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Abstract001

Large language models have achieved signif-002
icant advancements in complex mathematical003
reasoning benchmarks, such as MATH. How-004
ever, their substantial computational require-005
ments present challenges for practical deploy-006
ment. Model quantization has emerged as an007
effective strategy to reduce memory usage and008
computational costs by employing lower pre-009
cision and bit-width representations. In this010
study, we systematically evaluate the impact of011
quantization on mathematical reasoning tasks.012
Our results demonstrate that aggressive quan-013
tization methods like AWQ and GPTQ intro-014
duce up to 32.39% accuracy degradation (aver-015
age 11.31%) on Llama-3 models, particularly016
in numerical computation and reasoning plan-017
ning. To address this, we introduce a mul-018
tidimensional evaluation framework combin-019
ing qualitative capability analysis and quanti-020
tative error assessment. We further develop021
targeted recovery strategies, showing that fine-022
tuning quantized models on only 545 task-023
specific examples for 3 minutes on 4 GPUs ef-024
fectively restores reasoning capabilities to near025
full-precision levels. Additionally, our error as-026
sessment pipeline achieves 98.9% accuracy in027
diagnosing and localizing errors across 3,366028
failure cases, providing actionable insights for029
mitigating quantization-induced degradation.030

1 Introduction031

Large language models (LLMs) have substantially032

advanced the state of mathematical reasoning in033

artificial intelligence, demonstrating remarkable034

performance on diverse tasks ranging from basic035

arithmetic and quantitative reasoning to intricate036

geometric and competition-level problems (Brown037

et al., 2020; Chowdhery et al., 2023; Touvron et al.,038

2023; Achiam et al., 2023; OpenAI, 2023). Crit-039

ically, these models excel not only at producing040

correct final answers, but also at providing step-by-041

step solutions that elucidate the underlying reason-042

ing process (Lewkowycz et al., 2022; Wei et al.,043

2022). Benchmarks such as MATH (Hendrycks 044

et al., 2021) highlight these capabilities, where 045

LLMs can guide humans through complex multi- 046

step problems with detailed reasoning chains. 047

However, such advancements come at a cost. 048

The computational requirements of LLMs, both 049

in terms of memory and latency, pose significant 050

practical barriers (Kaplan et al., 2020; Hoffmann 051

et al., 2022; Gou et al., 2024). To address these effi- 052

ciency challenges, researchers have explored model 053

compression techniques such as pruning (LeCun 054

et al., 1989; Han et al., 2015), knowledge distilla- 055

tion (Hinton, 2015; Jiao et al., 2019; Yang et al., 056

2024), and more recently, quantization (Hubara 057

et al., 2018; Jacob et al., 2018; Yao et al., 2022). 058

Quantization reduces memory usage and compu- 059

tational overhead by representing weights and ac- 060

tivations in low-bit formats (e.g., INT8), halving 061

GPU memory consumption and nearly doubling 062

throughput in operations like matrix multiplication 063

and attention (Rastegari et al., 2016; Lin et al., 064

2015; Dettmers et al., 2022). While it performs 065

well on standard NLP tasks with minimal perfor- 066

mance loss (Ma et al., 2024), its effect on complex 067

mathematical reasoning, requiring precise, contex- 068

tually coherent, and logical steps, remains unclear, 069

particularly for tasks like MATH or Code. 070

Prior work has hinted at potential reasoning 071

degradation under aggressive quantization (Shen 072

et al., 2020; Kim et al., 2021; Lin et al., 2023), but 073

a systematic understanding is lacking. Such limita- 074

tions pose a stark contrast to the precision-based as- 075

sumptions of advanced mathematical reasoning ap- 076

proaches. Models like Minerva (Lewkowycz et al., 077

2022) and reasoning strategies such as Chain-of- 078

Thought (CoT) prompting (Wei et al., 2022; Xiong 079

et al., 2023) rely heavily on high-fidelity internal 080

representations to ensure logical consistency and 081

correctness. Quantization, however, may disrupt 082

these critical internal states. Meanwhile, ongo- 083

ing developments in model optimization transcend 084
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Figure 1: Pipeline of our study for evaluating and restoring reasoning capabilities in quantized models. By format
alignment training and our error assessment pipeline with expert judge models, we diagnose and analyze ability-level
reasoning weaknesses on model’s step-by-step solutions. Based on identified error types, we sample a targeted
‘medicine’ dataset to fine-tune the model via Direct Preference Optimization (DPO), aiming to restore performance
while preserving efficiency.

simple training paradigms. Complex post-training085

pipelines that align models to human preferences086

and adapt them for specialized applications have087

gained traction, often involving intricate infrastruc-088

ture and iterative refinement processes (Schulman089

et al., 2017; Rafailov et al., 2024).090

Against this backdrop, the interplay between091

quantization, advanced inference strategies, and092

the underlying reasoning fidelity of LLMs emerges093

as a key research question. In this work, we seek094

to illuminate these relationships, providing insights095

into how quantization influences mathematical rea-096

soning and how we might mitigate these effects.097

To summarize, in this study, we present the fol-098

lowing key contributions:099

• We reveal that mainstream quantization meth-100

ods (AWQ, GPTQ) incur substantial reason-101

ing degradation, with up to 32.39% accuracy102

loss (average 11.31%) on MATH for Llama-103

3 models, exposing critical vulnerabilities in104

low-bit numerical representations.105

• We propose a step-aligned evaluation proto-106

col to dissect reasoning errors into four di-107

mensions (conceptual, methodological, execu-108

tional, logical), enabling granular diagnosis109

of quantization effects. Our automated error110

assessment pipeline achieves 98.9% accuracy111

in categorizing 3,366 failure cases, surpassing112

human-in-the-loop baselines.113

• We demonstrate that quantized models recover114

the performance gaps through lightweight 115

fine-tuning on only 545 targeted examples, 116

requiring only 3 minutes of training, thus en- 117

abling efficient deployment without sacrific- 118

ing reasoning fidelity. 119

2 Related Work 120

2.1 Quantization Techniques 121

Modern quantization methods balance efficiency 122

and performance through minimizing the model 123

output differences after quantization. Post-training 124

quantization (PTQ) approaches (Frantar et al., 125

2022; Lin et al., 2024; Xiao et al., 2023; Yao et al., 126

2022) enable efficient compression without retrain- 127

ing, while quantization-aware training (QAT) meth- 128

ods (Hu et al., 2021; Dettmers et al., 2024) preserve 129

task-specific performance through learnable scal- 130

ing factors. Recent work extends these techniques 131

to LLMs, though primarily evaluated on language 132

understanding rather than reasoning tasks. 133

2.2 Mathematical Reasoning in LLMs 134

The emergence of specialized models like Min- 135

erva (Lewkowycz et al., 2022) demonstrates LLMs’ 136

potential for advanced mathematical problem- 137

solving. Chain-of-Thought prompting (Wei 138

et al., 2022) and its variants (e.g., Program-of- 139

Thought (Chowdhery et al., 2023)) enhance multi- 140

step reasoning by decomposing problems into in- 141

terpretable sub-steps. However, these approaches 142

assume high-precision model representations, po- 143
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tentially conflicting with quantization’s reduced144

numerical precision.145

2.3 Model Alignment and Reasoning146

Optimization147

Recent advances in model alignment integrate in-148

struction tuning, pioneered by the FLAN frame-149

work (Wei et al., 2021) and popularized through Al-150

paca (Taori et al., 2023), with preference optimiza-151

tion techniques like DPO (Rafailov et al., 2024).152

Concurrently, reasoning reliability enhancements153

employ self-consistency voting (Wang et al., 2022)154

and process-based reward models (Lightman et al.,155

2023a), building upon foundational work in verifi-156

able reasoning (Creswell and Shanahan, 2022). Our157

investigation extends these directions by analyzing158

how quantization affects: the instruction-following159

capabilities crucial for step-by-step reasoning, and160

the consensus-building mechanisms in ensemble-161

based reasoning methods.162

3 Methodology163

3.1 Model Quantization164

We conduct a comprehensive investigation into the165

effects of quantization techniques, examining both166

weight-only quantization methods (GPTQ (Frantar167

et al., 2022), AWQ (Lin et al., 2024)). Our evalua-168

tion encompasses various quantization configura-169

tions, specifically focusing on 4-bit weight preci-170

sion with 16-bit activations (W4A16). Through the171

systematic application of these mainstream quanti-172

zation techniques, we provide a rigorous and bal-173

anced analysis of the resulting quantized models,174

offering valuable insights into their performance175

characteristics and trade-offs.176

3.2 Format Alignment177

To address the challenge of inconsistent instruc-178

tion following and irregular output formatting in179

model-generated solutions, we introduce a format180

alignment stage. This phase aims to instill in the181

model a structured, step-by-step reasoning work-182

flow without altering its underlying mathematical183

knowledge. Crucially, the objective here is not to184

teach the model new mathematical facts, but rather185

to ensure strict adherence to a prescribed output186

format, thereby enabling reliable qualitative and187

quantitative analysis of reasoning capability across188

quantized and full-precision variants.189

We employ LoRA (Hu et al., 2021) and190

QLoRA (Dettmers et al., 2024) for full-precision191

model and quantized model respectively as192

Problem Sample (from PRM-800K Dataset Training Subsets): 

The product of the proper positive integer factors of $n$ can be 
written as $n^{(ax+b)/c}$, where $x$ is the number of positive 
divisors $n$ has, $c$ is a positive integer, and the greatest common 
factor of the three integers $a$, $b$, and $c$ is $1$. What is 
$a+b+c$? [Gold Answer: 1]

Response Sample (from PRM-800K Dataset Training Subsets): 

1. I notice that the problem involves the product of the proper positive 
integer factors of $n$, which means all the factors of $n$ except $n$ 
itself. 

2. I also notice that the problem involves the number of positive 
divisors of $n$, which I'll call $x$. 

3. I wonder if there is a way to relate the product of the proper 
factors of $n$ to $n$ and $x$. 

4. I recall that the product of all the factors of $n$ is $n^{x/2}$, 
since each factor can be paired with its complement, and their product 
is $n$. 

5. Therefore, the product of the proper factors of $n$ is $n^{x/2}/n$, 
which is $n^{(x-2)/2}$. 

6. This means that the product of the proper factors of $n$ can be 
written as $n^{(ax+b)/c}$, where $a=1$, $b=-2$, and $c=2$. 

7. The greatest common factor of $a$, $b$, and $c$ is $1$, as 
required. 

8. The answer is $a+b+c=1+(-2)+2=1$. Answer: \boxed{1} [Answer: 1]

System Prompt: 

Your task is to solving mathematical problems by following these rules:

    1. Follow the given instructions strictly and ensure the output aligns 
with the expected format.

    2. Break down the reasoning process into clear, logical steps using 
numbered lists (e.g., 1., 2., 3.) to sequentially present each step. Each 
reasoning step should be isolated and clearly described to enhance 
readability and logical flow.

    3. After completing all reasoning steps, provide the final answer.

    4. Please reason step by step, and put your final answer within \
boxed{}. The final answer  must be formatted as (\
boxed{your_final_answer}). For example: Answer: \boxed{42}.

    5. Maintain consistent formatting across training and evaluation 
phases to ensure the model outputs meet evaluation requirements 
seamlessly. 

Training Prompt and Response Example

Figure 2: An example of the data used during training.
The output is concatenated using added tokens, and
the final answer is filled in boxed{} in the evaluation
format.

lightweight adaptation techniques for format align- 193

ment. By selectively updating a small subset of 194

parameters, these methods efficiently align knowl- 195

edge of step-by-step solution formats into the 196

model’s latent space without extensive retraining. 197

This fine-tuning enables us to observe how multi- 198

step reasoning is preserved or altered once the 199

model is quantized, offering deeper insights into 200

any capability loss induced by compression. 201

For training, we utilize the PRM800K 202

dataset (Lightman et al., 2023b), which provides 203

800K step-level correctness annotations from 75K 204

solutions to 12K problems. These annotations 205

supply granular, step-by-step reasoning trajec- 206

tories, equipping models to separate complex 207

problem-solving processes into well-defined 208

stages. To reinforce this structure, we adopt a 209

consistent system prompt across training and 210

evaluation, ensuring that the boundaries of logical 211

steps and final answers are clearly delineated. This 212

consistent, step-by-step alignment is a necessary 213

foundation for our subsequent qualitative and 214
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MATH Vanilla
(BF16)

AWQ
(W4A16)

GPTQ
(W4A16)

Llama-3.1-8B-Instruct score 47.2 41.8 43.06
∆ - ↓5.4(11.44%) ↓5.8(12.29%)

Llama-3.2-3B-Instruct score 40.2 38.8 31.6
∆ - ↓2.16(4.97%) ↓4.0(10.42%)

Llama-3.2-1B-Instruct score 18.6 14.26 14.94
∆ - ↓2.8(16.67%) ↓6.8(32.39%)

Table 1: Evaluation results of full-precision models and 4-bit weight, 16-bit activation quantization methods (AWQ
and GPTQ) on the MATH benchmark. All three model scales exhibit varying degrees of performance degradation,
posing challenges in solving mathematical reasoning problems. Notably, smaller-scale models suffer a performance
drop exceeding 30%.

quantitive analyses of quantization-induced215

degradation in mathematical reasoning.216

3.3 Analyses for Reasoning Errors217

To investigate the underlying reasons for the per-218

formance degradation observed in the quantized219

models, we categorized the errors into seven spe-220

cific error types in four major error categories.:221

• Conceptual Errors222

– Conceptual misunderstanding: Inade-223

quate grasp of fundamental concepts or224

principles, leading to an incorrect framing225

of the problem or misguided approach to226

the solution.227

– Contextual oversight: Failure to account228

for relevant contextual factors or domain229

constraints (e.g., physical limits, geometric230

considerations) that significantly affect the231

problem’s outcome.232

• Method Errors233

– Procedural error: Errors in executing or234

adhering to prescribed procedures (e.g., fail-235

ure to follow a standard algorithm or over-236

looking a required step), resulting in incom-237

plete or invalid solutions.238

– Formula rule error: Improper application239

of mathematical rules, theorems, or formu-240

lae (including misapplication of a formula241

to an inappropriate scenario), which under-242

mines the validity of the derived results.243

• Execution Errors244

– Computational error: Mistakes in arith-245

metic or algebraic manipulation, such as246

incorrect summation, factorization, or ex-247

pansion, that compromise the accuracy of248

the final answer.249

– Symbolic manipulation error: Inaccurate250

handling of symbols or expressions, includ-251

ing mislabeling variables or misinterpreting 252

symbolic transformations, leading to an in- 253

correct representation of the problem. 254

• Reasoning Errors 255

– Logical reasoning error: Breakdown in 256

the logical chain of thought, where the in- 257

ference steps do not follow coherently or 258

omit essential logical links, causing a dis- 259

connect between premises and conclusion. 260

3.4 Capability Restore 261

Building upon our systematic error analysis, we 262

develop targeted capability restoration strategies to 263

address quantization-induced performance degra- 264

dation. For each identified error category (concep- 265

tual, methodological, executional, and logical), we 266

create focused training subsets by pairing failed 267

step-wise responses with correct responses to form 268

a dataset of positive and negative pairs: 269

• Conceptual Restoration: High-context prob- 270

lems requiring domain-specific constraints. 271

• Methodological Restoration: Multi-step deriva- 272

tions with annotated procedure adherence. 273

• Executional Restoration: Computation- 274

intensive problems with stepwise verification. 275

• Logical Restoration: Chain-of-thought reason- 276

ing with explicit inference links. 277

We implement Direct Preference Optimization 278

(DPO) with parameter-efficient adaptation, using 279

QLoRA for quantized models. This dual approach 280

enables simultaneous optimization of two objec- 281

tives: (1) maximizing the likelihood of correct so- 282

lution trajectories through supervised fine-tuning 283

on error-specific subsets, and (2) addressing the 284

model’s capability gaps while leveraging the undi- 285

minished foundational abilities of the quantized 286

model to complete the solution, thereby enhancing 287

overall mathematical reasoning performance. 288
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Figure 3: Distribution of error types in quantized mod-
els, highlights the dominant error types affecting mathe-
matical reasoning in quantized models.

Figure 4: The radar plot of error distributions across
different scale Llama models on the MATH benchmark.

Our recovery process comprises three phases:289

1. Data Extraction and Construction: We ex-290

tract and construct a dataset from the quantized291

models’ failed responses across different model292

scales.293

2. Data Deduplication and Cross-Scale Sam-294

pling: To avoid redundancy, we deduplicate295

the dataset and perform cross-scale sampling296

based on error rates. This facilitates cross-error297

joint training with a mix of problem difficulties.298

3. DPO Training on the Aligned Model: Build-299

ing on the format-aligned model, we further300

train using a DPO approach.301

This phased approach achieves significant capabil-302

ity recovery while introducing less than 1% addi-303

tional parameter updates relative to the original304

model sizes. Our experiments demonstrate that tar-305

geted restoration using as few as 545 error-specific306

examples per category can bridge the performance307

gap between quantized and full-precision models.308

Remarkably, even training with a dataset compris-309

ing only 323 samples for a single error type can310

restore up to 9% of the model’s capability, confirm-311

ing that localized capability losses can be efficiently312

remediated through structured retraining.313

Algorithm 1 Pseudocode of our approach.
Input: Full-precision model M , Quantization
method Q, Step-annotated dataset Dtrain, Eval-
uation dataset Dtest, Expert models {E1...En}
Output: Enhanced quantized model Menhanced

1: Step 1: Model Quantization
2: Apply quantization method Q to model M :
3: MQ ← Q(M)
4: Step 2: Format Alignment
5: Fine-tune MQ with QLoRA on Dtrain:
6: MA ← QLoRA(MQ, Dtrain)
7: Step 3: Error Evaluation
8: Generate outputs O on Dtest:
9: O ←MA(Dtest)

10: Initialize error set E ← ∅
11: for each output oi ∈ O do
12: Multi-Expert Evaluation:
13: Collect evaluations {E1(oi)...En(oi)}
14: if Majority vote ̸= DeepSeek-R1 and votes

< 4 then
15: Flag oi as Rejected
16: E ← E ∪ {ErrorType(oi)}
17: end if
18: end for
19: Step 4: Human Verification
20: Random sample s← 2% of E:
21: Esample ← RandomSample(E, s)
22: Everified ← HumanVerify(Esample)
23: Step 5: Capability Restoration
24: for each error type t ∈ Everified do
25: Generate targeted dataset Dt:
26: Dt ← CurateData(t,Dtrain)
27: Apply DPO training:
28: MA ← DPO(MA, Dt)
29: end for
30: Return: Menhanced ←MA

4 Experiments 314

4.1 General Setup 315

All experiments were conducted on a cluster com- 316

prising 4 Nvidia 80G A800 GPUs. 317

Base Model & Scale 318

Given the general applicability of our approach 319

to mainstream models and the versatility across dif- 320

ferent model sizes, we select three distinct models 321

from the Llama 3 series as the foundation for our 322

experiments. Specifically, we choose models of 323

varying sizes, namely 8B for Llama-3.1 and 1B/3B 324

for Llama-3.2, all Instruct version. 325

For all of these models, we observe significant 326
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math accuracy degradation resulting from quantiza-327

tion, and we also demonstrate the powerful effect328

of our proposed fast reconstruction method.329

Quantization Strategy. Our experiments employ330

two mainstream quantization techniques: AWQ331

and GPTQ (Frantar et al., 2022; Lin et al., 2024),332

both known for their strong performance in model333

compression. These methods have led to numerous334

low-precision models widely adopted in practice.335

Our work aims to provide complementary insights336

for community.337

Training Strategy. We use a sequence length of338

1024 and in both the format alignment and capabil-339

ity restoration stages, we employed a global batch340

size of 16 and a warm-up period spanning 3%. All341

models were trained for 3 epochs.342

Evaluation Strategy. We evaluated our models us-343

ing the OpenCompass evaluation framework (Con-344

tributors, 2023), maintaining consistency in both345

the global batch size and the prompt with those346

used during training. This setup ensures a fair com-347

parison across all models.348

4.2 Format Alignment349

Setting. We applied LoRA fine-tuning to the350

vanilla model, while QLoRA (Dettmers et al.,351

2024) was employed for the quantized models. The352

LoRA rank was set to 32 for the format alignment353

stage. During training, the system prompt strictly354

enforced a step-wise output of the reasoning pro-355

cess, and outputs that deviated from the required356

format were penalized.357

Figure 5: Comparative analysis of error types for quan-
tized models (AWQ-W4A16 and GPTQ-W4A16) across
three model scales.

4.3 Analyses for Reasoning Errors358

Error Assessment Pipeline. To facilitate a rigor-359

ous and scalable evaluation of quantization-induced360

errors in reasoning tasks, we developed an auto-361

mated assessment pipeline powered by state-of-the-362

art language models. This pipeline systematically363

processes model outputs and classifies errors ac-364

cording to our predefined error_types_list taxon-365

omy. By leveraging a pre-trained transformer as the 366

core evaluator, we reduce subjective bias and en- 367

sure consistent, reproducible error analyses across 368

all experimental conditions. Furthermore, the 369

computational scoring framework supports high- 370

throughput performance assessment while preserv- 371

ing granularity in error categorization. 372

Our evaluation pipeline comprises three primary 373

stages: 374

1. Model Judge: For each instance in which 375

a quantized model produces an incorrect an- 376

swer, we employ a dedicated “judge model” to 377

analyze the error. The judge model is tasked 378

with: (a) identifying the first occurrence of an 379

error, (b) specifying the exact step where the 380

error is introduced, (c) assigning an error cat- 381

egory based on a nested classification scheme, 382

and (d) providing an explanation along with a 383

confidence score for its determination. 384

2. Majority Vote: To mitigate hallucinations 385

and enhance evaluation stability, we imple- 386

ment a majority voting mechanism across 387

five models: DeepSeek-R1, GPT-4o, GPT-4, 388

Qwen-Max, and DeepSeek-V3. DeepSeek- 389

R1’s assessment is treated as the baseline, and 390

its results are compared with the majority vote 391

from the other models. Instances of disagree- 392

ment are flagged for further review, ensuring 393

consistency and minimizing spurious judg- 394

ments. 395

3. Human Verification: For cases with conflict- 396

ing assessments from the majority vote, man- 397

ual review is conducted. Additionally, we 398

randomly sample 2% of the evaluated cases 399

to verify the accuracy and consistency of the 400

automated judgments. 401

This pipeline generally aligns with human er- 402

ror analysis and minimizes misclassifications and 403

inconsistencies. However, we also encountered un- 404

expected scenarios. For instance, when the canoni- 405

cal answer is "\\frac{11}{2}" but the quantized 406

model outputs "5.5" the judge model sometimes 407

erroneously concludes that there is "No Error" 408

due to subtle discrepancies in reasoning or format- 409

ting even if we do not give this type of judgment. 410

Such findings underscore both the robustness of 411

our judge framework. 412

Quantitative analyses. Table 1 presents a per- 413

formance comparison between full-precision and 414
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MATH-500 Vanilla
(BF16)

AWQ
(W4A16)

GPTQ
(W4A16)

Llama-3.1-8B-Instruct Aligned score 37.36 30.4 30.8
∆ - ↓6.94(18.58%) ↓6.56(17.56%)

Llama-3.2-3B-Instruct Aligned score 37.4 34.4 31.4
∆ - ↓3.0(8.02%) ↓6.0(16.04%)

Llama-3.2-1B-Instruct Aligned score 21 14.2 14.94
∆ - ↓6.8(32.39%) ↓6.2(29.52%)

Table 2: Evaluation results of format-aligned full-precision models and quantization methods (AWQ and GPTQ)
on the MATH-500 benchmark. After alignment, the model is required to output responses strictly following the
numbered step-wise format, resulting in slight changes in evaluation score.

quantized models on the MATH dataset across415

three model scales. We report both the performance416

(Score) and the corresponding accuracy degrada-417

tion (∆) induced by quantization. The vanilla418

model serves as the upper baseline, while quantized419

models exhibit varying degrees of performance loss.420

Notably, our results indicate that the 1B model is421

particularly sensitive to quantization.422

Based on the set of questions answered incor-423

rectly by the quantized models, we conducted fur-424

ther quantitative analyses. Figure 3 and 5 illustrates425

the overall distribution of the four error categories.426

Conceptual errors account for the majority, repre-427

senting more than half of all observed mistakes.428

Execution errors follow next. Our case study anal-429

yses reveal that quantized models are particularly430

deficient in basic arithmetic operations, with multi-431

plication errors showing the most significant perfor-432

mance decline. We hypothesize that these computa-433

tion errors, especially in models quantized to 4-bit434

weights, are likely attributable to low-bit precision435

issues such as overflow and underflow, which prop-436

agate inaccuracies throughout multi-step calcula-437

tions. Additional illustrative cases are provided in438

the Appendix.439

Intuitively, one might expect that reasoning er-440

rors would be more frequent given the inherent441

complexity of mathematical reasoning. However,442

our analysis shows that reasoning errors are less443

common. This observation may reflect a “survivor444

effect,” whereby earlier errors, such as logical or445

computational failures, prevent the model from446

reaching subsequent steps where boundary con-447

ditions would be tested. For precise statistics, we448

recorded only the first error type encountered in449

each instance. These findings suggest that quanti-450

zation disrupts the step-by-step reasoning process,451

thereby exposing the models’ limitations in manag-452

ing complex mathematical tasks. The underlying453

causes likely stem from limited numerical preci- 454

sion and the accumulation of quantization noise in 455

low-bit formats, which impair the representation 456

of long-term dependencies and intermediate values 457

during complex reasoning. 458

We hypothesize that small losses in specific ca- 459

pability dimensions can be compensated by fine- 460

tuning on a minimal subset of targeted data. This 461

approach could potentially restore overall perfor- 462

mance by addressing the specific weaknesses in- 463

troduced by quantization. For instance, targeted 464

training on multi-step reasoning tasks could reduce 465

step omissions by reinforcing the model’s ability to 466

retain intermediate results. By strategically address- 467

ing these specific failure modes, it may be possible 468

to recover and enhance the overall capabilities of 469

quantized models, leveraging their efficiency while 470

minimizing performance degradation. 471

4.4 Capability Restore 472

Dataset Sampling. We constructed the dataset for 473

capability restoration by sampling from all MATH 474

problems that were answered correctly by the full- 475

precision model but incorrectly by the quantized 476

model. Data sampling was guided by proportional 477

representation and consistency with expert model 478

major vote outcomes. To enhance data validity, 479

we performed deduplication and prioritized cases 480

where the major vote results were most consistent 481

and the errors were more pronounced. We aimed 482

to maintain a compact dataset to reduce training 483

resource consumption. Ultimately, we effectively 484

sampled 545 examples from 3329 quantized model 485

failure cases. The full-precision model’s correct 486

answers were used as positive examples, while the 487

quantized model’s incorrect answers served as neg- 488

ative examples, forming our DPO dataset. 489

Setting. Training for capability restoration stage 490

was conducted on the format-aligned model. For 491
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Llama-3.2-1B-Instruct Llama-3.2-3B-Instruct
Full Precision 18.6 40.2

AWQ GPTQ AWQ GPTQ
Aligned 14.26 14.94 38.8 31.6
Setting 0 17.2 18.6 41.6 38.2
Setting 1 15.8 18.0 41.2 36.2
Setting 2 16.6 16.6 37.2 34.4
Setting 3 15.2 15.4 35.2 33.0

Table 3: Ablation study settings and evaluation results on the MATH-500 dataset. Setting 0: All error cases; Setting
1: Conceptual error cases only; Setting 2: Methodological error cases only; Setting 3: Execution error cases only.

this stage, the LoRA rank was still set to 32, and a492

cosine learning rate schedule was employed with a493

warm-up ratio of 0.1. We used a sigmoid function494

as the preference loss function, with a global batch495

size of 8 and a learning rate of 1× 10−6. For eval-496

uation, to ensure fairness and mitigate data leakage497

risks, we used the MATH-500 dataset. MATH-500498

comprises 500 problems that are not included in499

the PRM800K dataset and were randomly sampled500

from the MATH dataset, thereby ensuring a similar501

difficulty distribution.502

Llama-3.2-1B-Instruct Llama-3.2-3B-Instruct
Full Precision 21 37.4

AWQ GPTQ AWQ GPTQ
Format Aligned 14.26 14.94 38.8 31.6
Restored 18.2 18.8 41.6 38.2

Table 4: Capability restoration experiment results on the
MATH-500 benchmark. Using only 545 samples within
a few minutes.

Results. We conducted rapid capability restora-503

tion training on two smaller-scale models. Table504

4 presents the restoration results using a dataset505

of 545 sampled examples. Due to the limited506

data volume, training required only 2–4 minutes507

on 4 GPUs, demonstrating minimal resource con-508

sumption. Notably, the quantized models exhibited509

marked improvements on this dataset.510

4.5 Ablation Study511

We conducted quantitative analyses focusing on the512

earliest error type observed during each model’s513

reasoning process. We hypothesize that quantized514

models may exhibit a “bucket effect” in reasoning515

tasks, wherein they still perform well on instruction516

following yet fail to solve complex reasoning prob-517

lems. To investigate this, we isolated the three most518

frequently occurring early error types for ablation519

experiments: (1) Conceptual error cases only, (2)520

Method error cases only, (3) Execution errors only.521

(4) All error types cases. This targeted analysis522

allowed us to assess the specific contributions of523

each error category to the overall degradation in 524

reasoning performance, thereby providing insights 525

into how quantization selectively impacts different 526

aspects of model capability. 527

The ablation experiments results reveal that even 528

when training on datasets containing only a single 529

type of error, the model’s capabilities can be sig- 530

nificantly improved. For instance, using only data 531

associated with conceptual errors enabled the quan- 532

tized model to recover reasoning performance com- 533

parable to that of the full-precision model. Notably, 534

this subset comprised merely 323 examples and 535

takes very few minutes for training, which required 536

minimal computational resources. These findings 537

lend support to our hypothesis: quantization does 538

not diminish the model’s fundamental abilities but 539

selectively degrades specific dimensions that are 540

crucial for solving reasoning tasks, such as those 541

encountered in mathematical problem solving. 542

5 Conclusion 543

This study investigates the performance degrada- 544

tion of low-bit quantized LLMs in complex mathe- 545

matical reasoning tasks. We find that quantization 546

disproportionately impacts conceptual and com- 547

putational reasoning, primarily due to precision 548

loss and noise propagation in low-bit represen- 549

tations. To address these issues, we introduce a 550

multidimensional evaluation pipeline and demon- 551

strate that targeted capability restoration strategies 552

can significantly recover performance with mini- 553

mal training using our specific ’medicine’ datasets. 554

Our parameter-efficient adaptation methods, such 555

as QLoRA and DPO, offer practical solutions for 556

resource-constrained deployments. These findings 557

highlight the trade-off between efficiency and rea- 558

soning fidelity, providing actionable insights for 559

optimizing quantized LLMs. Future work will ex- 560

plore extending this framework to other reasoning 561

domains and investigating potential advantages of 562

reduced precision in specific scenarios. 563
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6 Limitations & Future Works564

In this study, we investigated the performance565

degradation of quantized models on the compet-566

itive mathematical reasoning benchmark MATH567

through both qualitative and quantitative analyses,568

employing seven distinct capability dimensions for569

evaluation. However, our work is constrained by570

limited time and computational resources, which571

restrict the scale of our experiments and prevent572

comprehensive case studies or ablation analyses573

across models of varying sizes. Additionally, we574

did not explore whether the planning failures and575

computational errors observed in low-bit models576

are caused by storage overflows resulting from low-577

precision data formats through knowledge expo-578

sure experiments.579

Moreover, we identified intriguing phenomena580

where quantized models outperform full-precision581

models in certain specific mathematical solving582

steps. However, we did not conduct extensive583

experiments to further investigate these enhance-584

ments. As a short-term objective, we plan to per-585

form more targeted analyses on the degraded capa-586

bilities of quantized models and explore efficient587

methods for their recovery, incorporating more hu-588

man involvement in case studies to uncover deeper589

insights. Furthermore, we aim to extend our eval-590

uation to other types of reasoning tasks, assessing591

quantized models from the perspective of their in-592

herent properties to achieve a more comprehensive593

understanding of their performance across diverse594

reasoning scenarios.595
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A Solutions by Quantization Models793

A.1 Execution Errors: Computational error794

In Case #93, the task was to find the value of c795

for which the circle defined by x2 − 10x + y2 +796

6y + c = 0 has a radius of 1. The correct ap-797

proach involves completing the square, resulting798

in (x − 5)2 + (y + 3)2 = −c + 34, and solving799

−c+ 34 = 1 to find c = 33 . However, the GPTQ-800

Model made a computational error by incorrectly801

rearranging the equation as 34 − c = 1 leading802

to the wrong answer c = 35. This error stemmed803

from mishandling the sign of c during algebraic804

manipulation, highlighting the importance of care-805

ful sign management in equation solving. The case806

#93 shows the Computational Error.807

Problem #93: 

For what value of $c$ will the circle with equation $x^2 - 10x + y^2 + 
6y + c = 0$ have a radius of length 1?\n. [Gold Answer: 33]

Response of LLaMA-3.1-8B-Intruct-BF16 (Vanilla): 

1. To find the radius of a circle, I need to complete the square for both 
$x$ and $y$ terms in the equation. \n

2. I can rewrite the equation as $(x^2 - 10x) + (y^2 + 6y) = -c$. \n

3. To complete the square for $x^2 - 10x$, I need to add $(10/2)^2 = 
25$ to both sides. \n

4. To complete the square for $y^2 + 6y$, I need to add $(6/2)^2 = 9$ 
to both sides. \n

5. This gives me $(x^2 - 10x + 25) + (y^2 + 6y + 9) = -c + 25 + 9$. \n

6. I can factor the left side as $(x - 5)^2 + (y + 3)^2$. \n

7. The right side simplifies to $-c + 34$. \n

8. So the equation becomes $(x - 5)^2 + (y + 3)^2 = -c + 34$. \n

9. Now I can see that the radius of the circle is the square root of the 
right side. \n

10. I want the radius to be 1, so I need to have $-c + 34 = 1^2 = 1$. \n

11. Solving for $c$, I get $c = 34 - 1 = 33$. [Answer: 33]

Response of LLaMA-3.1-8B-Intruct-W4A16 (GPTQModel): 

1. To find the radius of a circle, I need to complete the square for both 
the $x$ and $y$ terms in the equation and write it in the standard 
form $(x - h)^2 + (y - k)^2 = r^2$, where $(h, k)$ is the center of the 
circle and $r$ is the radius. \n

2. I will start with the $x$ terms and try to make a perfect square by 
adding and subtracting the same constant. \n

3. I notice that the coefficient of $x$ is $-10$, so I want to add and 
subtract $(-10/2)^2 = 25$ to get $x^2 - 10x + 25 - 25$. \n

4. I can factor the perfect square as $(x - 5)^2$ and simplify the 
equation to $(x - 5)^2 - 25 + y^2 + 6y + c = 0$. \n

5. I will do the same thing for the $y$ terms and add and subtract $(-
6/2)^2 = 9$ to get $y^2 + 6y + 9 - 9$. \n

6. I can factor the perfect square as $(y + 3)^2$ and simplify the 
equation to $(x - 5)^2 - 25 + (y + 3)^2 - 9 + c = 0$. \n

7. Now I have the equation in the form $(x - 5)^2 + (y + 3)^2 - 34 + c = 
0$. \n

8. To make the radius 1, I need to have $r^2 = 1$, so I will set $-34 + c 
= 1$ and solve for $c$. \n

9. Adding 34 to both sides, I get $c = 35$. [Answer: 35]

Figure 6: Problem #93: Computational Error.

A.2 Reasoning Errors: Logical reasoning 808

error 809

In Problem #128, the GPTQModel made a logi- 810

cal reasoning error when calculating the minimum 811

number of miles Suzanne could walk in February. 812

While the model correctly identified that February 813

has 28 or 29 days, it missed the 27th day when 814

calculating her walking schedule every third day, 815

leading to an incorrect conclusion of 8 walking 816

days and 32 miles. In reality, the correct number of 817

walking days is 9 (3, 6, 9, 12, 15, 18, 21, 24, 27), 818

resulting in a total of 9× 4 = 36 miles. This error 819

highlights the model’s logical reasoning gap in iter- 820

ating through sequential intervals accurately. The 821

case #128 shows the Logical Reasoning Error.

Problem #128: 

Suzanne walks four miles every third day. What is the fewest number 
of miles she can walk in February?\n [Gold Answer: 36]

Response of LLaMA-3.1-8B-Intruct-BF16 (Vanilla): 

1. To find the fewest number of miles Suzanne can walk in February, I 
need to figure out how many days she walks four miles in that month. \n

2. February has 28 or 29 days, depending on whether it is a leap year or 
not. \n

3. I don't know if this is a leap year or not, so I will assume it has 28 
days. \n

4. If Suzanne walks four miles every third day, that means she walks 
four miles on the 3rd, 6th, 9th, 12th, 15th, 18th, 21st, 24th, and 27th 
of February. \n

5. That's nine days, so she walks a total of 9 x 4 = 36 miles in 
February. \n

6. This is the fewest number of miles she can walk, because if she 
didn't walk on any of those days, she would have to walk on another day, 
which would increase her total miles. \n

7. Therefore, the answer is 36 miles. [Answer: 36]

Response of LLaMA-3.1-8B-Intruct-W4A16 (GPTQModel): 

1. To find the fewest number of miles Suzanne can walk in February, I 
need to figure out how many days she walks in that month. \n

2. February has 28 days, but some years have 29 days. \n

3. I will assume that February has 28 days, since that is the most 
common case. \n

4. If Suzanne walks every third day, then she will walk on days 3, 6, 9, 
12, 15, 18, 21, and 24. \n

5. That is a total of 8 days, and she will walk 4 miles on each of those 
days. \n

6. So, the fewest number of miles she can walk in February is 8 times 4, 
which is 32 miles. [Answer: 32]

Figure 7: Problem #128: Logical Reasoning Error.
822
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B Cross Validation823

B.1 Conflict Judges824

The case #342 shows how we check the Error type825

of conflicting cases with the help of Judge models826

and human for double-check.827

We use five models cross-validation to determine828

the type of model reasoning errors after quantiza-829

tion. Specifically, we use Deepseek-R1, Deepseek-830

V3, ChatGPT, GPT-4o and Qwen-Max as judge831

models, and use five models to determine the cause832

of the error in the reasoning process, and use the833

majority voting decision method to finally deter-834

mine the error type.835

Problem #342: 

What integer $x$ satisfies $\\frac{1}{4}<\\frac{x}{7}<\\
frac{1}{3}$?\n [Gold Answer: 2]

Response of LLaMA-3.1-8B-Intruct-W4A16 (GPTQModel): 

1. To solve this inequality, I need to isolate $x$ on one side. \n

2. I can start by multiplying both sides by 4, since 4 is a common 
denominator for the fractions. \n

3. This gives me $1<\\frac{4x}{7}<\\frac{4}{3}$. \n

4. Now I can multiply both sides by 7, since 7 is a common denominator 
for the fractions. \n

5. This gives me $7<4x<\\frac{28}{3}$. \n

6. To make the inequality easier to read, I can divide both sides by 4. \n

7. This gives me $\\frac{7}{4}<x<\\frac{7}{1}$. \n

8. I can simplify the fractions by writing them as mixed numbers or 
decimals. \n

9. This gives me $1.75<x<7$. \n

10. Since $x$ is an integer, I need to find the integers that satisfy this 
inequality. \n

11. The smallest integer that is greater than 1.75 is 2. \n

12. The largest integer that is less than 7 is 6. \n

13. Therefore, the only integers that satisfy the inequality are 2, 3, 4, 
5, and 6. [Answer: 2,3,4,5,6]

Judgement of Deepseek-R1 (Primary Expert Model): 

When multiplying 4/3 by 7, the correct result is 28/3 ≈9.33. In step 5, 
the quantized model incorrectly treats 7*(4/3) as 28/3 but then fails 
to correctly divide this by 4 in step 7, leading to an upper bound of 7 
instead of 7/3 ≈2.33. [Execution_Errors: computational_error] 

Judgement of Deepseek-V3: 

The quantized model incorrectly 
chooses to multiply both sides by 
4 instead of 7, which is the 
correct common denominator for 
the fractions. This leads to a 
procedural error in the 
subsequent steps. 
[Method_Errors: Procedural 
error] 

Judgement of ChatGPT: 

The model incorrectly simplifies 
the inequality to $\\
frac{7}{4}<x<\\frac{7}{1}$, 
overlooking the upper limit should 
be $\\frac{28}{3}$ divided by 4, 
which is $\\frac{7}{3}$, not $\\
frac{7}{1}$. [Conceptual_Errors: 
contextual_oversight] 

Judgement of GPT-4O: 

The quantized model incorrectly 
simplifies the range as \\
frac{7}{4}<x<\\frac{7}{1} instead 
of the correct range \\
frac{7}{4}<x<\\frac{7}{3}, which 
results in an incorrect set of 
integer solutions.[Method_Errors: 
Procedural error] 

Judgement of Qwen-Max: 

The quantized model incorrectly 
simplifies the inequality $\\
frac{7}{4} < x < \\frac{28}{3}$ to 
$1.75 < x < 7$. The upper bound 
$\\frac{28}{3}$ is approximately 
9.33, not 7. [Conceptual_Errors: 
conceptual_misunderstanding] 

Human Verification Comment: 

From Step 6 to Step 7, the quantized model commits an error by 
incorrectly dividing both sides of the equation by 4. This aligns with the 
definition, which involves mistakes in arithmetic or algebraic 
manipulation. [Execution_Errors: computational_error] 

Figure 8: Problem #342: Conflict Judges.

At the same time, we use manual intervention 836

verification to randomly select about 2% of conflict- 837

ing cases, manually determine the error type and 838

compare it with the judgment of the judge model to 839

ensure that the judge’s vote is at a relatively correct 840

level. 841

B.2 No Errors 842

Although we select the extraction scripts carefully, 843

there are still few samples where the model’s output 844

results are difficult to be correctly identified, result- 845

ing in special "No Errors" situations. This situation 846

can usually be identified by the excellent Judge 847

model, such as case #3812 above. The Deepseek- 848

R1 model can reply No Errors after careful com- 849

parison, and we will also correct these cases among 850

results. 851

Examples of easy confusion often appear in 852

the choice of representation of decimals and frac- 853

tions, including the expression between natural syn- 854

tax and programming syntax, e.g., 1/2 vs 0.5 vs 855

\frac{1}{2} vs 5E-01 vs 5 x 10^-1. 856

Problem #3812: 

What is the probability that when a fair 6-sided die is rolled, a prime 
number faces up?\n [Gold Answer: \\frac{1}{2}]

Response of LLaMA-3.1-8B-Intruct-W4A16 (GPTQModel): 

1. To find the probability of rolling a prime number on a fair 6-sided die, 
I need to know how many prime numbers there are on a 6-sided die and 
how many of them are on a fair 6-sided die. \n

2. A prime number is a positive integer that is divisible only by 1 and 
itself. The prime numbers on a 6-sided die are 2, 3, and 5. \n

3. There are 3 prime numbers on a 6-sided die, so the probability of 
rolling a prime number is 3 out of 6, or 1/2. \n

4. To convert this fraction to a decimal or a percentage, I can divide 1 
by 2, which gives me 0.5. \n

5. Alternatively, I can multiply 1 by 100 and divide by 2, which gives me 
50. \n

6. So the probability of rolling a prime number on a fair 6-sided die is 
0.5 or 50%.\n [Answer: 0.5]

Judgement of Deepseek-R1 (Primary Expert Model): 

The quantized model's answer (0.5) is numerically equivalent to the 
correct answer (1/2). All reasoning steps are logically valid and 
mathematically correct, with no conceptual, procedural, or 
computational errors detected. [ No_Error: [] ] 

Figure 9: Problem #3812: No Error.
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