
Under review as submission to TMLR

Leveraging Recursive Methods for Efficient Federated Learn-
ing

Anonymous authors
Paper under double-blind review

Abstract

Federated learning algorithms perform multiple local updates on clients before communi-
cating with the parameter server to reduce communication overhead and improve overall
training efficiency. However, local updates also lead to the “client-drift” problem under
non-IID data, which avoids convergence to the exact optimal solution under heterogeneous
data distributions. To ensure accurate convergence, existing federated-learning algorithms
employ auxiliary variables to locally estimate the global gradient or the drift from the global
gradient, which, however, also incurs extra communication and storage overhead. In this
paper, we propose a new recursion-based federated-learning architecture that completely
eliminates the need for auxiliary variables while ensuring accurate convergence under het-
erogeneous data distributions. This new federated-learning architecture, called FedRecu, can
significantly reduce communication and storage overhead compared with existing federated-
learning algorithms with accurate convergence guarantees. More importantly, this novel ar-
chitecture enables FedRecu to employ much larger stepsizes than existing federated-learning
algorithms, thereby leading to much faster convergence. We provide rigorous convergence
analysis of FedRecu under both convex and nonconvex loss functions, in both the determin-
istic gradient case and the stochastic gradient case. In fact, our theoretical analysis shows
that FedRecu ensures o(1/K) convergence to an accurate solution under general convex loss
functions, which improves upon the existing achievable O(1/K) convergence rate for general
convex loss functions, and which, to our knowledge, has not been reported in the literature
except for some restricted convex cases with additional constraints. Numerical experiments
on benchmark datasets confirm the effectiveness of the proposed algorithm.

1 Introduction

Since its introduction in McMahan et al. (2017), federated learning has been extensively studied and widely
applied across a range of domains, including natural language processing (Gupta et al., 2022; Ye et al., 2024;
Liu et al., 2021; Lin et al., 2021), wireless networks (Tran et al., 2019; Chen et al., 2021; Niknam et al., 2020;
Yang et al., 2019), neural-network training (Yurochkin et al., 2019; Venkatesha et al., 2021; Li et al., 2023;
He et al., 2021), and mobile edge networks (Lim et al., 2020b; Luo et al., 2021; Khan et al., 2020; Lim et al.,
2020a). Unlike centralized learning which requires aggregating all data to a central server, federated learning
allows training datasets to remain on individual clients. By letting individual clients perform local training on
their respective datasets and periodically sharing model updates with a parameter server, federated learning
enhances scalability, data privacy, and fault tolerance compared with centralized learning, and has garnered
widespread attention in recent years (Ma et al., 2020; Glasgow et al., 2022; Woodworth et al., 2020; Yuan
& Ma, 2020; Patel et al., 2024; Agarwal et al., 2018; M Ghari & Shen, 2024; Duan et al., 2023; Acar et al.,
2021; Reisizadeh et al., 2020).

In federated learning, to reduce communication overhead, each client performs multiple local updates based
on its local dataset before communicating with the parameter server to synchronize its local model param-
eter with those of other clients. However, this asynchronicity between local updates and communication
operations leads to convergence errors when the data distribution is not IID (independent and identically
distributed) across clients. More specifically, as pointed out in many existing results such as Karimireddy

1

Under review as submission to TMLR

et al. (2020); Li et al. (2019); Malinovskiy et al. (2020); Charles & Konečnỳ (2020); Charles & Konečný
(2021); Pathak & Wainwright (2020), the incorporation of multiple local updates between two communica-
tion rounds introduces a drift in a local client’s update as it tends to let local clients converge to their own
local optimal solutions rather than the global optimal solution, leading to inaccurate and unstable conver-
gence. Although a diminishing stepsize can mitigate this “client-drift” problem, it inevitably slows down
convergence and is often undesirable in many applications.

Recently, several algorithms have been proposed to tackle the “client-drift” problem and ensure accurate
federated learning under a constant stepsize, with typical examples including SCAFFOLD (Karimireddy
et al., 2020), FedLin (Mitra et al., 2021b), and FedTrack (Mitra et al., 2021a). SCAFFOLD mitigates the
“client-drift” problem by using control variates that correct each client’s local update direction to stay aligned
with the global loss function, while FedLin and FedTrack addresses the “client-drift” problem by applying
a linearized global correction to the aggregated gradient without requiring per-client control variates. The
basic idea of these approaches is to let each client locally store and maintain auxiliary variables (in addition
to the model parameters) to locally estimate the global gradient or the drift from it. However, these auxiliary
variables incur significant overhead in storage and communication, particularly in high-dimensional federated-
learning problems, because these auxiliary variables have the same dimension as the model parameters.
In this paper, we propose a federated-learning architecture that can avoid using auxiliary variables while
ensuring accurate convergence under non-IID data with a constant stepsize. The main contributions are
summarized as follows:

• New Algorithm: We propose FedRecu which ensures accurate convergence in federated learning
under non-IID data without using auxiliary variables. A key idea is the introduction of a recursive
mechanism which enables each client to use gradients in both the current and previous steps in the
update. The integration of the previous-step gradient is significant in that, through a judiciously
designed update mechanism, it enables each client to locally correct its local drift and ensure
accurate convergence. This design is inspired by EXTRA (Shi et al., 2015) but has a significant
difference: EXTRA does not allow multiple local updates between communication rounds (it may
diverge under multiple local updates), whereas our design of the update and interaction mechanisms
ensures accurate convergence under multiple local updates.

• Enhanced Communication and Memory Efficiency: Our recursive mechanism significantly
reduces communication overhead compared with existing federated-learning algorithms with “client-
drift” correction. Our FedRecu only shares one variable (a linear combination of model parameters
and gradients), which is drastically different from existing “client-drift” correction algorithms that
have to share both the model parameter and an additional drift-correcting auxiliary variable. More-
over, our recursive mechanism eliminates the need for auxiliary variables used by existing methods
(e.g., SCAFFOLD (Karimireddy et al., 2020), FedLin (Mitra et al., 2021b), FedTrack (Mitra et al.,
2021a) and Scaffnew (Mishchenko et al., 2022)) to correct client drift, resulting in significantly lower
memory requirements for storing intermediate variables compared to these algorithms.

• Faster Convergence: We prove that FedRecu achieves o(1/K) convergence under general convex
loss functions. This represents a significant improvement over the standard O(1/K) convergence
typically observed in federated learning (for instance, the famous FedAvg has been shown in Glas-
gow et al. (2022) to be incapable of achieving faster than O(1/K) convergence for general convex
objectives, even under IID distributions; even after incorporating momentum, current algorithms
still guarantee only O(1/K) convergence when no additional heterogeneity constraints are imposed
on convex loss functions (Xu et al., 2021; Liu et al., 2020; Cheng et al., 2023; Yang et al., 2022)). To
the best of our knowledge, FedRecu is the first to ensure o(1/K) convergence for federated learn-
ing under general convex loss functions. This stands in contrast to prior results, where o(1/K)
convergence have only been established under special conditions—such as gradient difference be-
ing uniformly bounded (Jiang et al., 2024), or Hessian difference being uniformly bounded (Kovalev
et al., 2022). We also characterize the convergence of our algorithm under nonconvex loss functions
and stochastic gradients, yielding results that outperform existing algorithms.

2

Under review as submission to TMLR

• Larger Stepsizes: We theoretically prove that our new algorithm structure allows using much
larger stepsizes than existing federated-learning algorithms tackling “client-drift” caused by non-IID
data. Our theoretical analysis finds that our stepsize can be at least 6, 8, 6, and 49 times larger
than those used in Khaled et al. (2020), Mitra et al. (2021a), Mitra et al. (2021b), and Karimireddy
et al. (2020), respectively (see Table 2).

2 Preliminaries

Notations We use Z+ and Rn to denote the sets of positive integers and real n-dimensional vectors,
respectively. We write the inner product as ⟨x, y⟩ =

∑n
i=1[x]i[y]i for x, y ∈ Rn, where [x]j and [y]j are the

jth elements of the vectors x and y, respectively. We use [A]ij to denote the (i, j)th element of a matrix
A ∈ Rm×n. We denote the transposes of y ∈ Rn and A ∈ Rm×n as yT and AT, respectively. We represent
the Euclidean norm of x ∈ Rn as ∥x∥ =

√∑n
j=1[x]2j . Given a ∈ Z+ and b ∈ Z+, a mod b represents

the remainder of the division of a by b. We use O(c(t)) and o(c(t)) to represent sequences d(t) satisfying
lim supt→+∞ | d(t)

c(t) | < ∞ and limt→∞
d(t)
c(t) = 0, respectively.

2.1 Problem Setting

We consider the following federated-learning problem over a client set S = {1, 2, · · · , N}:

min
x∈Rn

f(x) = 1
N

N∑
i=1

fi(x), (1)

where fi : Rn → R is the local loss function and is solely dependent on the local training data of client i ∈ S.
Due to non-IID data, the local optimum of fi(x) is generally different from the global optimum of f(x). We
make the following standard assumption on the local loss functions fi(x):
Assumption 1. The loss function fi(x) of client i ∈ S is L-smooth over Rn, that is, there exists a constant
L > 0 such that

∥∇fi(x) − ∇fi(y)∥ ≤ L∥x − y∥

holds for any x, y ∈ Rn.

From Assumption 1 and the definition of f(x) in (1), we can easily obtain that f(x) is also L-smooth. In
addition, we make the following standard assumption to make sure that (1) has a solution:
Assumption 2. The optimal solution set X ∗ = {x∗ ∈ Rn|x∗ = arg minx∈Rn f(x)} is not empty, i.e., there
exists at least one x∗ ∈ Rn such that f(x∗) ≤ f(x) holds for any x ∈ Rn.

Assumptions 1 and 2 are widely used in federated learning (Mitra et al., 2021a;b; Mukherjee et al., 2023;
Qin et al., 2022; Karimireddy et al., 2020; Khaled et al., 2020). They are more general than assuming strong
convexity or Polyak-Lojasiewicz (PL) condition on f(x). It is worth noting that under Assumptions 1 and
2, the global optimal solution may not be unique.

3 Main Results

In this section, we first describe the core recursion-based update mechanism in Section 3.1. Then we sum-
marize the detailed algorithm in Algorithm 1 in Section 3.2 and characterize its convergence performance
for both general convex loss functions and nonconvex loss functions in Section 3.3 (deterministic gradients)
and Section 3.4 (stochastic gradients).

3.1 Recursion-Based Mechanism

The core idea of our new algorithmic framework is using recursion to employ information in both the current
step and the past step to generate the new model parameter. Specifically, the local update for agent i has

3

Under review as submission to TMLR

the following form:

for kτ < t < (k + 1)τ :
xi(t + 1) = 2xi(t) − α∇fi(xi(t))︸ ︷︷ ︸

Current

− xi(t − 1) + α∇fi(xi(t − 1))︸ ︷︷ ︸
Past

, (2)

end

where xi(t) is the local model parameter and α denotes the stepsize. Our design is inspired by the decentral-
ized optimization algorithm EXTRA (Shi et al., 2015) but has a fundamental difference: EXTRA has two
different consensus matrices multiplied on xi(t) and xi(t − 1), respectively, whereas we remove such consen-
sus coupling. This difference is key to ensuring the convergence of our algorithm when multiple updates are
performed between communication rounds, whereas EXTRA only has provable convergence when one local
update is conducted between two consecutive communication rounds (under multiple local updates, EXTRA
is subject to the “client-drift” problem and can even diverge). The detailed algorithm is given in Section 3.2.

Remark 1. The update in (2) effectively addresses client drifts by incorporating both the current local
gradient, ∇fi(xi(t)), and the past local gradient, ∇fi(xi(t − 1)), into the update rule. This dual-gradient-
based mechanism ensures that the global optimum x∗ is a fixed point of the iteration process—that is, the
iterates will remain unchanged when initialized at the global optimum x∗. This stands in stark contrast to
most existing algorithms without drift correction, whose updates rely solely on the current local gradient.
Since the local gradient is generally nonzero at the global optimum x∗ due to non-IID data (i.e., generally
∇fi(x∗) ̸= 0 holds), the nonzero force exerted by the local gradient ∇fi(x∗) will move such algorithms away
from x∗ even when initialized at x∗.

3.2 Algorithm Descriptions

Some notations should be introduced before introducing our algorithm. The stepsize and the number of local
updates are denoted as α > 0 and τ ≥ 1, respectively. The model parameter of client i ∈ S at iteration time
t is denoted as xi(t). Owing to the recursive update mechanism, FedRecu requires two initial values xi(−2)
and xi(−1), which should follow the rules: xi(−2) can be arbitrarily chosen in Rn whereas xi(−1) should be
set as xi(−1) = xi(−2) − α∇fi(xi(−2)). Now, we are in a position to present the algorithm in Algorithm 1:

Unlike existing federated learning algorithms that rely on auxiliary variables to track the global gradient
or the drift from it (e.g., SCAFFOLD (Karimireddy et al., 2020), FedLin (Mitra et al., 2021b), and Fed-
Track (Mitra et al., 2021a)), FedRecu does not use any additional variables. This leads to improved memory
efficiency, despite the need to store model parameters from the previous step. To illustrate this, we compare
FedRecu with FedLin in the convex setting. Each client in FedLin is required to store four n-dimensional
variables: the local model parameter, the global model parameter, the auxiliary variable used to track the
global gradient, and a running average of the local model parameter. (We exclude gradients from this count,
as they can be recomputed from model parameters.) In contrast, FedRecu only requires each client to store
two n-dimensional variables—the current and previous model parameters. A detailed memory comparison
is provided in Table 1

In addition, in FedRecu, the information shared between clients and the parameter server is always one n-
dimensional vector, which is a linear combination of the model parameter and the gradient (more specifically,
at t = pτ − 1, vi(t) is shared between local clients and the parameter server and, at t = pτ , wi(t) is shared).
This is fundamentally different from existing “client-drift” correcting algorithms such as SCAFFOLD, FedLin,
and FedTrack, where in each communication round, two n-dimensional vectors (the model parameter and an
auxiliary variable estimating the global gradient or the derivation from it caused by non-IID data) are shared
between each client and the parameter server. In fact, when τ = 1, it can be seen that only one variable
is shared in each communication round in our algorithm, which makes our communication overhead only
half of that in SCAFFOLD, FedLin, and FedTrack. Table 1 provides a detailed comparison of FedRecu with
existing algorithms regarding memory and communication requirements, which clearly shows the advantage
of FedRecu in storage and communication overhead over existing counterpart algorithms.

4

Under review as submission to TMLR

Algorithm 1 FedRecu
Initialization: the local training period τ ≥ 1, the stepsize α > 0, the initial values xi(−2), and xi(−1)
for any i ∈ S .
for t = −1 to T do

for each client i = 1, 2, · · · , N in parallel do
if t + 1 mod τ = 0 then

Client i transmits vi(t) ≜ 2xi(t) − xi(t − 1) − α∇fi(xi(t)) + α∇fi(xi(t − 1)) to the parameter
server and receives 1

N

∑N
j=1 vj(t) from the parameter server. Then, each client i updates its model

parameter as

xi(t + 1) = 1
N

N∑
j=1

vj(t). (3)

else if t mod τ = 0 then
Client i transmits wi(t) ≜ xi(t − 1) + α∇fi(xi(t)) − α∇fi(xi(t − 1)) to the parameter server and
receives 1

N

∑N
j=1 wj(t) from the parameter server. Then, each client i updates its model parameter

as

xi(t + 1) = 2xi(t) − 1
N

N∑
j=1

wj(t). (4)

else
Each client i does local updates

xi(t + 1) = 2xi(t) − xi(t − 1) − α∇fi(xi(t)) + α∇fi(xi(t − 1)). (5)

end if
end for

end for

3.3 Convergence Analysis under Deterministic Gradients

In this subsection, we analyze the convergence of FedRecu under both convex and nonconvex loss functions
in the deterministic gradient case. We would like to emphasize that the results apply to both the IID and
non-IID data cases, as we do not require the local optima of fi(x) to be identical to the global optima of
f(x). Given that the information exchange between clients and the parameter server occurs periodically,
we characterize the convergence behavior of the model parameter at iterations when communication is
conducted, i.e., t = kτ .
Theorem 1 (Convex and Deterministic Case). Under Assumption 1 and Assumption 2, if the loss function
fi(x) of client i ∈ S is convex over Rn and the stepsize satisfies 0 < α ≤ 8

13τL , then for any i ∈ S, FedRecu
guarantees that f(xi(Kτ)) converges to f(x∗) at a rate of o(1/K), i.e.,

lim
K→∞

K
{

f(xi(Kτ)) − f(x∗)
}

= 0.

Proof. See Appendix C.

Theorem 1 demonstrates that FedRecu effectively eliminates “client drifts” and ensures accurate convergence.
Notably, we prove that FedRecu achieves a convergence rate of o(1/K) for general convex loss functions, which
is a significant improvement over the O(1/K) rate obtained in existing results. In fact, to our knowledge, this
is the first time that o(1/K) convergence is established for federated learning under general convex loss
functions (note that o(1/K) convergence have only been established in the literature under special convex
conditions—such as gradient difference being uniformly bounded (Jiang et al., 2024), or Hessian difference

5

Under review as submission to TMLR

being uniformly bounded (Kovalev et al., 2022)). In addition, FedRecu supports a much larger stepsize
compared with existing federated-learning algorithms tackling “client drifts” (see detailed comparison in
Table 2), which, as confirmed in the numerical experiments, enables FedRecu to converge much faster than
existing counterpart algorithms.

Under general nonconvex loss functions, FedRecu can also enable accurate convergence:
Theorem 2 (Nonconvex and Deterministic Case). Under Assumption 1 and Assumption 2, if the stepsize
satisfies 0 < α ≤ 8

17τL , then for any i ∈ S, the iterates under FedRecu satisfy

1
K

K−1∑
k=0

∥∇f(xi(kτ))∥2 ≤ 8
13α2LτK

(
f(xi(0)) − f(x∗)

)
.

Proof. See Appendix E.

Theorem 2 shows that even in the nonconvex setting, FedRecu can also avoid “client drifts” and ensure
convergence to a desired solution. It is worth noting that the proposed stepsize range 0 < α ≤ 8

17τL is
significantly larger than those permitted in existing federated-learning algorithms (see Table 2 for detailed
comparison).
Remark 2. We have established the convergence rates of o(1/K) and O(1/K) for FedRecu in the general
convex case and the general nonconvex case, respectively. In the special case where the global loss function
f(x) is µ-strongly convex or satisfies the µ-PL condition, following the presented proof techniques, the linear
convergence of f(xi(kτ)) − f(x∗) can be directly obtained with the proposed stepsizes in Theorem 1 and
Theorem 2, respectively.
Remark 3. The recursive mechanism in FedRecu is inspired by the distributed optimization algorithm EX-
TRA (Shi et al., 2015). However, EXTRA only allows one local update in each communication round and
directly extending it to incorporate multiple local updates still suffers from “client drifts” or even divergence.
In contrast, FedRecu fundamentally revises the recursion and interaction mechanisms, and the associated
proof techniques to accommodate multiple local updates. Specifically, we judiciously introduce different com-
munication and update strategies for iterations t = pτ − 1 and t = pτ (see (3) and (4) in Algorithm 1) to
ensure accurate convergence under multiple local updates. It is important to note that neither process (3) nor
(4) alone can guarantee accurate convergence, as both processes are essential to eliminating “client drifts”.
Remark 4. We can explain why EXTRA behaves differently from our approach, FedRecu, under multiple
local updates by examining their respective equivalent formulations in this setting. To illustrate this, we define:
X(t) = [xT

1 (t), xT
2 (t), · · · , xT

N (t)]T , ∇f(X(t)) = [∇f1(xT
1 (t)), ∇f2(xT

2 (t)), · · · , ∇fN (xT
N (t))]T , W (t + 1) =

1
N 1N 1T

N for t + 1 = τk, and W (t + 1) = IN for t + 1 ̸= τk. Directly applying multiple local updates in
EXTRA yields the following matrix form:

X(t + 1) = W (t + 1) + IN

2
(
2X(t) − X(t − 1)

)
− α∇f(X(t)) + α∇f(X(t − 1)),

By defining Y (t) = 1
α {X(t − 1) − X(t) − α∇f(X(t − 1))}, we can verify that EXTRA is equivalent to the

following form: Y (t + 1) =Y (t) + 1
2α

(IN − W (t + 1))
{

X(t) − α∇f(X(t − 1)) − αY (t)
}

,

X(t + 1) =X(t) − α∇f(X(t)) − αY (t + 1).
(6)

Similarly, by defining Y (t + 1) = W (t + 1){Y (t) + ∇f(X(t + 1)) − ∇f(X(t))} with inital value Y (−1) =
∇f(X(−1)), we can have an equivalent form of FedRecu as (see Lemma 2 of Appendix B for the proof of
equivalence) {

X(t + 1) =W (t + 1)
(
X(t) − αY (t)

)
,

Y (t + 1) =W (t + 1)
(
Y (t) + ∇f(X(t + 1)) − ∇f(X(t))

)
.

(7)

6

Under review as submission to TMLR

From the equivalent formulation of our algorithm in (7), we observe that our algorithm, FedRecu, applies the
averaging matrix W (t) twice—once in updating the variable X(t) and once in updating Y (t). In contrast,
from the equivalent formulation of EXTRA in (6), one can see that EXTRA applies the averaging matrix
W (t) only once (to Y (t), but not to X(t)). This double application of W (t) in FedRecu enforces a stronger
consensus at each iteration, whereas EXTRA’s single application yields weaker consensus enforcement.

Under multiple local updates, where local-model drift naturally arises, maintaining consensus is crucial for
effective drift correction and accurate convergence. This difference explains why FedRecu provides stronger
convergence guarantees than EXTRA in the setting of multiple local updates. Numerical experiments in
Appendix A.3 of the revised manuscript further corroborate this observation.
Remark 5. Based on the definitions in Remark 4, FedRecu can be expressed in the equivalent form given in
(7). To provide an intuitive explanation for FedRecu, we will explain that Y (t) = [yT

1 (t), yT
2 (t), · · · , yT

N (t)]T
is an estimate of the global gradient. Based on the definition of W (t), taking the network average gives

Y (t + 1) = Y (t) + ∇f(X(t + 1)) − ∇f(X(t)),

where ∇f(X(t)) = 1
N

∑N
i=1 ∇fi(xi(t)) and Y (t) = 1

N

∑N
i=1 yi(t). The initial value setting Y (−2) =

∇f(X(−2)) further implies

Y (t) = ∇f(X(t)).

Therefore, the average of Y (t) coincides with the true global gradient at every iteration, and the consensus
action of W (t) ensures that all local yi(t) converge to this average. Hence, Y (t) is mathematically an accurate
estimate of the global gradient. At each iteration, the local model parameters (i.e., X(t)) are updated
based on the global gradient estimate (i.e., Y (t)) rather than the local gradients. This mechanism ensures
that the local model parameters converge to the optimal solution of the global loss function, rather than
to the optima of the individual local loss functions resulting from non-IID data. This completes the intuitive
explanation for FedRecu.
Remark 6. Based on Remark 5, FedRecu originates from gradient-tracking-based methods, rather than
from momentum or extrapolation techniques. From a mathematical perspective, FedRecu is equivalent to
gradient-tracking-based algorithms that incorporate multiple local updates. However, it is crucial to note that
FedRecu offers more than a mere equivalence. Specifically, it introduces several key advantages over
conventional gradient-tracking methods, which we detail below.

• Sharper Convergence Guarantee: A key theoretical contribution of FedRecu is the establishment
of a monotonicity property (see Appendix C): f(xi(kτ + τ)) ≤ f(xi(kτ)), ∀i ∈ V, for general
convex loss functions. Leveraging this property, we prove that FedRecu achieves an o(1/K) con-
vergence rate for general convex loss functions. This rate constitutes a strict improvement over
the standard O(1/T) rate attainable by existing gradient-tracking methods under general convex loss
functions. To the best of our knowledge, FedRecu is the first federated learning algorithm to guar-
antee o(1/K) convergence under general convex loss functions. Previous results establishing such
o(1/K) convergence rate must rely on stronger assumptions, such as uniformly bounded gradient
differences (Jiang et al., 2024) or uniformly bounded Hessian differences (Jiang et al., 2024).

• Memory Efficiency: To quantify memory overhead, we measure the number of n-dimensional
vectors that must be stored, where n is the dimension of the model parameter. It is worth noting that
we do not consider gradients since they can be computed directly using the model parameters. In the
standard gradient-tracking formulation, each client must maintain three n-dimensional vectors:
the current model parameter, the previous model parameter, and an auxiliary gradient-tracking vari-
able. In contrast, the recursive formulation of FedRecu eliminates the explicit gradient-tracking
variable. Consequently, each client in FedRecu needs to store only two n-dimensional vectors:
the current and the previous model parameters. Therefore, this recursive design yields a fundamen-
tally more memory-efficient algorithm by inherently incorporating past gradient information into the
local update rule, thereby obviating the need for a separate auxiliary gradient-tracking variable.

7

Under review as submission to TMLR

• Communication Efficiency: In addition to memory efficiency, FedRecu also improves communi-
cation efficiency compared with gradient-tracking-based algorithms. In each communication round,
clients in our FedRecu only need to share a single n-dimensional vector (a simple linear combination
of model parameters and gradients) with the parameter server. In contrast, gradient-tracking-based
algorithms require the transmission of two n-dimensional vectors: the model parameter and the
gradient-tracking variable.

3.4 Convergence Analysis under Stochastic Gradients

In this subsection, we extend our analysis to the more practical setting of stochastic gradients (the mini-batch
setting). In this case, the local loss function fi(x) is determined by

fi(x) = Eξi∼Di
[fi(x, ξi)], (8)

where ξi denotes a stochastic data sample drawn from the local distribution Di of client i. As a result, client
i can only access a stochastic estimate ∇fi(x, ξi) of the true gradient ∇fi(x) for any x ∈ Rn. We use the
following standard assumption regarding the stochastic gradient (Karimireddy et al. (2020); Mukherjee et al.
(2023); Jhunjhunwala et al. (2023)):
Assumption 3. The stochastic gradient ∇fi(x, ξi) is an unbiased estimate of the accurate gradient ∇fi(x),
with its variance bounded by σ2. Specifically, we have

Eξi∼Di [∇fi(x, ξi)] = ∇fi(x), and Eξi∼Di [∥∇fi(x, ξi) − ∇fi(x)∥2] ≤ σ2,

for any x ∈ Rn and i ∈ S.

In the stochastic gradient setting, the exact gradients ∇fi(xi(t)) and ∇fi(xi(t − 1)) of FedRecu should be
replaced with their stochastic counterparts ∇fi(xi(t), ξi(t)) and ∇fi(xi(t − 1), ξi(t − 1)), respectively, where
ξi(t) ∼ Di are samples drawn from the local data distribution at each iteration. Next, we establish the
convergence properties of FedRecu in this stochastic setting for both convex and nonconvex loss functions.
Again, the results apply to both the IID and non-IID data cases, as we do not require the local optima
of fi(x) to be identical to the global optima of f(x).
Theorem 3 (Convex and Stochastic Case). Under Assumption 1, Assumption 2, and Assumption 3, if the
loss function fi(x) of client i ∈ S is convex and the stepsize satisfies 0 < α < 1

6τL , then for any i ∈ S, the
iterates under FedRecu satisfy

E
[
f

(1
K

K−1∑
k=0

xi(kτ)
)]

− f(x∗) ≤ E[∥xi(0) − x∗∥2]
(2ατ − 12τ2Lα2)K + 34τ2α2

2ατ − 12τ2Lα2 σ2.

Proof. See Appendix G.

Theorem 4 (Nonconvex and Stochastic Case). Under Assumption 1, Assumption 2, and Assumption 3, if
the stepsize satisfies 0 < α < 1

13τL , then for any i ∈ S, the iterates under FedRecu satisfy

1
K

K−1∑
k=0

E
[
∥∇f(xj(kτ))∥2

]
≤ E[f(xi(0))] − f(x∗)

(ατ
2 − 13

2 τ2Lα2)K
+ 44τ2α2L

ατ − 13τ2Lα2 σ2.

Proof. See Appendix I.

Theorem 3 and Theorem 4 show that, in the presence of noisy gradients, a constant stepsize can only ensure
convergence to a neighborhood of the optimal solution. The size of this neighborhood depends on the local
update period τ , the stepsize α, the smoothness constant L, and the variance σ2 of the stochastic gradients.

8

Under review as submission to TMLR

Remark 7. In the stochastic gradient setting, FedRecu can still guarantee accurate convergence by adopting
a diminishing stepsize. For instance, following a similar line of reasoning in Theorem 3 and Theorem 4, one
can easily obtain that setting α = O(1/

√
K) yields

E
[
f(1

K

K−1∑
k=0

xi(kτ))
]

− f(x∗) ≤ O(1/
√

K), and 1
K

K−1∑
k=0

E
[
∥∇f(xi(kτ))∥2

]
≤ O(1/

√
K),

for convex and nonconvex loss functions, respectively. However, despite ensuring accurate convergence, a
diminishing stepsize slows down convergence compared to the constant stepsize case.

4 Comparisons with Existing Works

In this section, we systematically show that FedRecu has advantages in storage and communication overheads,
stepsize, and convergences rates with respect to existing counterpart algorithms.

Table 1: Comparison of the required memory and communicated messages between FedRecu and existing
algorithms addressing “client drifts” in federated learning.

Algorithm Memory Overhead1 Communication Overhead2

strongly convex convex nonconvex τ ≥ 2 τ = 1
This work3 2 2 3 2 1

Mitra et al. (2021b)4 3 4 4 2 2
Karimireddy et al. (2020) 4 5 5 2 2

Mitra et al. (2021a) 3 − 4 2 2
Huang et al. (2023) − − 4 2 2
Huang et al. (2024)4 − − 5 2 2

Sun & Wei (2022) 4 − − 2 2
1 To quantify memory overhead, we measure the number of n-dimensional variables that must be stored,

where n is the dimension of the model parameter. It is worth noting that we do not consider gradients
since they can be computed directly using the model parameter.

2 To quantify communication overhead, we measure the number of n-dimensional variables shared after every
τ local updates.

3 The convergence result of this work for the convex case relies on the last-iterate terms (see Theorem 1).
In contrast to the nonconvex setting, no running-averaged iterate needs to be stored.

4 Note that message compression addressed in the paper is orthogonal to the message count-based commu-
nication efficiency discussed here.

4.1 More Efficient Memory and Communication

A significant advantage of FedRecu lies in its memory-efficient design. Existing federated-learning algorithms,
such as SCAFFOLD (Karimireddy et al., 2020), FedLin (Mitra et al., 2021b), FedTrack (Mitra et al.,
2021a), and Scaffnew (Mishchenko et al., 2022), rely on auxiliary variables, such as control or gradient
tracking variables, to address the “client-drift” problem. However, storing and updating these variables incur
significant extra overhead in memory consumption. In contrast, FedRecu leverages a recursive mechanism
that naturally incorporates both current and past gradient information into the local update rule, eliminating
the need for using auxiliary variables and resulting in reduced memory requirement (despite requiring to
store the past model parameter).

In addition to memory efficiency, FedRecu also improves communication efficiency compared with existing
counterpart algorithms. In each communication round, clients in our FedRecu only need to share a single
n-dimensional vector (a simple linear combination of model parameters and gradients, see vi(t) and wi(t)
in Algorithm 1 for details) with the parameter server. In contrast, existing federated-learning algorithms
addressing “client drifts”, such as SCAFFOLD, FedLin, and FedTrack, require the transmission of multiple
variables. In fact, when τ = 1, FedRecu reduces to

xi(t + 1) = 1
N

N∑
j=1

{
2xj(t) − xj(t − 1) − α∇fj(xj(t)) + α∇fj(xj(t − 1))

}
.

9

Under review as submission to TMLR

In this case, FedRecu only shares one variable between local clients and the parameter server in each com-
munication round, which reduces the communication overhead in SCAFFOLD, FedLin, and FedTrack by
a half. Table 1 provides a detailed comparison of FedRecu with existing counterpart algorithms regarding
memory and communication requirements.

Table 2: Comparison of allowable stepsizes and obtained convergence rates between FedRecu and existing
federated-learning algorithms (under τ local training steps)

Assumption Algorithm Stepsize Convergence Gradient
Rate Setting1

Convex

This Work (ours) 8/(13τL) o(1/K) EG
1/(6τL) O(1/K) SG

Mitra et al. (2021b) 1/(10τL) O(1/K) EG
Karimireddy et al. (2020) 1/(81τL) O(1/K) SG
Mukherjee et al. (2023) 1/(20τL) O(1/K) SG
Khaled et al. (2020) 1/(10τL) O(1/K) SG
Qu et al. (2021) O(1/

√
K) O(1/

√
K) SG

Nonconvex

This Work (ours) 8/(17τL) O(1/K) SG
1/(13τL) O(1/K) EG

Mitra et al. (2021b) 1/(26τL) O(1/K) EG
Mitra et al. (2021a) 1/(18τL) O(1/K) EG
Karimireddy et al. (2020) 1/(24τL) O(1/K) SG
Allouah et al. (2024) 1/(16τL) O(1/K) SG
Beikmohammadi et al. (2025)

O(1/
√

K) O(1/
√

K) SG

Haddadpour & Mahdavi (2019)
Yang et al. (2021); Zhu et al. (2021)
Yu et al. (2019); Cheng et al. (2024)
Wang et al. (2020); Yan et al. (2025)
Reisizadeh et al. (2020); Li & Li (2023)
Xiang et al. (2024); Huang et al. (2023)
Kim et al. (2023) Adaptive O(1/

√
K) SG

1 EG denotes the exact gradient setting; SG denotes the stochastic gradient setting.

4.2 Improved Convergence Rates

FedRecu offers significant advantages in terms of convergence rates. Unlike many existing methods that
are subject to steady-state optimization errors (see, e.g., Jhunjhunwala et al. (2023); Wang et al. (2020);
Cho et al. (2020); Wang et al. (2021)) or achieve a convergence rate of O(1/K) for general convex loss
functions (see, e.g., Mitra et al. (2021a;b); Karimireddy et al. (2020); Haddadpour et al. (2019)), FedRecu
ensures accurate convergence at a rate of o(1/K) for general convex loss functions. This contrasts sharply
with existing results, which establish o(1/K) convergence only for special classes of convex functions—such
as those with uniformly bounded gradient differences (Jiang et al., 2024) or uniformly bounded Hessian
differences (Kovalev et al., 2022).

4.3 Larger Stepsizes

FedRecu allows larger constant stepsizes than existing counterpart algorithms that tackle “client drifts” in
federated learning. While some prior methods exploit diminishing stepsizes to mitigate “client drifts”, this
approach inevitably results in slow convergence and is not considered here. The stepsize comparisons are
summarized in Table 2. It can be seen that FedRecu’s stepsize can be at least 6, 8, 6, and 49 times larger
than those used in Khaled et al. (2020), Mitra et al. (2021a), Mitra et al. (2021b), and Karimireddy et al.
(2020), respectively.

10

Under review as submission to TMLR

5 Experiments

We evaluate our proposed algorithm by training a CNN on 10 clients using the benchmark datasets CIFAR-
10 and CIFAR-100, respectively 1. The CNN architecture consists of three convolutional layers with 32, 64,
and 128 filters, respectively, each followed by a max-pooling layer. After the final convolutional and pooling
layers, the network includes a fully connected layer with 256 units and ReLU activation, a dropout layer
with a rate of 0.25 for regularization, and a final dense output layer with 10 units that produces the class
logits. In our experiments, we compare the proposed algorithm against existing federated learning methods
specifically designed to address client drift, including SCAFFOLD (Karimireddy et al., 2020), FedLin (Mitra
et al., 2021b), and Scaffnew (Mishchenko et al., 2022). Following Hsu et al. (2019) and Kim et al. (2023),
we generate heterogeneous data distributions across the 10 agents using a Dirichlet distribution, with the
heterogeneity parameter β set to 0.1, 1, and 10, respectively. A higher value of β yields a nearly uniform
distribution of data across classes for each client, resulting in approximately IID local datasets. In contrast,
a lower β leads to highly skewed distributions, where clients tend to specialize in only a few classes.

Figures 1 and 2, report results for β = 1, which corresponds to a moderately heterogeneous setting. For all
results shown in Figure 1 (CIFAR-10) and Figure 2, (CIFAR-100), the stepsizes for FedRecu, SCAFFOLD,
FedLin, and Scaffnew are selected according to the guidelines from Theorem 1, Karimireddy et al. (2020),
Mitra et al. (2021b), and Mishchenko et al. (2022), respectively, using an estimated smoothness parameter of
L = 2. For FedRecu, SCAFFOLD, and FedLin, the local training period is set to τ = 10. For Scaffnew, the
communication probability is set to 1

11 to ensure that the total number of communicated messages remains
consistent across methods. As shown in the figures, our algorithm achieves faster convergence and higher
accuracy on both the CIFAR-10 and CIFAR-100 datasets.

Under the same experimental setup, we also conducted experiments with Dirichlet distribution parameters
β = 0.1 (reflecting a high degree of heterogeneity). The results are presented in Figures 3 and 4. It is evident
that FedRecu achieves a substantial speedup compared with the baseline methods. Additional experiments
with Dirichlet distribution parameters β = 10 (reflecting a low degree of heterogeneity) and experiments for
the least squares problem are presented in Appendix A, which also confirm the effectiveness of our proposed
algorithm.

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

Scaffnew
FedRecu
SCAFFOLD
FedLin

(a)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st
 A
cc
ur
ac
y

Scaffnew
FedRecu
SCAFFOLD
FedLin

(b)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai
n
Ac
cu
ra
cy

Scaffnew
FedRecu
SCAFFOLD
FedLin

(c)

Figure 1: Comparison of FedRecu with state-of-the-art federated learning algorithms—SCAFFOLD, FedLin,
and Scaffnew—on the CIFAR-10 dataset. Each curve represents the average of six independent runs. The
Dirichlet distribution parameter was set to β = 1, which corresponds to moderate heterogeneity.

1Code available at https://anonymous.4open.science/r/fedrecu-E043/README.md

11

https://anonymous.4open.science/r/fedrecu-E043/README.md

Under review as submission to TMLR

0 500 1000 1500 2000 2500 3000 3500 4000
Communication Rounds

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Scaffnew
FedRecu
SCAFFOLD
FedLin

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st
 A
cc
ur
ac
y

Scaffnew
FedRecu
SCAFFOLD
FedLin

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
Communication Rounds

0.0

0.1

0.2

0.3

0.4

Tr
ai

n
Ac

cu
ra

cy

Scaffnew
FedRecu
SCAFFOLD
FedLin

(c)

Figure 2: Comparison of FedRecu with state-of-the-art federated learning algorithms—SCAFFOLD, FedLin,
and Scaffnew—on the CIFAR-100 dataset. Each curve represents the average of six independent runs. Note
that the test accuracy in Figure 2(b) is top-5 accuracy. The Dirichlet distribution parameter was set to
β = 1, which corresponds to moderate heterogeneity.

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

Scaffnew
FedRecu
SCAFFOLD
FedLin

(a)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st
 A
cc
ur
ac
y

Scaffnew
FedRecu
SCAFFOLD
FedLin

(b)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai
n
Ac
cu
ra
cy

Scaffnew
FedRecu
SCAFFOLD
FedLin

(c)

Figure 3: Comparison of FedRecu with state-of-the-art federated learning algorithms—SCAFFOLD, FedLin,
and Scaffnew—on the CIFAR-10 dataset. Each curve represents the average of five independent runs.
The Dirichlet distribution parameter was set to β = 0.1, which corresponds to a relatively high level of
heterogeneity.

0 500 1000 1500 2000 2500 3000 3500 4000
Communication Rounds

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Scaffnew
FedRecu
SCAFFOLD
FedLin

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st
 A
cc
ur
ac
y

Scaffnew
FedRecu
SCAFFOLD
FedLin

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
Communication Rounds

0.0

0.1

0.2

0.3

0.4

Tr
ai

n
Ac

cu
ra

cy

Scaffnew
FedRecu
SCAFFOLD
FedLin

(c)

Figure 4: Comparison of FedRecu with state-of-the-art federated learning algorithms—SCAFFOLD, FedLin,
and Scaffnew—on the CIFAR-100 dataset. Each curve represents the average of three independent runs.
Note that the test accuracy in Figure 2(b) is top-5 accuracy. The Dirichlet distribution parameter was set
to β = 0.1, which corresponds to a relatively high level of heterogeneity.

12

Under review as submission to TMLR

6 Conclusion

We have proposed FedRecu, a novel recursion-based algorithm that can address “client drifts” in federated
learning. Different from all existing federated-learning algorithms that have to employ auxiliary variables to
estimate the global gradient or the amounts of drift from it, the novel recursion-based architecture of our
algorithm enables eliminating “client drifts” without introducing any auxiliary variables. This elimination of
auxiliary variables enables our algorithm to significantly reduce the communication overhead and memory
requirement in combating “client drifts” in federated learning. The novel architecture also enables employing
larger constant stepsizes than existing counterpart algorithms with drift correction, resulting in much faster
convergence. We provide rigorous convergence analysis of the proposed algorithm under both convex and
nonconvex loss functions, in both the deterministic gradient case and the stochastic gradient case. What
is worth mentioning is that we prove that FedRecu can guarantee an o(1/K) convergence under general
convex loss functions, which has not been reported in the federated-learning literature before except for
some restricted convex cases with heterogeneity constraints. Numerical experiments further confirm that
FedRecu converges faster than existing counterpart algorithms that can tackle “client drifts.”

References
Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,

and Venkatesh Saligrama. Federated learning based on dynamic regularization. arXiv preprint
arXiv:2111.04263, 2021.

Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and Brendan McMahan.
cpSGD: Communication-efficient and differentially-private distributed SGD. In Advances in Neural Infor-
mation Processing Systems, volume 31, pp. 7564–7575, 2018.

Youssef Allouah, Sadegh Farhadkhani, Rachid Guerraoui, Nirupam Gupta, Rafael Pinot, Geovani Rizk, and
Sasha Voitovych. Byzantine-robust federated learning: Impact of client subsampling and local updates.
arXiv preprint arXiv:2402.12780, 2024.

Ali Beikmohammadi, Sarit Khirirat, and Sindri Magnússon. On the convergence of federated learning
algorithms without data similarity. IEEE Transactions on Big Data, 11(2):659–668, 2025.

Zachary Charles and Jakub Konečnỳ. On the outsized importance of learning rates in local update methods.
arXiv preprint arXiv:2007.00878, 2020.

Zachary Charles and Jakub Konečný. Convergence and accuracy trade-offs in federated learning and meta-
learning. In Proceedings of The 24th International Conference on Artificial Intelligence and Statistics,
volume 130, pp. 2575–2583, 2021.

Mingzhe Chen, Zhaohui Yang, Walid Saad, Changchuan Yin, H. Vincent Poor, and Shuguang Cui. A joint
learning and communications framework for federated learning over wireless networks. IEEE Transactions
on Wireless Communications, 20(1):269–283, 2021.

Ziheng Cheng, Xinmeng Huang, Pengfei Wu, and Kun Yuan. Momentum benefits non-iid federated learning
simply and provably. arXiv preprint arXiv:2306.16504, 2023.

Ziheng Cheng, Xinmeng Huang, Pengfei Wu, and Kun Yuan. Momentum benefits non-iid federated learning
simply and provably. In The Twelfth International Conference on Learning Representations, 2024.

Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Client selection in federated learning: Convergence analysis
and power-of-choice selection strategies. arXiv preprint arXiv:2010.01243, 2020.

Jian-hui Duan, Wenzhong Li, Derun Zou, Ruichen Li, and Sanglu Lu. Federated learning with data-agnostic
distribution fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 8074–8083, 2023.

13

Under review as submission to TMLR

Margalit R Glasgow, Honglin Yuan, and Tengyu Ma. Sharp bounds for federated averaging (local SGD) and
continuous perspective. In International Conference on Artificial Intelligence and Statistics, pp. 9050–
9090, 2022.

Samyak Gupta, Yangsibo Huang, Zexuan Zhong, Tianyu Gao, Kai Li, and Danqi Chen. Recovering private
text in federated learning of language models. In Advances in Neural Information Processing Systems,
volume 35, pp. 8130–8143, 2022.

Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent methods in federated
learning. arXiv preprint arXiv:1910.14425, 2019.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Local SGD with
periodic averaging: Tighter analysis and adaptive synchronization. In Advances in Neural Information
Processing Systems, volume 32, pp. 11082–11094, 2019.

Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang He, Liangwei
Yang, Philip S Yu, Yu Rong, et al. Fedgraphnn: A federated learning system and benchmark for graph
neural networks. arXiv preprint arXiv:2104.07145, 2021.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution
for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Minhui Huang, Dewei Zhang, and Kaiyi Ji. Achieving linear speedup in non-IID federated bilevel learning.
In Proceedings of the 40th International Conference on Machine Learning, volume 202, pp. 14039–14059,
2023.

Xinmeng Huang, Ping Li, and Xiaoyun Li. Stochastic controlled averaging for federated learning with
communication compression. In International Conference on Representation Learning, pp. 27956–27994,
2024.

Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. Fedexp: Speeding up federated averaging via
extrapolation. arXiv preprint arXiv:2301.09604, 2023.

Xiaowen Jiang, Anton Rodomanov, and Sebastian U Stich. Stabilized proximal-point methods for federated
optimization. Advances in Neural Information Processing Systems, 37:99735–99772, 2024.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. In Pro-
ceedings of the 37th International Conference on Machine Learning, volume 119, pp. 5132–5143, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local SGD on identical and
heterogeneous data. In Proceedings of the Twenty Third International Conference on Artificial Intelligence
and Statistics, volume 108, pp. 4519–4529, 2020.

Latif U. Khan, Shashi Raj Pandey, Nguyen H. Tran, Walid Saad, Zhu Han, Minh N. H. Nguyen, and
Choong Seon Hong. Federated learning for edge networks: Resource optimization and incentive mechanism.
IEEE Communications Magazine, 58(10):88–93, 2020.

Junhyung Lyle Kim, Mohammad Taha Toghani, César A Uribe, and Anastasios Kyrillidis. Adaptive feder-
ated learning with auto-tuned clients. arXiv preprint arXiv:2306.11201, 2023.

Dmitry Kovalev, Aleksandr Beznosikov, Ekaterina Borodich, Alexander Gasnikov, and Gesualdo Scutari.
Optimal gradient sliding and its application to optimal distributed optimization under similarity. Advances
in Neural Information Processing Systems, 35:33494–33507, 2022.

Ching-Pei Lee and Stephen Wright. First-order algorithms converge faster than o(1/k) on convex problems.
In Proceedings of the 36th International Conference on Machine Learning, volume 97, pp. 3754–3762, 2019.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg
on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

14

Under review as submission to TMLR

Xiaoyun Li and Ping Li. Analysis of error feedback in federated non-convex optimization with biased com-
pression: Fast convergence and partial participation. In International Conference on Machine Learning,
pp. 19638–19688, 2023.

Zexi Li, Tao Lin, Xinyi Shang, and Chao Wu. Revisiting weighted aggregation in federated learning with
neural networks. In International Conference on Machine Learning, pp. 19767–19788, 2023.

Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang Liang, Qiang Yang,
Dusit Niyato, and Chunyan Miao. Federated learning in mobile edge networks: A comprehensive survey.
IEEE Communications Surveys & Tutorials, 22(3):2031–2063, 2020a.

Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang Liang, Qiang Yang,
Dusit Niyato, and Chunyan Miao. Federated learning in mobile edge networks: A comprehensive survey.
IEEE Communications Surveys & Tutorials, 22(3):2031–2063, 2020b.

Bill Yuchen Lin, Chaoyang He, Zihang Zeng, Hulin Wang, Yufen Huang, Christophe Dupuy, Rahul Gupta,
Mahdi Soltanolkotabi, Xiang Ren, and Salman Avestimehr. Fednlp: Benchmarking federated learning
methods for natural language processing tasks. arXiv preprint arXiv:2104.08815, 2021.

Ming Liu, Stella Ho, Mengqi Wang, Longxiang Gao, Yuan Jin, and He Zhang. Federated learning meets
natural language processing: A survey. arXiv preprint arXiv:2107.12603, 2021.

Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. Accelerating federated learning via momentum gradient
descent. IEEE Transactions on Parallel and Distributed Systems, 31(8):1754–1766, 2020.

Bing Luo, Xiang Li, Shiqiang Wang, Jianwei Huang, and Leandros Tassiulas. Cost-effective federated learning
in mobile edge networks. IEEE Journal on Selected Areas in Communications, 39(12):3606–3621, 2021.

Pouya M Ghari and Yanning Shen. Personalized federated learning with mixture of models for adaptive
prediction and model fine-tuning. Advances in Neural Information Processing Systems, 37:92155–92183,
2024.

Chuan Ma, Jun Li, Ming Ding, Howard H. Yang, Feng Shu, Tony Q. S. Quek, and H. Vincent Poor. On
safeguarding privacy and security in the framework of federated learning. IEEE Network, 34(4):242–248,
2020.

Grigory Malinovskiy, Dmitry Kovalev, Elnur Gasanov, Laurent Condat, and Peter Richtarik. From local SGD
to local fixed-point methods for federated learning. In Proceedings of the 37th International Conference
on Machine Learning, volume 119, pp. 6692–6701, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, volume 54, pp. 1273–1282, 2017.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip: Yes! local
gradient steps provably lead to communication acceleration! finally! In International Conference on
Machine Learning, pp. 15750–15769. PMLR, 2022.

Aritra Mitra, Rayana Jaafar, George J Pappas, and Hamed Hassani. Federated learning with incrementally
aggregated gradients. In 2021 60th IEEE Conference on Decision and Control (CDC), pp. 775–782, 2021a.

Aritra Mitra, Rayana Jaafar, George J Pappas, and Hamed Hassani. Linear convergence in federated learning:
Tackling client heterogeneity and sparse gradients. Advances in Neural Information Processing Systems,
34:14606–14619, 2021b.

Sohom Mukherjee, Nicolas Loizou, and Sebastian U Stich. Locally adaptive federated learning. arXiv preprint
arXiv:2307.06306, 2023.

Solmaz Niknam, Harpreet S. Dhillon, and Jeffrey H. Reed. Federated learning for wireless communications:
Motivation, opportunities, and challenges. IEEE Communications Magazine, 58(6):46–51, 2020.

15

Under review as submission to TMLR

Kumar Kshitij Patel, Margalit Glasgow, Ali Zindari, Lingxiao Wang, Sebastian U Stich, Ziheng Cheng,
Nirmit Joshi, and Nathan Srebro. The limits and potentials of local sgd for distributed heterogeneous
learning with intermittent communication. In The Thirty Seventh Annual Conference on Learning Theory,
pp. 4115–4157, 2024.

Reese Pathak and Martin J Wainwright. Fedsplit: an algorithmic framework for fast federated optimization.
In Advances in Neural Information Processing Systems, volume 33, pp. 7057–7066, 2020.

Tiancheng Qin, S Rasoul Etesami, and César A Uribe. Faster convergence of local sgd for over-parameterized
models. arXiv preprint arXiv:2201.12719, 2022.

Zhaonan Qu, Kaixiang Lin, Zhaojian Li, and Jiayu Zhou. Federated learning’s blessing: Fedavg has linear
speedup. In International Conference on Learning Representations, pp. 1–47, 2021.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani. Fedpaq:
A communication-efficient federated learning method with periodic averaging and quantization. In Pro-
ceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, volume
108, pp. 2021–2031, 2020.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for decentralized
consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

Zhenyu Sun and Ermin Wei. A communication-efficient algorithm with linear convergence for federated
minimax learning. Advances in Neural Information Processing Systems, 35:6060–6073, 2022.

Nguyen H. Tran, Wei Bao, Albert Zomaya, Minh N. H. Nguyen, and Choong Seon Hong. Federated learning
over wireless networks: Optimization model design and analysis. In IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, pp. 1387–1395, 2019.

Yeshwanth Venkatesha, Youngeun Kim, Leandros Tassiulas, and Priyadarshini Panda. Federated learning
with spiking neural networks. IEEE Transactions on Signal Processing, 69:6183–6194, 2021.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the objective incon-
sistency problem in heterogeneous federated optimization. In Advances in Neural Information Processing
Systems, volume 33, pp. 7611–7623, 2020.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. A novel framework for the analysis
and design of heterogeneous federated learning. IEEE Transactions on Signal Processing, 69:5234–5249,
2021.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcmahan,
Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In International Conference
on Machine Learning, pp. 10334–10343, 2020.

Ming Xiang, Stratis Ioannidis, Edmund Yeh, Carlee Joe-Wong, and Lili Su. Efficient federated learning
against heterogeneous and non-stationary client unavailability. Advances in Neural Information Processing
Systems, 37:104281–104328, 2024.

Jing Xu, Sen Wang, Liwei Wang, and Andrew Chi-Chih Yao. Fedcm: Federated learning with client-level
momentum. arXiv preprint arXiv:2106.10874, 2021.

Wenjing Yan, Kai Zhang, Xiaolu Wang, and Xuanyu Cao. Problem-parameter-free federated learning. In
The Thirteenth International Conference on Learning Representations, 2025.

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation in
non-IID federated learning. arXiv preprint arXiv:2101.11203, 2021.

Howard H Yang, Zuozhu Liu, Tony QS Quek, and H Vincent Poor. Scheduling policies for federated learning
in wireless networks. IEEE Transactions on Communications, 68(1):317–333, 2019.

16

Under review as submission to TMLR

Zhengjie Yang, Wei Bao, Dong Yuan, Nguyen H. Tran, and Albert Y. Zomaya. Federated learning with
nesterov accelerated gradient. IEEE Transactions on Parallel and Distributed Systems, 33(12):4863–4873,
2022.

Rui Ye, Rui Ge, Xinyu Zhu, Jingyi Chai, Yaxin Du, Yang Liu, Yanfeng Wang, and Siheng Chen. Fedllm-
bench: Realistic benchmarks for federated learning of large language models. In Advances in Neural
Information Processing Systems, volume 37, pp. 111106–111130, 2024.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less communication:
Demystifying why model averaging works for deep learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pp. 5693–5700, 2019.

Honglin Yuan and Tengyu Ma. Federated accelerated stochastic gradient descent. Advances in Neural
Information Processing Systems, 33:5332–5344, 2020.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and Yasaman
Khazaeni. Bayesian nonparametric federated learning of neural networks. In International conference on
machine learning, pp. 7252–7261, 2019.

Ligeng Zhu, Hongzhou Lin, Yao Lu, Yujun Lin, and Song Han. Delayed gradient averaging: Tolerate the
communication latency for federated learning. In Advances in Neural Information Processing Systems,
volume 34, pp. 29995–30007, 2021.

A Additional Numerical Experiments

A.1 Additional CNN Training Results with A Different Non-IID Level

Additional CNN training experiments on the CIFAR-10 and CIFAR-100 datasets are presented in Figures 5
and 6, respectively, using a non-IID data distribution characterized by a Dirichlet distribution with hetero-
geneity parameter β = 10. The other setup is the same as that presented in Section 5.

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

Scaffnew
FedRecu
SCAFFOLD
FedLin

(a)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st
 A
cc
ur
ac
y

Scaffnew
FedRecu
SCAFFOLD
FedLin

(b)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai
n
Ac
cu
ra
cy

Scaffnew
FedRecu
SCAFFOLD
FedLin

(c)

Figure 5: Comparison of FedRecu with state-of-the-art federated learning algorithms SCAFFOLD, FedLin,
and Scaffnew using their prescribed stepsizes on the CIFAR-10 dataset. Each curve represents the average
of five independent runs. Each curve represents the average of three independent runs. Note that the test
accuracy in Figure 5(b) is top-5 accuracy. The Dirichlet distribution parameter was set to β = 10, which
corresponds to a relatively low level of heterogeneity.

17

Under review as submission to TMLR

0 500 1000 1500 2000 2500 3000 3500 4000
Communication Rounds

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Scaffnew
FedRecu
SCAFFOLD
FedLin

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st
 A
cc
ur
ac
y

Scaffnew
FedRecu
SCAFFOLD
FedLin

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

n
Ac

cu
ra

cy

Scaffnew
FedRecu
SCAFFOLD
FedLin

(c)

Figure 6: Comparison of FedRecu with state-of-the-art federated learning algorithms SCAFFOLD, FedLin,
and Scaffnew using their prescribed stepsizes on the CIFAR-100 dataset. Each curve represents the average
of three independent runs. Note that the test accuracy in Figure 6(b) is top-5 accuracy. The Dirichlet
distribution parameter was set to β = 10, which corresponds to a relatively low level of heterogeneity.

A.2 Comparison of FedRecu, SCAFFOLD, FedTrack, and FedLin Using Their Best-Found Stepsizes
for CNN Training

Additional CNN training experiments on the CIFAR-10 dataset are presented in Figure 7, using a non-IID
data distribution characterized by a Dirichlet distribution with heterogeneity parameter β = 10. In Figure
7, we compared the convergence of FedRecu with SCAFFOLD (Karimireddy et al., 2020), FedLin (Mitra
et al., 2021b), and FedTrack (Mitra et al., 2021a) using the best-found stepsize for each algorithm. These
experiments show that our algorithm can achieve faster convergence than the competing methods. These
results confirm the effectiveness of the proposed algorithm.

0 250 500 750 1000 1250 1500 1750 2000
Number of Shared Messages

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

FedLin
FedRecu
FedTrack
SCAFFOLD

(a)

0 250 500 750 1000 1250 1500 1750 2000
Number of Shared Messages

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

FedLin
FedRecu
FedTrack
SCAFFOLD

(b)

0 250 500 750 1000 1250 1500 1750 2000
Number of Shared Messages

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

FedLin
FedRecu
FedTrack
SCAFFOLD

(c)

Figure 7: Comparison of FedRecu with state-of-the-art federated learning algorithms SCAFFOLD, FedLin,
and FedTrack under their respective best-found stepsizes on the CIFAR-10 dataset. Each curve represents
the average of six independent runs. Note that the test accuracy in Figure 7(b) is top-5 accuracy. To induce
greater heterogeneity in data distribution, the Dirichlet distribution parameter was set to β = 10.

A.3 Comparison of FedRecu and EXTRA for CNN Training

Additional comparison between FedRecu and EXTRA (Shi et al., 2015) on the CIFAR-10 dataset are pre-
sented in Figures 8, 9, and 10, respectively, using non-IID data distributions generated by Dirichlet partitions
with heterogeneity parameters β = 0.1, 1, 10, respectively. For both FedRecu and EXTRA (Shi et al., 2015),
the local training period is set to τ = 10 and the stepsize to α = 0.1. As shown in Figures 8, 9, and 10,
FedRecu achieves convergence, whereas EXTRA fails to converge. These numerical results further support
the statement in Remark 4 that FedRecu allows a larger stepsize than EXTRA.

18

Under review as submission to TMLR

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss EXTRA

FedRecu

(a)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

EXTRA
FedRecu

(b)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n
Ac

cu
ra

cy

EXTRA
FedRecu

(c)

Figure 8: Comparison of FedRecu with EXTRA on the CIFAR-10 dataset. Each curve represents the average
of six independent runs. To induce greater heterogeneity in data distribution, the Dirichlet distribution
parameter was set to β = 0.1.

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

EXTRA
FedRecu

(a)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

EXTRA
FedRecu

(b)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n
Ac

cu
ra

cy

EXTRA
FedRecu

(c)

Figure 9: Comparison of FedRecu with EXTRA on the CIFAR-10 dataset. Each curve represents the average
of six independent runs. To induce greater heterogeneity in data distribution, the Dirichlet distribution
parameter was set to β = 1.

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

EXTRA
FedRecu

(a)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

EXTRA
FedRecu

(b)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n
Ac

cu
ra

cy

EXTRA
FedRecu

(c)

Figure 10: Comparison of FedRecu with EXTRA on the CIFAR-10 dataset. Each curve represents the
average of six independent runs. To induce greater heterogeneity in data distribution, the Dirichlet distri-
bution parameter was set to β = 10.

A.4 Comparison of FedRecu, SCAFFOLD, SCAFFOLD-M, Scaffnew, and FedLin for CNN Training

Additional CNN training experiments on the CIFAR-10 dataset are presented in Figures 11, 12, and 13,
respectively, using non-IID data distributions generated by Dirichlet partitions with heterogeneity parameters
β = 0.1, 1, 10, respectively. The stepsizes for FedRecu, SCAFFOLD, SCAFFOLD-M, FedLin, and Scaffnew

19

Under review as submission to TMLR

are selected according to the guidelines from Theorem 1, Karimireddy et al. (2020), Cheng et al. (2023),
Mitra et al. (2021b), and Mishchenko et al. (2022), respectively, using an estimated smoothness parameter
of L = 2. For FedRecu, SCAFFOLD, SCAFFOLD-M, and FedLin, the local training period is set to τ = 10.
For Scaffnew, the communication probability is set to 1

11 to ensure that the total number of communicated
messages remains consistent across methods. These experiments in Figures 11, 12, and 13, show that our
algorithm can achieve faster convergence than the competing methods.

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

Scaffnew
FedRecu
SCAFFOLD
FedLin
SCAFFOLD-M

(a)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Te

st
 A

cc
ur

ac
y

Scaffnew
FedRecu
SCAFFOLD
FedLin
SCAFFOLD-M

(b)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n
Ac

cu
ra

cy

Scaffnew
FedRecu
SCAFFOLD
FedLin
SCAFFOLD-M

(c)

Figure 11: Comparison of FedRecu with state-of-the-art federated learning algorithms—SCAFFOLD,
SCAFFOLD-M, FedLin, and Scaffnew—on the CIFAR-10 dataset. Each curve represents the average of
six independent runs. Note that the test accuracy in Figure 11(b) is top-5 accuracy. To induce greater
heterogeneity in data distribution, the Dirichlet distribution parameter was set to β = 0.1.

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

Scaffnew
FedRecu
SCAFFOLD
FedLin
SCAFFOLD-M

(a)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Scaffnew
FedRecu
SCAFFOLD
FedLin
SCAFFOLD-M

(b)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n
Ac

cu
ra

cy

Scaffnew
FedRecu
SCAFFOLD
FedLin
SCAFFOLD-M

(c)

Figure 12: Comparison of FedRecu with state-of-the-art federated learning algorithms—SCAFFOLD,
SCAFFOLD-M, FedLin, and Scaffnew—on the CIFAR-10 dataset. Each curve represents the average of
six independent runs. Note that the test accuracy in Figure 12(b) is top-5 accuracy. To induce greater
heterogeneity in data distribution, the Dirichlet distribution parameter was set to β = 1.

20

Under review as submission to TMLR

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

Scaffnew
FedRecu
SCAFFOLD
FedLin
SCAFFOLD-M

(a)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Scaffnew
FedRecu
SCAFFOLD
FedLin
SCAFFOLD-M

(b)

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n
Ac

cu
ra

cy

Scaffnew
FedRecu
SCAFFOLD
FedLin
SCAFFOLD-M

(c)

Figure 13: Comparison of FedRecu with state-of-the-art federated learning algorithms—SCAFFOLD,
SCAFFOLD-M, FedLin, and Scaffnew—on the CIFAR-10 dataset. Each curve represents the average of
six independent runs. Note that the test accuracy in Figure 13(b) is top-5 accuracy. To induce greater
heterogeneity in data distribution, the Dirichlet distribution parameter was set to β = 10.

A.5 Additional evaluation results using least squares regression

We also used the following least squares regression problem to evaluate the convergence performance of the
proposed algorithm2:

min
x∈Rn

f(x) = min
x∈Rn

1
N

N∑
i=1

1
2∥Aix − bi∥2, (9)

where Ai ∈ R50×10, bi ∈ R50, x ∈ R10, and n is set to 20. We consider [Ai]jk and [bi]j generated from [0, 1]
randomly for 1 ≤ j ≤ 50 and 1 ≤ k ≤ 10.

We compare our algorithm with existing federated-learning algorithms that can tackle “client drifts,” includ-
ing SCAFFOLD (Karimireddy et al., 2020), FedLin (Mitra et al., 2021b), and FedTrack (Mitra et al., 2021a).
The stepsizes for FedRecu, SCAFFOLD, FedLin, and FedTrack are selected based on the guidelines provided
in Theorem 1, Karimireddy et al. (2020), Mitra et al. (2021b), and Mitra et al. (2021a), respectively. We use
the convergence error f(x(kτ)) − f(x∗), where x(kτ) = 1

N

∑N
i=1 xi(kτ), to quantify the learning accuracy of

each algorithm. We implement all algorithms using accurate gradients for fairness. Figure 14 illustrates the
convergence errors of all algorithms under different local training periods τ = 4, 8, 12, 16, respectively. These
numerical results clearly confirm that FedRecu achieves much faster convergence than SCAFFOLD, FedLin,
and FedTrack across all tested settings despite its reduced overhead in storage.

2Code available at https://anonymous.4open.science/r/fedrecu-E043/README.md

21

https://anonymous.4open.science/r/fedrecu-E043/README.md

Under review as submission to TMLR

0 20 40 60 80 100 120 140 160

k

10−4

10−3

10−2
f(x

(k
τ)

)−
f(x

*)

SCAFFOLD
FedTrack
FedLin
FedRecu

τ = 4

0 20 40 60 80 100 120 140 160

k

10−4

10−3

10−2

f(x
(k

τ)
)−

f(x
*)

SCAFFOLD
FedTrack
FedLin
FedRecu

τ = 8

0 20 40 60 80 100 120 140 160

k

10−4

10−3

10−2

f(x
(k

τ)
)−

f(x
*)

SCAFFOLD
FedTrack
FedLin
FedRecu

τ = 12

0 20 40 60 80 100 120 140 160

k

10−4

10−3

10−2

f(x
(k

τ)
)−

f(x
*)

SCAFFOLD
FedTrack
FedLin
FedRecu

τ = 16

Figure 14: Comparisons of FedRecu with SCAFFOLD (Karimireddy et al., 2020), FedLin (Mitra et al.,
2021b), and FedTrack (Mitra et al., 2021a) under different local training periods τ .

B Supporting Lemmas For the Proof of Theorem 1

Lemma 1 (Lee & Wright (2019)). Let {∆(t)} be a nonnegative sequence satisfying the following conditions:

(1) {∆(t)} is monotonically decreasing;

(2) {∆(t)} is summable, that is,
∑∞

k=0 ∆(k) < ∞.

Then, we have ∆(t) = o(1/t), i.e., limt→∞ t∆(t) = 0.
Lemma 2. Algorithm 1 can be equivalently expressed in the following matrix form:{

xi(kτ + j) = xi(kτ + j − 1) − αyi(kτ + j − 1),
yi(kτ + j) = yi(kτ + j − 1) + ∇fi(xi(kτ + j)) − ∇fi(xi(kτ + j − 1)).

(10)

for any j = 1, 2, · · · , τ − 1.

Proof. For the convenience of expression, we define X(t) = [xT
1 (t), xT

2 (t), · · · , xT
N (t)]T, ∇f(t) =

[f1(xT
1 (t)), f2(xT

2 (t)), · · · , fN (xT
N (t))]T, and

W (t + 1) =


1
N

1N 1T
N , t + 1 = τk,

I, t + 1 ̸= τk.
(11)

Thus, Algorithm 1 can be rewritten as the following matrix form:

X(t + 1) =2W (t + 1)X(t) − W (t + 1)W (t)X(t − 1) − αW (t + 1)W (t)∇f(t)
+ αW (t + 1)W (t)∇f(t − 1). (12)

22

Under review as submission to TMLR

Rearranging the terms of (12), we arrive at

1
α

{
W (t + 1)X(t) − X(t + 1)

}
= 1

α
W (t + 1)

{
W (t)X(t − 1) − X(t)

}
+ W (t + 1)

{
W (t){∇f(t) − ∇f(t − 1)}

}
. (13)

Defining

Z(t) = 1
α

{
W (t + 1)X(t) − X(t + 1)

}
,

we can obtain

Z(t) =W (t + 1)Z(t − 1) + W (t + 1)
{

W (t){∇f(t) − ∇f(t − 1)}
}

, (14)

based on the structure of (13).

From (11) and (12), we can construct Y (t) satisfying

Z(t) = W (t + 1)Y (t).

Thus, from (13) and (14), we have

W (t + 1)Y (t) = W (t + 1)W (t)Y (t − 1) + W (t + 1)
{

W (t){∇f(t) − ∇f(t − 1)}
}

.

From the definition (11) of W (t), we have

X(t) =W (t)X(t − 1) − αW (t)Y (t − 1),
Y (t) =W (t)Y (t − 1) + W (t){∇f(t) − ∇f(t − 1)},

where Y (t) = [yT
1 (t), yT

2 (t), · · · , yT
N (t)]T, which completes the proof.

Lemma 3 (Mitra et al. (2021b)). Suppose fi(x) is L-smooth and convex. Then, for any 0 ≤ α ≤ 1
L , we

have

∥y − x − α(∇fi(y) − ∇fi(x))∥ ≤ ∥y − x∥

for any x, y ∈ Rn.
Lemma 4. For any k ≥ 0, we have

yi(kτ) = ∇f(xi(kτ)) (15)

for any i ∈ S.

Proof. We use mathematical induction to prove Lemma 4.

It is clear that the relation holds for k = 0.

Next, we assume that the relation holds at time instant k, i.e.,

yi(kτ) = ∇f(xi(kτ)) = 1
N

N∑
j=1

∇fj(xj(kτ)), (16)

and prove that the relation also hold at time instant k + 1.

Using Lemma 2, we can obtain the following relation based on (16):

yi(kτ + 1) = yi(kτ) + ∇fi(xi(kτ + 1)) − ∇fi(xi(kτ)). (17)

23

Under review as submission to TMLR

Similarly, for any j = 1, 2, · · · , τ − 1, we can obtain

yi(kτ + j) = yi(kτ) + ∇fi(xi(kτ + j)) − ∇fi(xi(kτ)).

Thus, we have

yi(kτ + τ − 1) = yi(kτ) + ∇fi(xi(kτ + τ − 1)) − ∇fi(xi(kτ)). (18)

Using Lemma 2 leads to

yi(kτ + τ) = 1
N

N∑
j=1

{
yj(kτ + τ − 1) + ∇fj(xj(kτ + τ)) − ∇fj(xj(kτ + τ − 1))

}
.

Therefore, we have

yi(kτ + τ) = 1
N

N∑
j=1

{
yj(kτ) + ∇fj(xj(kτ + τ)) − ∇fj(xj(kτ))

}

= 1
N

N∑
j=1

∇fj(xj(kτ + τ)),

where the first and second equalities follow from (16) and (18), respectively. Namely, the relation in the
lemma statement also holds at time instant k + 1, which completes the proof.

Lemma 5. For 0 ≤ j < τ and 0 < αL ≤ 1, we have

∥xi(kτ + j) − xi(kτ)∥ ≤ jα∥yi(xi(kτ))∥.

Proof. From Lemma 2, we obtain

∥xi(kτ + j + 1) − xi(kτ)∥
=∥xi(kτ + j) − xi(kτ) − α{yi(kτ) + ∇fi(xi(kτ + j)) − ∇fi(xi(kτ))}∥.

From the above equation and Lemma 3, we have

∥xi(kτ + j + 1) − xi(kτ)∥ ≤ ∥xi(kτ + j) − xi(kτ)∥ + α∥yi(kτ)∥,

which further implies

∥xi(kτ + j) − xi(kτ)∥ ≤ jα∥yi(kτ)∥.

for any 0 ≤ j < τ .

C Proof of Theorem 1

From Lemma 2, we have

xi(kτ + τ) = 1
N

N∑
i=1

{
xi(kτ + τ − 1) − αyi(kτ + τ − 1)

}
, (19)

yi(kτ + τ) = 1
N

N∑
i=1

{
yi(kτ + τ − 1) + ∇fi(xi(kτ + τ)) − ∇fi(xi(kτ + τ − 1))

}
. (20)

Thus, (10) implies

xi(kτ + τ − 1) = xi(kτ) − α

τ−2∑
h=0

∇yi(kτ + h).

24

Under review as submission to TMLR

From the above equation and (19), we have

xi(kτ + k) = 1
N

N∑
j=1

{
xj(kτ) − α

τ−1∑
h=0

yj(kτ + h)
}

, (21)

which, in combination with (20) yields

xi(kτ + k) = 1
N

N∑
j=1

{
xj(kτ) − α

τ−1∑
h=0

{yj(kτ) + ∇fj(xj(kτ + h)) − ∇fj(xj(kτ))}
}

. (22)

Lemma 4 and (22) imply

xi(kτ + k) = xi(kτ) − α

N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h)). (23)

From (23), we have

∥xi(kτ + k) − x∗∥2 − ∥xi(kτ) − x∗∥2

= − 2⟨ α

N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h)), xi(kτ) − x∗⟩ + ∥ α

N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h))∥2.

Then, using Assumption 1 and the convex property of fi(x), we can obtain

− 2⟨ α

N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h)), xi(kτ) − x∗⟩

≤2α

N

N∑
j=1

τ−1∑
h=0

{
fj(x∗) − fj(xj(kτ + h))

}

+ 2α

N

N∑
j=1

τ−1∑
h=0

{
fj(xj(kτ + h)) − fj(xj(kτ)) + L

2 ∥xj(kτ + h) − xj(kτ)∥2
}

,

which further implies

− 2⟨ α

N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h)), xi(kτ) − x∗⟩

≤2α

N

N∑
j=1

τ−1∑
h=0

{
fj(x∗) − fj(xj(kτ + h))

}
+ 2α

N

N∑
j=1

τ−1∑
h=0

{
fj(xj(kτ + h)) − fj(xj(kτ))

}

+ αL

N

N∑
j=1

τ−1∑
h=0

∥xi(kτ + h) − xi(kτ)∥2.

Combining Lemma 4 and Lemma 5, we arrive at

− 2⟨ α

N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h)), xi(kτ) − x∗⟩

≤2ατ
{

f(x∗) − f(xi(kτ))
}

+ Lα3
{ τ−1∑

h=0
h2

}
∥∇f(xj(kτ))∥2.

25

Under review as submission to TMLR

which further implies the following relationship based on Assumption 1:

∥ 1
N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h))∥ ≤ 1
N

N∑
j=1

τ−1∑
h=0

L∥xj(kτ + h) − xj(kτ)∥ + τ∥∇f(xj(kτ))∥.

The above inequality, Lemma 5, and the condition 0 < ατL ≤ 1 imply

∥ 1
N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h))∥ ≤ 3τ − 1
2 ∥∇f(xj(kτ))∥. (24)

Thus, we can obtain

∥xi(kτ + k) − x∗∥2 − ∥xi(kτ) − x∗∥2 ≤ 2ατ{f(x∗) − f(xi(kτ))} + A1∥∇f(xj(kτ))∥2, (25)

where A1 = Lα3{
∑τ−1

h=0 h2} + (3τ−1
2)2.

From (23) and Assumption 1, we have

f(xi(kτ + τ))

≤f(xi(kτ)) − α⟨∇f(xi(kτ)), 1
N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h))⟩

+ α2L

2 ∥ 1
N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h))∥2.

From 24, Lemma 4, and Lemma 5, we have

f(xi(kτ + τ))

≤f(xi(kτ)) − ατ∥∇f(xi(kτ))∥2 + α2L(3τ − 1)2

8 ∥∇f(xj(kτ))∥2

+ α2Lτ(τ − 1)
2 ∥∇f(xi(kτ))∥2,

which further implies

f(xi(kτ + τ)) ≤f(xi(kτ)) +
{α2L(3τ − 1)2

8 + α2Lτ(τ − 1)
2 − ατ

}
∥∇f(xi(kτ))∥2.

Thus, if 0 < α < 8
13Lτ holds, we have

α2L(3τ − 1)2

8 + α2Lτ(τ − 1)
2 − ατ < 0.

Combining the preceding two relations yields that there exists γ > 0 such that

γ∥∇f(xi(kτ))∥2 ≤ f(xi(kτ + τ)) − f(xi(kτ)) (26)

holds under 0 < α ≤ 8
13Lτ .

From (25), we have

2ατ{f(xi(kτ)) − f(x∗)} ≤∥xi(kτ) − x∗∥2 − ∥xi(kτ + k) − x∗∥2

+ A1

γ
{f(xi(kτ + τ)) − f(xi(kτ))}

26

Under review as submission to TMLR

for any i ∈ S. Thus, we obtain
∞∑

k=1
{f(xi(kτ)) − f(x∗)} < ∞. (27)

From (26), (27), and Lemma 1, we have

lim
k→∞

k{f(xi(kτ)) − f(x∗)} = 0,

which completes the proof.

D Supporting Lemmas for the Proof of Theorem 2

Lemma 6. For 0 < α ≤ 1
2τL , we have

∥xi(kτ + j) − xi(kτ)∥ ≤ 2jα∥yi(xi(kτ))∥ (28)

for any 0 ≤ j < τ .

Proof. From (31), we can obtain

∥xi(kτ + j + 1) − xi(kτ)∥
=∥xi(kτ + j) − xi(kτ) − α{yi(kτ) + ∇fi(xi(kτ + j)) − ∇fi(xi(kτ))}∥. (29)

Combining (29) and Assumption 1 implies

∥xi(kτ + j + 1) − xi(kτ)∥ ≤ (1 + αL)∥xi(kτ + j) − xi(kτ)∥ + α∥yi(kτ)∥. (30)

Next we use mathematical induction to prove the lemma.

We first assume that (28) holds for 0 ≤ j ≤ τ − 1:

∥xi(kτ + j) − xi(kτ)∥ ≤ 2jα∥yi(kτ)∥

for any i ∈ S and 0 ≤ j ≤ τ − 1. Then, we will prove that (28) also holds for j + 1.

Combining the above inequality and (30) implies

∥xi(kτ + j + 1) − xi(kτ)∥ ≤ (2j + 2αLj + 1)α∥yi(kτ)∥.

If a stepsize satisfies 0 < α ≤ 1
2τL , we have

∥xi(kτ + j + 1) − xi(kτ)∥ ≤(2j + 2)α∥yi(kτ)∥,

which completes the proof.

E Proof of Theorem 2

From Appendix C, for any j = 1, 2, · · · , τ − 1, we have
xi(kτ + j) = xi(kτ + j − 1) − αyi(kτ + j − 1),
yi(kτ + j) = yi(kτ + j − 1) + ∇fi(xi(kτ + j)) − ∇fi(xi(kτ + j − 1))
yi(kτ + j) = yi(kτ) + ∇fi(xi(kτ + j)) − ∇fi(xi(kτ)).

(31)

Moreover, from Lemma 4 we have

yi(kτ) = ∇f(xi(kτ)) (32)

27

Under review as submission to TMLR

for any i ∈ S.

Combining (31) and (32) implies

xi(kτ + k) = xi(kτ) − α

N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h)) (33)

for any i ∈ S.

From Assumption 1, we have

∥ 1
N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h))∥ ≤ 1
N

N∑
j=1

τ−1∑
h=0

L∥xj(kτ + h) − xj(kτ)∥ + τ∥∇f(xj(kτ))∥.

From (32), Lemma 6, and 0 < α ≤ 1
2τL , we have

∥ 1
N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h))∥ ≤ 3τ − 1
2 ∥∇f(xj(kτ))∥. (34)

Combining Assumption 1 and (33) implies

f(xi(kτ + τ)) ≤f(xi(kτ)) − α⟨∇f(xi(kτ)), 1
N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h))⟩

+ α2L

2 ∥ 1
N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h))∥2.

From the above inequality and Asumption 1, we arrive at

f(xi(kτ + τ)) ≤f(xi(kτ)) − ατ∥∇f(xi(kτ))∥2 + α2L(3τ − 1)2

8 ∥∇f(xj(kτ))∥2

+ α2L∥∇f(xi(kτ))∥2
τ−1∑
h=0

2h.

The above inequality and (34) imply

f(xi(kτ + τ)) ≤ f(xi(kτ)) +
{α2L(3τ − 1)2

8 + α2Lτ(τ − 1) − ατ
}

∥∇f(xi(kτ))∥2.

If the stepsize satisfies 0 < α ≤ 8
17Lτ , we can obtain

α2L(3τ)2

8 + α2Lτ(τ) − ατ ≤ 0,

i.e.,

ατ − α2L(3τ − 1)2

8 − α2Lτ(τ − 1) ≥ γ > 0,

where γ = 13α2Lτ
8 .

Thus, combining the preceding three relations yields

γ∥∇f(xi(kτ))∥2 ≤ f(xi(kτ)) − f(xi(kτ + τ)),

and hence

1
K

K−1∑
k=0

∥∇f(xi(kτ))∥2 ≤ f(xi(0)) − f(xi(Kτ))
γK

≤ f(xi(0)) − f(x∗)
γK

,

for any i ∈ S.

28

Under review as submission to TMLR

F Supporting Lemmas for the Proof of Theorem 3

Lemma 7. Under Assumption 1 and Assumption 2, if the loss function fi(x) of client i ∈ S is convex, we
have

E
[
∥xi(kτ + h) − xi(kτ)∥2

]
≤ 12τ2Lα2E

[
f(xi(kτ)) − f(x∗)

]
+ 27τα2σ2

for 0 ≤ h < τ and i ∈ S.

Proof. From (39) and (40), we have

xi(kτ + j + 1) =xi(kτ + j) − α
{ 1

N

N∑
j=1

gj(xj(kτ)) − gi(xi(kτ)) + gj(xj(kτ + j))
}

,

i.e.,

xi(kτ + j + 1) − xi(kτ)

=xi(kτ + j) − xi(kτ) − α
{ 1

N

N∑
j=1

∇fj(xj(kτ)) − ∇fi(xi(kτ)) + ∇fj(xj(kτ + j))
}

− α
{ 1

N

N∑
j=1

gj(xj(kτ)) − 1
N

N∑
j=1

∇fj(xj(kτ)) + ∇fi(xi(kτ)) − gi(xi(kτ))

+ gj(xj(kτ + j)) − ∇fj(xj(kτ + j))
}

.

Further using Assumption 3 yields

E
[
∥xi(kτ + j + 1) − xi(kτ)∥2

]
=E

[∥∥∥xi(kτ + j) − xi(kτ) − α
(1

N

N∑
j=1

∇fj(xj(kτ)) − ∇fi(xi(kτ)) + ∇fj(xj(kτ + j))
)∥∥∥2]

+ α2E
[∥∥∥ 1

N

N∑
j=1

gj(xj(kτ)) − 1
N

N∑
j=1

∇fj(xj(kτ)) + ∇fi(xi(kτ)) − gi(xi(kτ))

+ gj(xj(kτ + j)) − ∇fj(xj(kτ + j))
∥∥∥2]

. (35)

For the first term of the right hand side of (35), using the inequality

∥a + b∥2 ≤ (1 + ϵ)∥a∥2 + (1 + 1
ϵ

)∥b∥2

and Lemma 3 yields

E
[∥∥∥xi(kτ + j) − xi(kτ) − α

(1
N

N∑
j=1

∇fj(xj(kτ)) − ∇fi(xi(kτ)) + ∇fj(xj(kτ + j))
)∥∥∥2]

≤(1 + 1
ϵ

)E[∥xi(kτ + j) − xi(kτ)∥2] + (1 + ϵ)α2E[∥∇f(xj(kτ))∥2], (36)

for any ϵ > 0 under a stepsize satisfying 0 < αL ≤ 1.

29

Under review as submission to TMLR

For the second term of the right hand side of (35), we have

E
[∥∥∥ 1

N

N∑
j=1

gj(xj(kτ)) − 1
N

N∑
j=1

∇fj(xj(kτ)) + ∇fi(xi(kτ)) − gi(xi(kτ))

+ gj(xj(kτ + j)) − ∇fj(xj(kτ + j))
∥∥∥2]

≤ 3
N

N∑
j=1

E[∥gj(xj(kτ)) − ∇fj(xj(kτ))∥2} + 3E[∥∇fi(xi(kτ)) − gi(xi(kτ))∥2]

+ 3E[∥gj(xj(kτ + j)) − ∇fj(xj(kτ + j))∥2], (37)

for any i ∈ S.

Using Assumption 3 and (37) leads to

E
[∥∥∥ 1

N

N∑
j=1

gj(xj(kτ)) − 1
N

N∑
j=1

∇fj(xj(kτ)) + ∇fi(xi(kτ)) − gi(xi(kτ))

+ gj(xj(kτ + j)) − ∇fj(xj(kτ + j))
∥∥∥2]

≤ 9σ2, (38)

for any i ∈ S.

Combining (35), (36), and (38), we can obtain

E[∥xi(kτ + j + 1) − xi(kτ)∥2]

≤(1 + 1
ϵ

)E[∥xi(kτ + j) − xi(kτ)∥2] + (1 + ϵ)α2E[∥∇f(xj(kτ))∥2] + 9α2σ2.

Moreover, for any 0 ≤ j < τ , we can obtain

E
[
∥xi(kτ + j) − xi(kτ)∥2

]
≤

{
(1 + ϵ)α2E[∥∇f(xj(kτ))∥2] + 9α2σ2

} (1 + 1
ϵ)j − 1

(1 + 1
ϵ) − 1

.

Selecting ϵ = τ implies

E
[
∥xi(kτ + j) − xi(kτ)∥2

]
≤ 12τ2Lα2E[f(xj(kτ)) − f(x∗)] + 27τα2σ2,

since we have ∥∇f(xj(kτ))∥2 ≤ 2L(f(xj(kτ)) − f(x∗)) from Assumption 1 and the convex property of fi(x)
for any i ∈ S. The proof of Lemma 7 is complete.

G Proof of Theorem 3

For the convenience of expression, we use gi(xi(t)) to denote ∇fi(xi(t), ξi(t)) for any i ∈ S and t ≥ 0.

From Appendix C, for any j = 1, 2, · · · , τ − 1, we have
xi(kτ + j) = xi(kτ + j − 1) − αyi(kτ + j − 1),
yi(kτ + j) = yi(kτ + j − 1) + gi(xi(kτ + j)) − gi(xi(kτ + j − 1))
yi(kτ + j) = yi(kτ) + gi(xi(kτ + j)) − gi(xi(kτ)).

(39)

Moreover, similar to the derivation of Lemma 4, we have

yi(kτ) = 1
N

N∑
j=1

gj(xj(kτ)) (40)

30

Under review as submission to TMLR

for any i ∈ S.

Combining (39) and (40), we have

xi(kτ + k) = xi(kτ) − α

N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h))

and further

∥xi(kτ + k) − x∗∥2 − ∥xi(kτ) − x∗∥2

= − 2α⟨ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h)), xi(kτ) − x∗⟩ + α2∥ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h))∥2. (41)

For the term −2α⟨ 1
N

∑N
j=1

∑τ−1
h=0 gj(xj(kτ + h)), xi(kτ) − x∗⟩, we have

− 2αE
[
⟨ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h)), xi(kτ) − x∗⟩
]

=2α

N

N∑
j=1

τ−1∑
h=0

E
[
⟨x∗ − xj(kτ + h), ∇fj(xj(kτ + h))⟩

]

+ 2α

N

N∑
j=1

τ−1∑
h=0

E
[
⟨xj(kτ + h) − xi(kτ), ∇fj(xj(kτ + h))⟩

]

From Assumption 1 and the convexity of fi(x), we can obtain

− 2αE
[
⟨ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h)), xi(kτ) − x∗⟩
]

≤2α

N

N∑
j=1

τ−1∑
h=0

E
[
fj(x∗) − fj(xj(kτ + h))

]

+ 2α

N

N∑
j=1

τ−1∑
h=0

E
[
fj(xj(kτ + h)) − fj(xi(kτ)) + L

2 ∥xj(kτ + h) − xi(kτ)∥2
]
,

which further implies

− 2αE
[
⟨ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h)), xi(kτ) − x∗⟩
]

≤2ατE
[
f(x∗) − f(xi(kτ))

]
+ αL

N

N∑
j=1

τ−1∑
h=0

E
[
∥xj(kτ + h) − xi(kτ)∥2

]
.

From Lemma 7 we have

E
[
∥xi(kτ + h) − xi(kτ)∥2

]
≤ 12τ2Lα2E

[
f(xj(kτ)) − f(x∗)

]
+ 27τα2σ2

for 1 ≤ h < τ .

Combining the preceding two inequalities leads to

− 2αE
[
⟨ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h)), xi(kτ) − x∗⟩
]

≤2ατE
[
f(x∗) − f(xi(kτ))

]
+ 12τ3L2α3E

[
f(xj(kτ)) − f(x∗)

]
+ 27τ2Lα3σ2.

31

Under review as submission to TMLR

If the stepsize satisfies 0 < 6ταL ≤ 1, we have

− 2αE
[
⟨ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h)), xi(kτ) − x∗⟩
]

≤2ατE
[
f(x∗) − f(xi(kτ))

]
+ 2τ2Lα2E

[
f(xj(kτ)) − f(x∗)

]
+ 9τ2α2σ2. (42)

For the term α2∥ 1
N

∑N
j=1

∑τ−1
h=0 gj(xj(kτ + h))∥2 in (41), we have

α2
∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h))
∥∥∥2

≤2α2
∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj(kτ + h)) − gj(xj(kτ))

}∥∥∥2
+ 2α2

∥∥∥ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ))
∥∥∥2

. (43)

Using the inequality ∥a + b + c∥2 ≤ 3∥a∥2 + 3∥b∥2 + 3∥c∥2, we have

α2
∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj(kτ + h)) − gj(xj(kτ))

}∥∥∥2

≤3τα2

N

N∑
j=1

τ−1∑
h=0

∥∥∥∇fj(xj(kτ + h)) − ∇fj(xj(kτ))
∥∥∥2

+ 3τα2

N

N∑
j=1

τ−1∑
h=0

∥∥∥gj(xj(kτ + h)) − ∇fj(xj(kτ + h))
∥∥∥2

+ 3τα2

N

N∑
j=1

τ−1∑
h=0

∥∥∥∇fj(xj(kτ)) − gj(xj(kτ))
∥∥∥2

. (44)

Using Assumption 1, we have the following inequality from (44):

α2
∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj(kτ + h)) − gj(xj(kτ))

}∥∥∥2

≤3τL2α2

N

N∑
j=1

τ−1∑
h=0

∥∥∥xj(kτ + h) − xj(kτ)
∥∥∥2

+ 3τα2

N

N∑
j=1

τ−1∑
h=0

∥∥∥gj(xj(kτ + h)) − ∇fj(xj(kτ + h))
∥∥∥2

+ 3τα2

N

N∑
j=1

τ−1∑
h=0

∥∥∥∇fj(xj(kτ)) − gj(xj(kτ))
∥∥∥2

. (45)

Combining (45) and Assumption 3, we arrive at

2α2E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj(kτ + h)) − gj(xj(kτ))

}∥∥∥2]

≤6τα2L2

N

N∑
j=1

τ−1∑
h=0

E
[∥∥∥xj(kτ + h) − xj(kτ)

∥∥∥2]
+ 12α2τ2σ2. (46)

Lemma 7 and (46) imply

2α2E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj(kτ + h)) − gj(xj(kτ))

}∥∥∥2]
≤72τ4L3α4E[f(xj(kτ)) − f(x∗)] + 162τ3L2α4σ2 + 12α2τ2σ2. (47)

32

Under review as submission to TMLR

For the term ∥ 1
N

∑N
j=1

∑τ−1
h=0 gj(xj(kτ))∥2 in (43), we have

2α2∥ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ))∥2 ≤ 4α2τ2

N

N∑
j=1

∥gj(xj(kτ)) − ∇fj(xj(kτ))∥2 + 4α2τ2∥∇f(xj(kτ))∥2.

Thus, from Lemma 7 and Assumption 3, we have

2α2E[∥ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ))∥2] ≤ 4α2τ2σ2 + 8α2τ2LE[f(xj(kτ)) − f(x∗)]. (48)

Combining (43), (47), and (48), we have

α2E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h))
∥∥∥2]

≤(72τ4L3α4 + 8α2τ2L)E[f(xj(kτ)) − f(x∗)] + 162τ3L2α4σ2 + 16α2τ2σ2.

If the stepsize satisfies 0 < 6ταL ≤ 1, then we have

α2E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h))
∥∥∥2]

≤ 10τ2Lα2E[f(xj(kτ)) − f(x∗)] + 25α2τ2σ2. (49)

Combining (41), (42), and (49), we have

E
[
∥xi(kτ + k) − x∗∥2

]
− E

[
∥xi(kτ) − x∗∥2

]
≤ (2ατ − 12τ2Lα2)E

[
f(x∗) − f(xi(kτ))

]
+ 34τ2α2σ2.

If the stepsize satisfies 0 < α < 1
6τL , we have

1
K

K−1∑
k=0

E
[
f(xi(kτ)) − f(x∗)

]
≤ E[∥xi(0) − x∗∥2]

(2ατ − 12τ2Lα2)K + Aσ2,

where
A = 34τ2α2

2ατ − 12τ2Lα2 .

Thus, we have

E
[
f(1

K

K−1∑
k=0

xi(kτ))
]

− f(x∗) ≤ E[∥xi(0) − x∗∥2]
(2ατ − 12τ2Lα2)K + Aσ2,

for any i ∈ S, which completes the proof.

H Supporting Lemmas for the Proof of Theorem 4

Lemma 8. Under Assumption 1, if the stepsize satisfies 0 < α ≤ 1
τL , we have

E[∥xi(kτ + h) − xi(kτ)∥2] ≤ 18τ2α2E[∥∇f(xi(kτ))∥2] + 81τα2σ2,

for any 1 ≤ h < τ and i ∈ S.

Proof. From (56) and (57), we have

xi(kτ + j + 1) = xi(kτ + j) − α
{ 1

N

N∑
j=1

gj(xj(kτ)) − gi(xi(kτ)) + gj(xj(kτ + j))
}

.

33

Under review as submission to TMLR

The above equation implies

xi(kτ + j + 1) − xi(kτ)

=xi(kτ + j) − xi(kτ) − α
{ 1

N

N∑
j=1

∇fj(xj(kτ)) − ∇fi(xi(kτ)) + ∇fj(xj(kτ + j))
}

− α
{ 1

N

N∑
j=1

gj(xj(kτ)) − 1
N

N∑
j=1

∇fj(xj(kτ)) + ∇fi(xi(kτ)) − gi(xi(kτ))

+ gj(xj(kτ + j)) − ∇fj(xj(kτ + j))
}

.

From Assumption 3, we obtain

E
[
∥xi(kτ + j + 1) − xi(kτ)∥2

]
=E

[∥∥∥xi(kτ + j) − xi(kτ) − α
(1

N

N∑
j=1

∇fj(xj(kτ)) − ∇fi(xi(kτ)) + ∇fj(xj(kτ + j))
)∥∥∥2]

+ α2E
[∥∥∥ 1

N

N∑
j=1

gj(xj(kτ)) − 1
N

N∑
j=1

∇fj(xj(kτ)) + ∇fi(xi(kτ)) − gi(xi(kτ))

+ gj(xj(kτ + j)) − ∇fj(xj(kτ + j))
∥∥∥2]

. (50)

For the first term of (50), we have

E
[∥∥∥xi(kτ + j) − xi(kτ) − α

(1
N

N∑
j=1

∇fj(xj(kτ)) − ∇fi(xi(kτ)) + ∇fi(xi(kτ + j))
)∥∥∥2]

≤(1 + 1
τ

)E
[∥∥∥xi(kτ + j) − xi(kτ) − α

(
∇fi(xi(kτ + j)) − ∇fi(xi(kτ))

)∥∥∥2]
+ (1 + τ)α2E

[∥∥∥ 1
N

N∑
j=1

∇fj(xj(kτ))
∥∥∥2]

. (51)

Assumption 1 and (51) imply

E
[∥∥∥xi(kτ + j) − xi(kτ) − α

(1
N

N∑
j=1

∇fj(xj(kτ)) − ∇fi(xi(kτ)) + ∇fi(xi(kτ + j))
)∥∥∥2]

≤(1 + αL)2(1 + 1
τ

)E
[
∥xi(kτ + j) − xi(kτ)∥2

]
+ (1 + τ)α2E

[
∥∇f(xj(kτ))∥2

]
. (52)

For the second term of (50), from Assumption 3, we have

E
[∥∥∥ 1

N

N∑
j=1

gj(xj(kτ)) − 1
N

N∑
j=1

∇fj(xj(kτ)) + ∇fi(xi(kτ)) − gi(xi(kτ))

+ gj(xj(kτ + j)) − ∇fj(xj(kτ + j))
∥∥∥2]

≤ 3
N

N∑
j=1

E
[
∥gj(xj(kτ)) − ∇fj(xj(kτ))∥2

]
+ 3E

[
∥∇fi(xi(kτ)) − gi(xi(kτ))∥2

]
+ 3E

[
∥gj(xj(kτ + j)) − ∇fj(xj(kτ + j))∥2

}
.

34

Under review as submission to TMLR

Combining the above inequality and Assumption 3 implies

E
[∥∥∥ 1

N

N∑
j=1

gj(xj(kτ)) − 1
N

N∑
j=1

∇fj(xj(kτ)) + ∇fi(xi(kτ)) − gi(xi(kτ))

+ gj(xj(kτ + j)) − ∇fj(xj(kτ + j))
∥∥∥2]

≤ 9σ2. (53)

Combining (50), (52), and (53) leads to

E
[
∥xi(kτ + j + 1) − xi(kτ)∥2

]
≤(1 + αL)2(1 + 1

τ
)E

[
∥xi(kτ + j) − xi(kτ)∥2

]
+ (1 + τ)α2E

[
∥∇f(xj(kτ))∥2

]
+ 9α2σ2.

Because the stepsize satisfies 0 < α ≤ 1
τL , we have

E
[
∥xi(kτ + j) − xi(kτ)∥2

]
≤

{
(1 + τ)α2E[∥∇f(xj(kτ))∥2] + 9α2σ2

} j−1∑
h=0

(
(1 + 1

τ
)3

)h

,

which further implies

E
[
∥xi(kτ + j) − xi(kτ)∥2

]
≤

{
(1 + τ)α2E[∥∇f(xj(kτ))∥2] + 9α2σ2

} (1 + 1
τ)3j − 1

(1 + 1
τ)3 − 1

, (54)

for any 0 ≤ j < τ and i ∈ S.

In addition, we have

(1 + 1
τ

)3j − 1 ≤ 33, (1 + 1
τ

)3 − 1 ≥ 3
τ

, (55)

for any 0 ≤ j < τ .

Therefore, combining (54) and (55) leads to

E
[
∥xi(kτ + j) − xi(kτ)∥2

]
≤18τ2α2E[∥∇f(xj(kτ))∥2] + 81τα2σ2,

which completes the proof.

I Proof of Theorem 4

For the convenience of expression, we use gi(xi(t)) to denote ∇fi(xi(t), ξi(t)) for any i ∈ S and t ≥ 0. From
Appendix C, for any j = 1, 2, · · · , τ − 1, we have

xi(kτ + j) = xi(kτ + j − 1) − αyi(kτ + j − 1),
yi(kτ + j) = yi(kτ + j − 1) + gi(xi(kτ + j)) − gi(xi(kτ + j − 1))
yi(kτ + j) = yi(kτ) + gi(xi(kτ + j)) − gi(xi(kτ)).

(56)

Moreover, similar to the derivation of Lemma 4, we have

yi(kτ) = 1
N

N∑
j=1

gj(xj(kτ)) (57)

for any i ∈ S.

35

Under review as submission to TMLR

From (56) and (57), we have

xi(kτ + k) = xi(kτ) − α

N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h)),

for any i ∈ S. Thus, using Assumption 1, we arrive at

f(xi(kτ + τ))

≤f(xi(kτ)) − α⟨∇f(xi(kτ)), 1
N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ))⟩ + α2L

2 ∥ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h))∥2

− α⟨∇f(xi(kτ)), 1
N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h)) − 1
N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ))⟩

− α⟨∇f(xi(kτ)), 1
N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h)) − 1
N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h))⟩. (58)

Taking the expectation of both sides of (58) leads to

E[f(xi(kτ + τ))]

≤E[f(xi(kτ))] − ατE[∥∇f(xi(kτ))∥2] + α2L

2 E
[
∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h))∥2
]

+ αE
[
∥∇f(xi(kτ))∥∥ 1

N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ + h)) − 1
N

N∑
j=1

τ−1∑
h=0

∇fj(xj(kτ))∥
]
. (59)

Using the inequality 2ab ≤ a2 + b2, the relation in (59), and Assumption 3, we have

E[f(xi(kτ + τ))]

≤E[f(xi(kτ))] − ατ

2 E
[
∥∇f(xi(kτ))∥2

]
+ α2L

2 E
[
∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h))∥2
]

+ αL2

2N

N∑
j=1

τ−1∑
h=0

E
[
∥xj(kτ + h) − xj(kτ)∥2

]
. (60)

For the term αL2

2N

∑N
j=1

∑τ−1
h=0 E[∥xj(kτ + h) − xj(kτ)∥2] on the right hand side of the preceding inequality,

from Lemma 8, we have

αL2

2N

N∑
j=1

τ−1∑
h=0

E
[
∥xj(kτ + h) − xj(kτ)∥2

]
≤ αL2

2N

N∑
j=1

τ−1∑
h=0

{
18τ2α2E[∥∇f(xj(kτ))∥2] + 81τα2σ2

]
. (61)

The stepsize condition 0 < α ≤ 1
6τL and (61) imply

αL2

2N

N∑
j=1

τ−1∑
h=0

E
[
∥xj(kτ + h) − xj(kτ)∥2

]
≤ 3τ2α2LE

[
∥∇f(xj(kτ))∥2

]
+ 7τ2α2Lσ2. (62)

36

Under review as submission to TMLR

For the term ∥ 1
N

∑N
j=1

∑τ−1
h=0 gj(xj(kτ + h))∥2 in (60), we have

α2
∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h))
∥∥∥2

≤2α2
∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj(kτ + h)) − gj(xj(kτ))

}∥∥∥2
+ 2α2

∥∥∥ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ))
∥∥∥2

. (63)

For the term ∥ 1
N

∑N
j=1

∑τ−1
h=0{gj(xj(kτ + h)) − gj(xj(kτ))}∥2 in (60), we have

α2
∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj(kτ + h)) − gj(xj(kτ))

}∥∥∥2

≤τα2

N

N∑
j=1

τ−1∑
h=0

∥∥∥(
∇fj(xj(kτ + h)) − ∇fj(xj(kτ))

)
+

(
gj(xj(kτ + h)) − ∇fj(xj(kτ + h))

)
+

(
∇fj(xj(kτ)) − gj(xj(kτ))

)∥∥∥2
,

which further implies

α2
∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj(kτ + h)) − gj(xj(kτ))

}∥∥∥2

≤3τL2α2

N

N∑
j=1

τ−1∑
h=0

∥∥∥xj(kτ + h) − xj(kτ)
∥∥∥2

+ 3τα2

N

N∑
j=1

τ−1∑
h=0

∥∥∥∇fj(xj(kτ)) − gj(xj(kτ))
∥∥∥2

+ 3τα2

N

N∑
j=1

τ−1∑
h=0

∥∥∥gj(xj(kτ + h)) − ∇fj(xj(kτ + h))
∥∥∥2

. (64)

From (64) and Assumption 3, we have

2α2E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj(kτ + h)) − gj(xj(kτ))

}∥∥∥2]

≤6τα2L2

N

N∑
j=1

τ−1∑
h=0

E
[∥∥∥xj(kτ + h) − xj(kτ)

∥∥∥2]
+ 12α2τ2σ2.

Combining Lemma 8 and the above inequality yields

2α2E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj(kτ + h)) − gj(xj(kτ))

}∥∥∥2]
≤108τ4L2α4E[∥∇f(xj(kτ))∥2] + 486τ3L2α4σ2 + 12α2τ2σ2. (65)

For the term
∥∥∥ 1

N

∑N
j=1

∑τ−1
h=0 gj(xj(kτ))

∥∥∥2
in (63), we have

2α2E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ))
∥∥∥2]

≤4α2τ2E
[∥∥∥ 1

N

N∑
j=1

{
gj(xj(kτ)) − ∇fj(xj(kτ))

}∥∥∥2]
+ 4α2τ2E

[∥∥∥ 1
N

N∑
j=1

{
∇fj(xj(kτ))

}∥∥∥2]
. (66)

37

Under review as submission to TMLR

From (66) and Assumption 3, we have

2α2E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ))
∥∥∥2]

≤4α2τ2σ2 + 4α2τ2E[∥∇f(xi(kτ))∥2], (67)

for any i ∈ S.

Using the inequality ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2, we have

α2
∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h))
∥∥∥2

≤2α2
∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

{
gj(xj(kτ + h)) − gj(xj(kτ))

}∥∥∥2
+ 2α2

∥∥∥ 1
N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ))
∥∥∥2

.

Combining (63), (65), and (67) leads to

α2E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h))
∥∥∥2]

≤108τ4L2α4E[∥∇f(xj(kτ))∥2] + 486τ3L2α4σ2 + 16α2τ2σ2 + 4α2τ2E[∥∇f(xj(kτ))∥2].

Plugging the stepsize condition 0 < 6ταL ≤ 1 into the preceding inequality leads to

α2E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h))
∥∥∥2]

≤ 7τ2α2E[∥∇f(xj(kτ))∥2] + 30τ2α2σ2,

i.e.,

Lα2

2 E
[∥∥∥ 1

N

N∑
j=1

τ−1∑
h=0

gj(xj(kτ + h))
∥∥∥2]

≤ 7
2τ2Lα2E[∥∇f(xj(kτ))∥2] + 15τ2α2Lσ2. (68)

From (60), (62), and (68), we have

E[f(xi(kτ + τ))] ≤E[f(xi(kτ))] − ατ

2 E[∥∇f(xi(kτ))∥2] + 13
2 τ2Lα2E[∥∇f(xj(kτ))∥2]

+ 22τ2α2Lσ2,

i.e., (ατ

2 − 13
2 τ2Lα2

)
E[∥∇f(xj(kτ))∥2] ≤ E[f(xi(kτ))] − E[f(xi(kτ + τ))] + 22τ2α2Lσ2.

Under a stepsize satisfing 0 < α < 1
13τL , we have

1
K

K−1∑
k=0

E[∥∇f(xi(kτ))∥2] ≤ E[f(xi(0))] − f(x∗)
(ατ

2 − 13
2 τ2Lα2)K

+ 44τ2α2L

ατ − 13τ2Lα2 σ2

for any i ∈ S, which completes the proof.

38

	Introduction
	Preliminaries
	Problem Setting

	Main Results
	Recursion-Based Mechanism
	Algorithm Descriptions
	Convergence Analysis under Deterministic Gradients
	Convergence Analysis under Stochastic Gradients

	Comparisons with Existing Works
	More Efficient Memory and Communication
	Improved Convergence Rates
	Larger Stepsizes

	Experiments
	Conclusion
	Additional Numerical Experiments
	Additional CNN Training Results with A Different Non-IID Level
	Comparison of FedRecu, SCAFFOLD, FedTrack, and FedLin Using Their Best-Found Stepsizes for CNN Training
	Comparison of FedRecu and EXTRA for CNN Training
	Comparison of FedRecu, SCAFFOLD, SCAFFOLD-M, Scaffnew, and FedLin for CNN Training
	Additional evaluation results using least squares regression

	Supporting Lemmas For the Proof of Theorem 1
	Proof of Theorem 1
	Supporting Lemmas for the Proof of Theorem 2
	Proof of Theorem 2
	Supporting Lemmas for the Proof of Theorem 3
	Proof of Theorem 3
	Supporting Lemmas for the Proof of Theorem 4
	Proof of Theorem 4

