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ABSTRACT

We aim to select data subsets for the fine-tuning of large language models to more
effectively follow instructions. Prior work has emphasized the importance of di-
versity in dataset curation but relied on heuristics such as the number of tasks.
In this paper, we use determinantal point processes to capture the diversity and
quality of instruction tuning datasets for subset selection. We propose to mea-
sure dataset diversity with log determinant distance that is the distance between
the dataset of interest and a maximally diverse reference dataset. Our experiments
demonstrate that the proposed diversity measure in the normalized weight gradient
space is correlated with instruction-following performance. Consequently, it can
be used to inform when data selection is the most helpful and to analyze dataset
curation strategies. We demonstrate the utility of our data selection approach on
various instruction tuning datasets.

1 INTRODUCTION

Large language models (LLMs) are powerful but unwieldy for practical use. They often require
demonstrations in context to elicit proper responses and even then may generate responses not in-
tended by users. The base language model is typically “instruction tuned”, i.e., finetuned to predict
target responses given instructions. Instruction tuning enables the base language model to perform
zero-shot tasks and follow users’ intent more effectively, thus improving usability. Moreover, it is
an indispensable step before additional preference learning to align the language model’s output to
human preference (Ouyang et al., 2022).

The number of instruction tuning datasets is rapidly growing, some with millions of data points
(Ding et al., 2023; Zheng et al., 2024). This growth is facilitated by the ease of generating synthetic
datasets by prompting LLMs (Wang et al., 2023b) and a growing effort to retain records of real-
world user interactions with these models (Zhao et al., 2024; Zheng et al., 2024). Finetuning on
ever-increasing data demands additional computational resources. As training on low quality data
(e.g., incorrect responses) can lead to suboptimal models. Some data selection or pruning is required.

Practitioners in the field face an important challenge of selecting the optimal data subset for finetun-
ing to maximize instruction following performance subject to a fixed computational budget. While
various solutions have been proposed for finding representative subsets in active learning (Sener
& Savarese, 2018), their applicability to natural language datasets remains underexplored. For in-
stance, active learning methods that search for subsets with diverse weight gradients (Ash et al.,
2019) were ineffective in our initial studies as they prioritized data points with short responses or
those with large weight gradient norms. Most related methods aim to provide sufficient coverage of
instruction tuning examples in the space of decoder-based language models’ output token embed-
dings (Bukharin & Zhao, 2023; Liu et al., 2024) that lacks semantic structure (Le & Mikolov, 2014).
Moreover, ensuring diversity in the embedding space of encoder-based masked language models is
limited by encoders’ short context length.

Practitioners also grapple with a closely related question of estimating how much data allocated
for model finetuning would achieve comparable performance with that of the entire dataset. One
approach involves assigning a score to each dataset that indicates the extent to which a dataset
can be reduced without compromising performance after model finetuning. While various scoring
methods exist, here we focus on dataset diversity. Common measures of dataset diversity often rely
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Figure 1: The log determinant distance in Equation (4) of instruction tuning datasets is correlated
with instruction following performance when the model is finetuned on these datasets, with a Pear-
son correlation of −0.88 and a Spearman’s rank correlation of −0.85.

on intuitive heuristics, e.g., the number of tasks (Wei et al., 2022; Sanh et al., 2022), topics and user
intents (Lu et al., 2024), or do not scale well with the dataset size (Friedman & Dieng, 2023).

We turn to determinantal point processes (DPPs) (Kulesza & Taskar, 2012) to identify diverse sub-
sets of high quality instruction tuning data. We investigate several choices of data representations
that capture data points’ similarity and find that the radial basis kernel applied to the normalized
weight gradients of the model is particularly effective when selecting from less diverse datasets.

In addition, we measure dataset diversity with log determinant distance that is the difference between
the log determinant of kernel matrix of a maximally diverse dataset and that of the dataset under
consideration, normalized by the dataset size. Log determinant distance is readily computable from
the MAP inference algorithm that identifies the optimal subset. We demonstrate that log determinant
distance is correlated with instruction following performance when using weight gradients as the
data representation. As a result, the diversity measure can be used to evaluate the utility of instruction
tuning datasets for finetuning and to predict, before any finetuning takes place, the extent to which we
can prune data without sacrificing model performance. In addition, we investigate the implications
of curation strategies on diversity.

2 RELATED WORK

2.1 INSTRUCTION TUNING DATASETS

Diversity and quality are recurring themes in the curation of instruction tuning datasets. Early in-
struction tuning datasets, e.g., Super-NaturalInstructions (Wang et al., 2022) and FLAN (Wei et al.,
2022; Chung et al., 2022), are adapted from existing natural language processing benchmarks, with
a particular focus on scaling the number of tasks to encourage task generalization.

Some instruction tuning datasets are curated using Self-Instruct and its variants (Honovich et al.,
2023; Wang et al., 2023b) that prompt a LLM to generate a wide array of instructions and high-
quality responses. These datasets, e.g., Alpaca (Taori et al., 2023), are typically distilled from
performant language models that underwent finetuning to generate user-preferred responses, e.g.,
variants of InstructGPT (Ouyang et al., 2022), and are well-suited for the purposes of creating a chat
assistant. Moreover, they are distilled from increasingly powerful LLMs, e.g., GPT4-Alpaca (Peng
et al., 2023), and contain more complex instructions, e.g., WizardLM (Xu et al., 2024), step-by-step
explanations in the responses, e.g., Orca (Mukherjee et al., 2023), or multi-turn conversations, e.g.,
UltraChat (Ding et al., 2023).

Another family of instruction tuning datasets aims to better reflect LLMs’ real-world use cases
that include significant human authorship. Some are manually curated from sources with helpful
responses such as Reddit, e.g., LIMA (Zhou et al., 2023), or from company employees, e.g., Dolly
(Conover et al., 2023). Alternatively, real-world user interactions are curated with state-of-the-art
LLMs from the internet, e.g., ShareGPT, RealChat-1M (Zheng et al., 2024), WildChat (Zhao et al.,
2024). These datasets cover a wide range user intents, capturing real-world use scenarios.
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We systematically study the relative diversity of aforementioned datasets and its impact on instruc-
tion following performance. Our experiments yield insights into the efficacy of the different curation
approaches, e.g., distillation and human annotation.

2.2 DATA SELECTION

Analogous to data selection for finetuning, active learning selects informative examples to label from
a pool of unlabeled examples subject to a fixed labeling budget. Our approach is closely related to
research that formulates active learning as core-set selection, i.e., finding the representative data
subset (Tsang et al., 2005; Welling, 2009). Examples include searching for a covering of the full
dataset with the smallest cover radius by solving the k-center problem (Sener & Savarese, 2018)
and identifying subsets that are sufficiently spread out using k-means++ initialization (Ash et al.,
2019). Related, data pruning methods remove redundant data points that are too close to each other
(Abbas et al., 2023) or to their respective cluster centroids (Sorscher et al., 2022). Similarly, our
work uses DPPs to model data subsets and relies on a greedy MAP algorithm (Chen et al., 2018)
to identify diverse subsets. The choice of distance metric and data representations is crucial. Prior
works have employed the ℓ-2 distance between neural network activations (Sener & Savarese, 2018;
Sorscher et al., 2022; Abbas et al., 2023) or between weight gradients of the log likelihood (Huang
et al., 2016; Ash et al., 2019). Here we investigate several data similarity measures on instruction
tuning datasets.

While choosing diverse subsets is driven by the notion that similar data points are redundant, an
alternative approach is motivated by the assumption that certain data points provide more value than
others. Specifically, many data selection algorithms define a quality score for each data point and
select the portion of the dataset with the highest scores. Various quality scoring functions have been
proposed for classification tasks, including the norm of the weight gradient (Settles, 2009; Huang
et al., 2016; Paul et al., 2021), the number of times an example transitions from correctly classified
to misclassified (i.e., “forgotten”) during training (Toneva & Sordoni, 2019), the variability of the
ground-truth label likelihood over the course of training (Swayamdipta et al., 2020), and the average
ℓ-2 norm of the classification error vector (Paul et al., 2021). Our approach of modeling data subsets
with DPPs accommodates arbitrary scores and aims to strike a balance between choosing data points
with high quality scores and ensuring diversity within the selected subset.

Our work falls under a growing number of studies that select subsets of instruction tuning datasets
to finetune LLMs. Many use quality scores to rank and select data points including simple natural
language indicators like coherence (Cao et al., 2023) or perplexity (Li et al., 2023), and the LLM’s
rating of data points based on metrics such as helpfulness (Chen et al., 2024; Liu et al., 2024). Others
select data subsets with sufficient coverage of topics and user intents (Lu et al., 2024). Our approach
is closely related to methods that balance quality and diversity, e.g., by solving a variant of the facil-
ity location problem (Bukharin & Zhao, 2023) or prioritize high quality data points while avoiding
duplicates (Liu et al., 2024). Different from prior approaches that solely focus on data selection,
we also aim to identify ways to characterize the diversity of instruction tuning datasets, beyond the
number of tasks (Wei et al., 2022), topics, and/or user intents (Lu et al., 2024). Specifically, we
model data subsets with DPPs that naturally emit a diversity metric over datasets that correlates
well with the downstream instruction following performance. This metric is useful for predicting
improvements in the instruction following performance and for comparing the dataset diversity.

3 METHOD

3.1 SUBSET SELECTION WITH DPPS

A point process on a set of N items is a probability distribution over all subsets of [N ]. A DPP P
is a point process where the probability measure is parameterized by a positive semi-definite matrix
L ∈ RN×N , i.e., P (Y ) ∝ det(LY ) for any subset Y ⊂ [N ]. LY ≡ [Lij ]i,j∈Y is a sub-matrix
of L indexed by Y in rows and columns. Intuitively, the diagonal elements of L are related to
the marginal probability of including the particular items, i.e., P ({i}) ∝ Lii. The off-diagonal
elements of L represents the similarity between items. Similar items are less likely to co-occur, i.e.,
P ({i, j}) ∝ LiiLjj − LijLji.
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Any positive semi-definite matrix L can be expressed as a Gram matrix V V T for some matrix
V ∈ RN×D. Each row of V can be viewed as a feature vector for i-th item. The absolute value of
the determinant of LY is the volume of the parallelepiped spanned by rows of V . Therefore, a high
probability subset under V is a subset whose feature vectors span a large volume.

Given a dataset with N items {xn}Nn=1, we parameterize a determinantal point process P with a
kernel matrix K ∈ RN×N that measures the similarity between data points and possibly a vector
q ∈ RN that indicates the quality of each data point. For instance, we can treat the cosine similarity
between language models’ output token embeddings as the similarity measure and the perplexity of
the response conditioned on the instruction as data quality.

To select a moderately large subset of size M , the inner product kernel on features of dimen-
sion D ≪ M is unsuitable due to rank deficiency. Specifically, any subset Y with |Y | > rank(L)
has zero probability mass P (Y ) ∝ det(LY ) = 0 and therefore the size of the most likely subset
under P is upper bounded by rank(L). Instead, we use kernel functions that induce full rank Gram
matrices, e.g., the radial basis function (RBF) kernel Kij = exp{−γ ∥xi − xj∥2}, where a larger
value of γ implies that the repulsive force between data points is more local. For data representations
that are normalized to unit length, the radial basis function kernel reduces to Kij = exp

{
2γxT

i xj

}
.

Following Kulesza & Taskar (2010), we define Lij = Kijqiqj . This is equivalent to scaling the
kernel feature map by a scalar quality score. As long as K is positive semi-definite, so is L. This
structure enables us to model similarity and quality independently while considering both compo-
nents during inference. Moreover, the probability of any subset Y ⊂ [N ] factors, i.e.,

logP (Y ) ∝
∑
i∈Y

log q2i + log det(KY ).

The log likelihood is maximized for subsets with high quality (1st term) and diversity (2nd term).
Similar to Chen et al. (2018), we introduce a hyperparameter λ ∈ [0, 1] to control the relative
importance of diversity and quality:

logP (Y ) ∝ λ
∑
i∈Y

qi + (1− λ) log det(KY ), (1)

that corresponds to a DPP parameterized by the kernel matrix L = diag
(
eβq

)
Kdiag

(
eβq

)
with

β = λ/(2(1− λ)).

Given a data budget M , we pose subset selection as maximum a posteriori (MAP) inference under
distribution P with a cardinality constraint:

Y ∗ = arg max
Y⊂[N ]: |Y |=M

det(LY ). (2)

Although this problem is NP-hard (Ko et al., 1995), the log probability in Equation (1) is submod-
ular (Gillenwater et al., 2012) and therefore Equation (2) can be solved efficiently with a greedy
algorithm (Nemhauser et al., 1978) with at least (1-1/e)-approximation guarantee, e.g., near optimal
under certain assumptions (Sharma et al., 2015).

We use the greedy MAP inference algorithm (Chen et al., 2018) that grows the set of indices S1 ⊂
· · · , SN ⊂ [N ] by adding

i∗(S) = arg max
i∈[N ]\S

[
log det(LS∪{i})− log det(LS)

]
(3)

to the set at each iteration. We define Ln ≜ LSn
as shorthand for the kernel matrix L indexed by the

greedy solution Sn at the n-th iteration (LN ≡ L). The marginal gains ∆1(L) = log det(L1) and

∆n(L) = log det(Ln)− log det(Ln−1)

for n = 2, 3, · · · approximate the rate of change in diversity of selected subsets {Sn} over the itera-
tions. Larger marginal gains means the selected item contributes more to the diversity of the already
selected subset. The unnormalized probability for the whole dataset is the sum of the marginal gains:

log det(L) =

N∑
n=1

∆n(L).
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3.2 LOG DETERMINANT DISTANCE AS A MEASURE OF DIVERSITY

We propose a novel way to measure dataset diversity that is a byproduct of solving the MAP infer-
ence problem in Equation (2). The measure of diversity depends entirely on the kernel that defines
the DPP. For a fixed kernel function, we can compare dataset diversity quantitatively.

While log det(L) may seem like a natural choice, it is unsuitable for measuring dataset diversity
for two reasons. First, log det(L) is not invariant to scaling of the kernel matrix, leading to widely
different values that complicate the interpretation of results. For instance, if a kernel matrix is
scaled by a constant c > 0, log det(cL) = N log(c) + log det(L) changes by N log(c) for the
same dataset. Second, log det(L) depends heavily on the dataset size, particularly when there are
significant marginal gains for each item selected.

To address the aforementioned challenges, we devise a metric that measures how far det(L) is
from the largest possible value than its absolute value. We operationally define a maximally diverse
dataset as a set of vectors on the hypersphere in RD that achieves the highest det(R). We use R to
denote the reference dataset’s kernel matrix computed using the same kernel function k(·, ·). To our
best knowledge, there is not easy solution to obtain this set of vectors. In practice, we approximate
such a set of vectors by sampling vectors randomly on the hypersphere. This yielded det(R) that is
in absolute value larger than det(L) derived from every real datasets we tried, and therefore served
our purpose of having a common reference to compare the diversity of different datasets to. We
define Log Determinant Distance as

LDD ≜
1

N
log

det(R)

det(L)
. (4)

The log determinant distance measures the average deviation of the volume of the parallelepiped
spanned by the rows of the Gram matrix decomposition of L, i.e., |det(L)|, from the largest possible
volume, e.g., |det(R)|. A smaller log determinant distance implies that the dataset is closer to the
maximally diverse reference dataset, and therefore is more diverse. Alternatively, we can interpret
the log determinant distance as the deficit in the average contribution of a data point to dataset
diversity from optimum:

LDD ≡ 1

N

N∑
n=1

(∆n(R)−∆n(L)) .

The log determinant distance can be readily computed from the determinants of the kernel matrices
det(L) and det(R) obtained by running the greedy MAP algorithm (Chen et al., 2018) twice.

Given our assumption that the reference dataset is maximally diverse, i.e., |det(R)| ≥ | det(L)| for
any kernel matrix L, the non-negativity property holds: LDD ≥ 0. Moreover, it is straightforward to
show that the log determinant distance is invariant to scaling of kernels. The log determinant distance
is also invariant to permutation of datasets since it is based on matrix determinants. In summary, the
log determinant distance possesses favorable properties for measuring the dataset diversity.

3.3 WEIGHT GRADIENT AS DATA REPRESENTATION

We use the language model’s weight gradient ∇θℓ(x; θ) of scalar-valued loss function ℓ as the data
representation for data point x. As an example, ℓ can be the average log likelihood of the response
conditioned on the instructions. For LLMs, the full weight gradient consists of billions of elements,
rendering kernel computation infeasible. In this work, we apply Johnson-Lindenstrauss (JL) trans-
forms (Johnson & Lindenstrauss, 1984) twice on weight gradients to reduce their dimensionality.

We first apply JL transform implicitly via Low-Rank Adaptation (LoRA) (Hu et al., 2022) to reduce
memory as well as computation since most derivatives are neither stored nor computed. For weight
matrix W ∈ Rm×n in a fully connected layer, LoRA enforces a rank r ≪ min(m,n) update to
the weight matrix that is a composition of two matrices: B ∈ Rm×r and A ∈ Rr×n. For input
activation z ∈ Rn, the output activation h ∈ Rm after the update is

h = (W +∆W )z = Wz +BAz.

We initialize A to N(0, r−1) to construct a distance preserving random projection matrix and B to
zero to preserve the forward pass activations. To obtain a lower-dimensional representation of the

5
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full weight gradient ∇W ℓ, we use LoRA at initialization to compute

∇Bℓ = ∇hℓ · zTAT = ∇W ℓ ·AT . (5)

Here, we use ℓ ≡ ℓ(x; θ) for brevity. We also explored approaches that use LoRA to project ∇W ℓ
onto a vector of size r, instead of m vectors of size r. For example, we can sum over the rows of
∇Bℓ or rows of ∇Bℓ after shifting the i-th row by i positions. We found these approaches induce a
larger pairwise distance error.

Note that A is not applied to the entire weight gradient ∇W ℓ. Instead, each row in ∇W ℓ of dimension
n is projected to the corresponding row in ∇Bℓ of dimension r. The typical Johnson-Lindenstrauss
Lemma also holds in this case.
Lemma 3.1. Let ϵ, δ > 0. If r = O(log(1/δ)/ϵ2), then∣∣∣∥vec(∇Bℓ)∥22 − ∥vec(∇W ℓ)∥22

∣∣∣ ≤ ϵ

with probability at least 1− δ.

The proof in Appendix A.2 involves simple application of the union bound.

We then apply the sparse JL transform to the concatenation of vec(∇Bℓ) for every fully connected
layer in the neural network to further reduce storage and compute cost. Using a sparse projection
matrix is necessary since concatenated vec(∇Bℓ) is still too costly to work with as it contains mlr
entries where l is the number of fully connected layer in the network.

Theorem 3.1 can be extended trivially to include the second JL transform. It immediately follows
that the two JL transforms together preserve the pairwise distance between weight gradients, in the
same way that a single JL transform does on the entire weight gradient.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Dataset We employ a collection of instruction tuning datasets to understand the effect of data on
model’s intruction following performance and to evaluate their relative diversity: FLAN (Wei et al.,
2022), Self-Instruct (Wang et al., 2023b), Dolly (Conover et al., 2023), Alpaca (Taori et al., 2023),
GPT-4Alpaca (Peng et al., 2023), OASST2 (Köpf & Kilcher, 2023), Orca (Mukherjee et al., 2023),
UltraChat (Ding et al., 2023), WizardLM (Xu et al., 2024), and ShareGPT. We also evaluate the
diversity of preference datasets: OpenAI-Summarization (Stiennon et al., 2020), SHP (Ethayarajh
et al., 2022), UltraFeedback (Cui et al., 2024), and HH-RLHF (Bai et al., 2022). For each dataset,
we remove examples with sequence lengths greater than 2,048 to ensure the language model learns
to generate the end-of-sequence token properly. Except for Dolly and OASST2 that contain fewer
examples, the aforementioned datasets are subsampled to 50,000 examples to control for the effect
of dataset size.

Model & Training In all experiments, we finetune Llama-7b (Touvron et al., 2023) for 3 epochs
with learning rate of 2e-5 and a batch size of 128. We use AdamW optimizer with no weight decay
and linearly decay the learning rate after warmup for 3% of the total number of training steps.

Evaluations We evaluate the performance of instruction-following models using a few bench-
marks that measure model capabilities: factual knowledge across various subjects with Massive
Multitask Language Understanding (MMLU) (Hendrycks et al., 2020), reasoning on math problems
using Grade School Math (GSM) (Cobbe et al., 2021) and on general reasoning problems with the
Big-Bench Hard benchmark (BBH) (Suzgun et al., 2022), multilinguality with TydiQA (Clark et al.,
2020), and coding skills with Codex-Eval (Chen et al., 2021). We use BENCHMARKS AVG to de-
note the average performance across all aforementioned benchmarks. We use Alpaca-Eval (Dubois
et al., 2023) to evaluate instruction following. Specifically, We use length-controlled win rates, i.e.,
ALPACAEVAL LC-% WIN, to denote the proportion of times a model’s generation is preferred by
GPT-4 over davinci-003’s response, adjusting for for bias towards longer outputs (Dubois et al.,
2024). We follow the evaluation procedure in (Wang et al., 2023a) closely.

6
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Figure 2: Studies of the log determinant distance as a measure of diversity of instruction tuning
and preference learning datasets. More diverse datasets yield a log determinant distance curve that
is closer the LDD = 0 line. Distilling responses from capable large language models improves
diversity (1st panel). The diversity of synthetic datasets generated using Self-Instruct (Wang et al.,
2023b) increase with better teacher model (2nd panel). Using LLMs to re-write instructions to be
more complex (Xu et al., 2024) also improves diversity (3rd panel). Curating instructions from
diverse sources like ShareGPT & OASST2 yields consistently higher average marginal gains com-
pared to those curated with less human involvement (4th panel). Preference datasets overall are a lot
more diverse than instruction tuning datasets, some with no apparent drop off in average marginal
gains (5th panel).

Kernel Function To compute the kernel matrix L, we fix the kernel function to radial basis kernel
and vary the data representations. We employ Llama-7b representing decoder-only language model
to compute the average output token embeddings (LLAMA EMB) & the weight gradients vectors
(LLAMA ∇θℓ), and MPNet (Song et al., 2020) representing encoder-only masked language model to
compute the average output token embeddings of instructions (MPNET EMB). We normalize these
data representations to unit length and use the abbreviation NOT NORM. to imply unnormalized
vectors. We will refer readers to Appendix B.1 for details on how γ is selected.

Log Determinant Distance To compute the log determinant distance of a dataset, we generate
a reference dataset by sampling vectors randomly on the surface of a D dimensional hypersphere;
D = 4096 for LLAMA EMB and LLAMA ∇θℓ, and D = 768 for MPNET EMB. We then use the
greedy MAP algorithm (Chen et al., 2018) to obtain the determinants of the kernel matrices det(L)
and det(R), from which we compute the log determinant distance in Equation (4).

4.2 RESULTS: DIVERSITY ASSESSMENT

To assess the log determinant distance as a diversity measure, we compute the log determinant
distance using weight gradient vectors ∇θℓ on 9 instruction tuning datasets and 4 preference learning
datasets detailed in Section 4.1. For instruction tuning datasets, ℓ is the average log likelihood of
tokens in the response conditioned on the instruction. For preference learning datasets, ℓ is the log
odds of the preferred response over an alternative worse response. Appendix C.1 demonstrates that
we can compute LDD in reasonable time. We also verified that the stochasticity from sampling
random vectors on the hypersphere to construct the reference dataset does not affect the estimate
significantly, e.g., average LDD of the Alpaca dataset over 5 runs has a standard deviation of 6e-7.

Figure 1 demonstrate that the log determinant distance of instruction tuning datasets is correlated
with instruction following performance of models finetuned on these datasets. Figure 4 compares the
log determinant distance of datasets computed across different data representations: MPNET EMB,
LLAMA EMB, and LLAMA ∇θℓ, and illustrates that LLAMA ∇θℓ is the only data representation that
provides a useful predictor of instruction following performance.

Figure 2 compares the log determinant distance of instruction tuning datasets and preference learning
datasets. Using log determinant distance as a proxy for dataset diversity, there are a few takeaways:
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Table 1: The performance of Llama-7b finetuned on 10k (20%) data subset obtained using our
DPP-based and alternative baseline data selection methods. We evaluate finetuned language models’
generic abilities BENCHMARK AVG and instruction following abilities ALPACAEVAL on Alpaca and
UltraChat. (↑) indicates that data points with higher quality scores are selected.

DATASETS ALPACA ULTRACHAT

METHODS
BENCHMARK

AVG
ALPACAEVAL

LC-% WIN
BENCHMARK

AVG
ALPACAEVAL

LC-% WIN

100% DATA 23.2 28 22.9 40
RANDOM 21.6 27 22.6 36

DPP (LLAMA ∇θℓ) 21.7 29 23.3 37
DPP (LLAMA ∇θℓ) NOT NORM. 22.7 15 22.7 36
DPP (LLAMA EMB NOT NORM.) 22.1 27 23.2 38
DPP (LLAMA EMB) 22.5 27 23.3 35
DPP (MPNET EMB) 22.9 25 23.3 35
DEDUP(MPNET EMB) 22.8 24 23.0 39

∥∇θℓ∥2 (↓) 22.7 31 23.3 38
ALPAGASUS RATING (↑) 21.6 27 - -
EL2N (↓) 22.8 24 22.7 37
IFD (↑) 21.5 27 23.0 38
PERPLEXITY (↓) 22.7 29 22.8 37
#INPUT TOKENS (↑) 25.1 23 22.9 35
#OUTPUT TOKENS (↑) 23.4 31 22.7 38
#TOTAL TOKENS (↑) 20.4 30 22.7 38

DPP (LLAMA ∇θℓ + #OUTPUT TOKS) 22.8 32 22.6 41

(1) the diversity of datasets improves from distilling responses or both instructions and responses
from a performant LLM, (2) distilling from better teacher models improves dataset diversity even
more, (3) rephrase instructions to be more complex also improves dataset diversity, (3) curating
instructions from diverse sources, e.g., from real users on the internet or large-scale crowdsourc-
ing, promotes dataset diversity, and (5) preference learning datasets are overall more diverse than
instruction tuning datasets.

4.3 RESULTS: DATA SELECTION WITH DPPS

In this section, we benchmark our DPP data selection approach on two instruction tuning datasets
of varying diversity: Alpaca (Taori et al., 2023) and UltraChat (Ding et al., 2023). The latter is more
diverse than the former (Figure 1). The data budget is 20% (10,000) of the total dataset size.

Baselines include random selection (RANDOM), set-cover based deduplication (DEDUP) (Abbas
et al., 2023). We also include several rank-and-select approaches based on the norm of the weight
gradient (∥∇θℓ∥2), ChatGPT ratings of examples (ALPAGASUS RATING) (Chen et al., 2024),
(EL2N) (Paul et al., 2021), instruction following difficulty (IFD) (Li et al., 2023), the perplexity
of the response conditioned on the instruction (PERPLEXITY), and token counts (#INPUT TOKENS,
#OUTPUT TOKENS, #TOTAL TOKENS).

Table 1 reports the performance of models finetuned on data subsets selected using our method and
baselines on BENCHMARK AVG for generic abilities and ALPACAEVAL for instruction following.
We provide additional results demonstrating that our DPP-based data selection method works well
with different base language models (Table 5), scales to large dataset size (Table 6), handles varying
data budgets (Table 7).

We investigate the effect of data representation choice for our DPP-based approach. Using LLAMA
∇θℓ as the data representation yields the largest improvement in instruction following performance
compared to alternative data representations on the Alpaca dataset. While simple data deduplica-
tion DEDUP(MPNET EMB) yields the largest improvement on UltraChat. Appendix C.7 provides a
qualitative analysis of examples selected by the DPP-based approach across different data represen-
tations. One interesting take-away is that examples that are close in the weight gradient space tend
to have similar answer structures (e.g., contain lists or long-form writing), even if they do not share
the same topics or keywords.

We also assess data selection methods based on quality scores. In general, data selection with EL2N
and #INPUT TOKENS results in subsets that perform worse than random subsets while using all other
quality scores improve instruction following performance. Retaining examples with small ∥∇θℓ∥2,
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Figure 3: Performance (ALPACAEVAL LC-% WIN) vs. diversity (LDD using ∇θℓ) for 20% subsets
of the Alpaca dataset obtained from different data selection methods.

instead of large ∥∇θℓ∥2 typically used in active learning (Park et al., 2022), leads to significant
improvement. Similar gains on length-controlled win rates are observed when selecting examples
with large #OUTPUT TOKENS, suggesting these gains aren’t simply due to longer outputs.

To investigate how DPP-based approach balances diversity and quality, we balance most effective
quality score #OUTPUT TOKENS with diversity in the normalized weight gradient space. Figure 5
illustrates the trade-off of our DPP-based selection approach and demonstrates that careful balancing
of diversity and quality is necessary to achieve optimal performance. DPP (LLAMA ∇θℓ + #OUT-
PUT TOKS) leads to slightly improved instruction following performance compared to alternatives
on both Alpaca and UltraChat, exceeding the performance of finetuning on the full dataset with 20%
of the data.

Figure 3 shows the performance (ALPACAEVAL LC-%WIN) vs. diversity (LDD using ∇θℓ) for 20%
subsets of the Alpaca dataset obtained from different data selection methods. AlpacaEval length-
controlled win rate and LDD is negatively correlated (e.g., ρpearson = −0.82) on Alpaca; While such
correlation diminishes on the more diverse UltraChat dataset (e.g., ρpearson = 0.44). This finding has
an intuitive explanation: it’s worthwhile to enforce diversity only if there is room for improvement.

5 CONCLUSION

We introduced a DPP-based approach to select instruction tuning data subsets that provide a flexible
framework to integrate different notions of data similarity and quality. We explored several choices
of data representations and quality scores and determined their utility. We demonstrated that our
approach outperforms baselines in various ablation studies. More importantly, we proposed log
determinant distance (LDD) to quantify dataset diversity and demonstrated that LDD is correlated
with instruction following performance. We can use LDD to (1) gauge how much data should be
kept when selecting data subsets (2) whether we should care to implement algorithms to enforce
diversity, and (3) the impact of different data curation strategy on dataset diversity.

6 LIMITATIONS

Enforcing dataset diversity using DPP-based approach proves beneficial on less diverse datasets
(e.g., Alpaca). This benefit diminishes when applied to more diverse datasets (e.g., UltraChat).
Instruction tuning datasets that are based on crowdsourcing user interactions with strong LLMs
(e.g., WildChat) are pretty diverse to begin with. Enforcing diversity may provide limited gains
and random selection after basic text deduplication may be adequate. However, the log determinant
distance can still be used to understand the diversity of these datasets and to determine whether it is
worthwhile to implement more sophisticated ways to encourage diversity.

Our work suggests how to improve dataset diversity. We emphasize the importance of curating
datasets with realistic instructions from diverse sources, e.g., internet user interactions with LLMs.
If extensive human involvement is cost-prohibitive, an alternative approach is to distill the dataset
entirely or re-write partially using the most capable LLMs. Surprisingly, preference learning datasets
exhibit greater diversity compared to instruction tuning datasets, even if derived from the same
source (e.g., UltraFeedback is curated from FLAN, UltraChat etc.). More work is required to better
understand this phenomenon and its implications.
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A THEORY

A.1 APPROXIMATION GUARANTEES OF DPP-BASED DATA SELECTION THAT INCLUDES
DIVERSITY AND QUALITY

For completeness sake, we will provide a (1-1/e)-approximation guarantee proof for the greedy max-
imization of the log determinant function. Specifically, we can make any log determinant function
f(X) = log det(KX) monotone by scaling the matrix up such that the minimum eigenvalue is at
least 1, as proved & discussed in Proposition 2 in (Sharma et al., 2015), thereby obtaining the (1-1/e)
approximation guarantee for the greedy maximization of non-negative, monotone, and submodular
functions. In practice, the greedy objective in Equation (3) is invariant to the scaling of the kernel
matrix. Therefore, we would have obtained a solution with (1-1/e)-approximation guarantee without
actually scale K.

Now, we argue that this approximation guarantee holds when we takes into account of both diversity
and quality of data points. Specifically, as long as L is a valid kernel matrix, then the LogDet
function f(X) = log det(LX) can be made monotone shown previously. We assumed that k is a
valid kernel function, therefore Lij = Kije

βqieβqj is also a valid kernel function since (1) product
of a real-valued function g(xi) = eβqi is a valid kernel and (2) kernels are closed under product
(Refer to Proposition 3.22 in (Shawe-Taylor & Cristianini, 2004)).

A.2 PROOF OF THEOREM 3.1

Let ϵ, δ be given. For notation convenience, let p ≡ vec(∇W ℓ) and q ≡ vec(∇Bℓ). Let
p1, · · · , pm ∈ Rn be rows of vec(∇W ℓ) and q1, · · · , qm ∈ Rr be rows of vec(∇Bℓ). Due to Equa-
tion (5), we have qk = Apk for k = 1, · · · ,m. Provided A ∼ N(0, 1

r ) and r = O(log(1/δ)/ϵ2), the
following holds due to Johnson-Lindenstrauss Lemma (Johnson & Lindenstrauss, 1984):

P
[∣∣∣∥qk∥22 − ∥pk∥22

∣∣∣ < ϵ

m

]
≥ 1− δ

m
. (6)

By union bound,

P

[
m⋃

k=1

{∣∣∣∥qk∥22 − ∥pk∥22
∣∣∣ > ϵ

m

}]
≤

m∑
k=1

P
[∣∣∣∥qk∥22 − ∥pk∥22

∣∣∣ > ϵ

m

]
≤

m∑
k=1

δ

m
≤ δ. (7)

If
∣∣∣∥qk∥22 − ∥pk∥22

∣∣∣ < ϵ
m for all k = 1, · · · ,m, then

∣∣∣∥q∥22 − ∥p∥22
∣∣∣ = ∣∣∣∣∣

m∑
k=1

∥qk∥22 −
m∑

k=1

∥pk∥22

∣∣∣∣∣ ≤
m∑

k=1

∣∣∣∥qk∥22 − ∥pk∥22
∣∣∣ ≤ m∑

k=1

ϵ

m
= ϵ. (8)

Therefore,

P
[∣∣∣∥q∥22 − ∥p∥22

∣∣∣ ≤ ϵ
]
≥ P

[
m⋂

k=1

{∣∣∣∥pk∥22 − ∥qk∥22
∣∣∣ < ϵ

m

}]
≥ 1− δ (9)

where the last inequality is by Equation (7).

B IMPLEMENTATION DETAILS

B.1 DETAILS ON HOW THE KERNEL HYERPARAMETER γ IS SELECTED

The goal is to find γ large enough such that the returned subset by f is close to full rank but not too
large such that the kernel matrix becomes the identity matrix.

• If γ is very small, the gain is also very small negative number. Depending on how the
stopping criterionr’s tolerance parameter ϵ is set, the algorithm terminates with a subset S
of size |S| ≪ N . This would be problematic if we want to select a larger subset.
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Table 2: The instruction following performance of Llama-7b finetuned on 20% data subset of Alpaca
with different values for the kernel hyperparamter γ. The subset selection algorithm pretty is robust
to the choice of γ.

γ AlpacaEval LC-%Win

0.1 29.4
1.0 28.5

10.0 28.7

• If γ is very large, the gain is close to 0, and therefore there is a risk of choosing examples
close to arbitrary order.

We use Newton’s method to get a rough idea on a γ large enough to cover a significant portion of the
dataset. Specifically, we treat the greedy algorithm as a black box function f : γ 7→ S that takes in
the kernel hyperparameter γ and returns a subset S. The greedy algorithm will return a subset with
size at most equal to the numerical rank of the kernel matrix, and therefore the size of the subset
obtained depends on γ. We use Newton’s method to find the root of g : γ 7→ |f(γ)| −N where N
is the dataset size. We pick the final γ to be larger than the γ obtained from the Newton’s method,
usually a magnitude larger to ensure we can use the same γ for different datasets/data budget, and is
some exponent of 10, e.g., 1, 10, 1e-3. For example, when using normalized weight gradient as the
data representation, Newton’s method returns γ ≈ 0.05 and in the paper we just picked γ = 1.

We emphasize that the range of possible γ is pretty wide and as long as γ does not lie in the two
extreme cases, the algorithm is pretty robust to the choice of γ, as illustrated in Table 2.

C ADDITIONAL EXPERIMENTS AND RESULTS

Table 3: Time for a single run of greedy DPP MAP algorithm for various N and D on a Nvidia
V100 40GB GPU.

N D
256 1024 4096

10k 11 sec 10 sec 11 sec
50k 5.7 min 5.8 min 6.4 min

100k 17.1 min 16.3 min 17.7 min

C.1 RUNTIME COST OF COMPUTING THE LOG DETERMINANT DISTANCE

We use Chen et al. (2018)’s implementation with O(NMD) time and O(N(M+D)) memory com-
plexity, respectively, where N is size of the original dataset, M is the subset size desired, and D is
dimension of data representation. The costly evaluation of kernel matrix entries at each iteration can
be parallelized on the GPU at the memory cost of O(ND). The algorithm is a feasible solution for
selecting datasets at the scale of several hundred thousand examples.

To compute LDD, the time complexity is O(N2D). Table 3 reports the time of a single run of
the greedy DPP MAP algorithm for a few choices of N and D on a Nvidia V100 40GB GPU.
Note det(R) is computed only once and acts as a drop-in placement when computing LDD of each
dataset. Therefore, the compute cost of obtaining det(R) can be amortized.

C.2 COMPARISONS OF DATA REPRESENTATIONS USED TO COMPUTE THE LOG
DETERMINANT DISTANCE

Figure 4 compares the log determinant distance (LDD) of datasets computed across different data
representations: MPNET EMB, LLAMA EMB, and LLAMA ∇θℓ. The log determinant distance based
on weight gradient provides the strongest correlation with instruction following performance. This
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Figure 4: Comparison of the log determinant distance computed using different data representations:
MPNET EMB (top row), LLAMA EMB (middle row), and LLAMA ∇θℓ with respect to instruction
tuning loss (bottom row). The log determinant distance based on weight gradient provides the
strongest correlation with instruction following performance.
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Figure 5: Vary λ interpolates between enforcing diversity and selecting for quality. The results
indicate that the optimal performance for both datasets is achieved when λ = 0.1, highlighting the
importance of accounting for both diversity and quality.

suggests that the weight gradient representation is the most informative data representation for mea-
suring the diversity of instruction tuning datasets.

C.3 PERFORMANCE TRADE-OFF BETWEEN DIVERSITY AND QUALITY

Figure 5 shows the performance of the proposed selection approach DPP(LLAMA∇θℓ +
#OUTPUT TOKENS) with varying λ. The λ parameter balances the contribution of examples to di-
versity in the normalized weight gradient space with the selection of examples with longer responses.
The results indicate that the optimal performance for both datasets is achieved when λ = 0.1, high-
lighting the importance of accounting for both diversity and quality.
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Table 4: Academic benchmark and instruction following evaluation of Llama-7b finetuned on 10k
(20%) data subset of Alpaca (top block) and UltraChat (bottom block). This table compares random
selection and full finetuning baseline as well as data selection methods that ensure diversity, quality,
or both. (↑) indicates that data points with higher quality score are selected.

METHODS ACADEMIC BENCHMARKS ALPACAEVAL
MMLU GSM BBH TYDIQA CODEXEVAL AVG LC-% WIN

ALPACA

100% DATA 41.3 5.0 32.5 19.9 11.0 23.2 28
RANDOM 32.3 4.8 33.4 22.4 8.5 21.6 27

DPP (LLAMA ∇θℓ) 28.8 7.4 34.1 22.6 9.6 21.7 29
DPP (LLAMA ∇θℓ) NOT NORM. 41.3 5.3 26.3 25.0 8.5 22.7 15
DPP (LLAMA EMB NOT NORM.) 36.9 5.1 31.6 21.5 8.7 22.1 27
DPP (LLAMA EMB) 37.9 6.9 29.9 21.0 11.2 22.5 27
DPP (MPNET EMB) 39.1 5.8 33.7 20.0 8.5 22.9 25
DEDUP(MPNET EMB) 38.0 5.8 32.1 21.4 11.0 22.8 24

∥∇θℓ∥2 (↓) 36.9 6.9 33.1 20.9 8.5 22.7 31
ALPAGASUS RATING (↑) 36.2 5.2 31.3 19.8 9.1 21.6 27
EL2N (↓) 38.3 6.4 32.0 19.9 12.2 22.8 24
IFD (↑) 34.6 4.4 30.9 23.5 6.7 21.5 27
PERPLEXITY (↓) 37.7 4.7 32.9 21.0 11.6 22.7 29
#INPUT TOKENS (↑) 43.8 5.3 34.0 24.8 10.4 25.1 23
#OUTPUT TOKENS (↑) 36.3 7.1 35.4 21.8 9.1 23.4 31
#TOTAL TOKENS (↑) 25.1 7.2 33.5 21.7 8.5 20.4 30

DPP (LLAMA ∇θℓ + #OUTPUT TOKS) 34.1 6.5 34.2 22.2 11.6 22.8 32

ULTRACHAT

100% DATA 37.8 7.6 31.9 20.4 10.4 22.9 40
RANDOM 36.2 7.5 32.8 19.8 11.0 22.6 36

DPP (LLAMA ∇θℓ) 36.2 7.6 34.5 20.1 12.8 23.3 37
DPP (LLAMA ∇θℓ) NOT NORM. 37.7 8.4 32.6 17.8 11.0 22.7 36
DPP (LLAMA EMB NOT NORM.) 38.0 8.6 34.2 19.6 8.5 23.2 38
DPP (LLAMA EMB) 38.1 8.9 32.8 18.9 12.2 23.3 35
DPP (MPNET EMB) 37.3 8.6 33.9 19.1 11.6 23.3 35
DEDUP(MPNET EMB) 37.4 8.7 31.5 21.2 9.1 23.0 39

∥∇θℓ∥2 (↓) 34.7 10.3 32.2 21.4 12.2 23.3 38
EL2N (↓) 38.6 7.5 32.4 18.2 11.0 22.7 37
IFD (↑) 34.5 10.2 33.4 21.4 7.9 23.0 38
PERPLEXITY (↓) 36.9 7.6 33.0 19.4 11.6 22.8 37
#INPUT TOKENS (↑) 37.7 8.5 33.6 18.5 9.1 22.9 35
#OUTPUT TOKENS (↑) 34.5 10.3 31.9 20.8 9.1 22.7 38
#TOTAL TOKENS (↑) 34.6 8.3 33.3 20.9 9.8 22.7 38

DPP (LLAMA ∇θℓ + #OUTPUT TOKS) 34.8 7.7 32.9 21.5 9.8 22.6 41

C.4 THE PERFORMANCE OF DATA SELECTION APPROACHES ON DIFFERENT DATASETS AND
BASE LANGUAGE MODELS

We provide additional experimental details on the performance of our proposed data selection
method and baselines. Table 4 reports the performance of Llama-7b fintuned on 20% data sub-
set of the Alpaca and UltraChat datasets. Table 5 reports the performance of Mistral-7b finetuned on
20% data subset of the Alpaca dataset. Together, these tables provide a comprehensive view of the
performance characteristics of our proposed data selection method and baselines, and demonstrate
that our claims hold across different datasets and base language models used.

C.5 THE PERFORMANCE OF DATA SELECTION APPROACHES ON LARGE-SCALE DATASET

We provide additional experiments on a data mix that consists of a balanced mixture of a subset of
the datasets listed in Figure 1 of the paper, i.e., all but Self-Instruct and GPT4-Alpaca. The resulting
mix has approximately 313k data points, with at most 50k data points from each sub-dataset. This is
similar to the scale of the Tulu-v2 mixture (with 326k data points) that is a well-known data mixture
for finetuning LLMs (Ivison et al., 2023). Table 6 reports the performance of Llama-7b fintuned on
different 10k subsets ( 3% data budget) of the full dataset, demonstrating that our approach scales to
a relatively large dataset.
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Table 5: Academic benchmark and instruction following evaluation of Mistral-7b finetuned on 10k
(20%) data subset of Alpaca. This table compares random selection and full finetuning baseline as
well as data selection methods that ensure diversity, quality, or both. (↑) indicates that data points
with higher quality score are selected.

METHODS ACADEMIC BENCHMARKS ALPACAEVAL
MMLU GSM BBH TYDIQA CODEXEVAL AVG LC-% WIN

100% DATA 46.8 18.1 50.1 31.5 29.3 35.8 39
RANDOM 61.1 21.4 49.4 31.2 30.5 39.6 39

DPP (LLAMA ∇θℓ) 60.3 21.2 49.1 33.5 34.8 40.3 44
DPP (LLAMA ∇θℓ) NOT NORM. 60.1 19.6 49.9 30.0 31.7 39.0 40
DPP (LLAMA EMB NOT NORM.) 58.8 21.1 49.5 29.6 31.1 38.8 39
DPP (LLAMA EMB) 57.6 19.8 49.2 28.3 30.5 37.8 45
DPP (MPNET EMB) 58.3 20.8 48.1 29.1 29.3 38.0 41
DEDUP(MPNET EMB) 60.3 20.4 49.2 31.8 27.4 39.0 40

∥∇θℓ∥2 (↓) 59.8 26.3 49.4 21.9 30.5 38.4 45
ALPAGASUS RATING (↑) 59.8 21.7 49.3 35.9 29.3 40.3 37
EL2N (↓) 58.6 21.6 48.0 29.4 31.7 38.5 42
IFD (↑) 56.3 20.0 48.5 33.8 29.3 38.5 41
PERPLEXITY (↓) 59.3 21.4 48.9 27.5 34.8 38.8 41
#INPUT TOKENS (↑) 60.5 21.1 48.7 34.2 31.1 40.0 41
#OUTPUT TOKENS (↑) 60.7 26.7 50.1 22.4 32.3 39.1 47

DPP (LLAMA ∇θℓ + #OUTPUT TOKS) 60.6 25.0 49.5 30.4 34.8 40.6 48

Table 6: Comparison of different data selection methods on a relatively large dataset (313k data
points). Our proposed approach scales with the size of the dataset.

Method BENCHMARK AVG ALPACAEVAL LC-%WIN

Random 23.7 29.7

DPP(LLAMA ∇θℓ) 24.6 28.4
DPP (LLAMA EMB) 24.1 27.2

Perplexity (↓) 24.7 35.8
∥∇θℓ∥2 (↓) 23.4 38.2
#OUTPUT TOKENS (↑) 22.6 39.7

DPP(LLAMA ∇θℓ + #OUTPUT TOKS) 24.0 42.5

C.6 THE PERFORMANCE OF DATA SELECTION APPROACHES WITH VARYING DATA BUDGETS

Table 7: Performance of Llama-7b finetuned on subsets of Alpaca with varying data budgets. Our
proposed approach outperforms the baseline at low data budgets.

Method Data Budget
10% 20% 40% 60% 100%

Random 27.6 25.0 25.9 27.1 28.3
#OUTPUT TOKENS (↑) 29.3 30.9 30.4 30.4 28.3
DPP(LLAMA ∇θℓ + #OUTPUT TOKS) 31.9 32.4 32.6 29.6 28.3

Table 7 reports the performance of Llama-7b finetuned on subsets of Alpaca with varying data bud-
gets. We select a strong quality-based baseline #OUTPUT TOKENS for comparison. We demonstrate
that our proposed approach provides strong performance at different data budgets and outperforms
the baselines at low data budgets.

C.7 QUALITATIVE ANALYSIS OF SELECTED EXAMPLES

We visualize nearest neighbors of examples using different data representations to understand what
data points would be removed (e.g., those that are similar) if we enforce diversity during selection.
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The following data pair would be considered close by all data representations we investigated
(MPNET EMB, LLAMA EMB, and LLAMA ∇θℓ) because they share keywords and belong to similar
tasks:

Instruction: As a personal trainer, create a nutrition plan for an athlete ...

Instruction: As a nutritionist, design a meal plan for a client with a rare genetic condition ...

Unlike other data representations, LLAMA ∇θℓ tends to group examples with similar answer struc-
tures (e.g., lists or long-form writing) together, even if they do not share the same topics or keywords.
The following pair is an example:

Instruction: Rename the following folder: Documents 1940. Response: 1940 Documents

Instruction: Generate a username for Jamie that must contain the letter J and between 8-12 characters. Response: JaimeJr89

D ANSWERS TO POTENTIAL QUESTIONS

D.1 WHY NOT USE DIVERSITY METRICS SUCH AS VENDI SCORE (FRIEDMAN & DIENG,
2023) ?

Vendi Score exp(−
∑N

i=1 λi log λi) depends on eigenvalues λ1, · · · , λN of the kernel matrix 1
NK,

where N is the number of examples. Computing the Vendi Score for arbitrary kernel function (e.g.,
radial basis kernel that we used in our work) takes O(N3) time for eigendecomposition whereas
computing LDD requires O(N2) time. This implies that computing Vendi Score on moderately
large datasets would be more prohibitive than LDD. Additionally, Vendi Score introduces additional
constraints on the kernel, i.e., k(x, x) = 1, to ensure invariance to the scaling of the kernel matrix.
In contrast, LDD maintains scale invariance without imposing this constraint on the kernel function.

In addition to proposing a diversity measure, we investigate different data representations (or the
kernel functions) to determine their utility in the context of instruction tuning. Specifically, Figure 4
demonstrated that LDD based on normalized weight gradient provides the best predictor of instruc-
tion following performance. This is an orthogonal contribution that previous works have not tried
to tackle. Therefore, even if we could feasibly compute the Vendi Score, we would still rely on the
findings in our paper to pick the kernel function.

D.2 WHY NOT USE FACILITY LOCATION FUNCTION FOR SUBSET SELECTION ?

Table 8: Comparison of DPP and Facility Location based data selection approaches. We report
ALPACAEVAL LC-%WIN of Llama-7b finetuned on different 20% data budget subset of the Alpaca
dataset. The two algorithms are pretty comparable.

Data Representation Algorithm
DPP Facility Location

LLAMA ∇θℓ 28.5 28.2
LLAMA EMB 26.6 26.3
MPNET EMB 25.2 24.5

Facility location and DPPs share many commonalities for subset selection. For example, they both
(1) can be solved with a (1-1/e)-greedy algorithm, (2) can incorporate quality scores, and (3) have
the same time complexity O(N2) if using the greedy algorithm on the entire datasets. We consider
our work concurrent to (Bukharin & Zhao, 2023; Bhatt et al., 2024) that uses facility location to
select instruction tuning datasets.

We emphasize that we are not attached to the exact data selection framework, instead we care more
about using some framework, be it DPP or facility location, to better understand how some prop-
erties of the dataset, e.g., diversity, quality or both, influence model performance. In addition to
improving upon baselines, our work aims to answer questions that have practical implications, in-
forming practitioners: (1) what diversity metric and quality scores are worth trying for selecting
instruction tuning datasets, (2) alternative data representations (e.g., normalized weight gradient)
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that can be used to better quantify similarity between long-form text, (3) how diverse a new dataset
is compared to existing ones, and if we should care to implement algorithms to enforce diversity, (4)
the effect of different data curation strategies on dataset diversity.

For completeness sake, we will provide a comparison of DPP and facility location function based
subset selection approaches. We use apricot’s implementation of facility location with exact lazy
greedy algorithm (Feige et al., 2011). We use the same kernel function for facility location function
as used in DPP. Table 8 reports ALPACAEVAL LC-%WIN of Llama-7b finetuned on different 20%
data budget subset of the Alpaca dataset. The two algorithms are pretty comparable.

D.3 IS ENFORCING DIVERSITY ALL WE NEED ?

While Figure 1 shows there exists a strong correlation between dataset diversity (LDD) and perfor-
mance (ALPACAEVAL LC-% WIN) across datasets. We do not claim that diversity is correlated
with performance all the time. For instance, diversity is strongly correlated with performance on
20% subsets of a less diverse dataset (e.g., Alpaca) while such correlation diminishes on that of a
more diverse dataset (e.g., UltraChat), as shown in Figure 3.

Diversity represents one axis of variation of a dataset, alongside with other factors such as quality.
Knowing when such correlation exists for a specific dataset can help us determine if diversity matters
and if we need to spend effort to enforce diversity. We can get an idea of where a dataset lie in this
diversity spectrum with our proposed diversity measure: LDD.
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