−1(·)

Reversed
Reshape Layer

⊕
x ∈ RD x ∈ Rd0 Rd×L Rd0 RD

1/σ(t)

Rd×L

−1/σ2
t

f = R−1 ◦ fT ◦R : Rd0 → Rd×L

sW (x, t)

Figure 1: Overview of DiT Score Network Architecture sW (·, t). WT
B denotes the linear layer from the

input data space to the linear latent space. f(·) = R−1 ◦ fT ◦R(·) denotes the transformer network fT (·) with
reshaping layer R(·), where fT (·) ∈ T r,m,l

p . WB denotes the linear layer from the linear latent space to the
input data space. σ(t) denote the variance of the conditional distribution P (xt | x0).

score function with the score network class, and characterize the structural configuration of the score
network when a specified approximation error is required. Following this, in Section 3.3, utilizing the
characterized structural configuration, we prove the score and distribution estimation for latent DiTs.

3.1 DiT Score Network Class
Here, we provide the details about DiT score network class used in our analysis. In (2.5), f is
a network with Transformer as the backbone, and (h, t) ∈ Rd0 × [T0, T ] denotes the input data.
Following [Peebles and Xie, 2023], DiT uses time point t to calculate the scale and shift value in the
Transformer backbone, and it transforms an input picture into a sequential version. To achieve the
transformation, we introduce a reshape layer.

Definition 3.1 (DiT Reshape LayerR(·)). LetR(·) : Rd0 → Rd×L be a reshape layer that transforms
the d0-dimensional input into a d × L matrix. Specifically, for any d0 = i × i image input, R(·)
converts it into a sequence representation with feature dimension d := p2 (where p ≥ 2) and
sequence length L := (i/p)2. Besides, we define the corresponding reverse reshape (flatten) layer
R−1(·) : Rd×L → Rd0 as the inverse of R(·). By d0 = dL, R,R−1 are associative w.r.t. their input.

To simplify the self-attention block in (2.6), let W i
OV = W i

OW
i
V and W i

KQ = (W i
K)TW i

Q.

Definition 3.2 (Transformer Network Class T r,m,l
p ). We define the Transformer network class as

T r,m,l
p (K,CT , C2,∞

OV , COV , C
2,∞
KQ , CKQ, C

2,∞
F , CF , CE , LT ), satisfying the constraints

• Model architecture with K blocks: fT (X) = FF(K) ◦ Attn(K) ◦ · · · FF(1) ◦ Attn(1)(X);
• Model output bound: supX ∥fT (X)∥2 ≤ CT ;
• Parameter bound in Attn(i):

∥∥(W i
OV )⊤

∥∥
2,∞ ≤ C2,∞

OV ,
∥∥(W i

OV )⊤
∥∥

2 ≤ COV ,
∥∥W i

KQ

∥∥
2,∞ ≤

C2,∞
KQ ,

∥∥W i
KQ

∥∥
2 ≤ CKQ,

∥∥E⊤∥∥2,∞ ≤ CE ,∀i ∈ [K];
• Parameter bound in FF(i):

∥∥W i
j

∥∥
2,∞ ≤ C2,∞

F ,
∥∥W i

j

∥∥
2 ≤ CF ,∀j ∈ [2], i ∈ [K];

• Lipschitz of fT : ∥fT (X1) − fT (X2)∥F ≤ LT ∥X1 −X2∥F ,∀X1, X2 ∈ Rd×L.

Definition 3.3 (DiT Score Network Class ST r,m,l
p

(Figure 1)). We denote ST r,m,l
p

as the DiT score

network class in (2.5), replacing f with R−1 ◦ fT ◦R, and fT is from the Transformer class T r,m,l
p .

3.2 Score Approximation of DiT
Here, we explore the approximation limit of latent DiT score network class ST r,m,l

p
under linear

latent space assumption. Recall that Pt is the distribution of xt, σ(t) is the variance of P (xt|x0),
d0 is the dimension of latent space, L is the sequence length of transformer input, T is the stopping
time in forward process, T0 is the early stopping time in backward process, and Ls+ is the Lipschitz
coefficient of on-support score function. Then we have the following Theorem 3.1.

Theorem 3.1 (Score Approximation of DiT). For any approximation error ϵ > 0 and any data
distribution P0 under Assumptions 2.1 to 2.3, there exists a DiT score network s

Ŵ
from ST 2,1,4

p

(defined in Definition 3.2), where Ŵ = {ŴB , f̂T }, such that for any t ∈ [T0, T ], we have:∥∥∥s
Ŵ

(·, t) − ∇ log pt(·)
∥∥∥
L2(Pt)

≤ ϵ ·
√
d0/σ(t),
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where σ(t) = 1 − e−t, and the upper bound of hyperparameters in ST 2,1,4
p

are

K = O(ϵ−2L), CT = O
(
d0Ls+

√
d0 log(d0/T0) + log(1/ϵ)

)
,

C2,∞
OV = (1/ϵ)O(1), COV = (1/ϵ)O(1), C2,∞

KQ = (1/ϵ)O(1), CKQ = (1/ϵ)O(1),

CE = O(L3/2), C2,∞
F = (1/ϵ)O(1), CF = (1/ϵ)O(1), LT = O

(
d0Ls+

)
.

Proof Sketch. Our proof is built on the key observation that there is a tail behavior of the
low-dimensional latent variable distribution Ph (Assumption 2.2). Recall that ∇ log pt(x) =
Bq(h, t)/σ(t) − x/σ(t), where h = B⊤x (defined in (2.4)). By taking ŴB = B, our aim reduces
to construct a transformer network to approximate q(h, t). To achieve this, we firstly approximate
q(h, t) with a compact-supported continuous function, based on the tail behavior of Ph. Then we
construct a transformer to approximate the compact-supported continuous function using the universal
approximation capacity of transformer [Yun et al., 2020]. See Appendix F.1 for a detailed proof.

Intuitively, Theorem 3.1 indicates the capability of the transformer-based score network to approx-
imate the score function with precise guarantees. Furthermore, Theorem 3.1 provides empirical
guidance for the design choices of the score network when a specified approximation error is required.
Remark 3.1 (Comparing with Existing Works). Theoretical analysis of DiTs is limited. Previous
works that do not specify the model architecture assume that the score estimator is well-approximated
[Benton et al., 2024, Wibisono et al., 2024]. To the best of our knowledge, this work is the first to
present an approximation theory for DiTs, offering the estimation theory in Theorem 3.2 and Corol-
lary 3.2.1 based on the estimated score network, rather than a perfectly trained one.
Remark 3.2 (Latent Dimension Dependency). Theorem 3.1 suggests that the approximation capacity
and Transformer network size primarily depend on the latent variable dimension d0 = d× L. This
indicates that DiTs can potentially bypass the challenges associated with the high dimensionality of
initial data by transforming input data into a low-dimensional latent variable.

3.3 Score Estimation and Distribution Estimation
Besides score approximation capability, Theorem 3.1 also characterizes the structural configuration
of the score network for any specific precision, e.g., K,CE , CF , etc. This characterization enables
further analysis of the performance of score network in practical scenarios. In Theorem 3.2, we
provide a sample complexity bound for score estimation. In Corollary 3.2.1, show that the learned
score estimator is able to recover the initial data distribution.

Score Estimation. To derive a sample complexity for score estimation using ST 2,1,4
p

, we rewrite

the score matching objective in (2.2) as Ŵ ∈ argminsW∈ST 2,1,4
p

L̂(sW ), Ŵ = {ŴB , f̂T }.

Theorem 3.2 shows that as sample size n → ∞, sW (·, t) convergences to ∇ log pt(·).

Theorem 3.2 (Score Estimation of DiT). Under Assumptions 2.1 to 2.3, we choose ST 2,1,4
p

as in
Theorem 3.1 using ϵ ∈ (0, 1) and L > 1, With probability 1 − 1/poly(n), we have

1
T − T0

∫ T

T0

∥∥∥s
Ŵ

(·, t) − ∇ log pt(·)
∥∥∥
L2(Pt)

dt = Õ
(

1
n1/3T0T

· 2(1/ϵ)2L

+ 1
n1/3T0T

+ 1
T0T

ϵ2
)
,

(3.1)

where Õ hides the factors related to D, d0, d, Ls+ , and logn.

Proof. See Appendix F.2 for a detailed proof.

Intuitively, Theorem 3.2 shows a sample complexity bound for score estimation in practice.
Remark 3.3 (Comparing with Existing Works). [Zhu et al., 2023] provides a sample complexity
for simple ReLU-based diffusion models under the assumption of an accurate score estimator. To
the best of our knowledge, we are the first to provide a sample complexity for DiTs, based on the
learned score network in Theorem 3.1 and the quantization (piece-wise approximation) approach for
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transformer universality [Yun et al., 2020]. Furthermore, our first term shows a convergence rate of
1/T , outperforming [Chen et al., 2023], in which the first term is independent of T .

Remark 3.4 (Double Exponential Factor and Inconsistent Convergence). Theorem 3.2 reports an
explicit result on sample complexity bounds for score estimation of latent DiTs: a double exponential
factor 2(1/ϵ)2L

in the first term. We remark that this arises from the required depth K is O(ϵ−2L),
and the norm of required weight parameters is (1/ϵ)O(1) as shown in Theorem 3.1, assuming the
universality of transformers requires dense layers [Yun et al., 2020]. This double exponential factor
causes inconsistent convergence with respect to sample size n, as its large value prevents setting ϵ as
a function of n to balance the first and second terms in (3.1). This motivates us to rethink transformer
universality and explore new proof techniques for DiTs, which we leave for future work.

Definition 3.4. For later convenience, we define ξ(n, ϵ, L) := 1
n1/3 · 2(1/ϵ)2L + 1

n1/3 + ϵ2.

Distribution Estimation. In practice, DiTs generate data using the discretized version with step size
µ, see Appendix D.1 for details. Let P̂T0 be the distribution generated by s

Ŵ
using the discretized

backward process in Theorem 3.2. Let PhT0
and phT0

be the distribution and density function of
on-support latent variable h at T0. We have the following results for distribution estimation.

Corollary 3.2.1 (Distribution Estimation of DiT, Modified From Theorem 3 of [Chen et al., 2023]).
Let T = O(logn), T0 = O(min{c0, 1/Ls+}), where c0 is the minimum eigenvalue of EPh

[hh⊤].
With the estimated DiT score network s

Ŵ
in Theorem 3.2, we have the following with probability

1 − 1/poly(n).
(i) The accuracy to recover the subspace B is

∥∥WBW
⊤
B −BB⊤

∥∥2
F

= Õ (ξ(n, ϵ, L)/c0).
(ii) With the conditions KL(Ph||N(0, Id0)) < ∞, there exists an orthogonal matrix U ∈ Rd×d such

that we have the following upper bound for the total variation distance

TV(PhT0
, (WBU)⊤♯ P̂T0) = Õ(

√
ξ(n, ϵ, L) · logn), (3.2)

where Õ hides the factor about D, d0, d, Ls+ , logn, and T − T0. and (WBU)⊤♯ P̂T0 denotes the
pushforward distribution.

(iii) For the generated data distribution P̂T0 , the orthogonal pushforward (I − WBW
⊤
B )♯P̂T0 is

N(0,Σ), where Σ ⪯ aT0I for a constant a > 0.

Proof. See Appendix F.3 for a detailed proof.

Intuitively, Corollary 3.2.1 shows the estimation results in 3 parts: (i) the accuracy of recovering the
subspace B; (ii) the estimation error between P̂T0 and PhT0

; and (iii) the vanishing behavior of P̂T0 in
the orthogonal space. These indicate that the learned score estimator is capable of recovering the
initial data distribution. Notably, Corollary 3.2.1 is agnostic to the specifics of ξ(n, ϵ, L).

Remark 3.5 (Comparing with Existing Works). Oko et al. [2023] analyze the distribution estimation
under the assumption that the initial density is supported on [−1, 1]D and smooth in the boundary.
Our Assumption 2.2 demonstrates greater practical relevance. This suggests that our method of
distribution estimation aligns more closely with empirical realities.

Remark 3.6 (Subspace Recovery Accuracy). (i) of Corollary 3.2.1 confirms that the subspace is
learned by DiTs. The error is proportional to the sample complexity for score estimation and depends
on the minimum eigenvalue of the covariance of Ph.

4 Provably Efficient Criteria
Here, we analyze the computational limits of latent DiTs under low-dimensional linear subspace data
assumption (i.e., Assumption 2.1). The hardness of DiT models ties to both forward and backward
passes of the score network in Definition 3.3. We characterize them separately.

4.1 Computational Limits of Backward Computation
Following Section 2, suppose we have n i.i.d. data samples {x0,i}ni=1 ∼ Pd, and time ti0 (1 ≤
i ≤ n) uniformly sampled from [T0, T ]. For each data x0,i ∈ RD, we sample xti0

∈ RD from
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N(β(ti0)x0,i, σ(ti0)ID). Let (WAR
−1(·))† be the inverse transformation of WAR

−1(·), and denote
Y0,i := (WAR

−1)†(x0,i) ∈ Rd×L. We rewrite the empirical denoising score-matching loss (2.2) as

1
n

n∑
i=1

∥∥∥WAR
−1(fT (R(W⊤A xti0︸ ︷︷ ︸

d0×1

))) − x0,i

∥∥∥2

F
= 1
n

n∑
i=1

∥∥∥ WA︸︷︷︸
D×d0

d×L

R−1( ︷ ︸︸ ︷
fT (R(W⊤A xti0

)︸ ︷︷ ︸
d0×1

) − Y0,i︸︷︷︸
d×L

)∥∥∥2

F
.

(4.1)
For efficiency, it suffices to focus on just transformer attention heads of the DiT score network due to
their dominating quadratic time complexity in both passes. Thus, we consider only a single layer
attention for fT , to simplify our analysis. Further, we consider the following simplifications:

(S0) To prove the hardness of (4.1) for both full gradient descent and stochastic mini-batch gradient
descent methods, it suffices to consider training on a single data point.

(S1) For the convenience of our analysis, we consider the following expression for attention mech-
anism. Let X,Y ∈ Rd×L. Let WK ,WQ,WV ∈ Rs×d be attention weights such that
Q = WQX ∈ Rd×L, K = WKX ∈ Rs×L and V = WVX ∈ Rs×L. We write attention
mechanism of hidden size s and sequence length L as

Att(X) = (WOWVX)︸ ︷︷ ︸
V multiplication

D−1 exp
(
XTWT

KWQX
)︸ ︷︷ ︸

K-Q multiplication

∈ Rd×L, (4.2)

with D := diag(exp
(
XWQW

T
KX

T)1L). Here, exp(·) is entry-wise exponential function, i.e.,
exp(A)i,j = exp(Ai,j) for any matrix A , diag(·) converts a vector into a diagonal matrix with
the vector’s entries on the diagonal, and 1L is the length-L all ones vector.

(S2) Since V multiplication is linear in weight while K-Q multiplication is exponential in weights,
we only need to focus on the gradient update of K-Q multiplication. Therefore, for efficiency
analysis of gradient, it is equivalent to analyzing a reduced problem with fixed WOWVX =
const..

(S3) To focus on the DiT, we consider the low-dimensional linear encoder WA to be pretrained and
to not participate in gradient computation. This aligns with common practice [Rombach et al.,
2022] and is justified by the trivial computation cost due to the linearity of WA

2.
(S4) To further simplify, we introduce A1, A2, A3 ∈ Rs×L and W ∈ Rd×d via∥∥∥WAR

−1(fT (R(W⊤A xti0
)︸ ︷︷ ︸

:=X∈Rd×L

) − Y0,i︸︷︷︸
:=Y ∈Rd×L

)∥∥∥2

F

(
By (S0), (S1) and (S2)

)
=
∥∥∥WAR

−1( WOWV︸ ︷︷ ︸
:=WOV ∈Rd×d

X︸︷︷︸
:=A3∈Rd×L

D−1 exp
(

XT︸︷︷︸
:=A⊤

1 ∈RL×d

WT
KWQ︸ ︷︷ ︸

:=W∈Rd×d

X︸︷︷︸
:=A2∈Rd×L

)
− Y

)∥∥∥2

F
.

(4.3)
Notably, A1, A2, A3, X, Y are constants w.r.t. training above loss with gradient updates.

Therefore, we simplify the objective of training DiT into

Definition 4.1 (Training Generic DiT Loss). Given A1, A2, A3, Y ∈ Rd×L and WOV ,W ∈ Rd×d
following (S4), Training a DiT with ℓ2 loss on a single data point X,Y ∈ Rd×L is formulated as

min
W

L0(W ) = min
W

1
2

∥∥∥WAR
−1(WOVA3D

−1 exp
(
A⊤1 WA2

)
− Y

)∥∥∥2

F
. (4.4)

Here D := diag(exp
(
A⊤1 WA2

)
1n) ∈ RL×L.

Remark 4.1 (Conditional and Unconditional Generation). L0 is generic. If A1 ̸= A2 ∈ Rd×L,
Definition 4.1 reduces to cross-attention in DiT score net (for conditional generation). If A1 = A2 ∈
Rd×L, Definition 4.1 reduces to self-attention in DiT score net (for unconditional vanilla generation).

We introduce the next problem to characterize all possible gradient computations of optimizing (4.4).

2The gradient computation is linear inWA, and hence the computation w.r.t. WA is cheap and upper-bounded
by L · poly(d) time in a straightforward way.

8



Problem 1 (Approximate DiT Gradient Computation (ADITGC(L, d,Γ, ϵ))). Given
A1, A2, A3, Y ∈ Rd×L. Let ϵ > 0. Assume all numerical values are in O(log(L))-bits
encoding. Let loss function L0 follow Definition 4.1. The problem of approximating gradient
computation of optimizing empirical DiT loss (4.4) is to find an approximated gradient matrix

G̃(W ) ∈ Rd×d such that
∥∥G̃(W )

− ∂L
∂W

∥∥
max ≤ 1/poly(L). Here, ∥A∥max := maxi,j |Aij | for any

matrix A.

In this work, we aim to investigate the computational limits of all possible efficient algorithms of
ADITGC with ϵ = 1/poly(L). Yet, the explicit gradient of DiT denoising score matching loss (4.4)
is too complicated to characterize ADITGC. To combat this, we make the following observations.

(O1) Let g1(·) := WAR
−1(·) : Rd×L → Rd0 , g2(·) := Att(·) : Rd×L → Rd×L, and g3(·) :=

R(W⊤A ·) : RD → Rd×L such that g3(x) = X for x ∈ RD (with D > d0 = dL).
(O2) Vectorization of fT . For the ease of presentation, we use notation flexibly that fT to denote

both a matrix in Rd×L and a vector in RdL in the following analysis. This practice does not
affect correctness. The context in which fT is used should clarify whether it refers to a matrix
or a vector. Explicit vectorization follows Definition D.1.

(O3) Linearity of g1. By linearity of WAR
−1(·), we treat g1 as a matrix in Rd0×dL acting on vector

fT (·) ∈ RdL.

Therefore, we have L0 = ∥g1 · [g2(g3) − Y ]∥2
2, such that its gradient involves dL0

dW = g1
dg2
dW . From

above, we only need to focus on proving the computation time and error control of term dg2
dW

for gradient w.r.t W . Luckily, with tools from fine-grained complexity theory [Alman and Song,
2023, 2024a,b,c] and tensor trick (see Appendix D.3), we prove the existence of almost-linear time
algorithms for Problem 1 in the next theorem. Let vec(W ) := W for any matrix W following
Definition D.1.

Theorem 4.1 (Existence of Almost-Linear Time Algorithms for ADITGC). Suppose all numerical
values are in O(logL)-bits encoding. Let max(∥WOVA3∥max, ∥WKA1∥max, ∥WQA2∥max) ≤ Γ.
There exists a L1+o(1) time algorithm to solve ADITGC(Lp, L, d = O(logL),Γ = o(

√
logL)) (i.e.,

Problem 1) with loss L0 from Definition 4.1 up to 1/poly(L) accuracy. In particular, this algorithm

outputs gradient matrices G̃(W ) ∈ Rd×d such that
∥∥G̃(W )

− ∂L
∂W

∥∥
max ≤ 1/poly(L).

Proof Sketch. Our proof is built on the key observation that there exist low-rank structures within the
DiT training gradients. Using the tensor trick [Diao et al., 2019, 2018] and computational hardness
results of attention [Hu et al., 2024b, Alman and Song, 2023], we approximate DiT training gradients
with a series of low-rank approximations and carefully match the multiplication dimensions so
that the computation of dg2

dW forms a chained low-rank approximation. We complete the proof by
demonstrating that this approximation is bounded by a 1/poly(L) error and requires only almost-
linear time. See Appendix G.2 for a detailed proof.

Remark 4.2. We remark that Theorem 4.1 is dominated by the relation between L and d, hence by
the subspace dimension3 d0 = dL. A smaller d0 makes Theorem 4.1 more likely to hold.

4.2 Computational Limits of Forward Inference
Since the inference of score-matching diffusion models is a forward pass of the trained score estimator
sW , the computational hardness of DiT ties to the transformer-based score network,

sW (A1, A2, A3) = WAR
−1(WOVA3︸ ︷︷ ︸

d×L

D−1︸︷︷︸
L×L

exp
(
A⊤1 W

⊤
K︸ ︷︷ ︸

L×s

WQA2︸ ︷︷ ︸
s×L

))
, (4.5)

following notation in Definition 4.1. For inference, we study the following approximation problem.
Notably, by Remark 4.1, (4.5) subsumes both conditional and unconditional DiT inferences.

Problem 2 (Approximate DiT Inference ADITI(d, L,Γ, δF )). Let δF > 0 and B > 0. Given
A1, A2, A3 ∈ Rd×L, and WOV ,WK ,WQ ∈ Rd×d with guarantees that ∥WOVA3∥∞ ≤
B, ∥WKA1∥∞ ≤ B and ∥WQA2∥∞ ≤ B, we aim to study an approximation problem

3See Assumption 2.1.
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ADITI(d, L,B, δF ), that approximates sW (A1, A2, A3) with a vector z̃ ∈ Rd0 (with d0 = d·L) such
that

∥∥z̃ −WAR
−1 (WOVA3D

−1 exp
(
A⊤1 W

⊤
KWQA2

))∥∥
max ≤ δF . Here, ∥A∥max := maxi,j |Aij |

for any matrix A.

By (O2) and (O3), we make an observation that Problem 2 is just a special case of [Alman and Song,
2023]. Hence, we characterize the all possible efficient algorithms for ADITI with next proposition.

Proposition 4.1 (Norm-Based Efficiency Phase Transition). Let ∥WQA2∥∞ ≤ B, ∥WKA1∥∞ ≤ B

and ∥WOVA3∥∞ ≤ B with B = O(
√

logL). Assuming SETH (Hypothesis 1), for every q > 0,
there are constants C,Ca, Cb > 0 such that: there is no O(n2−q)-time (sub-quadratic) algorithm for
the problem ADITI(L, d = C logL,B = Cb

√
logL, δF = L−Ca).

Remark 4.3. Proposition 4.1 suggests an efficiency threshold for the upper bound of ∥WKA1∥∞,
∥WQA2∥∞, ∥WOVA3∥∞. Only below this threshold are efficient algorithms for Problem 2 possible.

Moreover, there exist almost-linear DiT inference algorithms following [Alman and Song, 2023].

Proposition 4.2 (Almost-Linear Time DiT Inference). Assuming SETH, the DiT inference problem
ADITI(L, d = O(logL), B = o(

√
logL), δF = 1/poly(L)) can be solved in L1+o(1) time.

Remark 4.4. Proposition 4.2 is a special case of Proposition 4.1 under the efficiency threshold.
Remark 4.5. Propositions 4.1 and 4.2 are dominated by the relation between L and d, hence by the
subspace dimension d0 = dL. A smaller d0 makes Propositions 4.1 and 4.2 more likely to hold.

5 Discussion and Concluding Remarks
We explore the fundamental limits of latent DiTs with 3 key contributions. First, we prove that
transformers are universal approximators for the score functions in DiTs (Theorem 3.1), with
approximation capacity and model size dependent only on the latent dimension, suggesting DiTs
can handle high-dimensional data challenges. Second, we show that Transformer-based score
estimators converge to the true score function (Theorem 3.2), ensuring the generated data distribution
closely approximates the original (Corollary 3.2.1). Third, we provide provably efficient criteria
(Proposition 4.1) and prove the existence of almost-linear time algorithms for forward inference
(Proposition 4.2) and backward computation (Theorem 4.1). Our computational results hold for both
unconditional and conditional generation of DiTs (Remark 4.1). These results highlight the potential
of latent DiTs to achieve both computational efficiency and robust performance in practical scenarios.

Practical Guidance from Computational Results. Section 4 analyzes the computational feasibility
and identifies all possible efficient DiT algorithms/methods for both forward inference and backward
training. These results provide practical guidance for designing efficient methods:

• The latent dimension should be sufficiently small: d = O(logL) (Theorem 4.1, Propositions 4.1
and 4.2).

• Normalization of K, Q, and V in DiT attention heads enhances performance and efficiency:
– For efficient inference: max {∥WKA1∥, ∥WQA2∥, ∥WOVA3∥} ≤ B with B = o(

√
logL)

(Proposition 4.2) and A1, A2, A3 being the input data associated with K,Q, V .
– For efficient training: max {∥WKA1∥, ∥WQA2∥, ∥WOVA3∥} ≤ Γ with Γ = o(

√
logL) (The-

orem 4.1).

We remark that these conditions are necessary but not sufficient; sufficient conditions depend on the
specific design of the methods used. This is due to the best- or worst-case nature of hardness results.

Limitations and Future Direction. As discussed in Remark 3.4, the double exponential factor in
our explicit sample complexity bound (Theorem 3.2) suggests a possible gap in our understanding
of transformer universality and its interplay with DiT architecture. This motivates us to rethink
transformer universality and explore new proof techniques for DiTs, which we leave for future work.
Besides, due to its formal nature, this work does not provide immediate practical implementations.
However, we expect that our findings provide valuable insights for future diffusion generative models.

Post-Acceptance Note [October, 29, 2024]. During preparation of the camera-ready version, we
learn of a follow-up work [Anonymous, 2024b] that alleviates the double exponential factor and
achieves minimax optimal statistical rates for DiTs under Hölder smoothness data assumptions.
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Broader Impact
This theoretical work aims to shed light on the foundations of diffusion generative models and is not
anticipated to have negative social impacts.
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A More Discussions on Low-Dimensional Linear Latent Space

Our analysis is based on the low-dimensional linear latent space assumption (Assumption 2.1). Here
we further discuss this in light of our theoretical results

Our results are more general and extend beyond Assumption 2.1. In addition to the case where
d0 < D, our theoretical results apply to two other settings: d0 = D and d0 > D. Especially, for
d0 = D, our results still hold by setting B as the identity matrix ID. Namely, our results hold after
removing the linear subspace assumption.

• Statistically, for score approximation, score estimation, and distribution estimation, the upper
bounds depend on the dimension of the latent variable d0, other than d. A smaller d0 allows
for a reduced model size to achieve a specified approximation error compared to a larger one
(Theorem 3.1). Additionally, with a smaller d0, both score and distribution estimation errors are
reduced relative to scenarios with larger ones (Theorem 3.2 and Corollary 3.2.1).

• Computationally, smaller d0 benefits the provably efficient criteria (Proposition 4.1, almost-linear
time algorithms for forward inference (Proposition 4.2) and backward computation (Theorem 4.1).
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B Notation Table

We summarize our notations in the following table for easy reference.

Table 1: Mathematical Notations and Symbols
Symbol Description

∥z∥2 Euclidean norm, where z is a vector
∥z∥∞ Infinite norm, where z is a vector
∥Z∥2 2-norm, where Z is a matrix
∥Z∥op Operator norm, where Z is a matrix
∥Z∥F Frobenius norm, where Z is a matrix
∥Z∥p,q p, q-norm, where Z is a matrix
∥f(x)∥L2 L2-norm, where f is a function
∥f(x)∥L2(P ) L2(P )-norm, where f is a function and P is a distribution
∥f(·)∥Lip Lipschitz-norm, where f is a function
f♯P Pushforward measure, where f is a function and P is a distribution

n Sample size
x Data point in original data space, x ∈ RD
h Latent variable in low-dimensional subspace, h ∈ Rd0

ph The destiny function of h
B The matrix with orthonormal columns to transform h to x, where B ∈ RD×d0

x Perturbed data variable at t > 0
h h = B⊤x

T Stopping time in the forward process of Diffusion model
T0 Stopping time in the backward process of Diffusion model
µ Discretized step size in backward process
pt(·) The density function of x for at time t
pht (·) The density function of h at time t
ψ (Conditional) Gaussian density function

d Input dimension of each token in the transformer network of DiT
L Token length in the transformer network of DiT
X Sequence input of transformer network in DiT, where X ∈ Rd×L
E Position encoding, where E ∈ Rd×L
R(·) Reshape layer in DiT, R(·) : Rd0 → Rd×L
WB The orthonormal matrix to approximate B, where WB ∈ RD×d0

18



C Related Works

Organization. In the following, we first discuss recent developments in DiTs. Then, we discuss the
main technique of our statistical results: the universality (universal approximation) of transformer.
Next, we discuss recent theoretical developments in diffusion generative models. Lastly, we discuss
other aspects of transformer in foundation models beyond diffusion models.

Diffusion Transformers. Diffusion [Ho et al., 2020] and score-based generative models [Song
and Ermon, 2019] have been particularly successful as generative models of images, video and
biomedical data [Nichol et al., 2021, Ramesh et al., 2022, Liu et al., 2024, Zhou et al., 2024a,b,
Wang et al., 2024a,b]. Recently, transformer-based diffusion models have garnered significant
attention in research. The U-ViT model [Bao et al., 2022] incorporates transformer blocks into a
U-net architecture, treating all inputs as tokens. In contrast, DiT [Peebles and Xie, 2023] utilizes a
straightforward, non-hierarchical transformer structure. Empirically, diffusion transformers (DiTs)
[Peebles and Xie, 2023] have emerged as a significant advancement (e.g., SoRA [OpenAI, 2024,
Liu et al., 2024] from OpenAI), effectively combining the strengths of transformer architectures and
diffusion-based approaches. Models like MDT [Gao et al., 2023a] and MaskDiT [Zheng et al., 2023]
improve the training efficiency of DiT by applying a masking strategy.

Universality and Memory Capacity of Transformers. The universality of transformers refers to
their ability to serve as universal approximators. This means that transformers theoretically models
any sequence-to-sequence function to a desired degree of accuracy. Yun et al. [2020] establish that
transformers can universally approximate sequence-to-sequence functions by stacking numerous
layers of feed-forward functions and self-attention functions. In a different approach, Jiang and Li
[2023] affirm the universality of transformers by utilizing the Kolmogorov-Albert representation
Theorem. Most recently, Kajitsuka and Sato [2023] show that transformers with one self-attention
layer is a universal approximator.

The memory capacity of a transformer is a practical measure to test the theoretical results of the
transformer’s universality, by ensuring the model can handle necessary context and dependencies. By
memory capacity, we refer to the minimal set of parameters such that the model (i.e., transformer)
approximates all input-output pairs in the training dataset with a bounded error. Several works address
the memory capacity of transformers. Kim et al. [2022] show that transformers with Õ(d+L+

√
NL)

parameters are sufficient to memorize N length-L and dimension-d sequence-to-sequence data points
by constructing a contextual mapping with O(L) attention layers. Mahdavi et al. [2023] show that a
multi-head-attention with h heads is able to memorize O(hL) examples under a linear independence
data assumption. Kajitsuka and Sato [2023] show that a single layer transformer with O(NLd+ d2)
parameters is able to memorize N length-L and dimension-d sequence-to-sequence data points by
utilizing the connection between the softmax function and Boltzmann operator. Anonymous [2024a],
Wang et al. [2023] extend the results of [Kajitsuka and Sato, 2023, Yun et al., 2020] to prompt
tuning and discuss the memorization of the data sequences. Another line of research establishes a
different kind of memory capacity for transformers by connecting transformer attention with dense
associative memory models (modern Hopfield models) [Hu et al., 2024a,b,d, 2023, Wu et al., 2024a,b,
Ramsauer et al., 2020]. Notably, they define memory capacity as the smallest number of (length-L and
dimension-d) data points the model (transformer attention) is able to store and derive exponential-in-d
high-probability capacity lower bounds. In particular, Hu et al. [2024d] report a tight exponential
scaling of capacity with feature dimension from the perspective of spherical codes.

Our work is motivated by and builds on [Yun et al., 2020] to bridge the transformer’s function
approximation ability with data distribution estimation. While we do not address the memorization of
DiTs (or diffusion models in general), recent studies on dense associative models suggest viewing pre-
trained diffusion generative models as associative memory models [Achilli et al., 2024, Ambrogioni,
2023, Hoover et al., 2023]. We plan to explore this aspect in future work.

Theories of Diffusion Models. In addition to empirical success, there has been several theoretical
analysis about diffusion models [Chen et al., 2024b, Tang and Zhao, 2024]. Chen et al. [2023] studies
score approximation, estimation, and distribution recovery of U-Net based diffusion models. Benton
et al. [2024] provide convergence bounds linear in data dimensions, assuming accurate score function
approximation. Zhu et al. [2023], Wibisono et al. [2024] provide statistical sample complexity
bounds for score-matching under the similar assumptions. Oko et al. [2023] analyze the distribution
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estimation under the assumption that the initial density is supported on [−1, 1]D and smooth in the
boundary.

Among these works, our work is built on and closest to [Chen et al., 2023], as both assume the data
has a low-dimensional structure. However, our work differs in three key aspects. First, beyond the
simple ReLU networks considered in [Chen et al., 2023], we provide the first score approximation
analysis for DiTs with a transformer-based score estimator. Second, our work is the first to provide
the statistical rates of DiTs (score and distribution estimation) based on transformer universality
[Yun et al., 2020] and norm-based converging number bound [Edelman et al., 2022], supporting the
practical success of DiTs [Esser et al., 2024, Ma et al., 2024]. Lastly, our work provides the first
comprehensive analysis of the computational limits and all possible efficient DiT algorithms/methods
for both forward inference and backward training. This offers timely insights into the empirical
computational inefficiency of DiTs [Liu et al., 2024] and guidance for future DiT architectures.

Transformers in Foundation Models: Transformer-Based Pretrained Models. Transformer-
based pretrained models utilize attention mechanisms to process sequential data, enabling the learning
of contextual relationships for tasks like natural language understanding and generation. These models
encompass three types: encoder-based, decoder-based, and diffusion transformers. Encoder-based
transformers, such as DNABERT [Zhou et al., 2024c, 2023, Ji et al., 2021], employ bidirectional
attention to extract feature representations DNABERT shows great potential to capture complex
patterns of genome sequences and improve tasks such as gene prediction. Decoder-based transformers
generate output sequences from encoded information using unidirectional attention, such as ChatGPT
[Radford et al., 2019, Floridi and Chiriatti, 2020, Brown et al., 2020] for natural language. The
diffusion transformers generate a sequence toward a target distribution, such as SoRA [Liu et al.,
2024] and Videofusion [Luo et al., 2023] for video generation and DecompDiff [Guan et al., 2024]
for drug design. In our paper, we present an early exploration of the statistical and computational
limits of diffusion transformer models.
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D Supplementary Theoretical Background

In this section, we provide some further background. We show the details about the forward and
backward process in Diffusion Models in Appendix D.1. Besides, we give the details of the proof
about the score decomposition in Appendix D.2.

D.1 Diffusion Models

Forward Process. Diffusion models gradually add noise to the original data in the forward process.
We describe the forward process as the following SDE

dxt = −1
2w(t)xtdt+

√
w(t)dWt, xt ∈ RD, (D.1)

where x0 ∼ P0, (Wt)t≥0 is a standard Brownian motion, and w(t) > 0 is a nondecreasing weighting
function. Let Pt and pt denote the marginal distribution and destiny of xt. The conditional distribution
P (xt|x0) follows N(β(t)x0, σ(t)ID), where β(t) = exp

(
−
∫ t

0 w(s)ds/2
)

and σ(t) = 1 − β2(t).
In practice, (D.1) terminates at a large enough T such that PT is close to N(0, ID).

Backward Process. We obtain the backward process yt := xT−t by reversing (D.1). The backward
process satisfies

dyt =
[

1
2w(T − t)yt + w(T − t)∇ log pT−t(yt)

]
dt+

√
w(T − t)dW t, (D.2)

where the score function ∇ log pt(·) is the gradient of log probability density function of xt, and
W t is a reversed Brownian motion. However, ∇ log pt(·) and PT are both unknown in (D.2). To
resolve this, we use a score estimator sW (·, t) to replace ∇ log pt(·), where sW (·, t) is usually a
neural network with parameters W . Secondly, we replace PT by the standard Gaussian distribution.
Consequently, we obtain the following SDE

dỹt =
[

1
2w(T − t)ỹt + w(T − t)sW (ỹt, T − t)

]
dt+

√
w(T − t)dW t, ỹ0 ∼ N(0, ID). (D.3)

In practice, we use discrete schemes of (D.3) to generate data, following [Song and Ermon, 2019].
We use µ > 0 to denote the discretization step size. For t ∈ [kµ, (k + 1)µ], we have

dỹµt =
[

1
2w(T − t)ỹµkµ + w(T − t)sW (ỹµkµ, T − kµ)

]
dt+

√
w(T − t)dW t. (D.4)

D.2 Proof of Lemma 2.1

Here we restate the proof of [Chen et al., 2023, Lemma 1] for completeness.

Proof. Recall x = Bh by Assumption 2.1 with x ∈ RD, B ∈ RD×d0 and h ∈ Rd0 .

By the forward process (D.1), we have

pt(x) =
∫
ψt(x | Bh)ph(h)dh, (D.5)

where

ψt(x | Bh) = [2πh(t)]−D/2 exp
(

−
∥β(t)Bh− x∥2

2
2σ(t)

)
, (D.6)

is the Gaussian transition kernel.
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Then we write the score function as

∇ log pt(x) = ∇pt(x)
pt(x) (D.7)

=
∇
∫
ψt(x | Bh)ph(h)dh∫
ψt(x | Bh)ph(h)dh

(
By pluging in pt(x)

)
=
∫

∇ψt(x | Bh)ph(h)dh∫
ψt(x | Bh)ph(h)dh

,
(

By interchanging
∫

with ∇
)

where the last equality holds since ψt(x | Bh) is continuously differentiable in x.

Plugging (D.6) into (D.7), we have

∇ log pt(x)

= [2πh(t)]−D/2∫
ψt(x | Bh)ph(h)dh

∫ 1
σ(t) (β(t)Bh− x) exp

(
−

∥β(t)Bh− x∥2
2

2σ(t)

)
ph(h)dh.

We then decompose above score function by projecting of x into Span(B), i.e., replacing −x with
−BB⊤x− (ID −BB⊤)x:

∇ log pt(x)

= [2πh(t)]−D/2∫
ψt(x | Bh)ph(h)dh

·
∫ 1
σ(t)

[ (
β(t)Bh−BB⊤x

)
−
(
ID −BB⊤

)
x

]
exp

(
−

∥β(t)Bh− x∥2
2

2σ(t)

)
ph(h)dh.

Absorbing the factor of [2πh(t)]−D/2 into the Gaussian kernel ψt(x | Bh), we have

∇ log pt(x)

= [2πh(t)]−D/2∫
ψt(x | Bh)ph(h)dh

∫ 1
σ(t)

(
β(t)Bh−BB⊤x

)
exp

(
−

∥β(t)Bh− x∥2
2

2σ(t)

)
ph(h)dh

− 1∫
ψt(x|Bh)ph(h)dh

(
1
σ(t)

(
ID −BB⊤

)
x

)∫
ψt(x | Bh)ph(h)dh

= 1∫
ψt(x | Bh)ph(h)dh

∫ 1
σ(t)

(
β(t)Bh−BB⊤x

)
ψt(x | Bh)ph(h)dh︸ ︷︷ ︸

:=s+

− 1
σ(t)

(
ID −BB⊤

)
x︸ ︷︷ ︸

:=s−

.

To further simplify s+, we decompose ψt(x | Bh) as

ψt(x | Bh)

= [2πh(t)]−D/2 exp
(

− 1
2σ(t)∥β(t)Bh− x∥2

2

)
= [2πh(t)]−D/2 exp

(
− 1

2σ(t)
∥∥β(t)Bh−BB⊤x−

(
ID −BB⊤

)
x
∥∥2

2

)
= [2πh(t)]−D/2 exp

(
− 1

2σ(t)

(∥∥β(t)Bh−BB⊤x
∥∥2

2 +
∥∥(ID −BB⊤

)
x
∥∥2

2

− 2(B(β(t)h−B⊤x))⊤(ID −BB⊤)x
))
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= [2πh(t)]−D/2 exp
(

− 1
2σ(t)

(∥∥β(t)Bh−BB⊤x
∥∥2

2 +
∥∥(ID −BB⊤

)
x
∥∥2

2

))
(
B(β(t)h−B⊤x) is in Span(B) while (ID −BB⊤)x is orthogonal to Span(B)

)
= [2πh(t)]−d0/2 exp

(
−
∥∥β(t)h−B⊤x

∥∥2
2

2σ(t)

)
︸ ︷︷ ︸

:=ψt(B⊤x|h)

· [2πh(t)]−(D−d0)/2 exp
(

−
∥∥(ID −BB⊤

)
x
∥∥2

2
2σ(t)

)
︸ ︷︷ ︸

:=ψt((ID−BB⊤)x)

,

(
since B has orthonormal columns

)
where both ψt

(
B⊤x | h

)
and ψt

(
(ID −BB⊤)x

)
are Gaussian.

Plugging ψt(x | Bh) = ψt
(
B⊤x | h

)
ψt
(
(ID −BB⊤)x

)
into s+, we obtain

s+(x, t) = C

∫ 1
σ(t)

(
β(t)Bh−BB⊤x

)
ψt(B⊤x | h)ψt((ID −BB⊤)x)ph(h)dh

= Cψt((ID −BB⊤)x)
∫ 1
σ(t)

(
β(t)Bh−BB⊤x

)
ψt(B⊤x | h)ph(h)dh

= 1∫
ψt(B⊤x | h)ph(h)dh

∫ 1
σ(t)

(
β(t)Bh−BB⊤x

)
ψt(B⊤x | h)ph(h)dh,

where C := [ψt((ID −BB⊤)x)
∫
ψt(B⊤x | h)ph(h)dh]−1.

Notably, s+ depends only on the projected data B⊤x. Therefore, we are able to replace s+(x, t) with
s+(B⊤x, t). The benefit is that the dimension d0 of the first input in s+(B⊤x, t) is much smaller.

Lastly, by denoting h = B⊤x such that ∇hψt(h | h) = (β(t)h− h)ψt(h | h)/σ(t), we arrive at

s+(B⊤x, t) = B

∫ ∇hψt(h | h)ph(h)∫
ψt(h | h)ph(h)dh

dh

= B∇ log pht (B⊤x).
(
ph

t (h) :=
∫
ψt(h|h)ph(h)dh

)
This completes the proof.

D.3 Preliminaries: Strong Exponential Time Hypothesis (SETH) and Tensor Trick

Here we present the ideas we built upon for Section 4.

Strong Exponential Time Hypothesis (SETH). Impagliazzo and Paturi [2001] introduce the
Strong Exponential Time Hypothesis (SETH) as a stronger form of the P ̸= NP conjecture. It suggests
that our current best SAT algorithms are optimal and is a popular conjecture for proving fine-grained
lower bounds for a wide variety of algorithmic problems [Cygan et al., 2016, Williams, 2018].

Hypothesis 1 (SETH). For every ϵ > 0, there is a positive integer k ≥ 3 such that k-SAT on formulas
with n variables cannot be solved in O(2(1−ϵ)n) time, even by a randomized algorithm.

Tensor Trick for Computing Gradients. The tensor trick [Diao et al., 2019, 2018] is an instrument
to compute complicated gradients in a clean and tractable fashion. We start with some definitions.

Definition D.1 (Vectorization). For any matrix X ∈ RL×d, we define X := vec (X) ∈ RLd such
that Xi,j = X(i−1)d+j for all i ∈ [L] and j ∈ [d].

Definition D.2 (Matrixization). For any vector X ∈ RLd, we define mat(X) = X such that
Xi,j = mat(X) := X(i−1)d+j for all i ∈ [L] and j ∈ [d], namely mat(·) = vec−1(·).

Definition D.3 (Kronecker Product). Let A ∈ RLa×da and B ∈ RLb×db . We define the Kronecker
product of A and B as A⊗B ∈ RLaLb×dadb such that (A⊗B)(ia−1)Lb+ib,(ja−1)db+jb

, is equal to
Aia,ja

Bib,jb
with ia ∈ [La], ja ∈ [da], ib ∈ [Lb], jb ∈ [db].
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Definition D.4 (Sub-Block of a Tensor). For any A ∈ RLa×da and B ∈ RLb×db , let A := A⊗B ∈
RLaLb×dadb . For any j ∈ [La], we define Aj ∈ RLb×dadb be the j-th Lb × dadb sub-block of A.

Lemma D.1 (Tensor Trick [Diao et al., 2019, 2018]). For any A ∈ RLa×da , B ∈ RLb×db and
X ∈ Rda×db , it holds vec

(
A⊤XB

)
= (A⊤ ⊗B⊤)X ∈ RLaLb .

To showcase the tensor trick, let’s consider a (single data point) attention following [Gao et al.,
2023b,c]. Setting D := diag

(
exp
(
XTWT

KWQX
)
1L
)

and W := WKW
T
Q ∈ Rd×d, we have

L0 :=
∥∥WV︸︷︷︸
d×d

X︸︷︷︸
∈Rd×L

D−1︸︷︷︸
∈RL×L

exp
{
XTWX

}︸ ︷︷ ︸
∈RL×L

− Y︸︷︷︸
∈Rd×L

∥∥2
2. (D.8)

Proposition D.1 (Definition 4.7 of [Gao et al., 2023b]). By Definition D.3 and Definition D.4,
we identify Dj,j :=

〈
exp
(

AjW
)
,1L

〉
∈ R for all j ∈ [L], with A := X ⊗ X ∈

RL2×d2
and W ∈ Rd2

. Therefore, for each j ∈ [L] and i ∈ [d], it holds L0 =∑L
j=1

∑d
i=1

1
2

(〈
D−1
j,j exp

(
AjW

)
, XWV [·, i]

〉
− Yj,i

)2
.

The elegance of Proposition D.1 emerges when we vectorize the weights into vectorsW,WV , making
the gradient computations (e.g., dL0/W and dL0/W

V
) more tractable by avoiding complex matrix or

tensor derivatives. This approach systematically simplifies the handling of chain-rule terms in the
gradient computation of losses like L0.

Fine-Grained Complexity for Transformer. Many recent works also utilize similar techniques
from fine-grained complexity to analyze transformer architectures. Alman and Song [2023, 2024b],
Liang et al. [2024d], Alman and Song [2024a] explore the computational feasibility of inference
and training for standard softmax and tensor attention. Liang et al. [2024c] extend the single-
layer training results from [Alman and Song, 2024b] to deep transformer models. [Liang et al.,
2024a] extend [Alman and Song, 2024b] to provide a fast attention gradient approximation based on
Fourier transform. [Liang et al., 2024b] extend [Alman and Song, 2024b] to sparse attention matrix.
Anonymous [2024a] study the computational limits of inference and training in prompt-tuning for
pretrained transformers. Hu et al. [2024c] study the computational limits of LoRA [Hu et al., 2021]
in transformers, identifying norm-bound conditions for efficient LoRA training and proving the
existence of nearly linear-time LoRA algorithms.

Our work is closest to [Alman and Song, 2024b, 2023]. Our forward inference computational results
build on [Alman and Song, 2023]. Our backward training computational results are related to [Alman
and Song, 2024b] but include additional analysis on reshaping and latent embedding.
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E More Background and Auxiliary Lemmas: Universal Approximation of
Transformers via Piecewise Approximation

Here, we review the universal approximation of transformers following [Yun et al., 2020].

Our goal is to reproduce the results of [Yun et al., 2020] and use or modify them as auxiliary lemmas
for proofs of Section 3 (i.e., Appendix F.)

We start with their central result and prove it in the rest of the section.

Lemma E.1 (Universal Approximation of Transformers, Theorem 3 of [Yun et al., 2020]). Let ϵ > 0.
For any given compact-supported continuous function f : Rd×L → Rd×L, there exists a transformer
network fT ∈ T 2,1,4

p , such that(∫
∥fT (X) − f(X)∥2

FdX
)1/2

≤ ϵ.

Proof Overview. We use the following proof strategy:

• Step 1. We show that the piecewise-constant function is able to approximate compact-supported
continuous function in Appendix E.1.

• Step 2. We define modified self-attention and feed-forward layers to construct the modified
transformer. We show that the modified transformer is able to approximate piecewise-constant
function in Appendix E.2.

• Step 3. We show that the modified transformer is able to approximate the normal transformer in
Appendix E.3.

We provide details of Step 1. in Appendix E.1, Step 2. in Appendix E.2, and Step 3. in Appendix E.3.
Then we summarize our results in Appendix E.4.

E.1 Piecewise-Constant Function Approximates Compact-Supported Continuous Function

In this subsection, we show that the piecewise-constant function is able to approximate compact-
supported continuous function.

We start with the definition of the compact-supported continuous functions of interest.

Assumption E.1. Without loss of generality, we assume that the target function in discussion is
supported on [0, 1]d×L. We denote the set of [0, 1]d×L-supported continuous functions as F .

We introduce the notion of grid and cube for the compact support [0, 1]d×L.

Definition E.1 (Grid and Cube with Width δ). Given a grid width δ, let Gδ := {0, δ, . . . , 1 − δ}d×L
denote the set of grids within [0, 1]d×L. For a grid point G = (Gj∈[d],k∈[L]) ∈ Gδ, we denote its
associated cube as

SG := ⊗d
j=1 ⊗L

k=1 [Gj,k, Gj,k + δ) ⊂ [0, 1]d×L.

Each cube SG represents a hyper rectangular in the multi-dimensional space [0, 1]d×L, constructed to
discretize the space into smaller subspaces.

We introduce the notion of piecewise-constant fucntion class w.r.t. the [0, 1]d×L-supported continuous
function class F .

Definition E.2 (Piecewise-Constant Function Class). Let fδ denote the piesewise constant function of
grid width δ, and 1{·} denote the indicator function. For each G ∈ Gδ , and any matrix AG ∈ Rd×L,
we define the piecewise-constant function class as

F(δ) :=
{
fδ : X →

∑
G∈Gδ

AG · 1{X ∈ SG}, AG ∈ Rd×L
}
. (E.1)
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We recall that for a given sequence-to-sequence function f ,

∥f∥L2 :=
(∫

∥f(X)∥2
FdX

)1/2
.

We approximate the compact-supported function with a piecewise-constant function in the next
lemma.

Lemma E.2. (Lemma 8 of [Yun et al., 2020]) For any given f ∈ F and ϵ/3 > 0, we can find a
δ⋆ > 0, such that there exists a fδ⋆ ∈ F(δ⋆) satisfying ∥f − fδ⋆∥L2 ≤ ϵ/3.

Proof. See Appendix E.5.2 for a detailed proof.

E.2 Modified Transformer Approximates Piecewise-constant Function

In this subsection, we define modified self-attention and feed-forward layers to construct the modified
transformers. We use the modified transformers to approximate the piecewise-constant function.

Definition E.3 (Modified Transformer Networks). The modified transformer network T r,m,l
p includes

two modifications to the standard transformer network T r,m,l
p :

• Modified attention layer: Replace Softmax operator with Hardmax operator σH(·).
• Modified feed-forward layer: Replace ReLU(·) with an activation function ζ ∈ Ψ. Here, Ψ

denotes the set of all piecewise linear functions with at most three pieces and at least one constant.

We approximate F(δ) with this modified transformer networks T r,m,l
p .

Lemma E.3 (Modified from Proposition 4 of [Yun et al., 2020]). For each fδ ∈ F(δ), there exists a
fT ,c ∈ T 2,1,1

p such that ∥fδ − fT ,c∥L2 = O(δd/2).

Proof Sketch. Given δ, and for any grid G ∈ Gδ , we have a grid set Gδ and the cube SG.

Our proof follows two steps:

• Quantization. For all X ∈ Rd×L, we quantize it to a finite set:

– If X ∈ SG ⊂ [0, 1]d×L, we quantize it to the element G ∈ Gδ .
– If X /∈ [0, 1]d×L, we quantize it to an element out of Gδ .

• Mapping. For any G ∈ Gδ , we map it to the desired output AG.

For Quantization, we achieve this by a series of modified feed-forward layers. We show this in
Appendix E.2.1.

For Mapping, we follow two steps:

• For any G ̸= G′ ∈ Gδ, we use a “contextual mapping” qc(·) (defined as Definition E.4). The
mapping maps all the elements in qc(G) and qc(G′) to different values. Then, we use a series of
modified self-attention layers to achieve “contextual mapping”. We show this in Appendix E.2.2.

Definition E.4 (Contextual Mapping). Consider a finite set Gδ ∈ Rd×L. A map qc : Gδ → R1×L

defines a contextual mapping if the map satisfies the following:

– For any G ∈ Gδ , the entries in qc(G) are all distinct.
– For any G ̸= G′ ∈ Gδ , all entries of qc(G) and qc(G′) are distinct.

• For any G ∈ Gδ, we use a series of modified feed-forward layers to map qc(G) to AG. We show
this in Appendix E.2.3.

26



Remark E.1. Our proof differs from [Yun et al., 2020] in one aspect: Although [Yun et al., 2020,
Proposition 4] outlines a proof for transformer networks without positional encoding and sketches
the proof for networks with it, we provide a detailed proof for the latter to support our proof.

E.2.1 Quantization by Modified Feed-forward Layers

We use a series of modified feed-forward layers in T r,m,l
p to quantize an input X ∈ Rd×L to an

element G of the following grid:

{−J, 0, δ, . . . , 1 − δ}d×L,

where J > L > 0 is a large number to be determined later. We achieve this via two steps.

• Step 1: Map the element out of [0, 1) to −J .
We use ei to represent the standard unit vector where the i-th element is 1. For the i-th row of X ,
we define the following feed-forward layer to achieve our aim.

Definition E.5 (Feed-forward Layer 1). The vector ei acts as the weight parameters, and ζ1(·) acts
as the activation function in the feed-forward layer

X → X + eiζ1(e⊤i X), ζ1(t) =
{

−t− J, for t < 0 or t ≥ 1,
0, otherwise.

(E.2)

We take i = 1 as an example to give the specific calculation. Let X = (xi,j)d×L, then we have

FF(X) = X +


1
0
...
0

 (ζ1(x1,1) ζ1(x1,2) · · · ζ1(x1,L))

= X +


ζ1(x1,1) ζ1(x1,2) · · · ζ1(x1,L)

0 0 · · · 0
...

...
...

...
0 0 · · · 0

 .

In the first row of X , the above layer transforms the element that is out of [0, 1) to −J .
We stack the above layers together for i = 1, 2, . . . , d. If the element of X is out of [0, 1), the
series of layers maps it to J .

• Step 2: Map the element in [0, 1) to {0, δ, 2δ, . . . , 1 − δ}.
For the i-th row of X , we take k = 0, 1, . . . , 1/δ − 1 respectively. We define the following layer.

Definition E.6 (Feed-forward Layer 2). The vector ei acts as the weight parameters and ζ2(·) acts
as the activation function in the feed-forward layer

X → X + eiζ2(e⊤i X − kδ1⊤n ), ζ2(t) =
{

0, t < 0 or t ≥ δ,

−t, 0 ≤ t < δ.
(E.3)

We take i = 1 and k = 1 as an example. We give the following specific calculation

FF(X) = X +


1
0
...
0

 (ζ2(x1,1 − δ) ζ2(x1,2 − δ) · · · ζ2(x1,L − δ))

= X +


ζ2(x1,1 − δ) ζ2(x1,2 − δ) · · · ζ2(x1,L − δ)

0 0 · · · 0
...

...
...

...
0 0 · · · 0

 .
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In the first row of X , the above layer transforms the element in [δ, 2δ] to δ.
We stack the above layers together for i = 1, 2, . . . , d and k = 0, 1, . . . , 1/δ − 1. If the element of
X is in [kδ, (k + 1)δ], the series layers maps it to kδ.

Combining the above two parts, we achieve our goal with d/δ + d feed-forward layers. We denote
the d/δ + d series layers as fT ,c1.

E.2.2 Contextual Mapping by Modified Self-attention Layers

In our attention layers, we use the following positional encoding E ∈ Rd×L

E =


0 1 2 · · · L− 1
0 1 2 · · · L− 1
...

...
...

...
0 1 2 · · · L− 1

 . (E.4)

According to Appendix E.2.1, the output of fT ,c1 is in the grid {−J, 0, δ, . . . , 1 − δ}d×L. For any X
in this grid, the first column of X + E is in

{−J, 0, δ, . . . , 1 − δ}d,

and the second column is in

{−J + 1, 1, 1 + δ, . . . , 2 − δ}d.

The results are similar in the other columns.

For i = 0, 1, . . . , L− 1, we use the following notation:

[i : δ : i+ 1 − δ]J := {i− J, i, i+ δ, . . . , i+ 1 − δ}.

Then, we define the grid G+
δ as the following.

Definition E.7 (Grid G+
δ ). We add E to all the grid points in Gδ to generate the modified grid G+

δ ,
defined as follows:

G+
δ := [0 : δ : 1 − δ]dJ × [1 : δ : 2 − δ]dJ × · · · × [L− 1 : δ : L− δ]dJ .

Next, we show that the modified attention layer computes contextual mapping (Definition E.4) for
G+
δ . For i = 1, 2, . . . , L− 1, we use the following notation:

[i : δ : i+ 1 − δ] := {i, i+ δ, i+ 2δ, . . . , i+ 1 − δ}.

Lemma E.4 (Modified from Lemma 6 of [Yun et al., 2020]). We consider the following subset of
G+
δ :

G̃δ := [0 : δ : 1 − δ]d × [1 : δ : 2 − δ]d × · · · × [L− 1 : δ : L− δ]d︸ ︷︷ ︸
L

.

Assume that L ≥ 2 and δ−1 ≥ 2. Then, there exist a function fT ,c2 : Rd×L → Rd×L composed of
δ−d + 1 modified attention layers (Definition E.3), a vector u ∈ Rd, and two constants tl, tr ∈ R
(0 < tl < tr), such that qc(G) := u⊤fT ,c2(G), G ∈ G+

δ satisfies the following properties:

1. For any G ∈ G̃δ , all the entries of qc(G) are distinct.

2. For any different G,G′∈G̃δ , all the entries of qc(G), qc(G′) are distinct.

3. For any G ∈ G̃δ , all the entries of qc(G) are in [tl, tr].
4. For any G ∈ G+

δ \ G̃δ , all the entries of qc(G) are outside [tl, tr].
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Proof. See Appendix E.5.3 for a detailed proof.

Remark E.2. Our proof differs from [Yun et al., 2020] in one aspect: The original [Yun et al., 2020,
Lemma 6] does not include positional encoding (E.4). Although Yun et al. [2020] sketches the proof
for networks with (E.4) in the attention layer input, we detail the proof.

E.2.3 Map to the Desired Output by Modified Feed-forward Layers

Next, we show that a series of feed-forward layers map the output of modified attention layers fT ,c2
to the desired output of function fδ⋆ .

Lemma E.5 (Lemma 7 of [Yun et al., 2020]). There exists a function fT ,c3 : Rd×L → Rd×L
composed of O(L(1/δ)dL/L!) modified feed-forward layers, such that

fT ,c3 ◦ fT ,c2(G) =
{
AG if G ∈ G̃δ,
0d×L if G ∈ G+

δ \ G̃δ.

Proof. See Appendix E.5.4 for a detailed proof.

In conclusion, we have the following lemma for the required number of layers in the modified
transformer.

Lemma E.6 (Total Number of Layers). From the proof of Lemma E.3, if we want to achieve a
approximation error O(δd/2) by the modified transformer, we need O(δ−1) modified feed-forward
layers in fT ,c1, O(δ−d) modified self-attention layers in fT ,c2, and O(δ−dL) modified feed-forward
layers in fT ,c3.

Proof. By the proof of Lemma E.3, we complete the proof.

E.3 Standard Transformers Approximate Modified Transformers

In this subsection, we show that standard neural network layers are able to approximate the modified
self-attention layers and the modified feed-forward layers (Definition E.3). We have the following
Lemma E.7.

Lemma E.7 (Lemma 9 of [Yun et al., 2020]). For each fT ,c ∈ T 2,1,1
p and any ϵ > 0, there exists

fT ∈ T 2,1,4
p such that ∥fT − fT ,c∥L2 ≤ ϵ/3.

Proof. See Appendix E.5.5 for a detailed proof.

E.4 All Together: Standard Transformers Approximate Compact-supported Continuous
Functions

We summarize the results of Lemmas E.2, E.3 and E.7. Then we prove Lemma E.1.

Furthermore, to achieve the ϵ approximation error in Lemma E.1, we take δ = O(ϵ2/d) in Lemma E.3.
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E.5 Supplementary Proofs

We first present two preliminary concepts: selective shift operation and bijective column ID mapping
in Appendix E.5.1.

Then we show

• Proof of Lemma E.2 in Appendix E.5.2

• Proof of Lemma E.4 in Appendix E.5.3

• Proof of Lemma E.5 in Appendix E.5.4

• Proof of Lemma E.7 in Appendix E.5.5

E.5.1 Preliminaries

Here, we give the definition of two preliminary concepts: selective shift operation and bijective
column ID mapping.

Selective Shift Operation. This operation refers to shifting certain entries of the input selectively.

To achieve this, we consider the following function ξ(·; ·) : Rd×L → Rd×L

ξ(X; bQ) = e1u
⊤XσH

[
(u⊤X)⊤(u⊤X − bQ1

⊤
n )
]
, (E.5)

where X ∈ Rd×L, e1 = (1, 0, 0, · · · , 0)⊤ ∈ Rd, and bQ ∈ R. u ∈ Rd is a vector to be determined.

To see the output, we consider the j-th column of u⊤XσH
[
(u⊤X)⊤(u⊤X − bQ1

⊤
n )
]
:

• If u⊤X:,j > bQ, it calculates argmax of u⊤X;

• If u⊤X:,j < bQ, it calculates argmin of u⊤X .

All rows of ξ(X; bQ) except the first row are zero. We consider the j-th entry of the first row in
ξ(X; bQ), which is denoted as ξ(X; bQ)1,j . Then for all j ∈ [L], we have

ξ(X; bQ)1,j = u⊤XσH
[
(u⊤X)⊤(u⊤X:,j − bQ)

]
=
{

maxk u⊤X:,k if u⊤X:,j > bQ,

mink u⊤X:,k if u⊤X:,j < bQ.

From this observation, we define a function parametrized by bQ and b′Q (with bQ < b′Q)

ξ(X; bQ, b′Q) := ξ(X; bQ) − ξ(X; b′Q). (E.6)

Then we have

ξ(X; bQ, b′Q)1,j =
{

maxk u⊤X:,k − mink u⊤X:,k, if bQ < u⊤X:,j < b′Q,

0, others.

We define an attention layer of the form X → X + ξ(X; bQ, b′Q). For any column X:,j , if bQ <

u⊤X:,j < b′Q, its first coordinate X1,j is shifted up by maxk u⊤X:,k − mink u⊤X:,k, while all the
other coordinates stay untouched. We call this the selective shift operation because we can choose bQ
and b′Q to shift certain entries of the input selectively.

Bijective Column ID Mapping. We consider the input G ∈ G+
δ (Definition E.7). We use

J = L+ 3Lδ−dL, and u = (1, δ−1, δ−2, . . . , δ−d+1). (E.7)

For any j ∈ [L], we have the following two conclusions:
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• If Gi,j ≥ 0 for all i ∈ [d], i.e., G:,j ∈ [j − 1 : δ : j − δ]d, then we have

u⊤G:,j ∈
[
δj : δ : δj + δ−d+1 − δ

]
, where δj = (j − 1) ·

(
δ − δ−d+1

δ − 1

)
. (E.8)

The mappingG:,j → u⊤G:,j maps the elements in [j−1 : δ : j−δ]d to
[
δj : δ : δj + δ−d+1 − δ

]
.

This is a bijection.
• If there exists i ∈ [d] such that Gi,j = −J + j, then

u⊤G:,j ≤ −3Lδ−dL + (j − 1) ·
(
δ−d+1 − δ

1 − δ

)
+ δ−d+1 < 0. (E.9)

We say that u⊤G:,j gives the “column ID” for each possible value of G:,j ∈ [j − 1 : δ : j − δ]d.
Remark E.3 (Illustration of Bijection Properity). For the bijection property, we give the following
illustration. Let G:j = (g1j , g2j , · · · , gdj)⊤ and G:j = (g1j , g2j , · · · , gdj)⊤. If u⊤G:j = u⊤G:j
and G:j ̸= G:j , we deduce

(g1j − g1j) + δ−1(g2j − g2j) + · · · + δ−d+1(gdj − gdj) = 0. (E.10)

Because G:j ̸= G:j , then there exists a k (k < d), such that gkj ̸= gkj and gij = gij(i > k). We
have ∣∣δ−k+1(gkj − gkj)

∣∣ ≥ δ−k+2.

However, ∣∣(g1j − g1j) + · · · + δ−k+2(gk−1,j − gk−1,j)
∣∣

≤ |g1j − g1j | + · · · +
∣∣δ−k+2(gk−1,j − gk−1,j)

∣∣
≤ (1 − δ) + · · · + δ−k+2(1 − δ)
< δ−k+2.

This contradicts with (E.10). Thus we prove the property of bijection.
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E.5.2 Proof of Lemma E.2

Proof of Lemma E.2. We restate the proof from [Yun et al., 2020] for completeness.

By the nature of the compact-supported continuous function, f is uniformly continuous.

Because ∥·∥∞ is equivalent to ∥·∥F when the number of entries are finite, we have the following by
the definition of uniform continuity.

For any ϵ/3 > 0, there exists a δ⋆ > 0, such that for any X,Y ∈ Rd×L, and ∥X − Y ∥∞ < δ⋆, we
have ∥f(X) − f(Y )∥F < ϵ/3.

Then we perform the following steps following Definitions E.1 and E.2:

• We create a grid Gδ⋆ by choosing grid width δ⋆. We also create cube SG with respect to G ∈ Gδ⋆ .

• For any grid point G ∈ Gδ⋆ , we define CG ∈ SG as the center point of the cube SG.

• We define a piecewise-constant function fδ⋆(X) =
∑
L∈Gδ⋆

f(CG)1{X ∈ SG}.

For any X ∈ SG, we have ∥X − CG∥∞ < δ⋆. According to the uniform continuity, we drive

∥f(X) − fδ⋆(X)∥F = ∥f(X) − f(CG)∥F < ϵ/3.

This implies that ∥f − fδ⋆∥L2 < ϵ/3 and completes the proof.

E.5.3 Proof of Lemma E.4

We give the proof of Lemma E.4 by constructing the network to satisfy the requirements.

Proof of Lemma E.4. Recall the selective shift operation in Appendix E.5.1. The overall idea of the
construction includes two steps:

• Step 1: For each j ∈ [L], we stack δ−d attention layers. For g ∈ [δj : δ : δj + δ−d+1 − δ] (E.8) in
the increasing order, we use the attention layer as

δ−dξ(·; g − δ/2, g + δ/2). (E.11)

The total number of layers is Lδ−d. These layers cast G ∈ G̃δ to L different entries required by
Property 1 of Lemma E.4.

• Step 2: We add an extra single-head attention layer with the following attention part

Lδ−(L+1)d−1ξ(·; 0). (E.12)

This layer achieves a global shifting and casts different G ∈ G̃δ to unique elements required by the
Property 2 of Lemma E.4.

The two operations map G̃δ and G+
δ \ G̃δ to different sets, as required by Property 3 and Property 4 of

Lemma E.4. The bounds tl and tr are calculated then.

Then, we give a detailed proof by showing the impact of the two steps and verifying the four properties
of Lemma E.4. We achieve this by making a category division of G+

δ :

• Category 1: G ∈ G̃δ , all entries in the point G are between 0 and L− δ.

• Category 2: G ∈ G+
δ \ G̃δ , the point G has at least one entry that equals to −J .

Let u = (1, δ−1, δ−2, . . . , δ−d+1). Recall that δj = (j − 1)(δ − δ−d+1)/(δ − 1) for any j ∈ [L] in
(E.8).
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Category 1. We denote gj := u⊤G:,j , then we have g1 < g2 < · · · < gL. The first δ−d layers
sweep the set [δj : δ : δj + δ−d+1 − δ], j ∈ [L] and apply selective shift operation on each element
in the set. This means that selective shift operation will be applied to g1 first, then g2, followed by g3,
and so on.

• The First Shift Operation. In the first selective shift operation with g going through [δ1 : δ :
δ1 + δ−d+1 − δ], the (1, 1)-th entry of G (i.e., G1,1) is shifted by the operation, while the other
entries are left untouched. The updated value G̃1,1 is

G̃1,1 = G1,1 + δ−d
[
max
k

(
u⊤G:,k

)
− min

k

(
u⊤G:,k

)]
= G1,1 + δ−d(gL − g1).

Therefore, the output of the layer after the operation is(
G̃:,1 G:,2 · · · G:,L

)
.

Let g̃1 := uT G̃:,1. We have

g̃1 = G̃1,1 +
d∑
i=2

δ−i+1Gi,1

= G1,1 + δ−d(gL − g1) +
d∑
i=2

δ−i+1Gi,1

= g1 + δ−d(gL − g1).

Then we deduce gL < g̃1, because

g̃1 = g1 + δ−d(gL − g1)

≥ 0 + δ−d
[
(L− 1) · δ − δ−d+1

δ − 1 − δ−d+1 + δ

] (
By (E.8)

)
= δ−d

[
(L− 1) δ

1 − δ
+ δ + (L− 1)δ

−d+1

1 − δ
− δ−d+1

]
≥ δ−d ·

(
(L− 1) δ

1 − δ
+ δ

)
= (L− 1)δ

−d+1

1 − δ
+ δ−d+1

> gL.
(

By δ < 1 and (E.8)
)

Thus, after updating, we have

max u⊤
(
G̃:,1 G:,2 · · · G:,L

)
= max{g̃1, g2, . . . , gL} = g̃1,

and the new minimum is g2.

• The Second Shift Operation. In the second selective shift operation with g going through
[δ2 : δ : δ2 + δ−d+1 − δ], the (1, 2)-th entry of G (i.e., G1,2) is shifted by the operation, while the
other entries are left untouched. The updated value G̃1,2 is

G̃1,2 = G1,2 + δ−d(g̃1 − g2)
= G1,2 + δ−d(g1 − g2) + δ−2d(gL − g1).

Therefore, the output of the layer after the operation is(
G̃:,1 G̃:,2 · · · G:,L

)
.
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We have

g̃2 := u⊤G̃:,2

= g2 + δ−d(g1 − g2) + δ−2d(gL − g1).

Then we deduce g̃1 < g̃2, because

g1 + δ−d(gL − g1) < g2 + δ−d(g1 − g2) + δ−2d(gL − g1)
⇐⇒ (δ−d − 1)(g2 − g1) < δ−d(δ−d − 1)(gL − g1).

(
By δ−d > 1 and gL > g2

)
Thus, after updating, we have

max u⊤
(
G̃:,1 G̃:,2 · · · G:,L

)
= max{g̃1, g̃2, . . . , gL} = g̃2,

and the new minimum is g3.

• Repeating the Process. By repeating this process, we show that the j-th shift operation shifts
G1,j by δ−d(g̃j−1 − gj). Then we have

g̃j := u⊤G̃:,j

= gj +
j−1∑
k=1

δ−kd(gj−k − gj−k+1) + δ−jd(gL − g1).

We deduce g̃j−1 < g̃j holds for all 2 ≤ j ≤ L, because

g̃j−1 < g̃j

⇐⇒ gj−1 +
j−1∑
k=2

δ−kd+d(gj−k − gj−k+1) + δ−(j−1)d(gL − g1)

< gj +
j−1∑
k=1

δ−kd(gj−k − gj−k+1) + δ−jd(gL − g1)

⇐⇒
j−1∑
k=1

δ−kd+d(δ−d − 1)(gj−k+1 − gj−k) < δ−(j−1)d(δ−d − 1)(gL − g1),

where the last inequality holds because

j−1∑
k=1

δ−kd+d(gj−k+1 − gj−k)

< δ−(j−1)d
j−1∑
k=1

(gj−k+1 − gj−k)

< δ−(j−1)d(gL − g1).

Therefore, after the j-th selective shift operation, g̃j is the new maximum among
{g̃1, . . . , g̃j , gj+1, . . . , gL} and gj+1 is the new minimum.

• After L Shift Operations. After the whole L shift operations, the input G is mapped to a new
point G̃, where u⊤G̃ = (g̃1 g̃2 . . . g̃L) and g̃1 < g̃2 < · · · < g̃L. For the lower and upper
bound of g̃L, we have the following lemma.

Lemma E.8 (Lemma 10 of [Yun et al., 2020]). g̃L = u⊤G̃:,L satisfies the following bounds:

δ−(L−1)d+1(δ−d − 1) ≤ g̃L ≤ Lδ−(L+1)d.
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Also, the mapping from (g1 g2 · · · gL) to g̃L is one-to-one mapping.

• Global Shifting by the Last Layer. We note that after the above L shift operations, there is
another attention layer with attention part Lδ−(L+1)d−1ξ(·; 0). Since 0 < g̃1 < · · · < g̃L, it adds
the following to each entry in the first row of G̃:

Lδ−(L+1)d−1 max
k

u⊤G̃:,k = Lδ−(L+1)d−1g̃L.

The output of this layer is defined to be the function fT ,c2(G).

In summary, for any G ∈ G̃δ , i ∈ [d], and j ∈ [L], we have

fT ,c2(G)i,j =
{
G1,j + δ+

j if i = 1,
Gi,j if 2 ≤ i ≤ d,

where δ+
j =

∑j−1
k=1 δ

−kd(gj−k − gj−k+1) + δ−jd(gL − g1) + Lδ−(L+1)d−1g̃L.

For any G ∈ G̃δ and j ∈ [L],

u⊤fT ,c2(G):,j = g̃j + Lδ−(L+1)d−1g̃L.

Next, we check the Property 1, Property 2 and Property 3 of Lemma E.4.

• Checking Property 1 of Lemma E.4. Given any G ∈ G̃δ , we already prove that

g̃1 < g̃2 < · · · < g̃L,

All of them are distinct.

• Checking Property 2 of Lemma E.4. Note that the upper bound on g̃L from Lemma E.8 also
holds for other g̃j (j ∈ [L− 1]). For all j ∈ [L], we have

Lδ−(L+1)d−1g̃L ≤ u⊤fT ,c2(G):,j < Lδ−(L+1)d−1g̃L + Lδ−(L+1)d.

By Lemma E.8, two different G,G′ ∈ G̃δ are mapped to different g̃L and g̃′L, and they differ at
least by δ. This means that the following two intervals are guaranteed to be disjoint:

[Lδ−(L+1)d−1g̃L, Lδ
−(L+1)d−1g̃L + Lδ−(L+1)d),

[Lδ−(L+1)d−1g̃′L, Lδ
−(L+1)d−1g̃′L + Lδ−(L+1)d).

Thus, the entries of u⊤fT ,c2(G) and u⊤fT ,c2(G′) are all distinct.

Now, we finish showing that the mapping fT ,c2(·) uses (1/δ)d + 1 attention layers to implement a
contextual mapping on G̃δ .

• Checking Property 3 of Lemma E.4. Given Lemma E.8 and u⊤fT ,c2(G):,j ∈
[Lδ−(L+1)d−1g̃L, Lδ

−(L+1)d−1g̃L + Lδ−(L+1)d), for any G ∈ G̃δ , we have

u⊤fT ,c2(G):,j ≥ Lδ−2(L+1)d(δ−d − 1),
u⊤fT ,c2(G):,j < L2δ−2(L+1)d−1 + Lδ−(L+1)d.

This proves that all u⊤fT ,c2(L):,j are between tl and tr, where

tl = Lδ−2(L+1)d(δ−d − 1),
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tr = L2δ−2(L+1)d−1 + Lδ−(L+1)d.

Category 2. Now we check the Property 4 of Lemma E.4. For the input points G ∈ G+
δ \ G̃δ,

note that the point G has at least one entry that equals to −J + k, k ∈ [L − 1]. Let gj := u⊤G:,j .
Recall that whenever a column G:,j has an entry that equals to −J + k, k ∈ [L− 1], we have gj < 0.
Without loss of generality, assume that g1 < 0.

Because the selective shift operation is applied to each element of [0 : δ : δL + δ−d+1 − δ] and is not
applied to negative values, thus we have mink u⊤G:,k = g1 < 0. g1 never gets shifted upwards and
remains the minimum for the whole time.

• All gj’s are Negative. When all gj’s are negative, selective shift operation never shifts the input
G. Thus G̃ = G. Recall that u⊤G̃:,j < 0 for all j ∈ [L]. The last layer with attention part
Lδ−(L+1)d−1ξ(·; 0) adds Lδ−(L+1)d−1 mink u⊤G̃:,k < 0 to each entry in the first row of G̃. This
makes G̃ remain negative. Therefore, fT ,c2(G) satisfies u⊤fT ,c2(G):,j < 0 < tl for all j ∈ [L].

• Not All gj’s are Negative. Now consider the case where at least one gj is positive. Suppose that
there are k positive elements and they satisfy gi1 < gi2 < · · · < gik . Thus selective shift operation
does not affect gi, where i ∈ [L] \ {i1, . . . , ik}. It shifts gi1 by

δ−d(max
k

u⊤G:,k − min
k
u⊤G:,k)

≥ δ−d(2Lδ−dL − (L− 1)δ
−d+1 − δ

1 − δ
− δ−d+1 + (ik − 1)δ

−d+1 − δ

1 − δ
)

(
By (E.9)

)
= δ−d(3Lδ−dL − δ−d+1 − (L− ik)δ

−d+1 − δ

1 − δ
)

≥ δ−d · 2Lδ−dL
(

By δ−1 ≥ 2
)

= 2Lδ−(L+1)d.

The next shift operations shift gi2 , . . . , gik by an even larger amount. Therefore, at the end
of the first L(1/δ)d layers, we have Lδ−(L+1)d ≤ g̃i1 ≤ · · · ≤ g̃ik , and g̃j < 0 for all j ∈
[L] \ {i1, . . . , ik}.

Then, we shift G by the last layer. The last layer with attention part Lδ−(L+1)d−1ξ(·; 0) acts
differently for negative and positive g̃j’s. (i). For negative g̃j’s, it adds the following to g̃j , j ∈
[L] \ {i1, . . . , ik}:

Lδ−(L+1)d−1 min
k
u⊤G̃:,k = Lδ−(L+1)d−1g1 < 0.

This term pushes them further to the negative side. (ii). For positive g̃i’s, it adds

Lδ−(L+1)d−1 max
k

u⊤G̃k = Lδ−(L+1)d−1g̃ik ≥ 2L2δ−2(L+1)d−1.

Thus they are all greater than or equal to 2L2δ−2(L+1)d+1. Note that

2L2δ−2(L+1)d−1 > tr, where tr = L2δ−2(L+1)d−1 + Lδ−(L+1)d.

Then the final output fT ,c2(G) satisfies u⊤fT ,c2(G):,j /∈ [tl, tr], for all j ∈ [L]. This completes
the verification of Property 4 of Lemma E.4.

In conclusion, we need O(Lδ−d) layers of modified self-attention layer to obtain our approximation.
This completes the proof.
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E.5.4 Proof of Lemma E.5

Proof of Lemma E.5. We restate the proof from [Yun et al., 2020] for completeness.

Note that |G+
δ | = (1/δ + 1)dL < ∞, so the output of fT ,c2(G+

δ ) has finite number of distinct real
values. Let M be the upper bound of all these possible values. By the construction of fT ,c2, M > 0.

Construct the Layers: fT ,c3(fT ,c2(G)) = 0d×L if G ∈ G+
δ \ G̃δ. According to Lemma E.4, for

all j ∈ [L], we have u⊤fT ,c2(G):,j ∈ [tl, tr] if G ∈ G̃δ , and u⊤fT ,c2(G):,j /∈ [tl, tr] if G ∈ G+
δ \ G̃δ .

Due to this property, we add the following feed-forward layer.

Definition E.8 (Feed-forward Layer 3). The vectors u and 1L act as the weight parameters, and ζ3(·)
acts as the activation function in the feed-forward layer.

X → X − (M + 1)1Lζ3(u⊤X), ζ3(t) =
{

0 if t ∈ [tl, tr]
1 if t /∈ [tl, tr].

(E.13)

• Case for G ∈ G+
δ \ G̃δ. We have ζ3(u⊤fT ,c2(G)) = 1⊤L . Thus, all the entries of the input are

shifted by −M − 1 and become strictly negative.

• Case for G ∈ G̃δ . We have ζ3(u⊤fT ,c2(G)) = 0⊤L , so the output stays the same as the fT ,c2(G).

With the input fT ,c2(G), if G ∈ G̃δ , then ζ3(u⊤fT ,c2(G)) = 0⊤L . Thus, the output stays the same as
the input. If G ∈ G+

δ \ G̃δ , then ζ3(u⊤fT ,c2(G)) = 1⊤L . Thus, all the entries of the input are shifted
by −M − 1 and become strictly negative.

Next, we map those negative entries to zero. For i = 1, 2, · · · , d, we add the following layer:

Definition E.9 (Feed-forward Layer 4). The vectors u and ei act as the weight parameters and ζ4(·)
acts as the activation function in the feed-forward layer.

X → X + eiζ4((ei)⊤X), ζ4(t) =
{

−t if t < 0
0 if t ≥ 0. (E.14)

After these d layers, the output for G ∈ G+
δ \ G̃δ is a zero matrix, while the output for G ∈ G̃δ remains

fT ,c2(G).

Construct the Layers: fT ,c3(fT ,c2(G)) = AG if G ∈ G̃δ . Each differentG is mapped to L unique
numbers u⊤fT ,c2(G), which are at least δ apart from each other. We map each unique number to the
corresponding output column as follows. We choose one G ∈ G̃δ . For each u⊤fT ,c2(G):,j , j ∈ [L],
we add the following feed-forward layer.

Definition E.10 (Feed-forward Layer 5). The vectors u and ei act as the weight parameters, and
ζ4(·) acts as the activation function in the feed-forward layer.

X →X +
(
(AG):,j − fT ,c2(G):,j

)
ζ5(u⊤X − u⊤fT ,c2(G):,j1

⊤
L ), (E.15)

ζ5(t) =
{

1 −δ/2 ≤ t < δ/2,
0 others.

(E.16)

• Case for G ∈ G+
δ \ G̃δ. Recall that the input X of this layer is fT ,c2(G). If X is a zero matrix,

which is the case forG ∈ G+
δ \G̃δ , we have u⊤X = 0⊤L . Then u⊤X−u⊤fT ,c2(G):,j1

⊤
L < −tl1L.

Since tl > δ/2, the output remains the same as X .
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• Case for G ∈ G̃δ. Let the input X be fT ,c2(G), where G ∈ G̃δ is not equal to G. According
to the Property 2 of Lemma E.4 and given a j ∈ [L], u⊤fT ,c2(G):,k, (k ∈ [L]) differs from
u⊤fT ,c2(G):,j by at least δ. Then we have

ζ5(u⊤fT ,c2(G) − u⊤fT ,c2(G):,j1
⊤
L ) = 0⊤L .

Thus the input is left untouched.

If G = G, then

ζ5(u⊤fT ,c2(G) − u⊤fT ,c2(G):,j1
⊤
L ) = (ej)⊤.

Thus we shift the j-th column of fT ,c2(G) to

fT ,c2(G):,j + ((AG):,j − fT ,c2(G):,j) = fT ,c2(G):,j + ((AG):,j − fT ,c2(G):,j) = (AG):,j .

In other word, this layer maps the column fT ,c2(G):,j to (AG):,j , without affecting any other
columns.

For each G ∈ G̃δ , we defer that we need one layer for each unique value of u⊤fT ,c2(G):,j . Note that
there are O(δ−dL) such numbers, so we use O(δ−dL) layers to finish our construction.

This completes the proof.
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E.5.5 Proof of Lemma E.7

Proof of Lemma E.7. We restate the proof from [Yun et al., 2020] for completeness.

The proof follows two steps: (i) Approximate the modified self-attention layers. (ii) Approximate the
modified feed-forward layers.

• Step 1: Approximate the Modified Self-Attention Layers.

We achieve this by approximating the Softmax operator σS with the Hardmax operator σH .
Given a matrix X ∈ Rd×L, we have

σS(λX) → σH(X), as λ → ∞.

The operator is the only difference between the normal and the modified self-attention layers. We
approximate the modified self-attention layer in T r,m,l

p by the normal self-attention layer with the
same number of heads r and head size m.

• Step2: Approximate the Modified Feed-Forward Layers.

We achieve this by approximating the activation function in Ψ with four ReLU functions. From
Definition E.3, we recall that Ψ denotes three-piecewise functions with at least a constant piece.
We consider the following ζ ∈ Ψ:

ζ(x) =


b1 if x < c1,

a2x+ b2 if c1 ≤ x < c2,

a3x+ b3 if c2 ≤ x,

where a2, a3, b1, b2, b3, c1, c2 ∈ R, and c1 < c2.

We approximate ζ(x) by ζ̃(x) composed of four ReLU functions:

ζ̃(x) =b1 + a2c1 + b2 − b1

ϵ
ReLU(x − c1 + ϵ) +

(
a2 − a2c1 + b2 − b1

ϵ

)
ReLU(x − c1)

+
(
a3c2 + b3 − a2(c2 − ϵ) − b2

ϵ
− a2

)
ReLU(x − c2 + ϵ)

+
(
a3 − a3c2 + b3 − a2(c2 − ϵ) − b2

ϵ

)
ReLU(x − c2)

=



b1 if x < c1 − ϵ,

(a2c1 + b2 − b1)(x− c1)/ϵ+ a2c1 + b2 if c1 − ϵ ≤ x < c1,

a2x+ b2 if c1 ≤ x < c2 − ϵ,

(a3c2 + b3 − a2(c2 − ϵ) − b2)(x− c2)/ϵ+ a3c2 + b3 if c2 − ϵ ≤ x < c2,

a3x+ b3 if c2 ≤ x.

As ϵ → 0, we approximate ζ(x) by ζ̃(x). The activation function is the only difference between
the normal and modified feed-forward layers. We approximate the modified feed-forward layer in
T r,m,l
p by the normal one.

Thus, for any fT ,c ∈ T 2,1,1
p , there exists a function fT ∈ T 2,1,4

p to approximate fT ,c.

This completes the proof.
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F Proofs of Section 3

Our proofs are motivated by the approximation and estimation theory of U-Net-based diffusion models
in [Chen et al., 2023]. We use transformer networks’ universal approximation theory in Appendix E
and the covering number to proceed with our proof. Specifically, we derive the approximation error
bound in Appendix F.1 and the corresponding sample complexity bound in Appendix F.2. Then
we show that the data distribution generated from the estimated score function converges toward a
proximate area of the original one in Appendix F.3.

F.1 Proof of Theorem 3.1

Here we present some auxiliary theoretical results in Appendix F.1.1 to prepare for our main proof of
Theorem 3.1. Then we derive the approximation error bound of DiTs (i.e., the proof of Theorem 3.1)
in Appendix F.1.2.

F.1.1 Auxiliary Lemmas for Theorem 3.1.

We restate some auxiliary lemmas and their proofs from [Chen et al., 2023] for later convenience.

Lemma F.1 (Lemma 16 of [Chen et al., 2023]). Consider a probability density function ph(h) =
exp
(

−C∥h∥2
2/2
)

for h ∈ Rd0 and constant C > 0. Let rh > 0 be a fixed radius. Then it holds

∫
∥h∥2>rh

ph(h)dh ≤ 2d0π
d0/2

CΓ(d0/2 + 1)r
d0−2
h exp

(
−Cr2

h/2
)
,∫

∥h∥2>rh

∥h∥2
2ph(h)dh ≤ 2d0π

d0/2

CΓ(d0/2 + 1)r
d0
h exp

(
−Cr2

h/2
)
.

Lemma F.2 (Lemma 2 of [Chen et al., 2023]). Suppose Assumption 2.2 holds and g is defined as:

q(h, t) =
∫

hψt(h|h)ph(h)∫
ψt(h|h)ph(h)dh

dh, h = B⊤x.

Given ϵ > 0, with rh = c
(√

d0 log(d0/T0) + log(1/ϵ)
)

for an absolute constant c, it holds∥∥q(h, t)1{
∥∥h∥∥2 ≥ rh}

∥∥
L2(Pt) ≤ ϵ, for t ∈ [T0, T ].

Lemma F.3 (Theorem 1 of [Chen et al., 2023]). We denote

τ(rh) = sup
t∈[T0,T ]

sup
h∈[0,rh]d

∥∥∥∥ ∂∂tq(h, t)
∥∥∥∥

2
.

With q(h, t) =
∫
hψt(h|h)ph(h)/(

∫
ψt(h|h)ph(h)dh)dh and ph satisfies Assumption 2.2, we have

a coarse upper bound for τ(rh):

τ(rh) = O
(

1 + β2(t)
β(t)

(
Ls+ + 1

σ(t)

)√
d0rh

)
= O

(
eT/2Ls+rh

√
d0

)
.

Lemma F.4 (Lemma 10 of [Chen et al., 2020b]). For any given ϵ > 0, and L-Lipschitz function g
defined on [0, 1]d0 , there exists a continuous function f constructed by trapezoid function, such that∥∥g − f

∥∥
∞ ≤ ϵ.
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Moreover, the Lipschitz continuity of f is bounded:∣∣f(x) − f(y)
∣∣ ≤ 10d0L∥x− y∥2 for any x, y ∈ [0, 1]d0 .

F.1.2 Main Proof of Theorem 3.1

Proof of Theorem 3.1. With ∇ log pht
(
h
)

= B⊤s+(h, t), we have the following in (2.4)

q(h, t) = σ(t)∇ log pht
(
h
)

+B⊤x = σ(t)B⊤(s+(h, t) + x). (F.1)

We proceed as follows:

• Step 1. Approximate q(h, t) with a compact-supported continuous function f(h, t).

• Step 2. Approximate f(h, t) with a transformer network.

Step 1. Approximate q(h, t) with a Compact-supported Continuous Function f(h, t). We
partition Rd0 into a compact subset H1 := {h|

∥∥h∥∥2 ≤ rh} and its complement H2, where rh is
to be determined later. We approximate q(h, t) on the two subsets respectively and then prove f ’s
continuity. Such a step achieves an estimation error of

√
d0ϵ between q(h, t) and f(h, t). We show

the main proof here.

• Approximation on H2 × [T0, T ]. For any ϵ > 0, we take rh = c(
√
d0 log(d0/T0) − log ϵ). From

Lemma F.2, we have ∥∥q(h, t)1{
∥∥h∥∥2 ≥ rh}

∥∥
L2(Pt) ≤ ϵ for t ∈ [T0, T ].

So we set f(h, t) = 0 on H2 × [T0, T ].

• Approximation on H1 × [T0, T ]. On H1 × [T0, T ], we approximate q(h, t) by approximating each
coordinate qk(h, t) respectively, where q(h, t) = [q1(h, t), q2(h, t), · · · , qd0(h, t)]. We rescale the
input by y′ = (h+rh1)/2rh and t′ = t/T . Then the transformed input space is [0, 1]d0 ×[T0/T, 1].
We implement such a transformation by a single feed-forward layer.

By Assumption 2.3, on-support score s+(h, t) is Ls+ -Lipschitz in h. This implies q(h, t) is
(1 + Ls+)-Lipschitz in h. When taking the transformed inputs, g(y′, t′) = q(2rhy′ − rh1, T t

′)
becomes 2rh(1 + Ls+)-Lipschitz in y′. Similarly, each coordinate gk(y′, t) is also 2rh(1 + Ls+)-
Lipschitz in y′. Here we take Lh = 1 + Ls+ .

Besides, g(y′, t′) is Tτ(rh)-Lipsichitz with respect to t, where

τ(rh) = sup
t∈[T0,T ]

sup
h∈[0,rh]d

∥∥∥∥ ∂∂tq(h, t)
∥∥∥∥

2
.

We have a coarse upper bound for τ(rh) in Lemma F.3. We restate it here for convenience

τ(rh) = O
(

1 + β2(t)
β(t)

(
Ls+ + 1

σ(t)

)√
d0rh

)
= O

(
eT/2Ls+rh

√
d0

)
.

In conclusion, each gk(y′, t) is Lipsichitz continuous. So we can apply Lemma F.4 to determine
fk(y′, t) for approximating each coordinate. We concatenate f i’s together and construct f =
[f1, . . . , fd0 ]⊤. According to the construction in Lemma F.4 and for any given ϵ, we achieve

sup
y′,t′∈[0,1]d×[T0/T,1]

∥∥f(y′, t′) − g(y′, t′)
∥∥
∞ ≤ ϵ,
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Considering the input rescaling (i.e., h → y′ and t → t′), we obtain:

– The constructed function is Lipschitz continuous in h. For any h1, h2 ∈ H1 and t ∈ [T0, T ], it
holds ∥∥f(h1, t) − f(h2, t)

∥∥
∞ ≤ 10d0Lh

∥∥h1 − h2
∥∥

2. (F.2)

– The function is also Lipschitz in t. For any t1, t2 ∈ [T0, T ] and
∥∥h∥∥2 ≤ rh, it holds∥∥f(h, t1) − f(h, t2)

∥∥
∞ ≤ 10τ(rh)∥t1 − t2∥2.

Due to the fact that the construction of f(h, t) is based on trapezoid function, we have f(h, t) = 0
for
∥∥h∥∥2 = rh and any t ∈ [T0, T ]. Thus, the two parts of f(h, t) can be joined together. To be

more specific, the above Lipschitz continuity in h extends to the whole Rd0 .

• Approximation Error Analysis under L2 Norm. The L2 approximation error of f can be
decomposed into two terms:∥∥q(h, t) − f(h, t)

∥∥
L2(Ph

t )

=
∥∥(q(h, t) − f(h, t))1{

∥∥h∥∥2 < rh}
∥∥
L2(Ph

t ) +
∥∥q(h, t)1{

∥∥h∥∥2 > rh}
∥∥
L2(Ph

t ).

The second term in the RHS above has already been bounded with the selection of rh:∥∥g(h, t)1{
∥∥h∥∥2 > rh}

∥∥
L2(Ph

t ) ≤ ϵ.

The first term is bounded by:∥∥(q(h, t) − f(h, t))1{
∥∥h∥∥2 < rh}

∥∥
L2(Ph

t )

≤
√
d0 sup

y′,t′∈[0,1]d×[T0/T,1]

∥∥f(y′, t′) − g(y′, t′)
∥∥
∞

≤
√
d0ϵ.

Then we obtain ∥∥q(h, t) − f(h, t)
∥∥
L2(Ph

t ) ≤ (
√
d0 + 1)ϵ.

If we substitute ϵ with ϵ/2, we obtain that the approximation error of f(h, t) is
√
d0ϵ.

Step 2. Approximate f(h, t) by a Transformer. This step is based on the universal approximation
of transformers for the compact-supported continuous function in Lemma E.1. DiT uses time point
t to calculate the scale and shift value in the transformer backbone [Peebles and Xie, 2023]. It
also transforms an input picture into a sequential version. We ignore time point t in the notation of
the transformer network in DiT. Recall the reshape layer R(·) in Definition 3.1, we consider using
f(·) := R−1 ◦ fT ◦R(·) to approximate f t(·) := f(·, t), where fT ∈ T 2,1,4

p .

• Overall Approximation Error. With Lemma E.1, we approximate f t(·) with f̂(·) :=
R−1 ◦ f̂T ◦R(·). We denote

H = R(h).

We have

∥∥∥f t(h) − f̂(h)
∥∥∥
L2(Ph

t )
=
(∫

Ph
t

∥∥∥f t(h) − f̂(h)
∥∥∥2

2
dh
)1/2
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=
(∫

Ph
t

∥∥∥R ◦ f t ◦R−1(H) −R ◦ f̂ ◦R−1(H)
∥∥∥2

F
dh
)1/2

=
(∫

Ph
t

∥∥∥R ◦ f t ◦R−1(H) − f̂T (H)
∥∥∥2

F
dh
)1/2

≤ ϵ. (F.3)

Along with Step 1, we obtain∥∥∥q(h, t) − f̂(h)
∥∥∥
L2(Ph

t )
≤
∥∥q(h, t) − f(h, t)

∥∥
L2(Ph

t ) +
∥∥∥f(h, t) − f̂(h)

∥∥∥
L2(Ph

t )
≤ (1 +

√
d0)ϵ.

The constructed approximator to ∇ log pt(x) is s
Ŵ

= (Bf̂(B⊤x, t) − x)/σ(t), and the approxi-
mation error is∥∥∥∇ log pt(·) − s

Ŵ
(·, t)

∥∥∥
L2(Pt)

≤ 1 +
√
d0

σ(t) ϵ for any t ∈ [T0, T ].

• Settling-down of Hyperparameters. We settle down the hyperparameters to configure our
network here. We refer to Appendix E.2 for some of the following calculations.

1. Model Architecture Depth K.
From Lemma E.6, we have K = O((1/δ)dL). To achieve ϵ-error approximation, we set
δ = O

(
ϵ2/d

)
according to Lemma E.3. Thus we obtain

K = O
(
ϵ−2L) . (F.4)

2. Lipchitz Upperbound for Transformer: LT .
We denote f t,R(·) = R ◦ f t ◦R−1(·). We get the Lipshitz upper bound for f̂T ∈ T 2.1.4

p in the
following way

∥∥∥f̂T (H1) − f̂T (H2)
∥∥∥
F

≤
∥∥∥f̂T (H1) − f t,R (H1)

∥∥∥
F

+
∥∥f t,R (H1) − f t,R (H2)

∥∥
F

+
∥∥∥f t,R (H2) − f̂T (H2)

∥∥∥
F

≤ 2ϵ+
∥∥f t,R (H1) − f t,R (H2)

∥∥
F

(
By (F.3)

)
≤ 2ϵ+ 10d0Ls+∥H1 −H2∥F .

(
By (F.2)

)
Then we get

LT = O
(
d0Ls+

)
. (F.5)

3. Model Output Bound for ST 2,1,4
p

.

For the output of the constructed transformer f̂T (·), according to Lemma E.5, we have f̂T (O) =
O, where O = 0d×L. Thus, with the Lipschitz upperbound O(d0Ls+), we have ∥f̂T (H)∥F =
O(d0Ls+rh), where ∥H∥F ≤ rh. With rh = c(

√
d0 log(d0/T0) + log(1/ϵ)), we obtain

CT = O
(
d0Ls+ ·

√
d0 log(d0/T0) + log(1/ϵ)

)
. (F.6)

4. Model Parameters Bound: C2,∞
OV , COV , C

2,∞
KQ , CKQ, CE .

By definition, we have:∥∥(W i
OV )⊤

∥∥
2,∞ ≤ C2,∞

OV ,
∥∥(W i

OV )⊤
∥∥

2 ≤ COV ,
∥∥W i

KQ

∥∥
2,∞ ≤ C2,∞

KQ ,
∥∥W i

KQ

∥∥
2 ≤ CKQ,
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where i = 1, 2. For simplicity, we omit i hereafter, which does not affect our discussion.

Recall that ∥Z∥2,∞ denotes the 2,∞-norm, where the 2-norm is over columns and ∞-norm is
over rows. By the construction of modified attention layers (E.11) and (E.12) in Appendix E.5.3,
we consider WOV to have the largest norm, i.e.,

WOV = Lδ−(L+1)d−1 ·


1 δ−1 · · · δ−d+1

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 .

We give the following upper bounds∥∥W⊤OV ∥∥2,∞ = Ldδ−(L+2)d = O
(
δ−Ld

)
, (F.7)

∥∥W⊤OV ∥∥2 = sup
∥x∥2=1

∥∥W⊤OV x∥∥2 = Lδ−(L+1)d−1 ·

√√√√d−1∑
i=0

δ−2i = O
(
δ−Ld

)
. (F.8)

By (E.11) and (E.12) in Appendix E.5.3, and the self-attention layers in Appendix E.5.5, we
consider WKQ to have the largest norm, i.e.,

WKQ :=


1
δ−1

...
δ−d+1

(1, δ−1, · · · , δ−d+1) =


1 δ−1 · · · δ−d+1

δ−1 δ−2 · · · δ−d

...
... · · ·

...
δ−d+1 δ−d · · · δ−2d+2

 .

Then we have

∥WKQ∥2,∞ =

√√√√d−1∑
i=0

δ−2i−2d+2 = O(δ−2d), (F.9)

∥WKQ∥2 = sup
∥x∥2=1

∥WKQx∥2 = δ−2d+2 = O(δ−2d). (F.10)

We substitute δ with O
(
ϵ2/d

)
(according to Appendix E.4) and get:

C2,∞
OV = (1/ϵ)O(1),

COV = (1/ϵ)O(1),

C2,∞
KQ = (1/ϵ)O(1),

CKQ = (1/ϵ)O(1).

From the construction of positional encoder (E.4) in Appendix E.2, we have

E =


0 1 · · · L− 1
0 1 · · · L− 1
...

...
...

...
...

...
...

...
0 1 · · · L− 1

 .

We deduce ∥∥E⊤∥∥2,∞ =
√
L(L− 1) = O(L3/2).
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Thus we have

CE = O(L3/2). (F.11)

5. Parameters Bound in Feed Forward Layers: C2,∞
F , CF .

Recall the construction of modified feed-forward layers in the proof of Lemma E.4, which
includes Definitions E.5, E.6 and E.8 to E.10. With the approximation by normal feed-forward
layers in Appendix E.5.5, we consider the weight parameters with the largest norm in the
feed-forward layers, i.e.,

W1 :=

 1
1
1
1

(1, δ−1, · · · , δ−d+1) =


1 δ−1 · · · δ−d+1

1 δ−1 · · · δ−d+1

1 δ−1 · · · δ−d+1

1 δ−1 · · · δ−d+1

 ∈ R4×d.

Then we have

C2,∞
F = O


√√√√d−1∑

i=0
δ−2i

 = O
(
δ−d
)

(F.12)

= (1/ϵ)O(1).
(

By setting δ = O(ϵ2/d) according to Appendix E.4
)

and

CF = sup
∥x∥2=1

∥W1x∥2 = O
(
δ−d
)

(F.13)

= (1/ϵ)O(1).
(

By setting δ = O(ϵ2/d) according to Appendix E.4
)

This completes the proof.
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F.2 Proof of Theorem 3.2

Here we present the auxiliary theoretical results about the covering number of transformer networks
in Appendix F.2.1. The results are based on [Edelman et al., 2022, Theorem A.17]. Then we derive
the sample complexity bound of DiTs (i.e., the proof of Theorem 3.2) in Appendix F.2.

F.2.1 Auxiliary Lemmas for Theorem 3.2

Lemma F.5 (Lemma 15 of [Chen et al., 2023]). Let G be a bounded function class. Then there exists a
constant b such that the output of any g ∈ G : Rd0 7→ [0, b] is bounded by b. Let z1, z2, · · · , zn ∈ Rd0

be i.i.d. random variables. For any δ ∈ (0, 1), a ≤ 1, and c > 0, we have

P

(
sup
g∈G

1
n

n∑
i=1

g(zi) − (1 + a)E [g(z)] > (1 + 3/a)B
3n log

N (c,G, ∥·∥∞)
δ

+ (2 + a)c
)

≤ δ,

P

(
sup
g∈G

E [g(z)] − 1 + a

n

n∑
i=1

g(zi) >
(1 + 6/a)B

3n log
N (c,G, ∥·∥∞)

δ
+ (2 + a)c

)
≤ δ.

Now, we give the definition of the covering number as follows.

Definition F.1 (Covering Number). Given a function class F and a data distribution P . Sample
n data points {Xi}ni=1 from P . For any ϵ > 0, the covering number N (ϵ,F , {Xi}ni=1, ∥·∥) is the
smallest size of a collection (a cover) C ∈ F , such that for any f ∈ F , there exists a f̂ ∈ C satisfying

max
i

∥∥∥f(Xi) − f̂(Xi)
∥∥∥ ≤ ϵ.

Furthermore, we define the covering number with respect to the data distribution as

N (ϵ,F , ∥·∥) = sup
{Xi}n

i=1∼P
N (ϵ,F , {Xi}ni=1, ∥·∥).

Then we give the covering number of the transformer networks.

Lemma F.6 (Modified from Theorem A.17 of [Edelman et al., 2022]). Let
T r,m,l
p (K,CT , C2,∞

OV , COV , C
2,∞
KQ , CKQ, C

2,∞
F , CF , CE , LT ) represent the class of functions

of K-layer transformer blocks satisfying the norm bound for matrix and Lipsichitz property for
feed-forward layers. Then for all data point ∥X∥2,∞ ≤ CX , we have

log N (ϵc, T r,m,l
p (K,CT , C2,∞

OV , COV , C
2,∞
KQ , CKQ, C

2,∞
F , CF , CE , LT ), ∥·∥2)

≤ log(nL)
ϵ2c

·

(
K∑
i=1

α
2
3

(
d

2
3

(
C2,∞
F

) 4
3 + d

2
3

(
2(CF )2COV C

2,∞
KQ

) 2
3 + τm

2
3

(
(CF )2C2,∞

OV

) 2
3
))3

,

where α :=
∏
j<i(CF )2COV (1 + 4CKQ)(CX + CE).

Remark F.1. We modify [Edelman et al., 2022, Theorem A.17] in seven aspects:

1. We do not consider the last linear layer in the model, which converts each column vector of the
transformer output to a scalar. Therefore, we ignore the item related to the last linear layer in
[Edelman et al., 2022, Theorem A.17].

2. We do not consider the normalization layer in our model. Because the normalization
layer

∏
norm(·) in the original proof only ensures that ∥

∏
norm(X1) −

∏
norm(X2)∥2,∞ ≤

∥X1 −X2∥2,∞, ignoring this layer does not change the result.

3. Our activation function is ReLU. Thus, we replace the Lipschitz upperbound of activate function
by 1.
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4. We consider the positional encoding (E.4). Then we need to replace the upperbound CX for
the inputs with the upperbound CX + CE . Besides, for multi-layer transformer, the original
conclusion in [Edelman et al., 2022, Theorem A.17] uses 1 as the upperbound for the 2,∞-norm
of inputs. We incorporate the upperbound for the inputs into the result stated in Lemma F.6.

5. We use (2.7) as the feed-forward layer, including two linear layers and a residual layer. Thus, we
replace the original upperbound for the norm of weight matrix with the upperbound for the norm
of Id +W2W1 in Lemma F.6. In the following, we use O to estimate the log-covering number,
thus we ignore the item for Id here for converience. This is the same for the self-attention layer.

6. We use multi-head attention, and incorporate the number of heads τ into our result, which is
similar to [Edelman et al., 2022, Theorem A.12].

7. In our work, we use the transformer T 2,1,4
p , i.e., τ = 2,m = 1.

F.2.2 Proof of Theorem 3.2

Proof of Theorem 3.2. Our proof is built on [Chen et al., 2023, Appendix B.2]. For one data sample,
we define the empirical score matching loss objective (2.1) as follows

ℓ(x; s
Ŵ

) = 1
T − T0

∫ T

T0

Ext|x0=x[
∥∥∥∇xt

logψt(xt|x0) − s
Ŵ

(xt, t)
∥∥∥2

2
]dt.

Then we define L(s
Ŵ

) = Ex∼P0

[
ℓ(x; s

Ŵ
)
]
.

Following [Chen et al., 2023, Appendix B.2], for any a ∈ (0, 1), we have

L(s
Ŵ

)

≤ Ltrunc(s
Ŵ

) − (1 + a)L̂trunc(s
Ŵ

)︸ ︷︷ ︸
(I)

+ L(s
Ŵ

) − Ltrunc(s
Ŵ

)︸ ︷︷ ︸
(II)

+(1 + a) inf
sW∈SNN

L̂(sW )︸ ︷︷ ︸
(III)

,

where

Ltrunc(s
Ŵ

) := Ex∼P0

[
ℓtrunc(x; s

Ŵ
)
]

= Ex∼P0

[
ℓ(x; s

Ŵ
)1{∥x∥2 ≤ rx}

]
, rx > B.

We denote

η := 4CT (CT + rx)(rx/D)D−2 exp
(
−r2

x/σ(t)
)
/(T0(T − T0)),

rx := O
(√

d0 log d0 + logCT + log
(
n/δ

))
.

Then we have

η ≤ 1
nT0(T − T0) . (F.14)

For any δ > 0, according to Lemma F.5, the following holds for term (I) with probability 1 − δ,

(I) = O

 (1 + 6/a)(C2
T + r2

x)
nT0(T − T0) log

N
(

(T−T0)(ι−η)
(CT +rx) log(T/T0) ,ST 2,1,4

p
, ∥·∥2

)
δ

+ (2 + a)ι

 ,

where c ≤ 0 is a constant, and ι > 0 will be determined later.
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We set

ι := 2
nbT0(T − T0) ,

where 0 < b ≤ 1 is a constant to be determined later.

Remark F.2 (Selection Criteria of τ ). We have two criteria:

• Recall that the covering number used in our setting is N
(

(T−T0)(ι−η)
(CT +rx) log(T/T0) ,ST 2,1,4

p
, ∥·∥2

)
. Thus,

we must ensure ι ≥ η. According to (F.14), we consider ι satisfying the condition ι ≥ (nT0(T −
T0))−1. Therefore, we consider 0 < b ≤ 1.

• For the exponent of (T − T0), although selecting a value smaller than 1 is possible, we find that
the convergence rate with respect to T is dominated by the 1/T term appearing later in the second
term of (F.18). Therefore, we continue to consider the exponent to be 1.

Then we have

(I) = O

 (1 + 6/a)
(
C2

T + r2
x

)
nT0(T − T0) log

N
(

(nb(CT + rx)T0 log(T/T0))−1,ST 2,1,4
p

, ∥·∥2

)
δ

+ 4 + 2a
nbT0(T − T0)

 ,

with probability 1 − δ.

Following the proof structure of term (II) in [Chen et al., 2023, Appendix B.2], we have

(II) = O
(

1
T0
C2
T r

2
x exp

{
−A2r

2
x/2
})

.

For any ϵ > 0, let sW be the transformer network approximator to the score function in Theorem 3.1.
For the term (III), we have

(III) ≤ L̂(sW ) − (1 + a)Ltrunc(sW )︸ ︷︷ ︸
(III)1

+(1 + a) Ltrunc(sW )︸ ︷︷ ︸
(III)2

.

For any δ > 0, according to Lemma F.5 and given that sW is a fixed function, the following holds for
term (III)1 with probability 1 − δ,

(III)1 = O

(
(1 + 3/a)

(
C2
T + r2

x

)
nT0(T − T0) log 1

δ

)
.

Following the proof structure of term (III)2 in [Chen et al., 2023, Appendix B.2], we have

(III)2 = O
(

dϵ2

T0(T − T0)

)
+ C3,

where C3 is a constant.

Putting (I), (II), and (III) together and setting a = ϵ2, then we have

1
T − T0

∫ T

T0

∥∥s
Ŵ

(·, t) − ∇ log pt(·)
∥∥2

L2(Pt)
dt

= O

 (
C2

T + r2
x

)
ϵ2nT0(T − T0) log

N
(

(nb(CT + rx)T0 log(T/T0))−1,ST 2,1,4
p

, ∥·∥2

)
δ

+ n−b + d0ϵ
2

T0(T − T0)

 , (F.15)

with probability 1 − 3δ.
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Covering Number of ST 2,1,4
p

. The next step is to calculate the covering number of ST 2,1,4
p

. ST 2,1,4
p

consists of two components: (i) Matrix WB with orthonormal columns; (ii) Network function fT .

Suppose we have WB1,WB2 and f1, f2, such that ∥WB1 −WB2∥F ≤ δ1 and
sup∥x∥2≤3rx+

√
D logD,t∈[T0,T ] ∥f1(x, t) − f2(x, t)∥2 ≤ δ2, where f1 = R−1 ◦ fT 1 ◦ R, f2 =

R−1 ◦ fT 2 ◦R. Then we have

sup
∥x∥2≤3rx+

√
D logD,t∈[T0,T ]

∥sWB1,fT 1(x, t) − sWB2,fT 2(x, t)∥2

= 1
σ(t) sup

∥x∥2≤3rx+
√
D logD,t∈[T0,T ]

∥∥WB1f1(W⊤B1x, t) −WB2f2(W⊤B2x, t)
∥∥

2

≤ 1
σ(t) sup

∥x∥2≤3rx+
√
D logD,t∈[T0,T ]

(∥∥WB1f1(W⊤B1x, t) −WB1f1(W⊤B2x, t)
∥∥

2

+
∥∥WB1f1(W⊤B2x, t) −WB1f2(W⊤B2x, t)

∥∥
2 +

∥∥WB1f2(W⊤B2x, t) −WB2f2(W⊤B2x, t)
∥∥

2

)

≤ 1
σ(t)

(
LT δ1

√
d0(3rx +

√
D logD) + δ2 + δ1K

)
, (F.16)

where LT upper bounds the Lipschitz constant of fT .

For the set {WB ∈ RD×d0 : ∥WB∥2 ≤ 1}, its δ1-covering number is
(
1 + 2

√
d0/δ1

)Dd0 [Chen
et al., 2020a, Lemma 8]. The δ2-covering number of f needs further discussion as there is a reshaping
process in our network. The input is reshaped from h ∈ Rd0 to H ∈ Rd×L, and∥∥h∥∥2 ≤ rx ⇐⇒ ∥H∥F ≤ rx.

Thus we have

sup
∥h∥2

≤3rx+
√
D logD,t∈[T0,T ]

∥∥f1(h, t) − f2(h, t)
∥∥

2 ≤ δ2

⇐⇒ sup
∥H∥F≤3rx+

√
D logD,t∈[T0,T ]

∥fT 1(H) − fT 2(H)∥2 ≤ δ2.

Then we follow the covering number of sequence-to-sequence transformer T 2,1,4
p in Lemma F.6. We

get the following δ2-covering number

log(nL)
δ2

2
·

(
K∑
i=1

α
2
3
i

(
d

2
3

(
C2,∞
F

) 4
3 + d

2
3

(
2(CF )2COV C

2,∞
KQ

) 2
3 + τm

2
3

(
(CF )2C2,∞

OV

) 2
3
))3

,

where

αi :=
∏
j<i

(CF )2COV (1 + 4CKQ)(CX + CE).

According to the (F.4), (F.5), (F.7), (F.8), (F.9), (F.10), (F.12), (F.13), (F.11) and (F.6) in Ap-
pendix F.1.2, we derive the following with δ = O(ϵ2/d) (Appendix E.4) and d = 4 (Theorem 3.1):

K = O
(
ϵ−2L) , LT = O

(
d0Ls+

)
, C2,∞

OV = O(dϵ−4L), COV = O(ϵ−4L),
C2,∞
KQ = O(ϵ−4), CKQ = O(ϵ−4), C2,∞

F = O(ϵ−4), CF = O(ϵ−2), CE = O(L3/2), (F.17)

CT = O
(
d0Ls+ ·

√
d0 log(d0/T0) + log(1/ϵ)

)
, rx = O

(√
d0 log d0 + logCT + log

(
n/δ

))
.

Each element of the input data is within [0, 1], as shown in Appendix E.
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For any δ3 > 0, we get the log-covering number of T 2,1,4
p ,

log N
(
δ3, T 2,1,4

p , ∥·∥2
)

= O
(
ϵ−8K · LKd2 log(nL)

δ3

)
= O(1) ·

(
28K log(L/ϵ)d2 log(nL)

δ3

)
.

According to (F.15), we adopt the following value for δ3 in our setting

δ3 = 1
nb(CT + rx)T0 log(T/T0) .

According to [Chen et al., 2023, Appendix B.2], the log-covering number of ST 2,1,4
p

is

log N
(
δ3,ST 2,1,4

p
, ∥·∥2

)
= O

(
2Dd0 · log

(
1 + 6CT LT

√
d0(3rx +

√
D logD)

T0δ3

)
+ 28K log(L/ϵ)d2 log(nL)

T 2
0 δ

2
3

)
(

By (F.16)
)

= O
(
n2b28(1/ϵ)L log(L/ϵ)Dd2d6

0L
2
s+

· log(nL)
) (

By (F.17)
)

= O
(
n2b2(1/ϵ)2L

Dd2d6
0L

2
s+

· log(nL)
) (

By (1/ϵ)L ≥ 8 log(L/ϵ)
)

= Õ
(
n2b2(1/ϵ)2L

Dd2d6
0L

2
s+

) (
By ignoring the log factors

)
= Õ

(
n2b2(1/ϵ)2L

Dd2d6
0L

2
s+

)
.

Substituting the log-covering number into (F.15), we have

1
T − T0

∫ T

T0

∥∥∥s
Ŵ

(·, t) − ∇ log pt(·)
∥∥∥2

L2(Pt)
dt

= O
( C2

T + r2
x

ϵ2nT0(T − T0) (log N (δ3,ST 2,1,4
p

, ∥·∥2) + log
(
1/δ
)
) + 1

nbT0(T − T0) + d0

T0(T − T0)ϵ
2
)

= O
( C2

T + r2
x

ϵ2nT0T
(log N (δ3,ST 2,1,4

p
, ∥·∥2) + log

(
1/δ
)
)︸ ︷︷ ︸

1st term

+ 1
nbT0T

+ d0

T0T
ϵ2︸ ︷︷ ︸

2nd term

)
. (F.18)

Recall the following parameters:

• C2
T = O(d2

0L
2
s+
d0 log(d0/T0) + log(1/ϵ)),

• r2
x = O(d0 log d0 + logCT + log

(
n/δ

)
),

• δ: probability error,

• ϵ: approximation error,

• n: sample size,

• T0 < T/2,

• D, d, d0 > 1: feature dimension,

• L > 1: sequence length,
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• d0 = L · d,

• Ls+ : Lipschitz coefficient.

Ignoring the log factors and poly(D, d, d0, LS+), the first term in (F.18) becomes

1
n1−2b · 1

T0T
· 2(1/ϵ)2L

.

The second term is simplified to

1
T0T

ϵ2.

Thus, the final bound is

Õ

(
1

n1−2b · 1
T0T

· 2(1/ϵ)2L

+ 1
nbT0T

+ 1
T0T

ϵ2

)
.

To balance the first and second terms with respect to n, we select b = 1/3. Therefore, we give the
final bound as

Õ

(
1

n1/3 · 1
T0T

· 2(1/ϵ)2L

+ 1
n1/3T0T

+ 1
T0T

ϵ2

)
.

This completes the proof.
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F.3 Proof of Corollary 3.2.1

Our proof is built on [Chen et al., 2023, Appendix C]. The main difference between our work and
[Chen et al., 2023] is our score estimation error in Theorem 3.2. Consequently, only the subspace
error and the total variation distance differ from [Chen et al., 2023, Theorem 3].

First, we introduce the ground truth backward SDE and the learned backward SDE of the latent
variable. Recall from (D.2), yt denotes the backward process. We denote the backward latent variable
by h←t = B⊤yt. Since we write the time index explicitly, we drop the y, h notation for t > 0.

Following [Chen et al., 2023, Appendix C.2], we have the following ground truth backward process

dh←t =
[

1
2h
←
t + ∇ log phT−t(h←t )

]
dt+ d

(
B⊤W t

)
,

where W t denotes the reversed Wiener process (standard Brownian motion) at time t (see Section 2
for more details).

We define PhT0
as the ground truth marginal distribution of h←T0

.

For the learned process ỹt, we consider h̃←t = W⊤B ỹt. For any orthogonal matrix U ∈ Rd0×d0 , we
define the U transformed version of h̃←t as h̃←,Ut = U⊤h̃←t . Then the backward SDE for h̃←,Ut is

dh̃←,Ut =
[
h̃←,Ut + s̃hU,f (h̃←,Ut , T − t)

]
dt+ d

(
U⊤W⊤BW t

)
,

where

s̃hU,f

(
h̃←,Ut , t

)
:= 1

σ(t) [−h̃←,Ut + U⊤f(Uh̃←,Ut , t)].

We define P̂hT0
as the estimated marginal distribution of h̃←,UT0

from above continuous SDE.

The discretized backward SDE of h̃←,UT0
is

dh̃⇐,Ut =
[
h̃⇐,Ukµ + s̃hU,f (h̃⇐,Ukµ , T − kµ)

]
dt+ d

(
U⊤W⊤BW t

)
, t ∈ [kµ, (k + 1)µ).

We define P̂h,dis
T0

as the estimated marginal distribution of h̃⇐,UT0
from above discrete SDE.

Next, we present the auxiliary theoretical results in Appendix F.3.1 to prepare our main proof of
Corollary 3.2.1. Then we give a detailed proof of Corollary 3.2.1 in Appendix F.3.2.

F.3.1 Auxiliary Lemmas

Here we include a few auxiliary lemmas from [Chen et al., 2023] without proofs. Recall the definition
of Lipschitz norm: for a given function f , ∥f(·)∥Lip = supx ̸=y(∥f(x) − f(y)∥2/∥x− y∥2).

Lemma F.7 (Lemma 3 of [Chen et al., 2023]). Assume that the following holds

Eh∼Ph
∥∇ log ph(h)∥2

2 ≤ Csh, λminEh∼Ph
[hh⊤] ≥ c0, Eh∼Ph

∥h∥2
2 ≤ Ch,

where λmin denotes the smallest eigenvalue. We denote

E[ϕ(h, t)] =
∫ T

T0

1
σ2(t)Ex∼Pt

[ϕ(B⊤x, t)]dt. (F.19)

Let T0 ≤ min{2 log(d0/Csh), 1, 2 log(c0), c0} and T ≥ max{2 log(Ch/d0), 1}. Suppose we have

E
∥∥WBf(W⊤B x, t) −Bq(B⊤x, t)

∥∥2
2 ≤ ϵ. (F.20)
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Then we have ∥∥WBW
⊤
B −BB⊤

∥∥2
F = O(ϵT0/c0),

and there exists an orthogonal matrix U ∈ Rd0×d0 , such that:

E
∥∥U⊤f(Uh, t) − q(h, t)

∥∥2
2

= ϵ · O

(
1 + T0

c0

[
(T − log T0)d0 · max

t
∥f(·, t)∥2

Lip + Csh

]
+

maxt ∥f(·, t)∥2
Lip · Ch

c0

)
.

Lemma F.8 (Lemma 4 of [Chen et al., 2023]). Assume that Ph is sub-Gaussian and that f(h, t) and
∇ log pht (h) are Lipschitz continuous with respect to h and t. For any orthogonal matrix U ∈ Rd0×d0 ,
we define

s̃hU,f
(
h, t
)

:= 1
σ(t) [−h+ U⊤f(Uh, t)].

Assume that we have the latent score matching error-bound∫ T

T0

Eh∼Ph
t

∥∥s̃hU,f (h, t)− ∇ log pht
(
h
)∥∥2

2 dt ≤ ϵlatent (T − T0),

where ϵlatent > 0. Then we have the following latent distribution estimation error for the continuous
backward SDE:

TV
(
PhT0

, P̂hT0

)
≲
√
ϵlatent (T − T0) +

√
KL (Ph∥N (0, Id0)) · exp(−T ),

where P̂hT0
is the marginal distribution of the generated hT0 using the continuous backward SDE.

Furthermore, let P̂h,dis
T0

denote the marginal distribution of the generated hT0 using the discretized
backward SDE. Then we have the following latent distribution estimation error for the discretized
backward SDE

TV
(
PhT0

, P̂h,dis
T0

)
≲
√
ϵlatent(T − T0) +

√
KL (Ph∥N (0, Id0)) · exp(−T ) +

√
ϵdis(T − T0),

where

ϵdis =
(

maxh
∥∥f(h, ·)

∥∥
Lip

σ (T0) +
maxh,t

∥∥f(h, t)
∥∥

2
T 2

0

)2

η2

+
(

maxt ∥f(·, t)∥Lip

σ (T0)

)2

η2 max
{
E ∥h0∥2

, d0

}
+ ηd0,

and η is the step size in the backward process.

Lemma F.9 (Lemma 6 of [Chen et al., 2023]). Consider the following discretized SDE with step
size µ satisfying T − T0 = KTµ for some KT ∈ N+,

dyt =
[

1
2 − 1

σ(T − kµ)

]
ykµdt+ dBt, for t ∈ [kµ, (k + 1)µ),

where y0 ∼ N(0, I). Then, for T > 1 and T0 + µ ≤ 1, we have yT−T0 ∼ N
(
0, σ2I

)
with

σ2 ≤ e (T0 + µ).
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Lemma F.10 (Lemma 10 in [Chen et al., 2023]). Assume that ∇ log ph(h) is Lh-Lipschitz. Then we
have Eh∼Ph

∥∇ log ph(h)∥2
2 ≤ d0Lh.

F.3.2 Main Proof of Corollary 3.2.1

Proof. Recall the estimation error in Theorem 3.2 is ξ(n, ϵ, L)/(TT0), where

ξ(n, ϵ, L) := 1
n1/3 · 2(1/ϵ)2L

+ 1
n1/3 + ϵ2.

• Proof of (i). By the definition of (F.19) and the estimation error in Theorem 3.2, the error bound in
(F.20) equals to ξ(n, ϵ, L)(T − T0)/(TT0) in Lemma F.7. By Lemma F.10, we set Csh = d0Lh.
Then, we have

∥∥WBW
⊤
B −BB⊤

∥∥2
F

= O

(
ξ(n, ϵ, L)

c0

)
.

By substituting the value of ξ(n, ϵ, L) and T = O(logn) into the bound above, we deduce

∥∥WBW
⊤
B −BB⊤

∥∥2
F

= O
(

1
c0n1/3 2(1/ϵ)2L

+ 1
c0n1/3 + ϵ2

c0

)
.

• Proof of (ii). Recall that maxt ∥f(·, t)∥Lip ≤ LT . Furthermore, according to Lemma F.7 and
Lemma F.10, we have

E
∥∥U⊤f(Uh, t) − q(h, t)

∥∥2
2 = O(ϵlatent(T − T0)),

where

ϵlatent = ξ(n, ϵ, L)
TT0

· O
(
T0

c0

[
(T − log T0)d0 · L2

T + d0Lh
]

+ L2
T · Ch
c0

)
.

Following the proof structure in [Chen et al., 2023, Appendix C.4], we get

E
∥∥U⊤f(Uh, t) − q(h, t)

∥∥2
2 =

∫ T

T0

Eh∼Ph
t

∥∥∥∥U⊤f(Uh, t) − h

σ(t) − ∇ log pht (h)
∥∥∥∥2

2
dt

≤ ϵlatent(T − T0).

Following the proof structure in [Chen et al., 2023, Appendix C.4] and setting T = O(logn), we
obtain

TV(PhT0
, P̂h,dis

T0
) = Õ

(√
ϵlatent (T − T0)

)
= Õ

(√(
1

n1/3 2(1/ϵ)2L + 1
n1/3 + ϵ2

)
· logn

)
,

where Õ hides the factor about D, d0, d, Ls+ , logn, and T − T0

By definition, P̂h,dis
T0

= (UWB)⊤♯ P̂T0 , where P̂T0 is the distribution generated by s
Ŵ

using the
discretized backward process. This completes the proof of the total variation distance.

• Proof of (iii). We apply Lemma F.9 due to our score decomposition. With the marginal distribution
at time T − T0 and observing µ ≪ T0, we obtain the last property.

This completes the proof.
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G Proofs of Section 4

Our proofs are motivated by the observation of low-rank gradient decomposition in transformer-like
models [Alman and Song, 2024b, Gu et al., 2024]. With our simplifications and observations made
in Section 4, we utilize the fine-grained complexity results of transformer and attention [Hu et al.,
2024b, Alman and Song, 2024a,b] and tensor trick (Lemma D.1 and [Diao et al., 2019, 2018]) to
proceed our proofs. Specifically, we approximate DiT training gradients with a series of low-rank
approximations in Appendices G.1.1 to G.1.3, and carefully match the multiplication dimensions so
that the computation of dg2

dW forms a chained low-rank approximation in Appendix G.2.

G.1 Auxiliary Theoretical Results for Theorem 4.1

Here we present some auxiliary theoretical results to prepare our main proof of the Existence of
almost-linear Time Algorithms for ADITGC Theorem 4.1.

G.1.1 Low-Rank Decomposition of DiT Gradients

We start by some definitions. Recall that W ∈ Rd×d and W ∈ Rd2
denotes the vectorization of

W ∈ Rd×d following Definition D.1.

Definition G.1. Let A1, A2 ∈ Rd×L be two matrices. Suppose A = A⊤1 ⊗ A⊤2 ∈ RL2×d2
. Define

Aj0 ∈ RL×d2
as an L× d2 sub-block of A. There are L such sub-blocks in total. For each j0 ∈ [L],

define the function u(W )j0 : Rd2 → RL by u(W )j0 := exp(Aj0 W ) ∈ RL.

Definition G.2. Let A1, A2 ∈ Rd×L be two matrices. Suppose A = A⊤1 ⊗ A⊤2 ∈ RL2×d2
. Define

Aj0 ∈ RL×d2
as an L × d2 sub-block of A. There are L such sub-blocks in total. For every index

j0 ∈ [L], consider the function α(W )j0 : Rd2 → R defined by α(W )j0 := ⟨exp(Aj0 W )︸ ︷︷ ︸
L×1

, 1L︸︷︷︸
L×1

⟩.

Definition G.3. Suppose that α(W )j0 ∈ R and u(W )j0 ∈ RL are defined as in Definitions G.1
and G.2, respectively. For a fixed j0 ∈ [L], consider the function f(W )j0 : Rd2 → RL defined by

f(W )j0 := α(W )−1
j0︸ ︷︷ ︸

scalar

u(W )j0︸ ︷︷ ︸
L×1

.

Define f(W ) ∈ RL×L as the matrix where the j0-th row is (f(W )j0)⊤.

Definition G.4. For every i0 ∈ [d], define the function h(WOV )i0 : Rd2 → RL by

h(WOV )i0 := A⊤3︸︷︷︸
L×d

(W⊤OV )∗,i0︸ ︷︷ ︸
d×1

.

Here,WOV ∈ Rd×d denotes the matrix representation ofWOV ∈ Rd2
, and (WOV )⊤∗,i0 represents the

i0-th column of W⊤OV . Define h(WOV ) ∈ RL×d as the matrix where the i0-th column is h(WOV )i0 .

Definition G.5. For each j0 ∈ [L], we denote f(W )j0 ∈ RL as the normalized vector defined
by Definition G.3. For each i0 ∈ [d], h(WOV )i0 is defined as per Definition G.4. For every pair
(j0, i0) ∈ [L] × [d], define the function c(W )j0,i0 : Rd2 × Rd2 → R by

c(W )j0,i0 := ⟨f(W )j0 , h(WOV )i0⟩ − Y ⊤j0,i0 ,
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where (WOV )j0,i0 is the element at the (j0, i0) position of the matrix WOV ∈ RL×d. c(·) has matrix
form

c(W )︸ ︷︷ ︸
L×d

= f(W )︸ ︷︷ ︸
L×L

h(WOV )︸ ︷︷ ︸
L×d

− Y ⊤︸︷︷︸
L×d

.

With the tensor trick (Appendix D.3), we compute the gradient dg2
dW of the DiT loss as follows:

dg2

dW = d
dW

1
2

L∑
j0=1

d∑
i0=1

c2
j0,i0(W )

 . (G.1)

(G.1) presents a neat decomposition of dg2
dW . Each term is easy enough to handle. Thus, we arrive at

the following lemma. Let Z[i, ·] and Z[·, j] be the i-th row and j-th column of matrix Z.

Lemma G.1 (Low-Rank Decomposition of DiT Gradient). Let matrix A1, A2, A3,W,WOV , Y and
loss function L follow Definition 4.1, and A := A⊤1 ⊗A⊤2 . It holds

dg2

dW =
L∑

j0=1

d∑
i0=1

c(W )j0,i0 A⊤j0

( (II)︷ ︸︸ ︷
diag (f(W )j) −

(III)︷ ︸︸ ︷
f(W )j0f(W )⊤j0

)
︸ ︷︷ ︸

(I)

h(WOV )i0 . (G.2)

Proof. Let Z[i, ·] and Z[·, j] be the i-th row and j-th column of matrix Z.

With DiT loss Definition 4.1, we have

dg2

dW = 1
2

L∑
j0=1

d∑
i=1

d
dW c2

j0,i0(W )

=
L∑

j0=1

d∑
i=1

d
dW c2

j0,i0c(W )j0,i0 · dc(W )j0,i0

dW i0

=
L∑

j0=1

d∑
i=1

d
dW c2

j0,i0c(W )j0,i0 · d ⟨f(W )j0 , h(WOV )i0⟩
dW i0

(
By Definition G.5

)
=

L∑
j0=1

d∑
i=1

d
dW c2

j0,i0c(W )j0,i0 ·
〈

df(W )j0

dW i

, h(WOV )i0
〉

=
L∑

j0=1

d∑
i=1

d
dW c2

j0,i0c(W )j0,i0 ·
〈

dα−1(W )j0u(W )j0

dW i

, h(WOV )i0
〉 (

By Definition G.3
)

=
L∑

j0=1

d∑
i=1

d
dW c2

j0,i0c(W )j0,i0 ·

〈
α(W )−1

j0
· du(W )j0

dW i0

+
dα(W )−1

j0

dW i0

· u(W )j0 , h(WOV )i0

〉

=
L∑

j0=1

d∑
i=1

d
dW c2

j0,i0c(W )j0,i0 ·
〈
α(W )−1

j0
· du(W )j0

dW i0

− α(W )−2
j0

dα(W )j0

dW i0

· u(W )j0 , h(WOV )i0
〉
.(

By chain rule
)

For each j0 ∈ [L], we have

d (Aj0 W )
dW i0

= Aj0 · dW
dW i0

= (Aj0) [·, i].
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Therefore, for each j0 ∈ [L], we have

du(W )j0

dW i0

= d exp (Aj0 W )
dW i0

(
By Definition G.1

)
= exp (Aj0 W ) ⊙ d Aj0 W

dW i0

(
By entry-wise product rule

)
= Aj0 [·, i] ⊙ u(W )j0 .

(
By Definition G.1 again

)
Similarly,

dα(W )j0

dW i0

= d ⟨u(W )j0 ,1L⟩
dW i0

(
By Definition G.2

)
= ⟨Aj0 [·, i] ⊙ u(W )j0 ,1L⟩

(
By entry-wise product rule

)
= ⟨Aj0 [·, i], u(W )j0⟩ .

(
By Definition G.1 again

)
Putting all together, we have

dg2(W )j0,i0

dW i0

= [⟨h(WOV )i0 ,Aj0 [·, i] ⊙ f(W )j0⟩ − ⟨h(WOV )i0 , f(W )j0⟩ · ⟨Aj0 [·, i], f(W )j0⟩] · c(W )j0,i0 ,

where

⟨h(WOV )i0 ,Aj0 [·, i] ⊙ f(W )j0⟩ − ⟨h(WOV )i0 , f(W )j0⟩ · ⟨Aj0 [·, i], f(W )j0⟩
= A⊤j0

(
diag (f(W )j0) − f(W )j0f(W )⊤j0

)
h(WOV )i0 .

This completes the proof.

Observe (G.2) carefully. We see that (I) is diagonal and (II) is low-rank. This provides a hint
for algorithmic speedup through low-rank approximation: If we approximate the other parts with
low-rank approximation and carefully match the multiplication dimensions, we might formulate the
computation of dg2

dW as a chained low-rank approximation.

Surprisingly, such an approach makes computing (G.2) as fast as in almost-linear time. To proceed,
we further decompose (G.2) according to the chain-rule in the next lemma, and then conduct the
approximation term-by-term.

To facilitate our proof, it’s convenient to introduce the following notations.

Definition G.6 (q(·)). Define c(W ) ∈ RL×d as specified in Definition G.5 and h(WOV ) ∈ RL×d as
described in Definition G.4. Define q(W ) ∈ RL×L by

q(W ) := c(W )︸ ︷︷ ︸
L×d

h(WOV )⊤︸ ︷︷ ︸
d×L

.

In addition, q(W )⊤j0
denotes the j0-th row of q(W ), transposed, making it an L× 1 vector.

Definition G.7 (p(·),p1(·), p2(·)). For each index j0 ∈ [L], we define p(W )j0 ∈ Rn as follows:

p(W )j0 :=
(
diag(f(W )j0) − f(W )j0f(W )⊤j0

)
q(W )j0 .
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We define p(W ) ∈ RL×L such that p(W )⊤j0
forms the j0-th row of p(W ). In addition, for every

index j0 ∈ [L], we define p1(W )j0 , p2(W )j0 ∈ RL as

p1(W )j0 := diag
(
f (W )j0

)
q(W )j0 , p2(W )j0 := f (W )j0

f (W )⊤j0
q(W )j0 ,

such that p(W ) = p1(W ) − p2(W ).

p(·) allows us to express dg2
dW in a neat form:

Lemma G.2. Define the functions f(W ) ∈ RL×L, c(W ) ∈ Rd×L, h(WOV ) ∈ Rd×L, q(W ) ∈
RL×L, and p(W ) ∈ RL×L as specified in Definitions G.3 to G.7, respectively. Let A1, A2 ∈ Rd×L
be two given matrices, and define A = A⊤1 ⊗A⊤2 . Define g2 according to (O1), and let g2(W )j0,i0
be as described in (G.1). It holds

dg2

dW = vec
(
A1p(W )A⊤2

)
. (G.3)

Proof. By definitions, (G.1) gives

d(g2)j0,i0

dW i0

(G.4)

= cj0,i0 · (⟨f(W )j0 ⊙ Aj0,i0 , h(WOV )i0⟩︸ ︷︷ ︸
=A⊤

j0,i
diag(f(W )j0 )h(W

OV
)i0

− ⟨f(W )j0 , h(WOV )i0⟩ · ⟨f(W )j0 ,Aj0,i0⟩)︸ ︷︷ ︸
=A⊤

j0,i
f(W )j0f(W )⊤

j0
h(W

OV
)i0

.

(
By ⟨a⊙ b, c⟩ = a⊤ diag(b)c for a, b, c ∈ RL

)
Therefore, (G.4) becomes

d(g2)j0,i0

dW i0

= cj0,i0 · (A⊤j0,i diag(f(W )j0)h(WOV )i0 − A⊤j0,i f(W )j0f(W )⊤j0
h(WOV )i0)

= cj0,i0 · A⊤j0,i(diag(f(W )j0) − f(W )j0f(W )⊤j0
)h(WOV )i0 . (G.5)

Then, by definitions of q(·), p(·), we complete the proof.

G.1.2 Low-Rank Approximations of Building Blocks Part I: f(·), q(·), and c(·)

The definitions of p, p1, p2, and Lemma G.2 show that the DiT training gradient dg2
dW involves

entry-wise products of f , q, and c. Therefore, if we approximate these with inner-dimension-matched
low-rank approximations, computing dg2

dW itself becomes a low-rank approximation. In the following
sections, we present low-rank approximations for f , q, and c.

Lemma G.3 (Approximate f(·), Modified from [Alman and Song, 2023]). Let Γ = o(
√

logL)
and k1 = Lo(1). Let A1, A2,∈ Rd×L, W ∈ Rd×d and f(W ) = D−1 exp

(
A⊤1 XA2

)
with

D = diag
(
exp

(
A⊤1 WA2

)
1L
)

follows Definitions G.1 to G.3 and G.5. If max
(∥∥A⊤1 W∥∥max ≤

Γ,∥A2∥max
)

≤ Γ, then there exist two matrices U1, V1 ∈ RL×k1 such that
∥∥U1V

⊤
1 − f(W )

∥∥
max ≤

ϵ/poly(L). In addition, it takes L1+o(1) time to construct U1 and V1.

Proof. By [Alman and Song, 2023, Theorem 3], we complete the proof.

Lemma G.4 (Approximate c(·)). Assume all numerical values are inO(logL) bits. Let d = O(logL)
and c(W ) ∈ RL×d follows Definition G.5. There exist two matrices U1, V1 ∈ RL×k1 such that∥∥U1V

⊤
1 h(WOV ) − Y ⊤ − c(W )

∥∥
max ≤ ϵ/poly(L).
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Proof of Lemma G.4.∥∥U1V
⊤

1 h(WOV ) − Y ⊤ − c(W )
∥∥

max =
∥∥U1V

⊤
1 h(WOV ) − Y ⊤ − (f(W )h(WOV ) − Y ⊤)

∥∥
max(

By Definition G.5
)

=
∥∥[U1V

⊤
1 − f(W )

]
h(WOV )

∥∥
max

≤ ϵ/poly(L).
(

By [Alman and Song, 2023, Theorem 3]
)

Lemma G.5 (Approximate q(·)). Let k2 = Lo(1), c(·) ∈ RL×d follow Definition G.5 and let
q(W ) := c(W )h(WOV )T ∈ RL×L (follow Definition G.6). There exist two matrices U2, V2 ∈
RL×k2 such that

∥∥U2V
⊤

2 − q(W )
∥∥

max ≤ ϵ/poly(L). In addition, it takes L1+o(1) time to construct
U2, V2.

Proof of Lemma G.5. Our proof is built on [Alman and Song, 2023, Lemma D.3].

Let q̃(·) denote an approximation to q(·).

By Lemma G.4, U1V
⊤

1 h(WOV ) − Y approximates c(W ) up to accuracy ϵ = 1/poly(L).

Thus, by setting q̃(W ) = h(WOV )
(
U1V

⊤
1 h(WOV ) − Y

)⊤
, we find a low-rank form for q̃(·):

q̃(W ) = h(WOV ) (h(WOV ))⊤ V1U
⊤
1 − h(WOV )Y ⊤,

such that

∥q̃(W ) − q(W )∥max =
∥∥∥h(WOV )

(
U1V

⊤
1 h(WOV ) − Y

)⊤ − h(WOV )Y ⊤
∥∥∥

max

≤ d ∥h(WOV )∥max
∥∥U1V

⊤
1 h(WOV ) − Y − c(W )

∥∥
max

≤ ϵ/poly(L).

By k1, d = Lo(1), compute (h(WOV ))⊤︸ ︷︷ ︸
d×L

V1︸︷︷︸
L×k1

U⊤1︸︷︷︸
k1×L

takes only L1+o(1) time. This completes the

proof.

G.1.3 Low-Rank Approximations of Building Blocks Part II: p(·)

Now, we use the low-rank approximations of f, q, c to construct low-rank approximations for
p1(·), p2(·), p(·).

Lemma G.6 (Approximate p1(·)). Let k1, k2 = Lo(1). Suppose U1, V1 ∈ RL×k1 approximates
f(W ) ∈ RL×L such that

∥∥U1V
⊤

1 − f(W )
∥∥

max ≤ ϵ/poly(L), and U2, V2 ∈ RL×k2 approximates
the q(W ) ∈ RL×L such that

∥∥U2V
⊤

2 − q(W )
∥∥

max ≤ ϵ/poly(L). Then there exist two matrices
U3, V3 ∈ RL×k3 such that

∥∥U3V
⊤

3 − p1(W )
∥∥

max ≤ ϵ/poly(L). In addition, it takes L1+o(1) time
to construct U3, V3.

Proof of Lemma G.6. By tensor trick, we construct U3, V3 as tensor products of U1, V1 and U2, V2,
respectively, while preserving their low-rank structures. Then, we show the low-rank approximation
of p1(·) with bounded error by Lemma G.3 and Lemma G.5.

Let ⊘ be column-wise Kronecker product such that A ⊘ B := [A[·, 1] ⊗ B[·, 1] | . . . | A[·, k1] ⊗
B[·, k1]] ∈ RL×k1k2 for A ∈ RL×k1 , B ∈ RL×k2 .

Let f̃(W ) := U1V
T

1 and q̃(W ) := U2V
T

2 denote matrix-multiplication approximations to f(W ) and
q(W ), respectively.
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For the case of presentation, let U3 =
L×k1︷︸︸︷
U1 ⊘

L×k2︷︸︸︷
U2 and V3 =

L×k1︷︸︸︷
V1 ⊘

L×k2︷︸︸︷
V2 . It holds∥∥U3V

⊤
3 − p1(W )

∥∥
max

=
∥∥U3V

⊤
3 − f(W ) ⊙ q(W )

∥∥
max

(
By p1(W ) = f(W ) ⊙ q(W )

)
=
∥∥∥(U1 ⊘ U2) (V1 ⊘ V2)⊤ − f(W ) ⊙ q(W )

∥∥∥
max

=
∥∥(U1V

⊤
1
)

⊙
(
U2V

⊤
2
)

− f(W ) ⊙ q(W )
∥∥

max

= ∥f̃(W ) ⊙ q̃(W ) − f(W ) ⊙ q(W )∥max

≤ ∥f̃(W ) ⊙ q̃(W ) − f̃(W ) ⊙ q(W )∥max︸ ︷︷ ︸
≤ϵ/poly(L)

+ ∥f̃(W ) ⊙ q(W ) − f(W ) ⊙ q(W )∥max︸ ︷︷ ︸
≤ϵ/poly(L)

≤ ϵ/poly(L).
(

By Lemma G.3 and Lemma G.5
)

Computationally, by k1, k2 = Lo(1), computing U3 and V3 takes L1+o(1) time. This completes the
proof.

Lemma G.7 (Approximate p2(·)). Let k1, k2, k4 = Lo(1). Let p2(W ) ∈ RL×L follow Definition G.7
such that its j0-th column is p2(W )j0 = f(W )j0f(W )⊤j0

q(W )j0 for each j0 ∈ [L]. Suppose
U1, V1 ∈ RL×k1 approximates the f(X) such that

∥∥U1V
⊤

1 − f(W )
∥∥

max ≤ ϵ/poly(L), and U2, V2 ∈
RL×k2 approximates the q(W ) ∈ RL×L such that

∥∥U2V
⊤

2 − q(W )
∥∥

max ≤ ϵ/poly(L). Then there
exist matrices U4, V4 ∈ RL×k4 such that

∥∥U4V
⊤

4 − p2()
∥∥

max ≤ ϵ/poly(L). In addition, it takes
L1+o(1) time to construct U4, V4.

Proof of Lemma G.7. From Definition G.7,

p2(W )j0 :=

(II)︷ ︸︸ ︷
f (W )j0

f (W )⊤j0
q(W )j0︸ ︷︷ ︸

(I)

.

For (I), we show its low-rank approximation by observing the low-rank-preserving property of the
multiplication between f(·) and q(·) (from Lemma G.3 and Lemma G.5). For (II), we show its
low-rank approximation by the low-rank structure of f(·) and (I).

Part (I). We define a function r(W ) : Rd2 → RL such that the j0-th component r(W )j0 :=
(f(W )j0)⊤ q(W )j0 for all j0 ∈ [L]. Let r̃(W ) denote the approximation of r(W ) via decomposing
into f(·) and q(·):

r̃(W )j0 :=
〈
f̃(W )j0 , q̃(W )j0

〉
=
(
U1V

⊤
1
)

[j0, ·] ·
[(
U2V

⊤
2
)

[j0, ·]
]⊤

= U1[j0, ·] V ⊤1︸︷︷︸
k1×L

V2︸︷︷︸
L×k2

(U2[j0, ·])⊤ , (G.6)

for all j0 ∈ [L]. This allows us to write p2(W ) = f(W ) diag(r(W )) with diag(r̃(W )) denoting a
diagonal matrix with diagonal entries being components of r̃(W ).

Part (II). With r(·), we approximate p2(·) with p̃2(W ) = f̃(W ) diag(r̃(W )) as follows.

Since f̃(W ) has low rank representation, and diag(r̃(W )) is a diagonal matrix, p̃2(·) has low-rank
representation by definition. Thus, we set p̃2(W ) = U4V

T
4 with U4 = U1 and V4 = diag(r̃(W ))V1.

Then, we bound the approximation error∥∥U4V
⊤

4 − p2(W )
∥∥

max
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= ∥p̃2(W ) − p2(W )∥max

= max
j0∈[L]

∥∥∥f̃(W )j0 r̃(W )j0 − f(W )j0r(W )j0

∥∥∥
max

≤ max
j0∈[L]

[∥∥∥f̃(W )j0 r̃(W )j0 − f(W )j0r(W )j0

∥∥∥
max

+
∥∥∥f̃(W )j0 r̃(W )j0 − f(W )j0r(W )j0

∥∥∥
max

]
(

By triangle inequality
)

≤ ϵ/poly(L).

Computationally, computing V ⊤1 V2 takes L1+o(1) time by k1, k2 = Lo(1). Once we have V ⊤1 V2
precomputed, (G.6) only takes O(k1k2) time for each j0 ∈ [L]. Thus, the total time is O (Lk1k2) =
L1+o(1). Since U1 and V1 takes L1+o(1) time to construct and V4 = diag(r̃(W ))︸ ︷︷ ︸

L×L

V1︸︷︷︸
L×k1

also takes

L1+o(1) time, U4 and V4 takes L1+o(1) time to construct. This completes the proof.

G.2 Proof of Theorem 4.1

Proof of Theorem 4.1. By the definitions of matrices p(·), p1(·) and p2(·) (Definition G.7), we have

p(W ) = p1(W ) − p2(W ).

By Lemma G.2, we have

dg2

dW = vec
(
A1p(W )A⊤2

)
. (G.7)

To show the existence of L1+o(1) algorithms for DiT backward computation Problem 1, we prove
fast low-rank approximations for A1p1(W )A⊤2 and A1p2(W )A⊤2 as follows.

Let p̃1(W ), p̃2(W ) denote the approximations to p1(W ), p2(W ), respectively.

By Lemma G.6, it takes L1+o(1) time to construct U3, V3 ∈ RL×k3 such that

A1p̃1(W )A⊤2 = A1U3V
⊤

3 A⊤2 .

Then, computing A1︸︷︷︸
d×L

U3︸︷︷︸
L×k3

V ⊤3︸︷︷︸
k3×L

A⊤2︸︷︷︸
L×d

takes L1+o(1) due to the fact that d, k1k3 = Lo(1).

Therefore, total running time for A1p1(W )A⊤2 is L · Lo(1) = L1+o(1).

For the same reason (by Lemma G.7), total running time for A1p2(W )A⊤2 is L · Lo(1) = L1+o(1).

Lastly, we have∥∥∥∥ ∂g2

∂W
− G̃(W )

∥∥∥∥
max

=
∥∥vec

(
A1p̃(W )A⊤2

)
− vec

(
A1p̃(W )A⊤2

)∥∥
max

(
By Lemma G.2

)
=
∥∥(A1p̃(W )A⊤2

)
−
(
A1p̃(W )A⊤2

)∥∥
max

(
By definition, ∥A∥max := maxi,j |Aij | for any matrix A

)
≤
∥∥(A1 [p1(W ) − p̃1(W )]A⊤2

)∥∥
max +

∥∥(A1 [p2(W ) − p̃2(W )]A⊤2
)∥∥

max(
By Definition G.7 and triangle inequality

)
≤ ∥A1∥∞∥A2∥∞ (∥(p1(W ) − p̃1(W ))∥max + ∥(p2(W ) − p̃2(W ))∥max)(

By the sub-multiplicative property of ∥·∥∞

)
≤ ϵ/poly(L).

(
By Lemma G.6 and Lemma G.7

)
Set ϵ = 1/poly(L). We complete the proof.
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paper.
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Question: For each theoretical result, does the paper provide the full set of assumptions and a
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correctness of our theoretical results.
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paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
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data are provided or not.
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make their results reproducible or verifiable.
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suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.
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provide some reasonable avenue for reproducibility, which may depend on the nature of the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).
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welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [NA]
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• The answer NA means that paper does not include experiments requiring code.
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• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This is a formal theory work without experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [NA]

Justification: This is a formal theory work without experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes. We follow the code of ethics in this work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts
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impacts of the work performed?

Answer: [Yes]
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models and is not anticipated to have negative social impacts.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or
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65

https://neurips.cc/public/EthicsGuidelines


• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: This is a formal theory work without experiments.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [NA]
Justification: This is a formal theory work without experiments.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This is a formal theory work without experiments.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.
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• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: This is a formal theory work without experiments.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: This is a formal theory work without experiments.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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