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ABSTRACT

Analogical reasoning often involves statements of the form α : β :: γ : δ, known
as proportional analogies, which can be interpreted as “α differs from β as γ dif-
fers from δ” and “β differs from α as δ differs from γ”. In this paper, we study
the learnability of proportional analogies from both theoretical and experimen-
tal perspectives. We show that, in the Boolean setting—where each element of a
proportional analogy is represented as a Boolean vector—proportional analogies
are efficiently PAC learnable. To validate this in practice, we instantiate propor-
tional analogies in a perceptual scenario with 4-cell images, each cell containing a
shape and a color. We automatically generate a dataset of valid and invalid propor-
tional analogies and train lightweight artificial neural networks (ANNs) as eval-
uators. We compare our ANN-based models against state-of-the-art Large Lan-
guage Models (LLMs) in proportional analogy verification (checking correctness),
proportional analogy generation (producing missing elements), and proportional
analogy generalization (applying knowledge acquired during learning to unseen
features). Our results show that lightweight ANNs i) match LLMs in verification
and generalization, and ii) outperform LLMs in generation, demonstrating that
simple, efficient models can effectively learn and generalize proportional analo-
gies while using far fewer resources.

1 INTRODUCTION

Analogies were initially introduced in the works of Aristotle (2009). In recent years, they have
garnered the attention of many researchers and have even been characterized as being “at the core
of cognition” (Hofstadter, 2001; Gentner et al., 2001). Although such a strong stance might not be
universally shared, analogies have sparked renewed interest over the last fifteen years, especially
in NLP, with research on lexical analogies (Mikolov et al., 2013; Gladkova et al., 2016; Rogers
et al., 2017), analogies between sentences (Zhu & de Melo, 2020), and collections of procedural
texts (Sultan & Shahaf, 2022), as well as on the analogical reasoning capabilities of Large Language
Models (LLMs) (Webb et al., 2023; Hodel & West, 2024), and on the use of analogy-based Chain
of Thought (CoT) to improve reasoning in LLMs (Yasunaga et al., 2024; Qin et al., 2025).
In general, analogy involves drawing a parallel between two situations (Gentner, 1983; Winston,
1980), from which one tentatively infers that what holds true in the first situation may also apply
to the second. When the situations come from seemingly unrelated domains, the analogy can be
particularly insightful. For example, a city’s transportation system can be compared to the human
circulatory system. Roads, highways, and transit routes distribute people and goods throughout the
city, much like blood vessels transport nutrients and oxygen through the body. Although there is
no consensus on how to model the phenomenon of analogies, starting from the seminal work of
Hesse (1959), a significant amount of work (Prade & Richard, 2021; 2017; Miclet & Prade, 2009;
Barbot et al., 2019b; Mbengue et al., 2025; Olivier et al., 2024; Lepage & Couceiro, 2024; Marquer
& Couceiro, 2024) conceives them as statements of the form α : β :: γ : δ, which reads “α is to β as
γ is to δ”, with α, β, γ, δ denoting logical formulas, concepts, or, more generally, multi-dimensional
vectors. These are generally called proportional analogies.
In this paper, we focus on proportional analogies between vectors of binary (or Boolean) features. As
shown in (Barbot et al., 2019a; Herzig et al., 2024), these vectors can be viewed as complete terms
in the sense of propositional logic—that is, conjunctions of literals in which each atomic proposition
appears exactly once, either as a positive or a negative literal. Following Prade & Richard (2017;
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2018), we consider a difference-based interpretation of the notion of proportional analogy. Roughly
speaking, according to the difference-based interpretation, a proportional analogy α : β :: γ : δ
means that “α differs from β as γ differs from δ”, and “β differs from α as δ differs from γ”.
The aim of this paper is to investigate the learnability of this theoretically well-founded and widely
studied notion of proportional analogy, from both a theoretical and an experimental point of view.
We consider both proportional analogy verification and generation. Verification involves checking
whether a quadruplet α : β :: γ : δ forms a valid proportional analogy, while generation involves
producing a δ such that, given α, β, and γ, the quadruplet α : β :: γ : δ constitutes a valid propor-
tional analogy.
On the theoretical side, we show that in the Boolean setting—that is, when the elements of a propor-
tional analogy can be represented as complete terms of propositional logic corresponding to Boolean
vectors—both proportional analogy verification and generation are efficiently PAC learnable.
On the experimental side, we focus on what can be described as a micro-domain of image transfor-
mations (Mitchell, 1993; Hofstadter & Mitchell, 1994), where each image is represented as a grid
of cells containing shapes of various types and colors. Within this framework, we examine pro-
portional analogies between such images. We construct both propositional logic and corresponding
vector representations of proportional analogy instances. Using these vectorial forms, we auto-
matically generate a dataset comprising valid and invalid instances of proportional analogies. This
dataset is then used to train simple feedforward artificial neural networks (ANN) to perform pro-
portional analogy verification and generation. Our results show that these ANN-based models learn
efficiently, and quickly achieve a high level of accuracy.
We further compare the performance of our lightweight models, in both verification and generation,
to that of state-of-the-art (SoTA) Large Language Models (LLMs) in both zero-shot and fine-tuned
settings. Moreover, we evaluate their generalization capabilities relative to those of LLMs, namely
their capacity to correctly verify proportional analogies in a more general setting (e.g., where images
vary in both shape types and colors present in the grid cells) after being trained on a more restricted
setting in which some aspects of the images played no role (e.g., colors remain fixed across the
images). Our experimental results show that lightweight ANN-based models (i) are not worse than
the more resource-intensive LLMs in learning proportional analogy verification and generalizing it,
and (ii) outperform LLMs in learning proportional analogy generation.

MAIN CONTRIBUTIONS AND ROADMAP

Overall, the contributions of this paper can be summarized in three points:

• Building on the performance guarantees of Couceiro et al. (2017; 2018), we show that
proportional analogies are efficiently PAC-learnable in the Boolean setting.

• We generate a dataset and use it to evaluate the analogy verification and generation capa-
bilities of simple and lightweight ANN-based models in comparison with LLMs, demon-
strating the superiority of our models on these specific tasks.

• We assess the generalizability of our lightweight ANN-based models through a series of
experiments on the generated dataset. Specifically, we train them on certain configurations
and test it on previously unseen ones (e.g., with different colors and shapes), showing that
our architectures remain competitive with LLMs both in zero-shot and fine-tuned settings.

The paper is structured as follows. Section 2 outlines the theoretical foundations of the difference-
based interpretation of proportional analogy. Section 3 provides result about efficient PAC learn-
ability of proportional analogy verification and generation. Section 4 introduces the perceptual task
of identifying proportional analogies between images. In Section 5, we describe the neural network
architectures for verification and generation as well as the training methodology. Section 6 presents
the evaluation of our ANN-based models and their comparison with LLMs. After having discussed
related work on analogical reasoning in LLMs in Section 7, we conclude.

2 BACKGROUND ON PROPORTIONAL ANALOGY

As pointed out in the introduction, we consider proportional analogies between complete terms.
A complete term can be represented as a subset α of atomic propositions from a set of atomic
propositions P. The atomic propositions in α are the true ones (the positive literals), those in P \ α
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are the false ones (the negative literals). For example, suppose P = {p, q, r}. Then, the subset {p, q}
corresponds to the complete term p ∧ q ∧ ¬r.

Given four terms α, β, γ, δ ⊆ P, we say that “α is to β as γ is to δ”, denoted α : β :: γ : δ, if

α \ β = γ \ δ and β \ α = δ \ γ. (1)

As demonstrated by Prade & Richard (2018), this definition of proportional analogy satisfies the
following three properties, which are commonly considered rationality postulates for proportional
analogy: reflexivity (α : β :: α : β), symmetry (if α : β :: γ : δ then γ : δ :: α : β), and central
permutation (if α : β :: γ : δ then α : γ :: β : δ). It moreover satisfies the properties of unicity (if
α : β :: γ : δ and α : β :: γ : ϵ then δ = ϵ), and transitivity (if α : β :: γ : δ and γ : δ :: ϵ : ζ then
α : β :: ϵ : ζ). Moreover, as demonstrated by Herzig et al. (2024), this difference-based definition of
proportional analogy between complete terms is equivalent to a formulation based on the concepts
of ”fore” and ”back” transformations. In particular, α : β :: γ : δ holds if

∃f1, t1, f2, t2 ⊆ P such that α
f1,t1−−−→ β, γ

f1,t1−−−→ δ, β
f2,t2−−−→ α and δ

f2,t2−−−→ γ,

where, for every α, β, f, t ⊆ P, α
f,t−−→ β if and only if β = (α \ f) ∪ t.

For example, the proportional analogy {p, q} : {p, r} :: {q} : {r} holds since {p, q} {q},{r}−−−−−→ {p, r},

{q} {q},{r}−−−−−→ {r}, {p, r} {r},{q}−−−−−→ {p, q} and {r} {r},{q}−−−−−→ {q}. The alternative way to verify the
validity of the previous proportional analogy is to check that:

{p, q} \ {p, r} = {q} = {q} \ {r} and {p, r} \ {p, q} = {r} = {r} \ {q}.

3 LEARNABILITY

Two problems for proportional analogy are definable: verification and generation. On the one hand,
verification is the decision problem of checking whether, given four terms α, β, γ, δ ⊆ P, the propor-
tional analogy α : β :: γ : δ holds. On the other hand, generation is the function/search problem of
finding a term δ ⊆ P such that, given three terms α, β, γ ⊆ P, the proportional analogy α : β :: γ : δ
holds. We enumerate the atomic propositions in P by means of a bijection e : {1, . . . , |P|} −→ P.
We are going to use this enumeration to provide a vector representation of terms.

It is straightforward to see that the verification problem is equivalent to the problem of computing
the function fverif :

(
{0, 1}4

)|P| −→ {0, 1}, such that for all x1, . . . ,x|P| ∈ {0, 1}4,

fverif (x1, . . . ,x|P|) = 1 iff ∀i ∈ {1, . . . , |P|}, floc(xi) = 1,

where floc(xi) = 1 iff xi(1) ·
(
1 − xi(2)

)
= xi(3) ·

(
1 − xi(4)

)
and xi(2) ·

(
1 − xi(1)

)
=

xi(4) ·
(
1− xi(3)

)
, with xi(j) being the j-th bit of the 4-bit vector xi.

Notice that the function fverif is not linearly separable. To see this, consider the case |P| = 1 and ob-
serve that fverif ((0), (0), (0), (0)) = fverif ((1), (1), (1), (1)) = 1, while fverif ((0), (1), (1), (0)) =
0. Thus, the function fverif is not learnable by a single-layer perceptron.

The connection between the verification problem for analogical proportion and the function fverif
is highlighted by the following proposition.
Proposition 1. Let α1, α2, α3, α4 ⊆ P. Then,

α1 : α2 :: α3 : α4 holds iff fverif (x
(α1,α2,α3,α4)
1 , . . . ,x

(α1,α2,α3,α4)
|P| ) = 1,

where, for all i ∈ {1, . . . , |P|} and all j ∈ {1, . . . , 4}, we have x
(α1,α2,α3,α4)
i (j) = 1 iff e(i) ∈ αj .

Proof. See Appendix A.1.

Consequently, the generation problem is equivalent to the problem of computing the following func-

tion fgen :
(
{0, 1}3

)|P| −→ 2

(
{0,1}|P|

)
, such that for all x1, . . . ,x|P| ∈ {0, 1}3 and y ∈ {0, 1}|P|

y ∈ fgen(x1, . . . ,x|P|) iff fverif
(
(x1,y(1)), . . . , (x|P|,y(|P|))

)
= 1,
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where for every i ∈ {1, . . . , |P|}, (xi,y(i)) is the extension of the Boolean vector xi with the scalar
Boolean value y(i).

It is straightforward to see that the set fgen(x1, . . . ,x|P|) is a singleton. This is related to the unicity
property of proportional analogy, we mentioned in Section 2. Thus, the codomain of the function

fgen can be seen as {0, 1}|P| instead of 2
(
{0,1}|P|

)
.

The connection between the generation problem and the function fgen is highlighted by the follow-
ing proposition. We do not give the proof since it is analogous to the proof of Proposition 1.

Proposition 2. Let α1, α2, α3, α4 ⊆ P. Then,

α1 : α2 :: α3 : α4 holds iff yα4 ∈ fgen(x
(α1,α2,α3)
1 , . . . ,x

(α1,α2,α3)
|P| ),

where, for all i ∈ {1, . . . , |P|} and for all j ∈ {1, 2, 3},

x
(α1,α2,α3)
i (j) = 1 iff e(i) ∈ αj , and yα4(i) = 1 iff e(i) ∈ α4.

We conclude this section with a proof of the efficient PAC learnability of the functions fverif and
fgen . We remind the notion of efficient PAC learnability (Mohri et al., 2018). A function is PAC
learnable if there is an algorithm that, given random labeled examples from any input distribution,
can, with probability at least 1 − δ, produce a hypothesis whose error is at most ε using only a
polynomial number of samples in 1/ε and 1/δ. It is efficiently PAC learnable if the algorithm also
runs in polynomial time with respect to the input size, 1/ε, and 1/δ. In short, PAC learnability
guarantees data efficiency, while efficient PAC learnability guarantees both data and time efficiency.

Theorem 1. The functions fverif and fgen are both efficiently PAC learnable.

Proof. See Appendix A.2.

Theorem 1, together with Propositions 1 and 2, shows that both proportional analogy verification
and generation are efficiently PAC learnable.

4 PERCEPTIVE TASK

In this section, we introduce the perceptual scenario that will be used to evaluate the ability of a
trained artificial neural network to verify and generate proportional analogies. In this scenario, a
proportional analogy is defined between images of a grid whose cells may contain shapes of various
colours. In particular, we consider a n×n grid, k possible shape types, and m possible colours. Our
logical encoding of the scenario requires the following set of atomic propositions:

P =
{
tx,y,z : x, y ∈ D and z ∈ T

}
∪
{
cx,y,z : x, y ∈ D and z ∈ C

}
,

where D = {1, . . . , n}, T = {t1, . . . , tk}, and C = {c1, . . . , cm} are, respectively, the set of grid
dimensions, the set of shape types, and the set of colours. The atomic proposition tx,y,z stands
for “there is a shape of type z in the cell (x, y) of the grid”, while the atomic proposition cx,y,z
stands for “there is a shape of colour z in the cell (x, y) of the grid”. It is easy to verify that
|P| = |D| × |D| × |T | × |C|. For example, in the scenario of a 2 × 2 grid with 2 possible shape
types and 2 possible colours, we have |P| = 16. Thus, to represent the image of the grid, we need a
vector with 16 binary dimensions. In the scenario of a 2× 2 grid with 2 possible shape types and 3
possible colours, |P| = 24. Hence, in this case, to represent the image of the grid, we need a vector
with 24 binary dimensions.

Figure 1 provides an instance of proportional analogy in the case of a 2 × 2 grid, with a set of
two shape types T = {t, c}, and set of three colours C = {r, g, b}, where t, c, r, g and b stand,
respectively, for ‘triangle’, ‘circle’, ‘red’, ‘green’ and ‘blue’. The proportional analogy shown in the
figure can be formally represented as follows:

{t2,1,t, c2,1,g} : {t2,1,t, c2,1,r, t1,1,c, c1,1,r, c1,2,t, c1,2,b} ::

{t2,1,c, c2,1,g} : {t2,1,c, c2,1,r, t1,1,c, c1,1,r, c1,2,t, c1,2,b} (2)

4
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It is routine to verify that this is a valid proportional analogy according to the difference-based
interpretation formally defined in Section 2.

We assume that not all images are admissible. In particular, each cell in the grid can either be empty
or contain a single shape type in a given color. Consequently, in this perceptual scenario, and in
the corresponding dataset described in Section 5, the terms α, β, γ, and δ of a proportional analogy
α : β :: γ : δ can only be generated from the following set, which is a strict subset of 2P:

Term =
{
α ⊆ P :(∀x, y ∈ D,∀z ∈ T, if tx,y,z ∈ α then ∃z′ ∈ C s.t. cx,y,z′ ∈ α),

(∀x, y ∈ D,∀z ∈ T, if cx,y,z ∈ α then ∃z′ ∈ T s.t. tx,y,z′ ∈ α),

(∀x, y ∈ D,∀z, z′ ∈ T if tx,y,z, tx,y,z′ ∈ α then z = z′),

(∀x, y ∈ D,∀z, z′ ∈ C if cx,y,z, cx,y,z′ ∈ α then z = z′)
}

The cardinality of the set Term can be easily computed by noting that each cell in the grid admits
the following number of possible configurations:

n.cell = (|T | × |C|) + 1 (3)

Indeed, a cell can either be empty or contain a shape from T in a colour from C. Thus, the following
is the number of possible images of the grid:

n.img = n.cell|D|×|D| (4)

The number n.img corresponds to the cardinality of the set Term . Since a proportional analogy is a
quadruplet of images of the grid (i.e., of elements of Term), the following is the number of possible
proportional analogies that can be generated:

n.ap = n.img4 (5)

For example, in the case of a 2 × 2 grid, with a set of two shape types and a set of three colours,
approximately 33× 1012 proportional analogies can be generated.

Figure 1: A valid instance of proportional analogy

5 NEURAL ARCHITECTURE AND DATASET

In this section, we present how the dataset was constructed, along with the neural network architec-
tures used for proportional analogy verification and generation.

5.1 DATASET

To generate the data required for the experiments, we first define the set of shape types T and
colors C, following the example in Figure 1, which features D = 2 dimensions and therefore 2× 2
grids. We then generate images by combining these shape types and colors, obtaining the complete
set of images. Proportional analogies are formed as 4-tuples of images. For the experiments, we
constructed two datasets of different scales. The smaller dataset uses T = {s} and C = {r, g},
while the larger one uses T = {s, t} and C = {r, g, b}. The counts of cells, images, and proportional
analogies for each configuration are summarized in Table 5 given in Appendix A.3. From Equations
3, 4, and 5, it is clear that the dataset size grows exponentially with the number of shapes and colors.
To keep the dataset manageable, we restrict ourselves to using up to 2 shapes (square, triangle) and 3
colors (red, green, blue), which represents a reasonable compromise. The generated datasets, along
with the code used to create them, are publicly available in our repository.1 For the configuration

1The repository will be updated upon acceptance.
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with T = {s} and C = {r, g}, all 81 images are used to generate every possible proportional
analogy. Since the majority of these are invalid proportional analogies, we balance the dataset by
including all valid proportional analogies and randomly sampling an equal number of negative ones.
This results in the balanced ds12 dataset containing 183,290 instances. For the configuration with
T = {s, t} and C = {r, g, b}, generating proportional analogies from all 2,401 images would be
computationally prohibitive. Instead, we randomly sample 81 images—the same number used in
ds12— to generate proportional analogies, then we apply the same balancing procedure, yielding
the ds23 dataset with 29,210 instances. The smaller size of ds23, despite using the same number
of images to produce proportional analogy instances, is due to a lower proportion of valid instances
as the sets of shape types and colours expand. In all experimental settings, we follow the widely
accepted train–validation–test split of 70%–10%–20%. The number of instances after balancing for
each configuration is reported in Table 6 given in Appendix A.3.

5.2 MODEL FOR VERIFICATION

As part of this study, which aims to provide insights into how accurately and how quickly a
lightweight artificial neural network can learn proportional analogies, we strive to keep the experi-
mental setup as intuitive as possible. The objective is to develop a model capable of automatically
recognizing valid and invalid instances of proportional analogies, based on the difference-based
interpretation. To this end, we design, train, and evaluate a binary classifier that takes the vector
representation of a proportional analogy instance as input and outputs whether the instance is valid
or invalid.
We employ a simple feed-forward architecture consisting of a few linear layers, with dropout
and activation functions placed between them. We experimented with different numbers of linear
layers, aiming to keep the architecture as small as possible without sacrificing performance. The
overall design of the model is shown in Figure 2: the model for proportional analogy verification
is depicted on the left, while the one for proportional analogy generation, discussed in Section 5.3,
is on the right. In line with what we explained in Section 3, we produce one-hot representations in

Figure 2: Pipeline architecture. From left to right: model for verification, model for generation

the form of a fixed size quadruplets of Boolean vectors. For example, the following quadruplet of
Boolean vectors correponds to the valid proportional analogy of Figure 1:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0] : [0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0] ::

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0] : [0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0]
(6)

Booleans are transformed into real values and the vectors are fed as input to the ANN. Using the
encoded vectors from the train–dev–test split, we train a binary classification model with valid pro-
portional analogies represented by 1, or 0 otherwise. We experimented with various hyperparame-
ters to optimize the training process, including number of intermediate blocks, dropout rate, feature
reduction function for linear transformations, and activation function, all defined within a param-
eter grid. Our experiments indicate that optimal training is achieved with 2 intermediate blocks,
0.3 dropout rate, geometric progression function for feature reduction, and Rectified Linear Unit
(ReLU) as activation function. Additionally, a learning rate of 10−3 and a batch size of 64 were

6
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used during training. Overall, the models converged rapidly to near-perfect training accuracy within
fewer than 10 epochs, using a learning rate of 10−3 for both the models trained on ds12 and ds23.
The corresponding training accuracy and loss curves are presented in Figure 3 in the Appendix.

5.3 MODEL FOR GENERATION

Since we frame our generative task as a proportional analogy completion task, the model is designed
to predict the vector representation of a fourth image given the vector representations of a triplet of
three images. We employ a feed-forward neural network architecture for sequence generation, as
illustrated in Figure 2. The network consists of multiple fully connected (dense) layers with ReLU
activation functions, with dropout regularization applied between hidden layers to mitigate overfit-
ting. The final layer uses a Softmax activation to produce a probability distribution over the target
vocabulary. During training, the model is optimized to maximize the likelihood of the correct next
token given the input sequence, using cross-entropy loss. In our setup, the vocabulary size corre-
sponds to the discrete set of possible image tokens generated by our system’s image tokenization
scheme, denoted as n.img in Table 5 given in Appendix A.3. We adapt datasets ds12 and ds23, orig-
inally constructed for the verification task, introducing modifications to obtain ds12 g and ds23 g
for the generation task. Each valid proportional analogy α : β :: γ : δ is tokenized into individual
elements {α, β, γ, δ}, with the first three elements (α, β, γ) forming the input sequence and δ serv-
ing as the target output. For each dataset, the vocabulary is constructed using our original image
generator. This strategy reduces unwanted bias and promotes generalizability, as the vocabulary
remains fixed and is not limited to the subset of images appearing in the proportional analogies.
The train, validation, and test splits remain strictly disjoint. Dataset statistics are presented in Table
7. We train two separate models for this task, corresponding to ds12 g and ds23 g datasets. Each
model receives an input sequence of three tokens, with each token representing an image encoded
as a one-hot vector. Model validation is performed on the development set after every epoch, and
optimization is performed using cross-entropy loss. Empirically, we find that architectures with two
dense (fully connected) layers yield the best results. The optimal hyperparameters, determined on
the validation set, are a learning rate of 5× 10−3 over 30 epochs. Training progresses rapidly, with
models achieving high accuracy after only a few epochs and converging to near-perfect scores by
the end of training.

6 EVALUATION

We compare our approach with LLMs by evaluating performance on the two tasks: proportional
analogy verification and generation.

Zero-shot classification As Llama-3.1-8B-Instruct operates based on instruction prompts, we be-
gin by providing it with the following task-specific instruction:

“Given the descriptions of four images in the form of binary values representing
boolean features, answer only ’yes’ or ’no’ to indicate whether they form a valid
analogy. Do not provide any further explanation.”

Once the instruction is set, the representations of our analogical instances are passed to the model. A
response of “yes” is interpreted as identifying a valid proportional analogy, while “no” indicates an
invalid one. When compared to our model, Llama-3.1-8B-Instruct underperforms significantly. De-
spite the binary nature of the classification task, its highest accuracy reaches only 55.73%, whereas
our model achieves near-perfect results. Furthermore, across all other evaluation metrics—precision,
recall, and F1 score—our feed-forward neural network consistently and substantially outperforms
the large language model, regardless of the experimental setting. As we move from the ds12 to the
ds23 dataset, the number of features in the input vectors increases, and both models show improved
performance. This trend is promising for future work and warrants further investigation into how
input complexity affects model performance in analogical reasoning tasks.

Fine-tuned models for verification We selected several open-source and state-of-the-art models
from the MTEB — Multilingual Text Embedding Benchmark (Muennighoff et al., 2022) leader-
board for classification tasks and fine-tuned them for the sequence classification setting. The models
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Dataset Model Precision Recall F1 score Accuracy

ds12 Llama-3.1-8B-Instruct 53.11/79.64 95.97/15.69 68.38/26.21 55.73
ds12 Ours 100.0/99.88 99.88/100.0 99.94/99.94 99.94

ds23 Llama-3.1-8B-Instruct 62.21/73.53 81.84/50.38 70.69/59.79 66.09
ds23 Ours 100.0/99.97 99.97/100.0 99.98/99.98 99.98

Table 1: Evaluation scores of zero-shot Llama-3.1-8B-Instruct vs our model

were chosen not only for their overall performance but also for their comparable number of param-
eters, ensuring a fairer comparison. To improve computational efficiency, we applied Quantized
Low-Rank Adaptation (QLoRA) (Dettmers et al., 2023) with 4-bit NormalFloat (NF4) quantization
during fine-tuning. Table 2 presents the results obtained with the fine-tuned models.

Dataset Model Precision Recall F1 score Accuracy

ds12 Llama-3.1-8B 98.18/96.40 96.31/98.22 97.24/97.30 97.27
ds12 Mistral-7B-v0.3 99.96/99.80 99.80/99.96 99.88/99.88 99.88
ds12 Qwen3-8B 99.70/99.32 99.31/99.70 99.50/99.51 99.51
ds12 Ours 100.0/99.88 99.88/100.0 99.94/99.94 99.94

ds23 Llama-3.1-8B 99.06/98.73 98.72/99.07 98.89/98.90 98.90
ds23 Mistral-7B-v0.3 98.57/99.89 99.89/98.55 99.23/99.22 99.23
ds23 Qwen3-8B 99.41/99.59 99.59/99.41 99.50/99.50 99.50
ds23 Ours 100.0/99.97 99.97/100.0 99.98/99.98 99.98

Table 2: Evaluation scores on fine-tuned LLMs for analogy verification vs our model

The results indicate that pretrained LLMs, once fine-tuned, can tackle the proportional analogy
verification task with strong performance, though slightly underperform compared to our neural
network models. When taking the model sizes into consideration, our models of less than 1000
parameters punch well above its weight class.

Fine-tuned models for generation Using the same large language models selected for the ver-
ification task, we fine-tune them to predict the missing element δ that completes a valid analogy
α : β :: γ : δ, given (α, β, γ) as input. This setup mirrors the training objective of our feed-forward
model for generation. All models are trained, validated, and evaluated on identical train–dev–test
splits. Table 3 reports their performance.

Dataset Model Precision Recall F1 score Accuracy

ds12 g Llama-3.1-8B 99.8896 99.8997 99.8933 99.8965
ds12 g Mistral-7B-v0.3 98.8851 99.0667 98.8142 99.1505
ds12 g Qwen3-8B 98.7442 98.4103 98.5464 99.1068
ds12 g Ours 99.9904 99.9179 99.9537 99.9673

ds23 g Llama-3.1-8B 75.8494 67.5725 67.2116 69.8936
ds23 g Mistral-7B-v0.3 97.7164 97.5606 97.5969 97.6313
ds23 g Qwen3-8B 69.3315 59.3813 60.3614 61.3457
ds23 g Ours 99.8792 99.8578 99.8636 99.8627

Table 3: Evaluation scores on fine-tuned LLMs for generation vs our model

Table 3 demonstrates that large language models (LLMs) achieve strong performance in predicting
the element δ on the ds12 g dataset. However, as the number of properties increases, leading to an
exponential growth in the number of classes, as seen in ds23 g, most LLMs experience a significant
decline in performance, with the exception of Mistral-7B-v0.3. In contrast, our model continues to
perform competitively under these more challenging conditions.

Generalisability To rigorously evaluate the generalisability of the models in scenarios involving
instances with previously unobserved properties, we construct novel datasets. In these scenarios, all

8
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proportional analogies lacking either a specified shape or colour are excluded. Specifically, we gen-
erate two datasets, denoted ds23 square and ds23 red. These datasets are employed both for training
our model and for fine-tuning several large language models, which are subsequently evaluated on
the complete test set of ds23. Model training and fine-tuning are conducted using vector represen-
tations of proportional analogies as the primary input. The resulting classification performance is
reported in Table 4. The results showcased the strong performance of both LLMs and our models in
terms of generalisability. In both scenarios, the models generalise well from a smaller to a greater
domain without catastrophic degradation of performance, demonstrated by a marginal decrease in
the scores.

Train set Model Precision Recall F1 score Accuracy

ds23 square Llama-3.1-8B 98.92/100.0 100.0/98.90 99.46/99.45 99.45
ds23 square Mistral-7B-v0.3 99.63/99.83 99.83/99.62 99.73/99.73 99.73
ds23 square Qwen3-8B 99.78/92.52 91.98/99.79 95.72/96.01 95.87
ds23 square Ours 99.75/95.69 95.53/99.76 97.59/97.68 97.64

ds23 red Llama-3.1-8B 98.82/100.0 100.0/98.80 99.41/99.39 99.40
ds23 red Mistral-7B-v0.3 98.38/99.83 99.83/98.35 99.10/99.08 99.09
ds23 red Qwen3-8B 98.45/99.62 99.62/98.42 99.03/99.01 99.02
ds23 red Ours 99.96/95.07 94.84/99.97 97.34/97.46 97.40

Table 4: Results on analogy verification and their generalisability. Test results are on ds23 test set.

7 RELATED WORK ON ANALOGICAL REASONING IN LLMS

Several studies have investigated the analogical reasoning capabilities of large language models
(LLMs). For example, Webb et al. (2023) evaluate GPT-3 (Brown et al., 2020) on four types of ana-
logical reasoning tasks: Raven’s Progressive Matrices (Raven, 1965), letter-string analogies in the
CopyCat micro-domain (Hofstadter, 1984; Hofstadter & Mitchell, 1994; Mitchell, 1993), propor-
tional analogies on verbal expressions, and story analogies (Gentner et al., 1993). Raven’s Matrices
are encoded using different formalisms, which, according to the authors, ensures the zero-shot na-
ture of the task since the model has never encountered the input data. Their findings show that GPT-3
achieves results comparable to, and in some cases better than, human performance. In a different
line of research, Yasunaga et al. (2024) introduce analogical prompting within a Chain-of-Thought
(CoT) framework. They test various LLMs—including GPT-3.5-turbo, text-davinci-003 (Ouyang
et al., 2022), and PaLM 2 (Anil et al., 2023)—on coding, mathematical, and reasoning tasks, where
the models are explicitly prompted to recall analogous problems before solving the target problem.
Their approach is compared against standard CoT methods. Results show notable improvements
when LLMs are guided to generate their own analogous exemplars prior to problem solving.

8 CONCLUSION

To summarize, we have presented theoretical results on the efficient PAC learnability of proportional
analogy verification and generation in the Boolean setting. Additionally, we trained simple artificial
neural networks (ANNs) to both verify and generate proportional analogies. Our findings demon-
strate that these ANNs can learn these tasks quickly and with high accuracy. We also compared the
performance of our lightweight models with that of state-of-the-art large language models (LLMs),
both in a zero-shot setting and after fine-tuning, with respect to: (i) proportional analogy verifi-
cation, (ii) proportional analogy generation, and (iii) the generalizability of proportional analogy
verification. Overall, our experiments indicate that proportional analogies can be learned efficiently
by lightweight ANN-based models, and that the knowledge acquired by these models can also be
generalized effectively, with no clear advantage offered by energy-intensive LLMs in this context.
In line with recent work exploring the connection between PAC learnability and deep learning mod-
els (Ghojogh & Ghodsi, 2024), in future work we plan to study in depth the relationship between
our efficient PAC learnability results and the neural network models we implemented. In particular,
the research question we aim to address in future work is: What is the minimal number of parame-
ters that feed-forward neural network architectures, like those presented in Section 5, must have to
achieve high accuracy in verifying and generating proportional analogies in polynomial time?
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Proposition 1. Let α1, α2, α3, α4 ⊆ P. Then,

α1 : α2 :: α3 : α4 holds iff fverif (x
(α1,α2,α3,α4)
1 , . . . ,x

(α1,α2,α3,α4)
|P| ) = 1,

where, for all i ∈ {1, . . . , |P|} and all j ∈ {1, . . . , 4}, we have x
(α1,α2,α3,α4)
i (j) = 1 iff e(i) ∈ αj .

Proof. Note that x(α1,α2,α3,α4)
i is the 4-dimensional Boolean vector corresponding to the proposi-

tion e(i) in P: a position j of the vector with j ∈ {1, . . . , 4} has value 1 iff the proposition e(i)
belongs to the term αj in the proportional analogy.

The fact that α1 : α2 :: α3 : α4 holds means that α1 \ α2 = α3 \ α4 and α2 \ α1 = α4 \ α3. The
latter is equivalent to say that, for every p ∈ P: i) (p ∈ α1 and p ̸∈ α2) iff (p ∈ α3 and p ̸∈ α4), and
ii) (p ̸∈ α1 and p ∈ α2) iff (p ̸∈ α3 and p ∈ α4). The latter is equivalent to say that, for every p ∈ P:

x
(α1,α2,α3,α4)
e−1(p) (1) ·

(
1− x

(α1,α2,α3,α4)
e−1(p) (2)

)
=

x
(α1,α2,α3,α4)
e−1(p) (3) ·

(
1− x

(α1,α2,α3,α4)
e−1(p) (4)

)
,

and

x
(α1,α2,α3,α4)
e−1(p) (2) ·

(
1− x

(α1,α2,α3,α4)
e−1(p) (1)

)
=

x
(α1,α2,α3,α4)
e−1(p) (4) ·

(
1− x

(α1,α2,α3,α4)
e−1(p) (3)

)
,

where e−1 is the inverse of the function e. The latter is equivalent to
fverif (x

(α1,α2,α3,α4)
1 , . . . ,x

(α1,α2,α3,α4)
|P| ) = 1.

A.2 PROOF OF THEOREM 1

Theorem 1. The functions fverif and fgen are both efficiently PAC learnable.

Proof. The target function fverif to be learned takes 4|P| input bits and is defined as the conjunction
of |P| identical copies of a 4-bit Boolean function floc . The hypotheses to be considered are therefore
all Boolean functions with domain {0, 1}4 and codomain {0, 1}, of which floc is the true instance.
There are exactly 216 = 65,536 such candidate functions.
Since the domain of floc has size 16, at most 16 distinct labeled examples of the form (Y, τ) with
Y ∈ {0, 1}4 would be sufficient to uniquely identify floc with probability 1 and zero error. However,
the available training examples are of the form (X, τ) with X ∈ ({0, 1}4)|P|, so each example
provides information about multiple blocks simultaneously. Two different examples may cover the
same 4-bit inputs, so in practice more than 16 full examples are needed to observe all 16 inputs with
high probability. By a straightforward probabilistic argument,2 the number of examples needed to
guarantee that any remaining consistent hypothesis has error at most ϵ with probability at least 1− δ
is polynomial in |P|, 1/ϵ, and 1/δ. Let us denote this number by m.

A simple brute-force algorithm enumerates all candidate functions, applies each to every 4-bit block
of an example, takes the conjunction, and discards any inconsistent hypotheses. Evaluating a candi-
date on one example requires O(|P|) operations, and with m examples the total runtime is O(m·|P|),
which is polynomial in the relevant parameters.

Proving that the function fgen is efficiently PAC learnable can be proved analogously. Indeed, the
target function fgen to be learned takes 3|P| input bits and is defined as the conjunction of |P|
identical copies of a 3-bit Boolean function.

2This is analogous to the coupon-collector problem: each of the 16 possible 4-bit inputs can be seen as a
distinct ”coupon,” and each training example provides |P| random coupons (the blocks it contains). Standard
results show that, to see all 16 coupons with high probability, a number of examples polynomial in |P| suffices.
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A.3 DATASET STATISTICS

|T |, |C| 1, 2 2, 3

n.cell 3 7
n.img 81 2,401
n.ap ≈ 43× 106 ≈ 33× 1012

Table 5: Counts of cells, images, and proportional analogies as a function of the number of shapes
and colors

Dataset |T |, |C| all train dev test

ds12 1, 2 183 290 128 303 18 329 36 658
ds23 2, 3 29 210 20 447 2 921 5 842

Table 6: Number of instances for the verification task across experimental settings

Dataset |T |, |C| all train dev test

ds12 g 1, 2 91,645 64,200 9,082 18,363
ds23 g 2, 3 14,605 10,213 1,479 2,913

Table 7: Number of instances for the generation task across experimental settings

A.4 ANALOGICAL MODEL TRAINING SCORES

Figure 3: Training accuracy and loss for the model trained on ds12 (left) and ds23 (right) datasets,
over 10 epochs each.
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