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Abstract

Large language models have achieved signif-
icant advancements in complex mathematical
reasoning benchmarks, such as MATH. How-
ever, their substantial computational require-
ments present challenges for practical deploy-
ment. Model quantization has emerged as an
effective strategy to reduce memory usage and
computational costs by employing lower pre-
cision and bit-width representations. In this
study, we systematically evaluate the impact of
quantization on mathematical reasoning tasks.
Our results demonstrate that aggressive quan-
tization methods like AWQ and GPTQ intro-
duce up to 32.39% accuracy degradation (aver-
age 11.31%) on Llama-3 models, particularly
in numerical computation and reasoning plan-
ning. To address this, we introduce a mul-
tidimensional evaluation framework combin-
ing qualitative capability analysis and quanti-
tative error assessment. We further develop
targeted recovery strategies, showing that fine-
tuning quantized models on only 545 task-
specific examples for 3 minutes on 4 GPUs ef-
fectively restores reasoning capabilities to near
full-precision levels. Additionally, our error as-
sessment pipeline achieves 98.9% accuracy in
diagnosing and localizing errors across 3,366
failure cases, providing actionable insights for
mitigating quantization-induced degradation.

1 Introduction

Large language models (LLMs) have substantially
advanced the state of mathematical reasoning in
artificial intelligence, demonstrating remarkable
performance on diverse tasks ranging from basic
arithmetic and quantitative reasoning to intricate
geometric and competition-level problems (Brown
et al., 2020; Chowdhery et al., 2023; Touvron et al.,
2023; Achiam et al., 2023; OpenAl, 2023). Cerit-
ically, these models excel not only at producing
correct final answers, but also at providing step-by-
step solutions that elucidate the underlying reason-
ing process (Lewkowycz et al., 2022; Wei et al.,

2022). Benchmarks such as MATH (Hendrycks
et al., 2021) highlight these capabilities, where
LLMs can guide humans through complex multi-
step problems with detailed reasoning chains.

However, such advancements come at a cost.
The computational requirements of LLMs, both
in terms of memory and latency, pose significant
practical barriers (Kaplan et al., 2020; Hoffmann
et al., 2022; Gou et al., 2024). To address these effi-
ciency challenges, researchers have explored model
compression techniques such as pruning (LeCun
et al., 1989; Han et al., 2015), knowledge distilla-
tion (Hinton, 2015; Jiao et al., 2019; Yang et al.,
2024), and more recently, quantization (Hubara
et al., 2018; Jacob et al., 2018; Yao et al., 2022).
Quantization reduces memory usage and compu-
tational overhead by representing weights and ac-
tivations in low-bit formats (e.g., INTS), halving
GPU memory consumption and nearly doubling
throughput in operations like matrix multiplication
and attention (Rastegari et al., 2016; Lin et al.,
2015; Dettmers et al., 2022). While it performs
well on standard NLP tasks with minimal perfor-
mance loss (Ma et al., 2024), its effect on complex
mathematical reasoning, requiring precise, contex-
tually coherent, and logical steps, remains unclear,
particularly for tasks like MATH or Code.

Prior work has hinted at potential reasoning
degradation under aggressive quantization (Shen
et al., 2020; Kim et al., 2021; Lin et al., 2023), but
a systematic understanding is lacking. Such limita-
tions pose a stark contrast to the precision-based as-
sumptions of advanced mathematical reasoning ap-
proaches. Models like Minerva (Lewkowycz et al.,
2022) and reasoning strategies such as Chain-of-
Thought (CoT) prompting (Wei et al., 2022; Xiong
et al., 2023) rely heavily on high-fidelity internal
representations to ensure logical consistency and
correctness. Quantization, however, may disrupt
these critical internal states. Meanwhile, ongo-
ing developments in model optimization transcend
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Figure 1: Pipeline of our study for evaluating and restoring reasoning capabilities in quantized models. By format
alignment training and our error assessment pipeline with expert judge models, we diagnose and analyze ability-level
reasoning weaknesses on model’s step-by-step solutions. Based on identified error types, we sample a targeted
‘medicine’ dataset to fine-tune the model via Direct Preference Optimization (DPO), aiming to restore performance

while preserving efficiency.

simple training paradigms. Complex post-training
pipelines that align models to human preferences
and adapt them for specialized applications have
gained traction, often involving intricate infrastruc-
ture and iterative refinement processes (Schulman
et al., 2017; Rafailov et al., 2024).

Against this backdrop, the interplay between
quantization, advanced inference strategies, and
the underlying reasoning fidelity of LLMs emerges
as a key research question. In this work, we seek
to illuminate these relationships, providing insights
into how quantization influences mathematical rea-
soning and how we might mitigate these effects.

To summarize, in this study, we present the fol-
lowing key contributions:

* We reveal that mainstream quantization meth-
ods (AWQ, GPTQ) incur substantial reason-
ing degradation, with up to 32.39% accuracy
loss (average 11.31%) on MATH for Llama-
3 models, exposing critical vulnerabilities in
low-bit numerical representations.

* We propose a step-aligned evaluation proto-
col to dissect reasoning errors into four di-
mensions (conceptual, methodological, execu-
tional, logical), enabling granular diagnosis
of quantization effects. Our automated error
assessment pipeline achieves 98.9% accuracy
in categorizing 3,366 failure cases, surpassing
human-in-the-loop baselines.

* We demonstrate that quantized models recover

the performance gaps through lightweight
fine-tuning on only 545 targeted examples,
requiring only 3 minutes of training, thus en-
abling efficient deployment without sacrific-
ing reasoning fidelity.

2 Related Work
2.1 Quantization Techniques

Modern quantization methods balance efficiency
and performance through minimizing the model
output differences after quantization. Post-training
quantization (PTQ) approaches (Frantar et al.,
2022; Lin et al., 2024; Xiao et al., 2023; Yao et al.,
2022) enable efficient compression without retrain-
ing, while quantization-aware training (QAT) meth-
ods (Hu et al., 2021; Dettmers et al., 2024) preserve
task-specific performance through learnable scal-
ing factors. Recent work extends these techniques
to LLMs, though primarily evaluated on language
understanding rather than reasoning tasks.

2.2 Mathematical Reasoning in LL.Ms

The emergence of specialized models like Min-
erva (Lewkowycz et al., 2022) demonstrates LLMs’
potential for advanced mathematical problem-
solving.  Chain-of-Thought prompting (Wei
et al., 2022) and its variants (e.g., Program-of-
Thought (Chowdhery et al., 2023)) enhance multi-
step reasoning by decomposing problems into in-
terpretable sub-steps. However, these approaches
assume high-precision model representations, po-



tentially conflicting with quantization’s reduced
numerical precision.

2.3 Model Alignment and Reasoning
Optimization

Recent advances in model alignment integrate in-
struction tuning, pioneered by the FLAN frame-
work (Wei et al., 2021) and popularized through Al-
paca (Taori et al., 2023), with preference optimiza-
tion techniques like DPO (Rafailov et al., 2024).
Concurrently, reasoning reliability enhancements
employ self-consistency voting (Wang et al., 2022)
and process-based reward models (Lightman et al.,
2023a), building upon foundational work in verifi-
able reasoning (Creswell and Shanahan, 2022). Our
investigation extends these directions by analyzing
how quantization affects: the instruction-following
capabilities crucial for step-by-step reasoning, and
the consensus-building mechanisms in ensemble-
based reasoning methods.

3 Methodology
3.1 Model Quantization

We conduct a comprehensive investigation into the
effects of quantization techniques, examining both
weight-only quantization methods (GPTQ (Frantar
et al., 2022), AWQ (Lin et al., 2024)). Our evalua-
tion encompasses various quantization configura-
tions, specifically focusing on 4-bit weight preci-
sion with 16-bit activations (W4A16). Through the
systematic application of these mainstream quanti-
zation techniques, we provide a rigorous and bal-
anced analysis of the resulting quantized models,
offering valuable insights into their performance
characteristics and trade-offs.

3.2 Format Alignment

To address the challenge of inconsistent instruc-
tion following and irregular output formatting in
model-generated solutions, we introduce a format
alignment stage. This phase aims to instill in the
model a structured, step-by-step reasoning work-
flow without altering its underlying mathematical
knowledge. Crucially, the objective here is not to
teach the model new mathematical facts, but rather
to ensure strict adherence to a prescribed output
format, thereby enabling reliable qualitative and
quantitative analysis of reasoning capability across
quantized and full-precision variants.

We employ LoRA (Hu et al.,, 2021) and
QLoRA (Dettmers et al., 2024) for full-precision
model and quantized model respectively as

Training Prompt and Response Example

Gysfem Prompt: I
Your task is to solving mathematical problems by following these rules:

1. Follow the given instructions strictly and ensure the output aligns
with the expected format.

2. Break down the reasoning process into clear, logical steps using
numbered lists (e.g., 1., 2., 3.) to sequentially present each step. Each
reasoning step should be isolated and clearly described to enhance
readability and logical flow.

3. After completing all reasoning steps, provide the final answer.

4. Please reason step by step, and put your final answer within \
boxed(}. The final answer must be formatted as (\
boxed{your_final_answer}). For example: Answer: \boxed{42}.

5. Maintain consistent formatting across training and evaluation
phases to ensure the model outputs meet evaluation requirements
\\seamlessly.

J
/Problem Sample (from PRM-800K Dataset Training Subsets): N
The product of the proper positive integer factors of $n$ can be
written as $n"{(ax+b)/c}$, where $x$ is the number of positive
divisors $n$ has, $c$ is a positive integer, and the greatest common
factor of the three integers $a$, $b$, and $¢$ is $1$. What is
\\$a+b+c$? [6old Answer: 1] )

(i N

Response Sample (from PRM-800K Dataset Training Subsets):
1. I notice that the problem involves the product of the proper positive
integer factors of $n$, which means all the factors of $n$ except $n$
itself.

2. I also notice that the problem involves the number of positive
divisors of $n$, which I'll call $x$.

3. I wonder if there is a way to relate the product of the proper
factors of $n$ to $n$ and $x$.

4. T recall that the product of all the factors of $n$ is $n"{x/2}$,
since each factor can be paired with its complement, and their product
is $n$.

5. Therefore, the product of the proper factors of $n$ is $n"{x/2}/n$,
which is $n"{(x-2)/2}$.

6. This means that the product of the proper factors of $n$ can be
written as $n"{(ax+b)/c}$, where $a=1$, $b=-2%, and $c=2%$.

7. The greatest common factor of $a$, $b$, and $c$ is $1$, as
required.

8. The answer is $a+b+c=1+(-2)+2=1$. Answer: \boxed{1} [Answer: 1]

Figure 2: An example of the data used during training.
The output is concatenated using added tokens, and
the final answer is filled in boxed{} in the evaluation
format.

lightweight adaptation techniques for format align-
ment. By selectively updating a small subset of
parameters, these methods efficiently align knowl-
edge of step-by-step solution formats into the
model’s latent space without extensive retraining.
This fine-tuning enables us to observe how multi-
step reasoning is preserved or altered once the
model is quantized, offering deeper insights into
any capability loss induced by compression.

For training, we utilize the PRMS800K
dataset (Lightman et al., 2023b), which provides
800K step-level correctness annotations from 75K
solutions to 12K problems. These annotations
supply granular, step-by-step reasoning trajec-
tories, equipping models to separate complex
problem-solving processes into well-defined
stages. To reinforce this structure, we adopt a
consistent system prompt across training and
evaluation, ensuring that the boundaries of logical
steps and final answers are clearly delineated. This
consistent, step-by-step alignment is a necessary
foundation for our subsequent qualitative and



MATH Vanilla AWQ GPTQ
(BF16) (W4A16) (W4A16)
Llama-3.1-8B-Instruct sczre 47_'2 1s. 4(4111'i 4%) 1s. 84(?2039 %)
Llama-3.2-3B-Instruct sczre 4(}2 12.1 63(%1897 %) ¢4.0(3110'.642%)
Llama-3.2-1B-Instruct chre 1%6 ¢2.8141L62.g7%) ¢6.81;L29.§9%)

Table 1: Evaluation results of full-precision models and 4-bit weight, 16-bit activation quantization methods (AWQ
and GPTQ) on the MATH benchmark. All three model scales exhibit varying degrees of performance degradation,
posing challenges in solving mathematical reasoning problems. Notably, smaller-scale models suffer a performance

drop exceeding 30%.

quantitive analyses of quantization-induced
degradation in mathematical reasoning.

3.3 Analyses for Reasoning Errors
To investigate the underlying reasons for the per-
formance degradation observed in the quantized
models, we categorized the errors into seven spe-
cific error types in four major error categories.:
* Conceptual Errors
— Conceptual misunderstanding: Inade-
quate grasp of fundamental concepts or
principles, leading to an incorrect framing
of the problem or misguided approach to
the solution.

— Contextual oversight: Failure to account
for relevant contextual factors or domain
constraints (e.g., physical limits, geometric
considerations) that significantly affect the
problem’s outcome.

e Method Errors

— Procedural error: Errors in executing or
adhering to prescribed procedures (e.g., fail-
ure to follow a standard algorithm or over-
looking a required step), resulting in incom-
plete or invalid solutions.

— Formula rule error: Improper application
of mathematical rules, theorems, or formu-
lae (including misapplication of a formula
to an inappropriate scenario), which under-
mines the validity of the derived results.

* Execution Errors
— Computational error: Mistakes in arith-
metic or algebraic manipulation, such as
incorrect summation, factorization, or ex-
pansion, that compromise the accuracy of
the final answer.

— Symbolic manipulation error: Inaccurate
handling of symbols or expressions, includ-

ing mislabeling variables or misinterpreting
symbolic transformations, leading to an in-
correct representation of the problem.

* Reasoning Errors
— Logical reasoning error: Breakdown in
the logical chain of thought, where the in-
ference steps do not follow coherently or
omit essential logical links, causing a dis-
connect between premises and conclusion.

3.4 Capability Restore

Building upon our systematic error analysis, we
develop targeted capability restoration strategies to
address quantization-induced performance degra-
dation. For each identified error category (concep-
tual, methodological, executional, and logical), we
create focused training subsets by pairing failed
step-wise responses with correct responses to form
a dataset of positive and negative pairs:

* Conceptual Restoration: High-context prob-
lems requiring domain-specific constraints.

* Methodological Restoration: Multi-step deriva-
tions with annotated procedure adherence.

* Executional Restoration: Computation-
intensive problems with stepwise verification.

* Logical Restoration: Chain-of-thought reason-
ing with explicit inference links.

We implement Direct Preference Optimization
(DPO) with parameter-efficient adaptation, using
QLoRA for quantized models. This dual approach
enables simultaneous optimization of two objec-
tives: (1) maximizing the likelihood of correct so-
lution trajectories through supervised fine-tuning
on error-specific subsets, and (2) addressing the
model’s capability gaps while leveraging the undi-
minished foundational abilities of the quantized
model to complete the solution, thereby enhancing
overall mathematical reasoning performance.
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Figure 4: The radar plot of error distributions across
different scale Llama models on the MATH benchmark.

Our recovery process comprises three phases:

1. Data Extraction and Construction: We ex-
tract and construct a dataset from the quantized
models’ failed responses across different model
scales.

2. Data Deduplication and Cross-Scale Sam-
pling: To avoid redundancy, we deduplicate
the dataset and perform cross-scale sampling
based on error rates. This facilitates cross-error
joint training with a mix of problem difficulties.

3. DPO Training on the Aligned Model: Build-
ing on the format-aligned model, we further
train using a DPO approach.

This phased approach achieves significant capabil-
ity recovery while introducing less than 1% addi-
tional parameter updates relative to the original
model sizes. Our experiments demonstrate that tar-
geted restoration using as few as 545 error-specific
examples per category can bridge the performance
gap between quantized and full-precision models.
Remarkably, even training with a dataset compris-
ing only 323 samples for a single error type can
restore up to 9% of the model’s capability, confirm-
ing that localized capability losses can be efficiently
remediated through structured retraining.

Algorithm 1 Pseudocode of our approach.

Input: Full-precision model M, Quantization
method @, Step-annotated dataset Dy;qp, Eval-
uation dataset Dy, Expert models { E;...E,, }
Output: Enhanced quantized model M.,,nanced

Step 1: Model Quantization

Apply quantization method () to model M:
MQ — Q(M )

Step 2: Format Alignment

Fine-tune Mg with QLoRA on Dyqin:
My +— QLORA(]WQ7 Dirain)

Step 3: Error Evaluation

Generate outputs O on Dyeg:

O + MA(Dtest)

Initialize error set F < ()

: for each output 0; € O do
Multi-Expert Evaluation:

Collect evaluations { E'1(0;)...Ey,(0;) }
if Majority vote = DeepSeek-R1 and votes
< 4 then

15: Flag o; as Rejected

16: E <+ E U {ErrorType(0;)}

17:  end if

18: end for

19: Step 4: Human Verification

20: Random sample s < 2% of E:

21: Eggmple < RandomSample(E, s)

22: Eyerified < HumanVerify(Esqmpie)
23: Step 5: Capability Restoration

24: for each error type t € Eyerificq do
25:  Generate targeted dataset D;:

26: Dy < CurateData(t, Dyyain)

27:  Apply DPO training:

28: My DPO(MA,Dt)

29: end for

30: Return: M., hanced ¢ Ma

R e A e

—_— = e =
Rl T =

4 Experiments

4.1 General Setup

All experiments were conducted on a cluster com-
prising 4 Nvidia 80G A800 GPUs.
Base Model & Scale

Given the general applicability of our approach
to mainstream models and the versatility across dif-
ferent model sizes, we select three distinct models
from the Llama 3 series as the foundation for our
experiments. Specifically, we choose models of
varying sizes, namely 8B for Llama-3.1 and 1B/3B
for Llama-3.2, all Instruct version.

For all of these models, we observe significant



math accuracy degradation resulting from quantiza-
tion, and we also demonstrate the powerful effect
of our proposed fast reconstruction method.
Quantization Strategy. Our experiments employ
two mainstream quantization techniques: AWQ
and GPTQ (Frantar et al., 2022; Lin et al., 2024),
both known for their strong performance in model
compression. These methods have led to numerous
low-precision models widely adopted in practice.
Our work aims to provide complementary insights
for community.

Training Strategy. We use a sequence length of
1024 and in both the format alignment and capabil-
ity restoration stages, we employed a global batch
size of 16 and a warm-up period spanning 3%. All
models were trained for 3 epochs.

Evaluation Strategy. We evaluated our models us-
ing the OpenCompass evaluation framework (Con-
tributors, 2023), maintaining consistency in both
the global batch size and the prompt with those
used during training. This setup ensures a fair com-
parison across all models.

4.2 Format Alignment

Setting. We applied LoRA fine-tuning to the
vanilla model, while QLoRA (Dettmers et al.,
2024) was employed for the quantized models. The
LoRA rank was set to 32 for the format alignment
stage. During training, the system prompt strictly
enforced a step-wise output of the reasoning pro-
cess, and outputs that deviated from the required
format were penalized.

- emBB.

contextual formula p logical
oversight rule error misunder- error reasoning manipulation
error standing error error

. . =AWQ uG?TQ
Figure 5: Comparative analysis of error types for quan-

tized models (AWQ-W4A16 and GPTQ-W4A16) across
three model scales.

4.3 Analyses for Reasoning Errors

Error Assessment Pipeline. To facilitate a rigor-
ous and scalable evaluation of quantization-induced
errors in reasoning tasks, we developed an auto-
mated assessment pipeline powered by state-of-the-
art language models. This pipeline systematically
processes model outputs and classifies errors ac-
cording to our predefined error_types_list taxon-

omy. By leveraging a pre-trained transformer as the
core evaluator, we reduce subjective bias and en-
sure consistent, reproducible error analyses across
all experimental conditions. Furthermore, the
computational scoring framework supports high-
throughput performance assessment while preserv-
ing granularity in error categorization.

Our evaluation pipeline comprises three primary
stages:

1. Model Judge: For each instance in which
a quantized model produces an incorrect an-
swer, we employ a dedicated “judge model” to
analyze the error. The judge model is tasked
with: (a) identifying the first occurrence of an
error, (b) specifying the exact step where the
error is introduced, (c) assigning an error cat-
egory based on a nested classification scheme,
and (d) providing an explanation along with a
confidence score for its determination.

2. Majority Vote: To mitigate hallucinations
and enhance evaluation stability, we imple-
ment a majority voting mechanism across
five models: DeepSeek-R1, GPT-40, GPT-4,
Qwen-Max, and DeepSeek-V3. DeepSeek-
R1’s assessment is treated as the baseline, and
its results are compared with the majority vote
from the other models. Instances of disagree-
ment are flagged for further review, ensuring
consistency and minimizing spurious judg-
ments.

3. Human Verification: For cases with conflict-
ing assessments from the majority vote, man-
ual review is conducted. Additionally, we
randomly sample 2% of the evaluated cases
to verify the accuracy and consistency of the
automated judgments.

This pipeline generally aligns with human er-
ror analysis and minimizes misclassifications and
inconsistencies. However, we also encountered un-
expected scenarios. For instance, when the canoni-
cal answer is "\\frac{113}{2}" but the quantized
model outputs "5.5" the judge model sometimes
erroneously concludes that there is "No Error"
due to subtle discrepancies in reasoning or format-
ting even if we do not give this type of judgment.
Such findings underscore both the robustness of
our judge framework.

Quantitative analyses. Table 1 presents a per-
formance comparison between full-precision and



MATH-500 Vanilla AWQ GPTQ
(BF16) (W4A16) (W4A16)
Llama-3.1-8B-Instruct | Aligned sczre 37;36 ¢6.94?(’?;58%) ¢6.56?()?.7?56%)
Llama-3.2-3B-Instruct | Aligned sczre 37_'4 ¢3.0§g:32%) ¢6.0(3116j)4%)
Llama-3.2-1B-Instruct | Aligned sczre 2_1 ¢6.8(134;.239%) ¢6.2$.99.;12%)

Table 2: Evaluation results of format-aligned full-precision models and quantization methods (AWQ and GPTQ)
on the MATH-500 benchmark. After alignment, the model is required to output responses strictly following the

numbered step-wise format, resulting in slight changes in evaluation score.

quantized models on the MATH dataset across
three model scales. We report both the performance
(Score) and the corresponding accuracy degrada-
tion (A) induced by quantization. The vanilla
model serves as the upper baseline, while quantized
models exhibit varying degrees of performance loss.
Notably, our results indicate that the 1B model is
particularly sensitive to quantization.

Based on the set of questions answered incor-
rectly by the quantized models, we conducted fur-
ther quantitative analyses. Figure 3 and 5 illustrates
the overall distribution of the four error categories.
Conceptual errors account for the majority, repre-
senting more than half of all observed mistakes.
Execution errors follow next. Our case study anal-
yses reveal that quantized models are particularly
deficient in basic arithmetic operations, with multi-
plication errors showing the most significant perfor-
mance decline. We hypothesize that these computa-
tion errors, especially in models quantized to 4-bit
weights, are likely attributable to low-bit precision
issues such as overflow and underflow, which prop-
agate inaccuracies throughout multi-step calcula-
tions. Additional illustrative cases are provided in
the Appendix.

Intuitively, one might expect that reasoning er-
rors would be more frequent given the inherent
complexity of mathematical reasoning. However,
our analysis shows that reasoning errors are less
common. This observation may reflect a “survivor
effect,” whereby earlier errors, such as logical or
computational failures, prevent the model from
reaching subsequent steps where boundary con-
ditions would be tested. For precise statistics, we
recorded only the first error type encountered in
each instance. These findings suggest that quanti-
zation disrupts the step-by-step reasoning process,
thereby exposing the models’ limitations in manag-
ing complex mathematical tasks. The underlying

causes likely stem from limited numerical preci-
sion and the accumulation of quantization noise in
low-bit formats, which impair the representation
of long-term dependencies and intermediate values
during complex reasoning.

We hypothesize that small losses in specific ca-
pability dimensions can be compensated by fine-
tuning on a minimal subset of targeted data. This
approach could potentially restore overall perfor-
mance by addressing the specific weaknesses in-
troduced by quantization. For instance, targeted
training on multi-step reasoning tasks could reduce
step omissions by reinforcing the model’s ability to
retain intermediate results. By strategically address-
ing these specific failure modes, it may be possible
to recover and enhance the overall capabilities of
quantized models, leveraging their efficiency while
minimizing performance degradation.

4.4 Capability Restore

Dataset Sampling. We constructed the dataset for
capability restoration by sampling from all MATH
problems that were answered correctly by the full-
precision model but incorrectly by the quantized
model. Data sampling was guided by proportional
representation and consistency with expert model
major vote outcomes. To enhance data validity,
we performed deduplication and prioritized cases
where the major vote results were most consistent
and the errors were more pronounced. We aimed
to maintain a compact dataset to reduce training
resource consumption. Ultimately, we effectively
sampled 545 examples from 3329 quantized model
failure cases. The full-precision model’s correct
answers were used as positive examples, while the
quantized model’s incorrect answers served as neg-
ative examples, forming our DPO dataset.

Setting. Training for capability restoration stage
was conducted on the format-aligned model. For



Llama-3.2-1B-Instruct Llama-3.2-3B-Instruct
Full Precision 18.6 40.2

AWQ GPTQ AWQ GPTQ
Aligned 14.26 14.94 38.8 31.6
Setting 0 17.2 18.6 41.6 38.2
Setting 1 15.8 18.0 41.2 36.2
Setting 2 16.6 16.6 37.2 344
Setting 3 15.2 154 35.2 33.0

Table 3: Ablation study settings and evaluation results on the MATH-500 dataset. Setting O: All error cases; Setting
1: Conceptual error cases only; Setting 2: Methodological error cases only; Setting 3: Execution error cases only.

this stage, the LoRA rank was still set to 32, and a
cosine learning rate schedule was employed with a
warm-up ratio of 0.1. We used a sigmoid function
as the preference loss function, with a global batch
size of 8 and a learning rate of 1 x 1076, For eval-
uation, to ensure fairness and mitigate data leakage
risks, we used the MATH-500 dataset. MATH-500
comprises 500 problems that are not included in
the PRM80OK dataset and were randomly sampled
from the MATH dataset, thereby ensuring a similar
difficulty distribution.

Llama-3.2-1B-Instruct Llama-3.2-3B-Instruct

each error category to the overall degradation in
reasoning performance, thereby providing insights
into how quantization selectively impacts different
aspects of model capability.

The ablation experiments results reveal that even
when training on datasets containing only a single
type of error, the model’s capabilities can be sig-
nificantly improved. For instance, using only data
associated with conceptual errors enabled the quan-
tized model to recover reasoning performance com-
parable to that of the full-precision model. Notably,
this subset comprised merely 323 examples and
takes very few minutes for training, which required

Full Precision 21 374

AWQ GPTQ AWQ GPTQ minimal computational resources. These findings
Format Aligned 14.26 14.94 388 31.6 o ot
Restored 152 . 16 380 lend support to our hypothesis: quantization does

Table 4: Capability restoration experiment results on the
MATH-500 benchmark. Using only 545 samples within
a few minutes.

Results. We conducted rapid capability restora-
tion training on two smaller-scale models. Table
4 presents the restoration results using a dataset
of 545 sampled examples. Due to the limited
data volume, training required only 2—4 minutes
on 4 GPUs, demonstrating minimal resource con-
sumption. Notably, the quantized models exhibited
marked improvements on this dataset.

4.5 Ablation Study

We conducted quantitative analyses focusing on the
earliest error type observed during each model’s
reasoning process. We hypothesize that quantized
models may exhibit a “bucket effect” in reasoning
tasks, wherein they still perform well on instruction
following yet fail to solve complex reasoning prob-
lems. To investigate this, we isolated the three most
frequently occurring early error types for ablation
experiments: (1) Conceptual error cases only, (2)
Method error cases only, (3) Execution errors only.
(4) All error types cases. This targeted analysis
allowed us to assess the specific contributions of

not diminish the model’s fundamental abilities but
selectively degrades specific dimensions that are
crucial for solving reasoning tasks, such as those
encountered in mathematical problem solving.

5 Conclusion

This study investigates the performance degrada-
tion of low-bit quantized LLMs in complex mathe-
matical reasoning tasks. We find that quantization
disproportionately impacts conceptual and com-
putational reasoning, primarily due to precision
loss and noise propagation in low-bit represen-
tations. To address these issues, we introduce a
multidimensional evaluation pipeline and demon-
strate that targeted capability restoration strategies
can significantly recover performance with mini-
mal training using our specific 'medicine’ datasets.
Our parameter-efficient adaptation methods, such
as QLoRA and DPO, offer practical solutions for
resource-constrained deployments. These findings
highlight the trade-off between efficiency and rea-
soning fidelity, providing actionable insights for
optimizing quantized LLMs. Future work will ex-
plore extending this framework to other reasoning
domains and investigating potential advantages of
reduced precision in specific scenarios.



6 Limitations & Future Works

In this study, we investigated the performance
degradation of quantized models on the compet-
itive mathematical reasoning benchmark MATH
through both qualitative and quantitative analyses,
employing seven distinct capability dimensions for
evaluation. However, our work is constrained by
limited time and computational resources, which
restrict the scale of our experiments and prevent
comprehensive case studies or ablation analyses
across models of varying sizes. Additionally, we
did not explore whether the planning failures and
computational errors observed in low-bit models
are caused by storage overflows resulting from low-
precision data formats through knowledge expo-
sure experiments.

Moreover, we identified intriguing phenomena
where quantized models outperform full-precision
models in certain specific mathematical solving
steps. However, we did not conduct extensive
experiments to further investigate these enhance-
ments. As a short-term objective, we plan to per-
form more targeted analyses on the degraded capa-
bilities of quantized models and explore efficient
methods for their recovery, incorporating more hu-
man involvement in case studies to uncover deeper
insights. Furthermore, we aim to extend our eval-
uation to other types of reasoning tasks, assessing
quantized models from the perspective of their in-
herent properties to achieve a more comprehensive
understanding of their performance across diverse
reasoning scenarios.
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A Solutions by Quantization Models

A.1 Execution Errors: Computational error

In Case #93, the task was to find the value of ¢
for which the circle defined by z? — 10x + y? +
6y + ¢ = 0 has a radius of 1. The correct ap-
proach involves completing the square, resulting
in (x —5)? + (y + 3)?2 = —c + 34, and solving
—c+ 34 = 1to find ¢ = 33 . However, the GPTQ-
Model made a computational error by incorrectly
rearranging the equation as 34 — ¢ = 1 leading
to the wrong answer ¢ = 35. This error stemmed
from mishandling the sign of ¢ during algebraic
manipulation, highlighting the importance of care-
ful sign management in equation solving. The case
#93 shows the Computational Error.

Problem #93:

For what value of $c$ will the circle with equation $x"2 - 10x +y~2 +
6y + ¢ = 0% have a radius of length 12\n. [Gold Answer: 33]

Response of LLaMA-3.1-8B-Intruct-BF16 (Vanilla): A
1. To find the radius of a circle, I need to complete the square for both
$x$ and $y$ terms in the equation. \n

2. I can rewrite the equation as $(x"2 - 10x) + (y"2 + 6y) = -c$. \n

3. To complete the square for $x"2 - 10x$, I need to add $(10/2)"2 =
25$ to both sides. \n

4. To complete the square for $y~2 + 6y$, I need to add $(6/2)"2 = 9%
to both sides. \n

5. This gives me $(x"2 - 10x + 25) + (y"2 + 6y + 9) = -c + 25+ 9%. \n

6. I can factor the left side as $(x - 5)"2 + (y + 3)"2%. \n

7. The right side simplifies to $-c + 34$. \n

8. So the equation becomes $(x - 5)"2 + (y + 3)"2 = -c + 34$. \n

9. Now I can see that the radius of the circle is the square root of the
right side. \n

10. I want the radius to be 1, so I need to have $-c +34=1"2=1%.\n
11. Solving for $c$, I get $c = 34 - 1= 33%. [Answer: 33]

%

Response of LLaMA-3.1-8B-Intruct-W4A16 (GPTQModel): A
1. To find the radius of a circle, I need to complete the square for both
the $x$ and $y$ terms in the equation and write it in the standard
form $(x - h)"2 + (y - k)"2 = r"2$, where $(h, k)$ is the center of the
circle and $r$ is the radius. \n

2. T will start with the $x$ terms and try to make a perfect square by
adding and subtracting the same constant. \n

3. T notice that the coefficient of $x$ is $-10$, so I want to add and
subtract $(-10/2)"2 = 25% to get $x"2 - 10x + 25 - 25%. \n

4. T can factor the perfect square as $(x - 5)"2$ and simplify the
equation to $(x - 5)"2 - 25 +y"2 + by + c = 0%. \n

5. I will do the same thing for the $y$ terms and add and subtract $(-
6/2)"2 =9% to get $y"2+ 6y +9-9%.\n

6. I can factor the perfect square as $(y + 3)"2$ and simplify the
equation to $(x - 5)"2-25+(y+3)"2-9+c=0$.\n

7$Now T have the equation in the form $(x - 5)"2 + (y + 3)"2 - 34 +c =
0%.\n

8. To make the radius 1, I need to have $r~2 = 1$, so I will set $-34 +c
= 1$ and solve for $c$. \n

9. Adding 34 to both sides, I get $c = 35$. [Answer: 35]

%

Figure 6: Problem #93: Computational Error.
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A.2 Reasoning Errors: Logical reasoning
error

In Problem #128, the GPTQModel made a logi-
cal reasoning error when calculating the minimum
number of miles Suzanne could walk in February.
While the model correctly identified that February
has 28 or 29 days, it missed the 27th day when
calculating her walking schedule every third day,
leading to an incorrect conclusion of 8 walking
days and 32 miles. In reality, the correct number of
walking days is 9 (3, 6, 9, 12, 15, 18, 21, 24, 27),
resulting in a total of 9 x 4 = 36 miles. This error
highlights the model’s logical reasoning gap in iter-
ating through sequential intervals accurately. The
case #128 shows the Logical Reasoning Error.

(" Problem #128: N

Suzanne walks four miles every third day. What is the fewest number
of miles she can walk in February?\n [Gold Answer: 36]

/Response of LLaMA-3.1-8B-Intruct-BF16 (Vanilla): N

1. To find the fewest number of miles Suzanne can walk in February, T
need to figure out how many days she walks four miles in that month. \n
2. February has 28 or 29 days, depending on whether it is a leap year or
not. \n

3. I don't know if this is a leap year or not, so I will assume it has 28
days. \n

4. If Suzanne walks four miles every third day, that means she walks
four miles on the 3rd, 6th, 9th, 12th, 15th, 18th, 21st, 24th, and 27th
of February. \n

5. That's nine days, so she walks a total of 9 x 4 = 36 miles in

February. \n

6. This is the fewest number of miles she can walk, because if she
didn't walk on any of those days, she would have to walk on another day,
which would increase her total miles. \n

7. Therefore, the answer is 36 miles. [Answer: 36]

/Response of LLaMA-3.1-8B-Intruct-W4A16 (6GPTQModel): N

1. To find the fewest number of miles Suzanne can walk in February, T
need to figure out how many days she walks in that month. \n

2. February has 28 days, but some years have 29 days. \n

3. I will assume that February has 28 days, since that is the most
common case. \n

4. If Suzanne walks every third day, then she will walk on days 3,6, 9,
12,15, 18, 21, and 24. \n

5. That is a total of 8 days, and she will walk 4 miles on each of those
days. \n

6. So, the fewest number of miles she can walk in February is 8 times 4,
which is 32 miles. [Answer: 32]

Figure 7: Problem #128: Logical Reasoning Error.



B Cross Validation

B.1 Conflict Judges

The case #342 shows how we check the Error type
of conflicting cases with the help of Judge models
and human for double-check.

We use five models cross-validation to determine
the type of model reasoning errors after quantiza-
tion. Specifically, we use Deepseek-R1, Deepseek-
V3, ChatGPT, GPT-40 and Qwen-Max as judge
models, and use five models to determine the cause
of the error in the reasoning process, and use the
majority voting decision method to finally deter-
mine the error type.

4

Problem #342:
What integer $x$ satisfies $\\frac{1}{4}\\frac{x}7}<\\
frac{1}{3}$2\n [Gold Answer: 2]

~

/Response of LLaMA-3.1-8B-Intruct-W4A16 (GPTQModel):

1. To solve this inequality, I need to isolate $x$ on one side. \n
2. T can start by multiplying both sides by 4, since 4 is a common
denominator for the fractions. \n

3. This gives me $1<\\frac{4x{7}\\frac{4}3}$. \n

4. Now I can multiply both sides by 7, since 7 is a common denominator
for the fractions. \n

5. This gives me $7<4x<\\frac{28K3}$. \n
6. To make the inequality easier to read, I can divide both sides by 4. \n
7. This gives me $\\frac{7H4}x<\\frac{7}1}$. \n

8. I can simplify the fractions by writing them as mixed numbers or
decimals. \n

9. This gives me $1.75¢x<7$. \n
10. Since $x$ is an integer, I need to find the integers that satisfy this
inequality. \n

11. The smallest integer that is greater than 1.75 is 2. \n

12. The largest integer that is less than 7 is 6. \n

13. Therefore, the only integers that satisfy the inequality are 2, 3, 4,
5,and 6. [Answer: 2,3,4,5,6]

%
/J udgement of Deepseek-R1 (Primary Expert Model): N
When multiplying 4/3 by 7, the correct result is 28/3 #9.33. In step 5,
the quantized model incorrectly treats 7*(4/3) as 28/3 but then fails
to correctly divide this by 4 in step 7, leading to an upper bound of 7
instead of 7/3 %2.33. [Execution_Errors: computational_error]

J

Judgement of Deepseek-V3:
The quantized model incorrectly
chooses to multiply both sides by
4 instead of 7, which is the

Judgement of ChatGPT:

The model incorrectly simplifies
the inequality to $\\
frac{7H{4}x\\frac{7{1}$,

correct common denominator for
the fractions. This leads to a
procedural error in the
subsequent steps.
[Method_Errors: Procedural
error]

overlooking the upper limit should
be $\\frac{28}3}$ divided by 4,
which is $\\frac{7}3}$, not $\\
frac{7{1}$. [Conceptual_Errors:
contextual_oversight]

Judgement of GPT-40:

The quantized model incorrectly
simplifies the range as \\
frac{7{4}<x\\frac{7X1} instead
of the correct range \\
frac{7H{4}x<\\frac{7}3}, which
results in an incorrect set of

Procedural error]

integer solutions.[Method_Errors:

Judgement of Qwen-Max:

The quantized model incorrectly
simplifies the inequality $\\
frac{7}4} < x < \\frac{28}{3}$ to
$1.75 < x < 7$. The upper bound
$\\frac{28}3}$ is approximately
9.33, not 7. [Conceptual_Errors:
conceptual_misunderstanding]

/Human Verification Comment:

~

From Step 6 to Step 7, the quantized model commits an error by
incorrectly dividing both sides of the equation by 4. This aligns with the

definition, which involves mistakes in arithmetic or algebraic
manipulation. [Execution_Errors: computational_error]

Figure 8: Problem #342: Conflict Judges.
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At the same time, we use manual intervention
verification to randomly select about 2% of conflict-
ing cases, manually determine the error type and
compare it with the judgment of the judge model to
ensure that the judge’s vote is at a relatively correct
level.

B.2 No Errors

Although we select the extraction scripts carefully,
there are still few samples where the model’s output
results are difficult to be correctly identified, result-
ing in special "No Errors" situations. This situation
can usually be identified by the excellent Judge
model, such as case #3812 above. The Deepseek-
R1 model can reply No Errors after careful com-
parison, and we will also correct these cases among
results.

Examples of easy confusion often appear in
the choice of representation of decimals and frac-
tions, including the expression between natural syn-
tax and programming syntax, e.g., 1/2 vs 0.5 vs
\frac{1}{2} vs SE-01 vs 5 x 10*-1.

Problem #3812:

What is the probability that when a fair 6-sided die is rolled, a prime

? :
\number faces up?\n [Gold Answer: \\frac{1}{2}] Y,

Response of LLaMA-3.1-8B-Intruct-W4A16 (GPTQModel):
1. To find the probability of rolling a prime number on a fair 6-sided die,
T need to know how many prime numbers there are on a 6-sided die and
how many of them are on a fair 6-sided die. \n

2. A prime number is a positive integer that is divisible only by 1 and
itself. The prime numbers on a 6-sided die are 2, 3, and 5. \n

3. There are 3 prime numbers on a 6-sided die, so the probability of
rolling a prime number is 3 out of 6, or 1/2. \n

4. To convert this fraction to a decimal or a percentage, I can divide 1
by 2, which gives me 0.5. \n

5. Alternatively, I can multiply 1 by 100 and divide by 2, which gives me
50. \n

6. So the probability of rolling a prime number on a fair 6-sided die is
0.5 or 50%.\n [Answer: 0.5]

\C

Judgement of Deepseek-R1 (Primary Expert Model):

The quantized model's answer (0.5) is humerically equivalent to the
correct answer (1/2). All reasoning steps are logically valid and
mathematically correct, with no conceptual, procedural, or
\compuTaTionul errors detected. [ No_Error: [] ]

)

Figure 9: Problem #3812: No Error.
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