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ABSTRACT
In this paper, we revisit the problem of sparse linear regression in the local differen-
tial privacy (LDP) model. Existing research in the non-interactive and sequentially
local models has focused on obtaining the lower bounds for the case where the
underlying parameter is 1-sparse, and extending such bounds to the more gen-
eral k-sparse case has proven to be challenging. Moreover, it is unclear whether
efficient non-interactive LDP (NLDP) algorithms exist. To address these issues,
we first consider the problem in the ϵ non-interactive LDP model and provide a
lower bound of Ω(

√
dk log d√
nϵ

) on the ℓ2-norm estimation error for sub-Gaussian data,
where n is the sample size and d is the dimension of the space. We propose an
innovative NLDP algorithm, the very first of its kind for the problem. As a remark-
able outcome, this algorithm also yields a novel and highly efficient estimator as a
valuable by-product. Our algorithm achieves an upper bound of Õ(d

√
k√
nϵ
) for the

estimation error when the data is sub-Gaussian, which can be further improved by
a factor of O(

√
d) if the server has additional public but unlabeled data. For the

sequentially interactive LDP model, we show a similar lower bound of Ω(
√
dk√
nϵ
).

As for the upper bound, we rectify a previous method and show that it is possible to
achieve a bound of Õ(k

√
d√
nϵ
). Our findings reveal fundamental differences between

the non-private case, central DP model, and local DP model in the sparse linear
regression problem.

1 INTRODUCTION

Protecting data privacy is a major concern in many modern information or database systems. Such
systems often contain personal and sensitive information, making it essential to preserve privacy
when sharing aggregated data. Traditional data analysis techniques such as linear regression often
face a number of challenges when dealing with sensitive data, especially in social research (Serlin &
Marascuilo, 1988; Bůžková, 2013; Bühlmann & de Geer, 2011). Differential privacy (DP) (Dwork
et al., 2006b) has emerged as a widely recognized approach for privacy-preserving, which provides
verifiable protection against identification and is resistant to arbitrary auxiliary information that
attackers may have access to.

Previous research on DP has given rise to two primary user models: the central model and the local
model. The central model uses a trusted central entity to handle the data, including collecting data,
determining which differentially private data analysis to perform, and distributing the results. The
central model is commonly used for processing census data. Different from the central model, the
local model empowers individuals to control their own data, using differentially private procedures
to reveal it to a server. The server then “merges” the private data of each individual into a resultant
data analysis. This paradigm is exemplified by Google’s Chrome browser and Apple’s iOS-10, which
collect statistics from user devices (Tang et al., 2017; Erlingsson et al., 2014).

The local model, despite its widespread application in industry, has received less attention than the
central model. This is because there are inherent constraints to what can be done in the local model,
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resulting in many fundamental problems remaining unanswered. Linear regression, a fundamental
model in both machine learning and statistics, has been extensively studied in recent years in the
DP community in two different settings: the (stochastic) optimization and the (statistical) estimation
settings. In the former, the aim is to find a private estimator θ ∈ Rd that minimizes the empirical
risk L(θ,D) = 1

n

∑n
i=1(⟨xi, θ⟩ − yi)

2 or population risk LP(θ) = E(x,y)∼P [(⟨x, θ⟩ − y)2] of the
given dataset D = {(xi, yi)}ni=1, where P is the underlying distribution of (x, y) with covariate x
and response y. In the latter, it considers a linear model with covariate x and response y that satisfy
y = ⟨x, θ∗⟩ + ζ, where ζ is a zero-mean random noise, and θ∗ is an underlying parameter. The
goal is to find a private estimator θpriv that approximates θ∗ as closely as possible, with the ℓ2-norm
estimation error ∥θpriv − θ∗∥2 being minimized.

DP linear regression has been extensively studied in the central model, including both the optimization
and estimation settings (see the Related Work section A for further details). Recently, researchers
have also investigated the problem in the high-dimensional space where the dimensionality is much
larger than the sample size. For instance, Talwar et al. (2015) focused on the private LASSO problem
in the optimization setting, where the underlying constraint set is an ℓ1-norm ball. In the estimation
setting, which involves sparse linear regression where θ∗ is a k-sparse vector with k ≪ d, Cai et al.
(2021); Kifer et al. (2012a) considered sub-Gaussian covariates, and this was later expanded by Hu
et al. (2022) to include heavy-tailed covariates.

Despite the growing interest in DP linear regression, there is still a lack of understanding of the local
model compared to the central one. While there have been numerous studies on the optimization
setting in the low-dimensional case (Duchi et al., 2018), less attention has been paid to the statistical
estimation setting in the high-dimensional space. Although Wang & Xu (2021) provided the first
study on sparse linear regression in the LDP model, the problem is still far from well-understood in
comparison to the non-private and central DP cases. By and large, there are three main challenges
that need to be addressed. Firstly, for lower bounds, Wang & Xu (2021) only considered the 1-sparse
case and their proof cannot be extended to the general k-sparse case. Thus, there is still no lower
bound for the k-sparse case. Secondly, in the non-interactive setting, it is unclear whether there exists
any efficient algorithm due to the non-interactivity constraint and the sparsity nature of the problem.
Even for the 1-sparse case, Wang & Xu (2021) showed only a lower bound. Finally, for the upper
bound in the sequentially interactive setting, while Wang & Xu (2021) provided an algorithm, it
heavily relies on the assumption that the covariate follows the uniform distribution of {−1,+1}d,
and there are some technical flaws in their analysis (see Section 4.2 for details).

In this paper, we address the three challenges of sparse linear regression in the LDP model that were
left by previous research. Specifically, we provide new hard instances of lower bounds, novel self-
interested NLDP algorithms, and new proof techniques for lower and upper bounds. Our contributions
are three-fold. See Table 1 in Appendix for comparisons with previous work.

1. In the first part of this paper, we focus on the non-interactive setting. For the k-sparse case, we
show that even with 1-sub-Gaussian covariates and responses, the output of any ϵ-NLDP algorithm

must have an estimation error of at least Ω(
√

dk log d
nϵ2 ), where n is the sample size and d is the

dimension of the space. This lower bound is significantly different from the optimal rates achieved
by non-private and central DP algorithms. Moreover, previous results only consider the case where
k = 1 and it is technically difficult to extend to the general k-sparse case. Prior to our work, there
were no comparable lower bounds. We give non-trivial proofs for our lower bounds by constructing
hard instances that might be instructive for other related problems.

2. Then, we consider upper bounding the estimation error for our problem. Due to the constraints in
the model, there is no previous study. We develop a novel and closed-form estimator for sparse linear
regression and propose the first (ϵ, δ)-NLDP algorithm. We also give a non-trivial upper bound of

Õ(
d
√
k log 1

δ√
nϵ

) when the covariates and responses are sub-Gaussian and n is large enough. Moreover,

we show that if the server has enough public but unlabeled data, an error bound of Õ(

√
dk log 1

δ

nϵ2 ) can
be achieved. Fianlly, we relax the assumption to the case where the responses only have bounded
2p-moment with some p > 1.

3. In the second part of the paper, we investigate the problem in the sequentially interactive model.

First, for sub-Gaussian data, we establish a lower bound of Ω(
√

dk
nϵ2 ), which is similar to the
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non-interactive case, but requires a different hard instance construction and proof technique. The
investigation on upper bound in the interactive setting is still quite deficient. We thus rectify and
generalize the private iterative hard thresholding algorithm in Wang & Xu (2021) for sub-Gaussian
covariates and responses and demonstrate that the algorithm can only achieve an upper bound of
Õ(k

√
d√
nϵ
) rather than Õ(

√
dk√
nϵ
) in Wang & Xu (2021).

To adhere to space limitations, certain additional sections, including the related work section, along
with all omitted proofs, have been included in the Appendix.

2 PRELIMINARIES

This section introduces the problem setting, local differential privacy, and some notations used
throughout this paper. Additional preliminaries can be found in Section D of the Appendix.

Notations. Given a matrix X ∈ Rn×d, let xTi be its i-th row and xij (or [X]ij) be its (i, j)-th
entry (which is also the j-th element of the vector xi). For any p ∈ [1,∞], ∥X∥p is the p-norm,
i.e., ∥X∥p := supy ̸=0

∥Xy∥p

∥y∥p
, and ∥X∥∞,∞ = maxi,j |xij | is the max norm of matrix X . For an

event A, we let I[A] denote the indicator, i.e., I[A] = 1 if A occurs, and I[A] = 0 otherwise.
The sign function of a real number x is a piece-wise function which is defined as sgn(x) = −1 if
x < 0; sgn(x) = 1 if x > 0; and sgn(x) = 0 if x = 0. We also use λmin(X) to denote the minimal
eigenvalue of X . For a sub-Gaussian random variable X , its sub-Gaussian norm ∥X∥ψ2

is defined as
∥X∥ψ2

= inf{c > 0 : E[exp(X
2

c2 )] ≤ 2}.
2.1 PROBLEM SETTING

Throughout the paper, we consider the classical setting of sparse linear regression. Suppose that
we have a data universe D = X × Y ⊆ Rd × R and n users in the population, where each user i
has a feature vector xi ∈ X and a response variable yi ∈ Y . We assume that {(xi, yi)}ni=1 are i.i.d.
sampled from a sparse linear regression model, i.e., each (xi, yi) is a realization of the sparse linear
regression model y = ⟨θ∗, x⟩+ ζ, where the distribution of x has mean zero, ζ is some randomized
noise that satisfies E[ζ|x] = 0, and θ∗ ∈ Rd is the underlying sparse estimator with ∥θ∗∥0 ≤ k. In
the following, we provide some assumptions related to the model.

Assumption 1. We assume that ∥θ∗∥1 ≤ 1. Moreover, for the covariance matrix of x, Σ, there exist
κ∞ and κx such that ∥Σw∥∞ ≥ κ∞∥w∥∞,∀w ̸= 0 and ∥Σ− 1

2x∥ψ2
≤ κx. 1

Remark 1. Due to the hardness of the problem in the NLDP model, rather than making a bounded
ℓ2-norm assumption, we consider a stronger one where ∥θ∗∥1 ≤ 1, which has been previously
studied in the literature such as Chen et al. (2023; 2022a); Fan et al. (2021). It is notable that all the
lower bounds established in our paper remain valid even in the weaker case ∥θ∗∥2 ≤ 1, without any
modifications to the proofs. Moreover, our upper bound in the interactive setting will still not be
changed under the ℓ2 assumption. However, our upper bound for the NLDP model relies on such an
assumption. The only result that relies on the ℓ1 assumption is our upper bound in the NLDP model.
Our focus in this paper is on estimating θ∗ in the local differential privacy (LDP) model. We aim
to design a locally differentially private algorithm that produces an output θ̂priv that is as close as
possible to the true θ∗, with the goal of minimizing the ℓ2-norm error ∥θ̂priv − θ∗∥2. We provide
definitions related to LDP in Appendix B, with more detailed information available in reference
Duchi et al. (2014a; 2018).

3 IMPROVED ANALYSIS FOR NON-INTERACTIVE SETTING

3.1 LOWER BOUND FOR GENERAL k-SPARSE CASE

In this section, we analyze the lower bound for the estimation error of non-interactive local differential
privacy (NLDP) algorithms. According to Bun et al. (2019), any (ϵ, δ)-NLDP protocol can be
transformed into an ϵ-NLDP protocol without affecting its utility. 2 Therefore, we will focus solely
on ϵ-NLDP. To establish the lower bound, we consider a class of distributions for (x, y), where x
follows the uniform distribution over {−1,+1}d, and ζ is a bounded randomized noise. We denote

1To make our results comparable to the previous results and for simplicity, in this paper we assume κ∞ and
κx all are constants. Note that previous studies on private regression also hide factors related to Σ in their main
context(e.g. Wang (2018); Wang et al. (2022); Cai et al. (2021) hide the term of poly (1/λmin(Σ)).

2The lower bound results also hold for (ϵ, δ)-NLDP protocol.
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Pk,d,C as

Pk,d,C = {Pθ,ζ | ∃θ ∈ Rd s.t. ∥θ∥1 ≤ 1, ∥θ∥0 ≤ k, x ∼ Uniform{+1,−1}d, y = ⟨θ, x⟩+ ζ,

where ζ satisfies E[ζ] = 0 and |ζ| ≤ C}. (1)

Based on the notation introduced above, it is evident that for any given data D = {(xi, yi)}ni=1 ∼
P⊗n
θ,ζ , where Pθ,ζ ∈ Pk,d,C , each ∥xi∥2 =

√
d. Consequently, if we use the Gaussian mechanism

on each xi to ensure (ϵ, δ)-non-interactive LDP, the scale of the noise should be O(dϵ ). This scaling
implies that the Gaussian noise would introduce an error of Poly(d). In the following, we will
generalize the above observation and show for all NLDP algorithms, such polynomial dependency on
d is unavoidable.
Theorem 1. Given 0 < ϵ ≤ 1 and an error ν ≤ 1√

k
, consider the distribution class Pk,d,2, if

for any Pθ,ζ ∈ Pk,d,2, given D = {(x1, y1) . . . (xn, yn)} i.i.d. sampled from Pθ,ζ there is an ϵ
non-interactive LDP algorithm A whose output satisfies EA,D∼P⊗n

θ,ζ
[∥A(D)− θ∥2] ≤ ν

8 . Then, we

must have n ⩾ Ω(
dk log( d

k )

ν2ϵ2 ).
Remark 2. It is noteworthy that the class of distributions Pk,d,C reduces to the set of distribu-
tions studied in Wang & Xu (2021; 2019) when k = 1. The above theorem asserts that for
any ϵ-NLDP algorithm A with 0 < ϵ ≤ 1, there exists an instance Pθ,ζ ∈ Pk,d,2 such that

EA,D∼P⊗n
θ,ζ

[∥A(D)− θ∥2] ≥ Ω(

√
dk log d

k

nϵ2 ). In contrast to the optimal rate of O(

√
k log d

k

n ) for the
ℓ2-norm estimation error in the non-private case (Raskutti et al., 2011), and the nearly optimal rate

of O(max{
√

k log d
k

n , k log d
nϵ }) in the central (ϵ, δ)-DP model (Cai et al., 2021), for NLDP model we

observe an additional factor of O(
√
d
ϵ ) and O(max{

√
d
ϵ ,

√
nd√

k log d
}), respectively. These results indi-

cate that sparse linear models in the non-interactive LDP setting are ill-suited for high-dimensional
scenarios where n≪ d.

Theorem 1 recovers the lower bound of Ω(
√

d log d
nϵ2 ) in Wang & Xu (2019; 2021) when k = 1.

Thus, Theorem 1 is more general than previous work. Notably, our proof of the lower bound differs
significantly from that in Wang & Xu (2019; 2021) where the private Fano’s Lemma in Duchi
et al. (2018) was mainly employed. The aim was to construct an r-separated family of distributions
{Pv}v∈V for some set V such that the term C∞{Pv}v∈V is minimized, where

C∞{Pv}v∈V =
1

|V|
sup
γ∈B∞

∑
v∈V

(ϕv(γ))
2.

Here, each linear functional ϕv : B∞ 7→ R is defined by ϕv(γ) =
∫
γ(x)(dPv(x) − dP̄ (x))

with B∞ = {γ : X 7→ R|∥γ∥∞ ≤ 1} as the set of uniformly bounded functions, and P̄ (x) =
1
|V|
∑
v∈V Pv(x) is the average distribution. Wang & Xu (2019; 2021) considered the case where V

is the set of all basis vectors, which is 1-sparse. They showed that for some r-separated family of
distributions, C∞{Pv}v∈V ≤ r2

d . However, their approach is challenging to extend to the k-sparse
case as |V| = O(dk), and it is difficult to bound the summation term. To overcome this difficulty, we
adopt a private version of the Assouad’s lemma in Acharya et al. (2022). In details, we first construct
a random vector Z ∈ {−1, 0,+1}d with ∥Z∥0 ≤ k with high probability. For each realization of Z,
z, we have an associated θz which is also k-sparse. Suppose D̃ is the message obtained via the ϵ
non-interactive LDP algorithm A on D ∼ P⊗n

θz,ζ
. We consider the mutual information between Z and

D̃, i.e., I(Z ∧ D̃). On the one hand, we demonstrate that any sufficiently accurate (private) estimation
protocol must provide sufficient information about each Zi from the messages D̃, which is reflected
by the lower bound on mutual information I(Z ∧ D̃) ≥ Ω(k log d

k ). On the other hand, we show that
if the output of algorithm A achieves an estimation error of ν, the mutual information scales as the
privacy budget ϵ, which is reflected by the upper bound on mutual information I(Z∧D̃) ≤ O(nϵ

2ν2

d ).

3.2 EFFICIENT NON-INTERACTIVE LDP ALGORITHMS

In the preceding section, we established a lower bound of Ω(
√

dk log d
nϵ2 ). This suggests that high-

dimensional sparse linear regression, where n≪ d, becomes effortless in the NLDP model. However,
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this raises two questions. First, in the low dimensional case where n≫ d, is the lower bound tight?
Second, are there efficient algorithms for this problem? In this section, we focus on the upper bound.
Before that, we introduce an assumption about the distribution of (x, y) to elucidate our approach.

Assumption 2. There exists a constant σ = O(1) such that the covariates (feature vectors)
x1, x2, · · · , xn ∈ Rd are i.i.d. (zero-mean) sub-Gaussian random vectors with variance σ2, and the
responses y1, y2, · · · , yn are i.i.d. (zero-mean) sub-Gaussian random variables with variance σ2.

Before presenting our method, we will outline the challenges associated with the problem at hand
and explain why existing (non-private) methods are not suitable for our purposes. In the private
and classical setting, where the ℓ2-norm of each (xi, yi) is bounded by some constant, the most
direct approach is to perturb the sufficient statistics locally (Smith et al., 2017; Wang et al., 2021),
i.e., Σ̂XX = 1

n

∑n
i=1 xix

T
i and Σ̂XY = 1

n

∑n
i=1 xiyi, by adding Gaussian matrix and Gaussian

vector to each xixTi and xiyi, respectively. However, in our sparse setting, such a private estimator
will provide a sub-optimal bound as it does not exploit the sparsity assumption of the model. In
the non-private and high dimensional sparse setting, to achieve the optimal estimation error, one
approach is based on the LASSO (Raskutti et al., 2011), i.e., to minimize 1

2n∥Y −Xθ∥22 + λn∥θ∥1
with some λn , where X = (xT1 , · · · , xTn )T ∈ Rn×d and Y = (y1, · · · , yn)T . The second type of
approach is based on the Dantzig estimator (Candes & Tao, 2007), i.e., solving the linear program:
minθ ∥θ∥1 s.t. 1

n

∥∥X⊤(Xθ − Y )
∥∥
∞ ≤ λn with some λn. However, these two approaches are

difficult to privatize. However, the significant amount of noise needed for privatization is problematic,
as it destroys the assumptions of the theoretical results for LASSO and the Dantzig estimator. We see
that existing estimators for sparse linear regression all rely on solving an optimization problem, which
is difficult to privatize. Nonetheless, in the classical setting, the private estimator can be obtained
by adding noise to the sufficient statistics without solving an optimization problem. Therefore, a
closed-form estimator will serve our purpose and it can be used to design an efficient private estimator
for the sparse linear model. This approach will minimize the amount of noise added to the model.

Before showing our private estimator, we first consider the non-private case. As we focus on the
low dimension case, the empirical covariance matrix Σ̂XX always exists. Thus, if there is no sparse
assumption, the optimal estimator will be the ordinary least square (OLS) estimator Σ̂−1

XXΣ̂XY
given the dataset. However, as now θ∗ is k-sparse, the OLS estimation will have a large estimation
error since it is not sparse. Intuitively, our goal is to find a sparse estimator that is close to OLS,
i.e., argminθ ∥θ − Σ̂−1

XXΣ̂XY ∥22, s.t. ∥θ∥0 ≤ k, whose ℓ1 convex relaxation of the ℓ0 constraint
is equivalent to argminθ ∥θ − Σ̂−1

XXΣ̂XY ∥22 + λn∥θ∥1 with some λn > 0. Fortunately, the above
minimizer is just the proximal operator on OLS: Proxλn∥·∥1

(Σ̂−1
XXΣ̂XY ). Since the proximal operator

is separable with respect to both vectors, θ and Σ̂−1
XXΣ̂XY ,

(Proxλn∥·∥1
(Σ̂−1

XXΣ̂XY ))i = argmin
θi

(θi − (Σ̂−1
XXΣ̂XY )i)

2 + λn|θi|

= sgn((Σ̂−1
XXΣ̂XY ))i)max{|(Σ̂−1

XXΣ̂XY ))i| − λn, 0},

where the second equality is due to the first-order optimality condition. Thus, the previous ℓ1
regularized optimization problem has a closed-form optimal solution, which is denoted as θ̂:

θ̂ = Sλn
(Σ̂−1

XXΣ̂XY ), (2)

where for a given thresholding parameter λ, the element-wise soft-thresholding operator Sλ : Rd 7→
Rd for any u ∈ Rd is defined as the following: the i-th element of Sλ(u) is defined as [Sλ(u)]i =
sgn(ui)max(|ui| − λ, 0).

Motivated by (2) and the preceding discussion, a direct approach to designing a private estimator
is perturbing the terms of Σ̂XX and Σ̂XY in (2). However, the unbounded ℓ2-sensitivity of both
terms under Assumption 2 suggests that we must preprocess the data before applying the Gaussian
mechanism. Since each xi is sub-Gaussian, we can readily ensure that ∥xi∥2 ≤ O(σ

√
d log n) for

all i ∈ [n] with high probability. Thus, we typically preprocess the data by ℓ2-norm clipping, i.e.,
x̄i = min {∥xi∥2 , r}

xi

∥xi∥2
, where r = O(σ

√
d log n) (Hu et al., 2022; Wang et al., 2022). However,

if we preprocess each xi and yi in (2) using this strategy, it becomes difficult to bound the term
∥θ̂ − θ∗∥∞, which is crucial for utility analysis.
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To address the challenge, we propose a new approach. For the term of Σ̂XX , we use the ordinary
ℓ2-norm clipping to each xi and get x̄i, and then add Gaussian matrix to x̄ix̄

T
i . For the term

Σ̂XY , we shrink each coordinate of xi and each yi via parameters τ1 and τ2 respectively, i.e.,
x̃ij = sgn (xij)min {|xij | , τ1} for j ∈ [d] and ỹi = sgn (yi)min {|yi| , τ2}. Then we add Gaussian
noise to x̃iỹi. Finally, the server aggregates these noisy terms and gets a noisy and clipped (shrunken)
version of Σ̂XX ( Σ̂XY ), i.e., Σ̇X̄X̄ and Σ̇X̃Ỹ . Finally, we get θ̂priv(D) = Sλn

(Σ̇−1
X̄X̄

Σ̇X̃Ỹ ). See
Algorithm 1 for details. In the following we show with some τ, τ1 and τ2, the previous θ̂priv(D)

could achieve an upper bound of Õ(d
√
k√
nϵ
).

Theorem 2. For any 0 < ϵ, δ < 1, Algorithm 1 satisfies (ϵ, δ) non-interactive LDP.

Theorem 3. Under Assumptions 1 and 2, if we set τ1 = τ2 = O(σ
√
log n), r = O(σ

√
d log n),

and λn = O(
d logn

√
log 1

δ√
nϵ

) in Algorithm 1. When n is sufficiently large such that n ≥

Ω̃(max{ d4

ϵ2κ∞
,

∥Σ∥4
2d

3

ϵ2λ2
min(Σ)

}), with probability at least 1−O(d−c)− e−Ω(d) for some constant c > 0,
3 one has ∥∥∥θ̂priv(D)− θ∗

∥∥∥
2
≤ O

d log n
√
k log d log 1

δ√
nϵ

 , (3)

where Ω̃ ignores the logarithmic terms.

Remark 3. Compared with Smith et al. (2017), we improve by a factor of O
(√

d√
k

)
in our Theorem

3. It is worth noting that in the absence of the soft-thresholding operator, the upper bound can be

shown to be Õ( d
3
2√
nϵ
), which is consistent with previous work on linear regression (Wang et al., 2022;

Smith et al., 2017). 4 Hence, we can observe that the soft-thresholding operator plays a critical role
in our private estimator. The upper bound in equation 3 has an additional factor of Õ(

√
d) compared

to the lower bound in Theorem 1. This is due to the fact that each entry of the Gaussian matrix we
added to each x̄ix̄Ti is Õ(dϵ ), which indicates that ∥Σ̇X̄X̄ −Σ∥∞,∞ ≤ Õ( d√

nϵ
). This Õ(

√
d) scaling

seems necessary in the NLDP model because each ∥xi∥2 ≤ O(
√
d log n) with high probability, and

thus, we must add noise of scale Õ(dϵ ) to release the covariance matrix privately. Based on this, we
conjecture that the lower bound in Theorem 1 is not tight, and the upper bound is nearly optimal. We
leave it as an open problem. Additionally, equation 3 holds only when n is sufficiently large such that
n ≥ Ω̃(max{ d4

ϵ2κ∞
,

∥Σ∥4
2d

3

ϵ2λ2
min(Σ)

}) to ensure that the noisy empirical covariance matrix is invertible and

∥(Σ̇X̄X̄)−1∥∞ ≤ 2
κ∞

.

Improved rate with public unlabeled data. As discussed in Remark 3, the main reason for the gap
of Õ(

√
d) between the lower and upper bounds is due to ∥Σ̇X̄X̄ − Σ∥∞,∞ ≤ Õ( d√

nϵ
). However,

when compared to the non-private case where the error is ∥Σ̂XX − Σ∥∞,∞ ≤ Õ( 1√
n
), we can see

that the error due to the Gaussian matrix dominates. Since estimating the covariance matrix does
not require the responses, we can use public but unlabeled data to achieve an improved estimation
rate. It is worth noting that NLDP with public unlabeled data has been widely studied in recent
years (Wang et al., 2022; Su et al., 2023; Daniely & Feldman, 2019). Here we assume that the
server has access to m unlabeled data points Dpub = {xj}n+mj=n+1 ⊂ Xm, where each xj is sampled
from the same sub-Gaussian distribution as xi in Assumption 2. Based on the above observations,
rather than using private data, we can utilize these public data points to estimate the underlying
covariance matrix. Subsequently, we propose our private estimator θ̂unl(D) = [Σ̂pub

XX ]−1Σ̇X̃Ỹ , where
Σ̂pub
XX = 1

m

∑n+m
j=n+1 xjx

T
j is the empirical covariance matrix of {xj}n+mj=n+1. The details are provided

in Algorithm 3. The following result shows that we can improve the estimation error by a factor of
O(

√
d) compared with that in Theorem 3.

3Here we use O(d−c) as the failure probability is for simplicity, we can get a similar result for any failure
probability δ′ > 0. The same for other results in the following parts.

4It should be noted that Smith et al. (2017) assumes ∥xi∥2 ≤ 1, but we can get a bound of Õ( d
3
2√
nϵ
) when we

extend to ∥xi∥2 ≤
√
d via the same proof in Smith et al. (2017).
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Algorithm 1 Non-interactive LDP algorithm for Sparse Linear Regression

1: Input: Private data {(xi, yi)}ni=1 ∈
(
Rd × R

)n
. Predefined parameters r, τ1, τ2, λn.

2: for Each user i ∈ [n] do
3: Clip x̄i = ximin

{
1, r

∥xi∥2

}
. Add noise ̂̄xix̄Ti = x̄ix̄

T
i + n1,i, where n1,i ∈ Rd×d is a sym-

metric matrix and each entry of the upper triangular matrix is sampled from N (0,
32r4 log 2.5

δ

ϵ2 ).

Release ̂̄xix̄Ti to the server.
4: for j ∈ [d] do
5: Coordinately shrink x̃ij = sgn (xij)min {|xij | , τ1}
6: end for
7: Clip ỹi := sgn (yi)min {|yi| , τ2}. Add noise ̂̃xiỹi = x̃iỹi + n2,i, where the vector n2,i ∈ Rd

is sampled from N (0,
32dτ2

1 τ
2
2 log 2.5

δ

ϵ2 Id). Release ̂̃xiỹi to the server.
8: end for
9: The server aggregates Σ̇X̄X̄ = 1

n

∑n
i=1

̂̄xix̄Ti and Σ̇X̃Ỹ = 1
n

∑n
i=1

̂̃xiỹi
10: The server outputs θ̂priv(D) = Sλn

([Σ̇X̄X̄ ]−1Σ̇X̃Ỹ ).

Theorem 4. Under Assumptions 1 and 2, we suppose the server also has access to the additional pub-
lic and unlabeled dataset Dpub = {xj}n+mj=n+1 ∈ Xm described above. When m is sufficiently large

that m ≥ Ω̃(max{ d2

κ∞
,
d∥Σ∥4

2κ
4
x

λ2
min(Σ)

}), set τ1 = τ2 = O(σ
√
log n) and λn = O(

logn
√
dk log d log 1

δ

ϵ
√
n

) in

Algorithm 3, with probability at least 1−O(d−c)− e−Ω(d) for some constant c > 0, then one has∥∥∥θ̂unl(D)− θ∗
∥∥∥
2
≤ O

 log n
√
dk log d log 1

δ

ϵ
√
n

 ,

where Ω̃ ignores the logarithmic terms.

In addition to improving the estimation error by a factor of O(
√
d), our proposed estimator θ̂unl(D)

requires a smaller number of public unlabeled data points compared to the requirements in Theorem 3.
We only need m ≥ Ω̃(max{ d2

κ∞
,
d∥Σ∥4

2κ
4
x

λ2
min(Σ)

}), instead of n ≥ Ω̃(max{ d4

ϵ2κ∞
,

∥Σ∥4
2d

3

ϵ2λ2
min(Σ)

}) in Theorem
3. This is because we do not need to estimate the covariance matrix privately.

Estimation error for heavy-tailed responses. In the preceding parts, our focus has been on the
sub-Gaussian case, where both x and y are sub-Gaussian, meaning that the random noise ζ is sub-
Gaussian as well. However, this assumption may be too stringent in real-world scenarios, where
heavy-tailed noise is more commonly encountered. Our method is highly adaptable and can handle
such heavy-tailed cases with ease. Here we consider the heavy-tailed case where the responses have
only bounded 2p-moment with some p > 1. This assumption has been widely studied in both the
differential privacy and robust statistics communities (Hu et al., 2022; Kamath et al., 2020; Sun et al.,
2020; Chen et al., 2022b).
Assumption 3. There exist constants σ and M such that the covariates (feature vectors)
x1, x2, · · · , xn ∈ Rd are i.i.d. (zero-mean) sub-Gaussian random vectors with variance σ2 and
∀i = 1, . . . , n,E[|yi|]2p ≤M <∞ for some (known) p > 1.

Theorem 5. Under Assumptions 1 and 3, we set τ1 = O(σ
√
log n), τ2 = ( n

log d )
1
2p , r =

O(σ
√
d log n), and λn = O(d log n

√
log 1

δ (
log d
nϵ2 )

p−1
2p ) in Algorithm 1, then as long as n ≥

Ω̃(max{ d4

ϵ2κ∞
,

∥Σ∥4
2d

3

ϵ2λ2
min(Σ)

}) for some constant c > 0, one has∥∥∥θ̂priv(D)− θ∗
∥∥∥
2
≤ O

(
d log n

√
k log

1

δ

(
log d

nϵ2

) p−1
2p

)
, (4)

where Ω̃ ignores the logarithmic terms.

The limit of the bound in equation 4 as p → ∞ is the same as in equation 3. However, due to the
heavy-tailed nature of the response variable y, our estimator requires more aggressive shrinking than

7
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in the sub-Gaussian case. Hence, unlike the sub-Gaussian case, we have τ1 ̸= τ2. It is worth noting
that our current approach relaxes the assumption on the distribution of y only. We anticipate that our
general framework can also handle scenarios where the distributions of both x and y are heavy-tailed,
which we plan to explore in future work.

4 IMPROVED ANALYSIS FOR INTERACTIVE LDP
In the previous section, we studied both the lower bound and upper bound of sparse linear regression
in the non-interactive model and showed that even for O(1)-sub-Gaussian data, it is impossible
to avoid the polynomial dependency on the dimension d in the estimation error. However, since
non-interactive protocols have more constraints compared to interactive ones, a natural question arises
as to whether we can obtain better lower and upper bounds in the interactive model. To simplify the
analysis, we mainly focus on sequentially interactive LDP protocols in this section, and note that all
results can be extended to the fully interactive LDP model (Acharya et al., 2022).

4.1 LOWER BOUND FOR GENERAL k-SPARSE CASE

We begin by considering the lower bound, similar to the previous section. When k = 1, Wang & Xu

(2021) provides a nearly optimal lower bound of Ω(
√

d
nϵ2 ) for the estimation error. Thus, we are

more interested in whether we can obtain an improved rate for general k. Unfortunately, we will show
that, for the same distribution class Pk,d,2 as in Section 3.1, the term of O(

√
k) in the non-interactive

case cannot be improved even if we allow interactions.
Theorem 6. Given 0 < ϵ ≤ 1 and an error ν ≤ 1

4
√
2k

, consider the distribution class Pk,d,2,
if for any Pθ,ζ ∈ Pk,d,2, given D = {(x1, y1) . . . (xn, yn)} i.i.d. sampled from Pθ,ζ , there is an
ϵ-sequentially interactive LDP algorithm A whose output satisfies EA,D∼P⊗n

θ,ζ
[∥A(D)− θ∥2] ≤ ν.

Then, we have n ⩾ Ω
(
dk
ν2ϵ2

)
.

Remark 4. The above theorem states that for the class Pk,d,2 and any ϵ-LDP algorithm A with

0 < ϵ ≤ 1, there exists an instance Pθ,ζ ∈ Pk,d,2 such that EA,D∼P⊗n
θ,ζ

[∥A(D)− θ∥2] ≥ Ω(
√

dk
nϵ2 ).

Although the difference is only O(
√
log d) compared to the lower bound in the non-interactive model,

the proof and the hard instance construction are entirely different. Moreover, the lower bound proof
of Theorem 6 is also distinct from that of the k = 1 case in Wang & Xu (2021). Briefly speaking,
Wang & Xu (2021) mainly uses an LDP version of the Le Cam method, where it needs to upper
bound the term C∞{Pv}v∈V (which is similar to the non-interactive LDP case). In contrast, we use a
private Assouad’s lemma in Acharya et al. (2020).

4.2 LDP ITERATIVE HARD THRESHOLDING REVISITED

Regarding the upper bound, Wang & Xu (2021) considers the case where the covariates {xi}ni=1

satisfy Assumption 1, with xi ∼ Uniform{−1,+1}d, and |ζ| ≤ C for some constant C. Wang & Xu
(2021) aims to solve the following optimization problem in the LDP model, where k′ is a parameter
that will be specified later.

min
θ
L(θ;D) =

1

2n

n∑
i=1

(⟨xi, θ⟩ − yi)
2
, s.t. ∥θ∥2 ≤ 1, ∥θ∥0 ≤ k′. (5)

The authors proposed a method called LDP Iterative Hard Thresholding, and claimed it achieves

an upper bound of Õ(
√

dk
nϵ2 ) for the general k-sparse case, nearly optimal based on Theorem 6.

However, this rate is mistaken. The sensitivity analysis of the per-sample gradient is incorrect under
the assumption of ∥θ∗∥2 ≤ 1, and such analysis leads to the incorrect utility bound. Specifically,
in the proof of Theorem 9 in Wang & Xu (2021), it needs to upper-bound the each term ⟨xi, θt−1⟩,
where ∥θt−1∥2 ≤ 1 and ∥θt−1∥0 ≤ O(k). They claims that this term is upper bounded by 1, but
in fact it is upper bounded by O(

√
k). Seeing the flaw of its own, we also highlight the technical

constraint. Their sensitivity and utility analysis heavily relies on the uniform distribution assumption
of x and the assumption that the random noise is bounded, which is challenging to extend to general
distributions (such as those in Assumption 2). In this section, we aim to rectify the previous analysis
and show an upper bound of Õ(k

√
d√
nϵ
) for the LDP Iterative Hard Thresholding method. Moreover,

we generalize to the distributions satisfying Assumption 2

8
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For data distributions satisfying Assumption 2, to ensure bounded sensitivity of the per-sample
gradient of L(θ;D), i.e., ∥xTi (⟨θ, xi⟩ − yi) ∥2 for i ∈ [n], we adopt a similar strategy as in Section
3.2. That is, each user i conducts the same shrinkage operation: x̃ij = sgn (xij)min {|xij | , τ1} for
j ∈ [d] and ỹi = sgn (yi)min {|yi| , τ2}. In this case, we can see the i-th sample gradient satisfies
∥x̃Ti (⟨θ, x̃i⟩ − ỹi) ∥2 ≤

√
dτ1(

√
k′τ1 + τ2) if ∥θ∥2 ≤ 1 and ∥θ∥0 ≤ k′.

To privately solve the optimization problem equation 5, we apply a combination of private randomizer
(Duchi et al., 2014a) (see equation 6 in Appendix C) and the iterative hard thresholding gradient
descent method to develop an ϵ-LDP algorithm. In total, our approach begins by assigning each
user to one of the T groups {St}Tt=1, with the value of T to be specified later. During the t-th
iteration, users with (x, y) in group St randomize their current gradients x̃T (⟨x̃, θt−1⟩ − ỹ) using
equation 6. Once the server receives the gradient data from each user, it executes a gradient descent
step followed by a truncation step θ′t = Trunc(θ̃t, k

′), which retains the largest k′ entries of θ̃t (in
terms of magnitude) and sets the remaining entries to zero. Finally, our algorithm projects θ′t onto the
unit ℓ2 norm ball B2 to get θt. See Algorithm 2 for details.

Algorithm 2 LDP Iterative Hard Thresholding

1: Input: Private data {(xi, yi)}ni=1 ∈
(
Rd × R

)n
. Iteration number T , privacy parameter ϵ, step

size η, truncation parameters τ, τ1, τ2, threshold k′. Initial parameter θ0 = 0.
2: For the i-th user with i ∈ [n], truncate his/her data as follows: shrink xi to x̃i with x̃ij =

sgn (xij)min {|xij | , τ1} for j ∈ [d], and ỹi := sgn (yi)min {|yi| , τ2}. Partition the users into
T groups. For t = 1, · · · , T , define the index set St = {(t− 1)

⌊
n
T

⌋
+ 1, · · · , t

⌊
n
T

⌋}
; if t = T ,

then St = St
⋃{

t
⌊
n
T

⌋
+ 1, · · · , n

}
.

3: for t = 1, 2, · · · , T do
4: The server sends θt−1 to all the users in St. Each user i ∈ St perturbs his/her own gradient:

let ∇i = x̃Ti (⟨θt−1, x̃i⟩ − ỹi), compute zi = Rr
ϵ (∇i), where Rr

ϵ is the randomizer defined
in equation 6 with r =

√
dτ1(

√
k′τ1 + τ2) and send back to the server.

5: The server computes ∇̃t−1 = 1
|St|

∑
i∈St

zi and performs the gradient descent update θ̃t =

θt−1− η∇̃t−1.
6: θ′t = Trunc(θ̃t−1, k

′).
7: θt = argθ∈B2

∥θ − θ′t∥2.
8: end for
9: Output: θT

Theorem 7. For any ϵ > 0, Algorithm 2 is ϵ sequentially interactive LDP. Moreover, under Assump-
tions 1 and 2, and if the distribution of x is isotropic, i.e., Σ = Id. By taking T = O(log n),
k′ = 8k, η = O(1), τ1 = τ2 = O(σ

√
log n), the output θT of the algorithm satisfies

∥θT − θ∗∥2 ≤ Õ(k
√
d√
nϵ
) with probability at least 1−O(d−c) for some constant c > 0.

In comparison to the upper bound presented in Theorem 3 for the non-interactive case, our algorithm
exhibits a noteworthy improvement by a factor of approximately Õ(

√
d/

√
k). This improvement

stems from our approach, which eliminates the need for private estimation of the covariance matrix,
thus achieving an enhancement of approximately Õ(

√
d). However, it is worth noting that the

sensitivity of the per-user gradient in our algorithm, denoted as Õ(
√
dk), differs from the sensitivity

of Õ(
√
d) associated with x̃iỹi in Algorithm 1. Consequently, we introduce an additional factor of

approximately Õ(
√
k). Importantly, when compared to Wang & Xu (2021), our Theorem 7’s primary

contribution is extending the {−1,+1}d uniform distribution assumption of covariates in Wang &
Xu (2021) to general O(1)-sub-Gaussian assumption on covariates and heavy-tailed assumption on
responses, rather than improving the upper bound. In fact, our upper bound aligns with the correct
bound in Wang & Xu (2021).

Remark 5. We can see that Theorem 7 only holds for the case where the distribution of x is isotropic.
Actually, we can relax this assumption, and we can show the bound Õ(

√
dk√
nϵ
) also holds for general

sub-Gaussian distributions. Due to the space limit, please refer to Section F in the Appendix, where
we have slightly modified Algorithm 2.
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Model Method Setting Upper Bound Lower Bound Data Assumption

Central

Cai et al. (2021) general Õ(
√

d
n + d

nϵ ) Ω(
√

d
n + d

nϵ ) sub-Gaussian

Kifer et al. (2012b) sparse O(k
3/2

√
nϵ
)

Ω(
√

k log d
n + k log d

nϵ )
sub-Gaussian

Cai et al. (2021) sparse Õ(
√

k log d
n + k log d

nϵ ) sub-Gaussian
Hu et al. (2022) sparse Õ(k log d√

nϵ
) - heavy-tail

Non-interactive Local

Wang & Xu (2021) 1-sparse - Ω(
√

d log d
nϵ2 ) sub-Gaussian

Our Work k-sparse Õ(d
√
k log d√
nϵ

) Ω(
√

dk log d
nϵ2 ) sub-Gaussian

Our Work k-sparse Õ(
√
dk√
nϵ
) - sub-Gaussian with public data

Our Work k-sparse Õ

( √
dk

(nϵ2)
p−1
2p

)
- heavy-tailed response

Interactive Local

Smith et al. (2017) general Õ( d
3
2√
nϵ
) - Sub-Gaussian distribution

Wang & Xu (2021) 1-sparse - Ω(
√

d
nϵ2 ) sub-Gaussian

Wang & Xu (2021) k-sparse Õ(
√
dk√
nϵ
)* - Uniform distribution

Our Work k-sparse Õ(k
√
d√
nϵ
) Ω(

√
dk
nϵ2 ) sub-Gaussian

Table 1: Comparison of our work with related studies on (ϵ, δ)-DP (sparse) linear regression in
the statistical estimation setting. Here, n represents the sample size, k denotes the sparsity, and d
refers to the dimension. The asterisk (*) indicates that the proof of the upper bound in Wang & Xu
(2021) contains technical flaws and is deemed incorrect. In our comparison, the term "sub-Gaussian"
signifies that both the covariates and responses follow O(1)-sub-Gaussian distributions. On the other
hand, "heavy-tail" indicates that both the covariates and responses have bounded fourth moments.
Additionally, "heavy-tailed response" implies that the responses possess a 2p-moment, where p > 1.
"Sub-Gaussian with public data" characterizes the scenario where the data is sub-Gaussian, and the
server possesses additional public but unlabeled data. Lastly, "uniform distribution" describes the
situation where the covariates are drawn from {+1,−1}d, and the responses are bounded by O(1).

A RELATED WORK

There is a significant body of research on the differentially private (sparse) linear regression problem,
which has been examined from multiple perspectives, such as Alabi et al. (2022); Chen et al. (2016);
Barrientos et al. (2018); Qiu et al. (2022). In this study, we mainly focus on the works that are highly
relevant to our research problem. Thus, we compare the research on sparse linear regression in the
central model with that on linear regression in the local model. For a detailed comparison between
these two directions of research, please refer to Table 1.

Linear regression in the central DP model. Most studies on the optimization setting consider more
general problems, such as Stochastic Convex Optimization (SCO) and Empirical Risk Minimization
(ERM) (Wang, 2018). In recent years, DP-SCO and DP-ERM have been extensively studied (Bassily
et al., 2019; Feldman et al., 2020; Asi et al., 2021b; Su et al., 2022; Sarathy & Vadhan, 2022).
However, it is worth noting that in order to apply these results to linear regression, we need to assume
that both the covariates and responses are bounded, and the constraint set of θ is also bounded to
ensure that the gradient of the loss is bounded. Some works, such as Wang et al. (2020); Kamath
et al. (2022); Lowy & Razaviyayn (2023), have relaxed these assumptions to allow for sub-Gaussian
or even heavy-tailed distributions. In the statistical estimation setting, Cai et al. (2021) provides a

nearly optimal rate of Õ(
√

d
n +

d
√

log(1/δ)

nϵ ) for the (ϵ, δ)-DP model with O(1)-sub-Gaussian data.
Later, Varshney et al. (2022) improves upon this rate by considering the variance of the random noise
σ2. Additionally, Liu et al. (2023) extends this work to the case where some response variables are
adversarially corrupted.

Sparse linear regression in the central DP model. In the optimization setting, the LASSO problem
with an ℓ1-norm ball constraint set is studied in Talwar et al. (2015). The authors demonstrate that this
setting leads to an excess empirical risk of O( log d logn

(nϵ)2/3
), which is further extended to the population

risk in Asi et al. (2021a). On the other hand, Kifer et al. (2012b) provides the first study for the
estimation setting and develops an efficient algorithm that achieves an upper bound of O(k

3/2
√
nϵ
).

Recently, Cai et al. (2021) has shown a nearly optimal rate of Õ(
√

k log d
n + k log d

nϵ ) for (ϵ, δ)-DP in
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the case of O(1)-sub-Gaussian data. Additionally, Hu et al. (2022) has established an upper bound
of Õ(k log d√

nϵ
) for the scenario where the covariate and response have only bounded fourth-order

moments.

Linear regression in the local DP model. Regarding the non-interactive case, Smith et al. (2017)
has demonstrated that if both covariates and responses are bounded by some constant, the ϵ private

optimal rate for the excess empirical risk is O(
√

d
nϵ2 ), indicating a bound of only O

(
d

3
2

ϵ
√
n

)
under

the O(1)-sub-Gaussian assumption. On the other hand, in the (sequentially) interactive setting, the
majority of research considers the DP-SCO or DP-ERM protocols (Duchi et al., 2014b; 2018).

Sparse linear regression in local DP model. Compared to the three aforementioned settings, there
has been relatively less research conducted on sparse linear regression in LDP. For the optimization
perspective, Zheng et al. (2017) has shown that when the covariate and response are bounded by
some constant, it is possible to achieve an error of O(( log dnϵ2 )

1
4 ) if the constraint set is an ℓ1-norm

ball. However, their method cannot be extended to the statistical setting since we always assume
that the covariates are O(1)-sub-Gaussian, which indicates that their ℓ2-norm is bounded by O(

√
d).

Regarding the estimation setting, as discussed in the introduction section, Wang & Xu (2021) provides
the first study. Notably, the upper bound proof in Wang & Xu (2021) has a flaw, and the correct upper
bound is O

(√
dk

ϵ
√
n

)
.

B LOCAL DIFFERENTIAL PRIVACY

Definition 1 (Differential Privacy (Dwork et al., 2006a)). Given a data universe X , we say that two
datasets D,D′ ⊆ X are neighbors if they differ by only one entry, which is denoted as D ∼ D′. A
randomized algorithm A is (ϵ, δ)-differentially private (DP) if for all neighboring datasets D,D′

and for all events S in the output space of A, we have P(A(D) ∈ S) ≤ eϵP(A(D′) ∈ S) + δ.

Since we will consider the sequentially interactive and non-interactive local models in this pa-
per, we follow the definitions in Duchi et al. (2018). We assume that {Zi}ni=1 are the private
observations transformed from {Xi}ni=1 through some privacy mechanisms. We say that the mech-
anism is sequentially interactive when it has the following conditional independence structure:
{Xi, Z1, · · · , Zi−1} 7→ Zi, Zi ⊥ Xj | {Xi, Z1, · · · , Zi−1} for all j ̸= i and i ∈ [n], where ⊥
means independent relation. The full conditional distribution can be specified in terms of condi-
tionals Qi(Zi | Xi = xi, Z1:i = z1:i). The full privacy mechanism can be specified by a collection
Q = {Qi}ni=1. When Zi only depends on Xi, the mechanism is called non-interactive and in this
case we have a simpler form for the conditional distributions Qi(Zi | Xi = xi). We now define local
differential privacy by restricting the conditional distribution Qi.

Definition 2 (Local Differential Privacy (Duchi et al., 2018)). For given privacy parameters 0 <
ϵ, δ < 1, the random variable Zi is an (ϵ, δ) sequentially locally differentially private view of Xi if
for all z1, z2, · · · , zi−1 and x, x′ ∈ X we have the following for all events S.

Qi (Zi ∈ S | Xi = xi, Z1:i−1 = z1:i−1) ≤ eϵQi (Zi ∈ S | Xi = x′i, Z1:i−1 = z1:i−1) + δ.

The random variable Zi is an (ϵ, δ) non-interactively locally differentially private (NLDP) view of
Xi if Qi (Zi ∈ S | Xi = xi) ≤ eϵQi (Zi ∈ S | Xi = x′i) + δ. We say that the privacy mechanism
Q = {Qi}ni=1 is (ϵ, δ) sequentially (non-interactively) locally differentially private (LDP) if each
Zi is a sequentially (non-interactively) locally differentially private view. If δ = 0, then we call the
mechanism ϵ sequentially (non-interactively) LDP.

In this paper, we mainly use the Gaussian mechanism (Dwork et al., 2006b) to guarantee (ϵ, δ)-LDP.

Definition 3. (Gaussian Mechanism). Given any function q : Xn → Rp, the Gaussian Mechanism is
defined as: MG(D, q, ϵ) = q(D) + Y, where Y is drawn from Gaussian Distribution N

(
0, σ2Ip

)
with σ ≥

√
2 ln(1.25/δ)∆2(q)/ϵ. Here ∆2(q) is the ℓ2-sensitivity of the function q, i.e. ∆2(q) =

supD∼D′ ∥q(D)− q (D′) ∥2. Gaussian Mechanism preserves (ϵ, δ)-differential privacy.
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C PRIVATE RANDOMIZER IN SECTION 4.2

Private randomizer. On input x ∈ Rp, where ∥x∥2 ≤ r, the randomizer Rr
ϵ(x) does the following.

It first sets x̃ = brx
∥x∥2

where b ∈ {−1,+1} a Bernoulli random variable Ber
(

1
2 + ∥x∥2

2r

)
. We then

sample s ∼ Ber (eϵ/eϵ + 1) and outputs O(r
√
p)Rr

ϵ(x), where

Rr
ϵ(x) =

{
Uni

(
u ∈ Sp−1 : ⟨u, x̃⟩ > 0

)
if s = 1

Uni
(
u ∈ Sp−1 : ⟨u, x̃⟩ ≤ 0

)
if s = 0

(6)

The following lemma, which is given by Smith et al. (2017); Wang & Xu (2021), shows that each
coordinate of the randomizer is sub-Gaussian Rr

ϵ(x) and is unbiased.
Lemma 8. Given any vector x ∈ Rd with ∥x∥2 ≤ r, each coordinate of the randomizer Rr

ϵ(x)

defined above is a sub-Gaussian random vector with variance σ2 = O( r
2

ϵ2 ) and E[Rr
ϵ(x)] = x.

Moreover Rr
ϵ(·) is ϵ-DP.

D SUPPORTING LEMMAS

First, we introduce the definitions and lemmas related to sub-Gaussian random variables. The class
of sub-Gaussian random variables is quite large. It includes bounded random variables and Gaussian
random variables, and it enjoys strong concentration properties. We refer the readers to Vershynin
(2011) for more details.
Definition 4 (Sub-Gaussian random variable). A zero-mean random variable X ∈ R is said to
be sub-Gaussian with variance σ2

(
X ∼ subG

(
σ2
))

if its moment generating function satisfies

E[exp(tX)] ≤ exp
(
σ2t2

2

)
for all t > 0. For a sub-Gaussian random variable X , its sub-Gaussian

norm ∥X∥ψ2 is defined as ∥X∥ψ2 = inf{c > 0 : E[exp(X
2

c2 )] ≤ 2}. Specifically, if X ∼ subG(σ2)
we have ∥X∥ψ2 ≤ O(σ).
Definition 5 (Sub-exponential random variable). A random variable X with mean E[X] is ζ-sub-
exponential if for all |t| ≤ 1

ζ , we have E[exp(t(X−E[X]))] ≤ exp( ζ
2t2

2 ). For a sub-exponential ran-

dom variableX , its sub-exponential norm ∥X∥ψ1
is defined as ∥X∥ψ1

= inf{c > 0 : E[exp( |X|
c )] ≤

2}.
Definition 6 (Sub-Gaussian random vector). . A zero mean random vector X ∈ Rd is said to be
sub-Gaussian with variance σ2 (for simplicity, we call it σ2-sub-Gaussian), which is denoted as(
X ∼ subGd

(
σ2
))

, if ⟨X,u⟩ is sub-Gaussian with variance σ2 for any unit vector u ∈ Rd.
Lemma 9. If X is sub-Gaussian or sub-exponential, then we have ∥X − E[X]∥ψ2

≤ 2∥X∥ψ2
or

∥X − E[X]∥ψ1
≤ 2∥X∥ψ1

.
Lemma 10. For two sub-Gaussian random variables X1 and X2, X1 · X2 is a sub-exponential
random variable with

∥X1 ·X2∥ψ1 ≤ O(max{∥X1∥2ψ2
, ∥X2∥2ψ2

}).

Lemma 11. If X ∼ subG
(
σ2
)
, then for any t > 0, it holds that P(|X| > t) ≤ 2 exp

(
− t2

2σ2

)
.

Lemma 12. For a sub-Gaussian vector X ∼ subGd
(
σ2
)
, with probability at least 1− δ′ we have

∥X∥2 ≤ 4σ
√
d log 1

δ′ .

Lemma 13. (Cai & Zhou, 2012) If {x1, x2, · · · , xn} are n realizations the a (zero mean)
σ2-sub-Gaussian random vector X with covariance matrix ΣXX = E[XXT ], and Σ̂XX =(
σ̂xxT ,ij

)
1≤i,j≤d =

1
n

∑n
i=1 xix

T
i is the empirical covariance matrix, then there exist constants C1

and γ > 0 such that for any i, j ∈ [d], we have:

P
(∥∥∥Σ̂XX − ΣXX

∥∥∥
∞,∞

> t

)
≤ C1e

−nt2 8
γ2 ,

for all |t| ≤ ϕ with some ϕ, where C1 and γ are constants and depend only on σ2. Specifically,

P

(∥∥∥Σ̂XX − ΣXX

∥∥∥
∞,∞

≥ γ

√
log d

n

)
≤ C1d

−8.
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Lemma 14. Let X1, · · · , Xn be n independent (zero mean) random variables such that Xi ∼
subG

(
σ2
)
. Then for any a ∈ Rn, t > 0, we have:

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ > t

)
≤ 2 exp

(
− t2

2σ2∥a∥22

)
.

Lemma 15. (Vershynin, 2011) Let X1, X2, · · · , Xn be n (zero mean) random variables such that
each Xi is sub-Gaussian with σ2. Then the following holds

P
(
max
i∈n

Xi ≥ t

)
≤ ne−

t2

2σ2 ,

P
(
max
i∈n

|Xi| ≥ t

)
≤ 2ne−

t2

2σ2 .

Below is a lemma related to the Gaussian random variable. We will employ it to bound the noise
added by the Gaussian mechanism.
Lemma 16. Let {x1, · · · , xn} be n random variables sampled from Gaussian distribution N

(
0, σ2

)
.

Then

E
[
max
1≤i≤n

|xi|
]
≤ σ

√
2 log 2n,

P
({

max
1≤i≤n

|xi| ≥ t

})
≤ 2ne−

t2

2σ2 .

Particularly, if n = 1, we have P ({|xi| ≥ t}) ≤ 2e−
t2

2σ2 .
Lemma 17 (Hoeffding’s inequality). Let X1, · · · , Xn be independent random variables bounded by
the interval [a, b]. Then, for any t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi −
1

n

n∑
i=1

E [Xi]

∣∣∣∣∣ > t

)
≤ 2 exp

(
− 2nt2

(b− a)2

)
.

Lemma 18 (Bernstein’s inequality for bounded random variables). Let X1, X2, · · · , Xn be indepen-
dent centered bounded random variables, i.e. |Xi| ≤M and E [Xi] = 0, with variance E

[
X2
i

]
= σ2.

Then, for any t > 0,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > √
2nσ2t+

2Mt

3

)
≤ 2e−t.

Lemma 19 (Bernstein’s inequality for sub-exponential random variables). Let x1, · · · , xn be n i.i.d.
realizations of ζ-subexponential random variable X with zero mean. Then,

P(|
n∑
i=1

xi| ≥ t) ≤ 2 exp(−cmin{ t2

n∥x∥2ψ1

,
t

∥x∥ψ1

}).

Lemma 20. (Non-communicative Matrix Bernstein inequality (Vershynin, 2011)) Consider a finite
sequence Xi of independent centered symmetric random d× d matrices. Assume we have for some
numbers K and σ that

∥Xi∥2 ≤ K,

∥∥∥∥∥∑
i

E
[
X2
i

]∥∥∥∥∥
2

≤ σ2

Then, for every t ≥ 0 we have

P

(∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
2

≥ t

)
≤ 2p exp

(
− t2/2

σ2 +Kt/3

)
.

Lemma 21. (Jain et al., 2014) For any θ ∈ Rk and an integer s ≤ k, if θt = Trunc (θ, s) then for
any θ∗ ∈ Rk with ∥θ∗∥0 ≤ s, we have ∥θt − θ∥2 ≤ k−s

k−k | θ∗ − θ∥22.

Lemma 22. Let K be a convex body in Rp, and v ∈ Rp. Then for every u ∈ K, we have

∥PK(v)− u∥2 ≤ ∥v − u∥2
where PK is the operator of projection onto K.
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E OMITTED PROOFS

E.1 OMITTED PROOFS IN 3.1

Proof of Theorem 1. We consider the hard distribution class Pk,d,2, where for each instance Pθ,ζ ∈
Pk,d,2, its random noise ζ satisfies E[ζ] = 0, |ζ| ≤ 2, and ∥θ∥1 ≤ 1 and ∥θ∥0 ≤ k hold. We denote
γ = ν√

k
and define a vector θz where θz,i = γzi for i ∈ [d], {zi}di=1 are realizations of the random

variable Z ∈ {+1, 0,−1}d, where each coordinate Zi is independent to others and has the following
distribution:

P {Zi = +1} =
k

4d
, P {Zi = −1] =

k

4d
, P {Zi = 0} = 1− k

2d
.

We first show that θz satisfies the conditions that ∥θ∥1 and ∥θ∥0 ≤ k. The resulting θz has an expected
(k/2)-sparsity and E [Zi] = 0, σ2 = E

[
Z2
i

]
= k/2d for all i ∈ [d]. By utilizing a Chernoff bound,

we can conclude that θz is k-sparse with probability at least 1 − k/4d if k ≥ 4 log d. This will be
enough for our purposes and allows us to consider the random prior of hard instances above instead
of enforcing k-sparsity with probability one (see the followings for details). When θz is k-sparse, we
can also see ∥θz∥1 ≤

√
kν ≤ 1 as we assume ν ≤ 1√

k
.

Next, we construct the random noise ζz for each θz . We first pick z randomly from {−1, 0,+1}d as
above. For each z we let:

ζz =

{
1− ⟨x, θz⟩ w.p. 1 + ⟨x,θz⟩

2

−1− ⟨x, θz⟩ w.p. 1− ⟨x,θz⟩
2

Note that since |⟨x, θz⟩| ≤
√
k · ν ≤ 1.

The above distribution is well-defined and |ζz| ≤ 2, E[ζ|x] = 0 (thus E[ζ] = 0). Thus we can see
our for (θz, ζz), with probability at least 1− k

4d , we have Pθz,ζz ∈ Pk,d,2. Morevoer, we can see that
density function for (x, y) is Pθz,ζ((x, y)) =

1+y⟨x,θz⟩
2d+1 for (x, y) ∈ {+1,−1}d+1. Then, for the i-th

user who has the data sample (xi, yi) from the distribution Pθ,ζ with mean vector θZ , he/she sends
his/her through a private algorithm A getting a message Si.

Next, we will introduce the Lemma 23 to show that supposing the accuracy of the algorithm is ν,
then it will provide sufficient mutual information I(Zi ∧ Sn), where Sn is the tuple of messages
received from the private algorithm A. The idea of the proof follows Acharya et al. (2022).

Lemma 23. Given 0 < ϵ < 1, if algorithm A is an ϵ-NLDP algorithm such that, for any n-size
dataset D = {(xi, yi)}ni=1 consisting of i.i.d. samples from PθZ ,ζZ with the random variable Z
has the above probabilities, and its output θpriv satisfies E[∥θpriv − θ∗∥2] ≤ ν

8 , then we have∑d
i=1 I(Zi ∧ Sn) = Ω(k log d

k ). Therefore, I(Z ∧ Sn) = Ω(k log d
k ) holds.

Proof of Lemma 23. Consider the estimator θ̂ = θ̂ (Sn), we define another estimator Ẑ for Z by
choosing

Ẑ = argmin
z∈{−1,0,+1}d

∥θz − θ̂∥2.

Specifically,
∥∥θẐ − θZ

∥∥
2
≤ 2

∥∥∥θ̂ − θZ

∥∥∥
2

with probability 1 , and

E
[∥∥θẐ − θZ

∥∥2
2

]
≤ E

[∥∥θẐ − θZ
∥∥2
2
1{∥θZ∥0≤k}

]
+
k

4d
·max
z,z′

∥θz − θz′∥22 ≤ 4·ν
2

64
+
k

4d
·ν

2

k
·d =

3ν2

8
,

In light of the fact that θ̂ is a good estimator with regards to the ℓ2 loss and has a deviation of no
more than ν/4, provided that θZ is k-sparse, and considering the bound on the probability that Z is
not k-sparse, as well as the fact that the maximum difference between any two mean vectors θz, θz′
derived from our construction is ν/

√
k, it follows that ∥θẐ − θZ∥2 = ν2

k

∑d
i=1 1Zi ̸=Ẑi

. As a result,
it implies:

d∑
i=1

P[Zi ̸= Ẑi] ⩽
3k

8
.
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Also, we consider the Markov chain:

Zi → Sn → Ẑi.

We could derive:
d∑
i=1

I(Zi ∧ Ẑi) ≤
d∑
i=1

I (Zi ∧ Sn) .

Next we will bound
∑d
i=1 I(Zi ∧ Ẑi). By Fano’s inequality, we have for all i:

I(Zi ∧ Ẑi) = H(Zi)−H
(
Zi | Ẑi

)
≥ h

(
k

2d

)
− h(P[Zi ̸= Ẑi])

where h(x) = −x log x − (1 − x) log(1 − x) is the binary entropy. Thus, we could complete the
proof by the subsequent inequalities, where the penultimate inequality arises from the concavity and
monotonicity of h.

d∑
i=1

I(Zi ∧ Ẑi) ≥ d

(
h

(
k

2d

)
− 1

d

d∑
i=1

h(P[Zi ̸= Ẑi])

)

≥ d

(
h

(
k

2d

)
− h

(
1

d

d∑
i=1

P[Zi ̸= Ẑi]

))

≥ d

(
h

(
k

2d

)
− h

(
3k

8d

))
≥ 3

100
k log

ek

d

where the last one is established by noting that infx∈[0,1]
h(x/2)−h(3x/8)

x log(e/x) > 0.03.

In the following, we will present Lemma 24 to connect the relationship between Z and data size.

Lemma 24. Given 0 < ϵ < 1, under the above setting, for any ϵ-NLDP algorithm A, we have
I (Z ∧ Sn) = O

(
nν2ϵ2

d

)
.

Proof of Lemma 24. Since S1, · · · , Sn are mutually independent conditionally on Z, this implies
that

I (Z ∧ Sn) ⩽
n∑
i=1

I (Zi ∧ Si)

Thus, it is sufficient to bound each term I (Z ∧ Si) = O
(
ν2ϵ2

d

)
. Let fix any 1 ≤ t ≤ n, denote

u be any uniformly distribution over {−1,+1}d+1. For the LDP algorithm for the t-th user, At :
{−1,+1}d+1 → {−1,+1}d+1, let APZ

t be the distribution on A := {−1,+1}d+1 induced by the
input V = (xt, yt) drawn from PθZ ,ζZ :

APZ
t = E

V∼PθZ,ζZ

[At(a | V )] , a ∈ A.

We also denote Au
t as the distribution on A := {−1,+1}d+1 where u is any uniformly distribution

over {+1,−1}d+1:
Au
t = E

u∼uniform{+1,−1}d+1
[At(a | u)] , a ∈ A.

Hence the mutual information for each user t could be formulated as:

I (Z ∧ St) = EZ
[
KL
(
APZ
t ∥Au

t

)]
⩽ EZ

[
χ2
(
APZ
t ∥Au

t

)]
.

To simplify the notions and make the proof clear, we omit the subscript t for Wt, xt, and yt here. By
the definition of Chi-square divergence and suppose V = (x, y), V ′ = (x′, y′) generated i.i.d from
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the distribution u, then:

EZ
[
χ2
(
APZ
t ∥Au

t

)]
= EZ

[∑
a∈A

(
∑
V A(a | V ) (PZ(V )− u(V )))

2∑
V A(a | V )u(V )

]

=
∑
a∈A

EZ

[
Eu [A(a | V ) (y⟨x, θZ⟩)]2

Eu[A(a | V )]

]

=
∑
a∈A

EZ

EV,V ′∼u

[
A(a | V )A (a | V ′)

(∑d
i=1 γ

2Z2
i x

i(x′)
i
)]

Eu[A(a | V )]


where the xi denotes the i-th coordinate of x.

We first focus on the last two terms of the molecule. Since EZ [Zi] = 0 and EZ
[
Z2
i

]
= k

2d = σ2 for
all i ∈ [d], we could derive that:

EZ

[(
d∑
i=1

γ2Z2
i x

i(x′)
i

)]
=

d∑
i=1

σ2γ2xi(x′)
i

Now we combine the above results, the following will hold:

EZ
[
χ2
(
APZ
t ∥Au

t

)]
=
∑
a∈A

EV,V ′∼u

[
A(a | V )A (a | V ′)

(∑d
i=1 σ

2γ2xi(x′)
i
)]

Eu[A(a | V )]

= σ2γ2
∑
a∈A

d∑
i=1

Eu

[
A(a | V )xi

]2
Eu [A (a | V )]

= σ2γ2
∑
a∈A

d∑
i=1

((
1
2Eu|y=1[A(a | V )xi] + 1

2Eu|y=−1[A(a | V )xi]
)2

1
2Eu|y=1A(a | V ) + 1

2Eu|y=−1A(a | V )

)

≤ 2σ2γ2
∑
a∈A

d∑
i=1

(Eu|y=1[A(a | V )xi]2

Eu|y=1A(a | V )
+

Eu|y=−1[A(a | V )xi]2

Eu|y=−1A(a | V )

)

= 2σ2γ2
∑
a∈A

(∥∥| Eu|y=1[A(a | V )xi]
∥∥2

Eu|y=1A(a | V )
+

∥∥Eu|y=−1[A(a | V )xi]
∥∥2

Eu|y=−1A(a | V )

)

(7)

We introduce the Lemma to bound the above equation:

Lemma 25. (Acharya et al., 2022) Let ϕi : Rd → R, for i ≤ 1, be a family of functions. If the
functions satisfy, for all i, j,

E
V=(x,y)∼uniform{+1,−1}d+1

[ϕi(x)ϕj(x)] = 1{i=j},

then, for any ϵ-LDP algorithm A and V = (x, y), we have∑
i

EV [ϕi(X)A(a | V )]
2 ≤ VarV [A(a | V )]

∑
a∈A

k

2d
γ2
∑
i∈[d]

EV∼u

[
A(a | V )xi

]2
EV [A(a | V )]

≤ k

2d
γ2
∑
a∈A

VarV [A(a | V )]

EV [A(a | V )]

≤ k

2d
γ2
∑
a∈A

(eϵ − 1)
2 EV [A(a | V )]2

EV [A(a | V )]

=
ν2

2d
(eϵ − 1)

2
.
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Hence, we could derive the conclusion of Lemma 24:

I (Z ∧ Sn) ⩽
n∑
i=1

I (Zi ∧ Si) ⩽
nν2ϵ2

d
.

By combining the above lemmas, we could have the final results:

k log(
d

k
) ⩽

nν2ϵ2

d
,

which implies:

n ⩾ Ω(
dk log( dk )

ν2ϵ2
).

E.2 OMITTED PROOFS IN SECTION 3.2

Proof of Theorem 2. For each user i, it is easily to see that releasing ̂̄xix̄Ti satisfies ( ϵ2 ,
δ
2 )-DP,

releasing ̂̃xiỹi satisfies ( ϵ2 ,
δ
2 )-DP. Thus, the algorithm is (ϵ, δ)-LDP. Moreover, we case see it is

non-interactive.

Proof of Theorem 3. Before giving theoretical analysis, we first prove that Σ̇X̄X̄ is invertible with
high probability.

By Algorithm 1, we can see that the noisy sample covariance matrix aggregated by the server can be
represented as Σ̇X̄X̄ = Σ̂X̄X̄ +N1 = 1

n

∑n
i x̄ix̄

T
i +N1, where N1 is a symmetric Gaussian matrix

with each entry sampled from N
(
0, σ2

N1

)
and σ2

N1
= O

(
r4 log 1

δ

nϵ2

)
. We present the following lemma

to start our analysis.

Lemma 26. (Weyl’s Inequality(Stewart & Sun, 1990)) Let X,Y ∈ Rd×d be two symmetric matrices,
and E = X − Y . Then, for all i = 1, · · · , d, we have

|λi(X)− λi(Y )| ≤ ∥E∥2,
where we take some liberties with the notation and use λi(M) to denote the i-th eigenvalue of the
matrix M .

To show Σ̇X̄X̄ is invertible it is sufficient to show that ∥Σ̇X̄X̄ − Σ∥2 ≤ λmin(Σ)
2 . This is due to that

by Lemma 26, we have
λmin(Σ)− ∥Σ̇X̄X̄ − Σ∥2 ≤ λmin(Σ̇X̄X̄).

Thus, if ∥Σ̇X̄X̄ − Σ∥2 ≤ λmin(Σ)
2 , we have λmin(Σ̇X̄X̄) ≥ λmin(Σ)

2 > 0.

In the following, we split the term ∥Σ̇X̄X̄ − Σ∥2,

∥Σ̇X̄X̄ − Σ∥2 ≤ ∥N1∥2 + ∥Σ̂X̄X̄ − ΣX̄X̄∥2 + ∥ΣX̄X̄ − Σ∥2

where we denote Σ̂X̄X̄ = 1
n

∑n
i x̄ix̄

T
i and ΣX̄X̄ = E[x̄ix̄Ti ].

Lemma 27 (Corollary 2.3.6 in Tao (2012)). Let M ∈ Rd be a symmetric matrix whose entries mij

are independent for j > i, have mean zero, and are uniformly bounded in magnitude by 1. Then,
there exists absolute constants C2, c1 > 0 such that with probability at least 1− exp (−C2c1d), the
following inequality holds ∥M∥2 ≤ C

√
d.

By Lemma 27, we can see that with probability 1− exp(−Ω(d)),

∥N1∥2 ≤ O

r2
√
d log 1

δ√
nϵ

 .
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Lemma 28. If n ≥ Ω̃ (d∥Σ∥2), with probability at least 1− ξ

∥∥∥Σ̂X̄X̄ − ΣX̄X̄

∥∥∥
2
≤ O


√
d∥Σ∥2 log n log d

ξ√
n

 .

Proof. Note that
∥∥x̄ix̄Ti − ΣX̄X̄

∥∥
2
≤
∥∥x̄ix̄Ti ∥∥2 + ∥ΣX̄X̄∥2 ≤ 2r2. And for any unit vector v ∈ Rd

we have the following if we denote X̄ = x̄ix̄
T
i

E
(
vT X̄T X̄v

)
= E

[
∥x̄i∥22

(
vT x̄i

)2] ≤ O
(
r4
)
.

Thus we have
∥∥E [X̄T X̄

]∥∥
2
≤ O

(
r2
)
. Since

∥∥E(X̄)TE(X̄)
∥∥
2
≤ ∥E(X̄)∥22 ≤ r2, we have∥∥E[X̄ − EX̄]TE[X̄ − EX̄]

∥∥
2
≤ O

(
r2
)
. Thus, by the Non-communicative Bernstein inequality

(Lemma 20) we have for some constant c > 0 :

P
(∥∥∥Σ̂X̄X̄ − ΣX̄X̄

∥∥∥
2
> t
)
≤ 2d exp

(
−cmin

(
nt2

r2
,
nt

r2

))
.

Thus we have with probability at least 1− ξ and the definition of r we have,

∥∥∥Σ̂X̄X̄ − ΣX̄X̄

∥∥∥
2
≤ O


√
d∥Σ∥2 log n log d

ξ√
n



We can also see that ∥ΣX̄X̄ − Σ∥2 ≤ O
(

∥Σ∥2
2

n

)
. This is due to

∥ΣX̄X̄ − Σ∥2 ≤
∥∥E [(x̄ix̄Ti − xix

T
i

)
I∥x∥2≥r

]∥∥
2
.

For any unit vector v ∈ Rp we have

vTE
[(
xix

T
i − x̄ix̄

T
i

)
I∥x∥2≥r

]
v = E

[((
vTxi

)2 − (vT x̄i)2) I∥xi∥2≥r

]
≤ E

[(
vTxi

)2 I∥x∥2≥r

]
≤
√
E
[
(vTxi)

4
]
P [∥xi∥2 ≥ r] ≤ O

(
∥Σ∥22
n

)
where the last inequality is due to the assumption on sub-Gaussian where P(|xi| ≥ r) ≤
2 exp(− r2

2σ2 ) = O( 1
n2 ).

Thus, it is sufficient to show that λmin(Σ) ≥ O

(
∥Σ∥2

2r
2
√
d log d

ξ log 1
δ√

nϵ

)
, which is true under the

assumption of n ≥ Ω

(
∥Σ∥4

2dr
4 log d

ξ log 1
δ

ϵ2λ2
min(Σ)

)
. Thus, with probability at least 1− exp(−Ω(d))− ξ, it

is invertible. In the following we will always assume that this event holds.

To prove the theorem, we first introduce the following lemma on the estimation error of θ̂ in equation 2.

Lemma 29 (Theorem 2 in Yang et al. (2014)). Suppose we solve the problem of the form minθ ∥θ −
θ̂∥22 + λn∥θ∥1 such that constraint term λn is set as λn ≥

∥∥∥θ∗ − θ̂
∥∥∥
∞

. Then, the optimal solution

θ̂ = Sλn
(θ̂) satisfies: ∥∥∥θ̂ − θ∗

∥∥∥
∞

≤ 2λn,∥∥∥θ̂ − θ∗
∥∥∥
2
≤ 4

√
kλn,∥∥∥θ̂ − θ∗

∥∥∥
1
≤ 8kλn.
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Note that this is a non-probabilistic result, and it holds deterministically for any selection
of λn or any distributional setting of the covariates xi. Our goal is to show that λn ≥∥∥∥∥θ∗ − (Σ̇X̄X̄)−1 (

Σ̇X̃Ỹ

)∥∥∥∥
∞

under the assumptions specified in Lemma 29.

∥∥∥θ∗ − θ̂priv(D)
∥∥∥
∞

=

∥∥∥∥θ∗ − (Σ̇X̄X̄)−1 (
Σ̇X̃Ỹ

)∥∥∥∥
∞

≤
∥∥∥∥(Σ̇X̄X̄)−1

∥∥∥∥
∞

∥∥∥(Σ̇X̄X̄) θ∗ − (Σ̂X̃Ỹ +N2

)∥∥∥
∞

(8)

where the vector N2 ∈ Rd is sampled from N (0,
32dτ2

1 τ
2
2 log 1.25

δ√
nϵ2

Id). We first develop upper bound

of Σ̇X̄X̄ . For any nonzero vector w ∈ Rd, Note that∥∥∥Σ̇X̄X̄w∥∥∥∞ =
∥∥∥Σ̇X̄X̄w − Σw +Σw

∥∥∥
∞

≥ ∥Σw∥∞ −
∥∥∥(Σ̇X̄X̄ − Σ

)
w
∥∥∥
∞

≥
(
κ∞ −

∥∥∥Σ̇X̄X̄ − Σ
∥∥∥
∞

)
∥w∥∞.

Our objective is to find a sufficiently large n such that
∥∥∥Σ̇X̄X̄ − Σ

∥∥∥
∞

is less than κ∞
2 .

From above we see that, we have ∥N1∥2 < O(
√
dσN1

) = O(
r2
√
d log 1

δ√
nϵ2

) by Lemma 27, which
indicates the following holds:

∥Σ̇X̄X̄ − Σ∥2 ≤ ∥Σ̂X̄X̄ − Σ∥2 + ∥N1∥2

≤ O

r2
√
d log d log 1.25

δ√
nϵ2

 ,

where the second inequality comes from Tropp et al. (2015). The following inequality always hold

∥Σ̇X̄X̄ − Σ∥∞ ≤
√
d∥Σ̇X̄X̄ − Σ∥2 ≤ O(

dr2
√

log d log 1.25
δ√

nϵ2
). Thus, when n ≥ Ω

(
d2r4 log d log 1

δ

ϵ2κ∞

)
,

we have
∥∥∥Σ̇X̄X̄w∥∥∥∞ ≥ κ∞

2 ∥w∥∞, which implies
∥∥∥∥(Σ̇X̄X̄)−1

∥∥∥∥
∞

≤ 2
κ∞

. Given sufficiently large n,

from Eq.equation 8, we have:∥∥∥θ∗ − θ̂priv(D)
∥∥∥
∞

≤ 2

κ∞

∥∥∥(Σ̇X̄X̄) θ∗ − (Σ̂X̃Ỹ +N2

)∥∥∥
∞

≤ 2

κ∞


∥∥∥Σ̂X̃Ỹ − ΣX̃Ỹ

∥∥∥
∞︸ ︷︷ ︸

T1

+
∥∥ΣX̃Ỹ − ΣY X

∥∥
∞︸ ︷︷ ︸

T2

+
∥∥∥(Σ̇X̄X̄ − Σ

)
θ∗
∥∥∥
∞︸ ︷︷ ︸

T3

+ ∥N2∥∞︸ ︷︷ ︸
N2


(9)

We will bound the above four terms one by one.

We first consider term T1. Since x and y are both O(1)-sub-Gaussian, we denote their ψ2-norm
by κX and κY , respectively. For 1 ≤ j ≤ d, we have Var(ỹix̃ij) ≤ E[(ỹix̃ij)2] ≤ E[(yixij)2] ≤
(E[|yi|2])(E[|xij |2]) ≤ (E[|yi|

2k
k−1 ])

k−1
k (E[|xij |

2k
k−1 ])

k−1
k ≤ 4κ2Xκ

2
Y (

k
k−1 )

2 =: v1 < ∞. We have
v1 = O(1). Therefore, according to Lemma 18, we have:

P

(∣∣∣σ̂Ỹ x̃j
− σỸ x̃j

∣∣∣ ≥√2v1t

n
+
cτ1τ2t

n

)
≤ exp(−t),
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where σ̂Ỹ x̃j
= 1

n

∑n
i=1 ỹix̃ij , σỸ x̃j

= E[ỹix̃ij ] and c is a certain constant. Then by the union bound,
the following can be derived:

P

(
|T1| >

√
2v1t

n
+
cτ1τ2t

n

)
≤ d exp(−t).

Next, we give an estimation of T2. Note that for 1 ≤ j ≤ d, by lemma 12 we have:

E [ỹix̃ij ]− E [yixij ] = E [ỹix̃ij ]− E [ỹixij ] + E [ỹixij ]− E [yixij ]

= E [ỹi (x̃ij − xij)] + E [(ỹi − yi)xij ]

≤
√

E
[
y2i (x̃ij − xij)

2
]
P (|xij | ≥ τ1) +

√
E
[
(ỹi − yi)

2
x2ij

]
P (|yi| ≥ τ2)

≤
√
v1

(
2e−

τ2
1

2σ2 + 2e−
τ2
2

2σ2

)
,

which shows that T2 ≤ √
v1

(
2e−

τ2
1

2σ2 + 2e−
τ2
2

2σ2

)
.

To upper bound term T3, we need to evaluate ∥Σ̇X̄X̄ − Σ∥∞,∞. It can be seen that Σ̇X̄X̄ =

Σ̂X̄X̄ + N1 =
∑n
i x̄ix̄

T
i + N1. Therefore by Lemma 13 and Lemma 16 with probability at least

1− Cd−8, for all 1 ≤ i, j ≤ d, and for some constants γ and C that depends on σN1 ,

∣∣σ̇x̄x̄T ,ij − σxxT ,ij

∣∣ ≤ γ

√
log d

n
+

128r2
√

2 log 1.25
δ log d

√
nϵ

≤ O

γr2
√

log d log 1
δ

nϵ2

 . (10)

We can see that T3 is bounded by O(d log n

√
(
log d log 1

δ

nϵ2 )). Here we used the fact that ∥(Σ̇X̄X̄ −

Σ)θ∗∥∞ ≤ ∥Σ̇X̄X̄ − Σ∥∞,∞∥θ∗∥1 ≤ O(r2
√
(
log d log 1

δ

nϵ2 )) ∥θ∗∥1 given the selection of r, where the
last inequality is from Eq.10.

The last term of Eq.equation 9 can be bounded by Gaussian tail bound by lemma 16. With probability
1−O(d−8), we have:

∥N2∥∞ ≤ O

τ1τ2
√
d log 1

δ log d

ϵ
√
n

 . (11)

Finally combining all pieces, we can find that T3 is the dominating term. Since λn ≥∥∥∥∥θ∗ − (Σ̇X̄X̄)−1 (
Σ̇X̃Ỹ

)∥∥∥∥
∞

, Lemma 29 implies that with probability at least 1−O(d−8)−e−Ω(d),

∥∥∥∥θ∗ − [Σ̇X̄X̄]−1 (
Σ̂X̃Ỹ +N2

)∥∥∥∥
2

≤ O

d log n
√
k log d log 1

δ√
nϵ

 ,

which completes our proof of Theorem.

Proof of Theorem 4. We basically follow the same ideas in the proof of Theorem 3.

First using similar argument, we can show that (Σ̂pub
XX)−1 exists with high probability.

The following lemma is the concentration result on sub-Gaussian matrix.

Lemma 30. (Theorem 4.7.1 in Vershynin (2018) ) Let x be a random vector in Rd that is sub-Gaussian
with covariance matrix Σ and

∥∥∥Σ− 1
2x
∥∥∥
ψ2

≤ κx. Then, with probability at least 1− exp(−d), the

empirical covariance matrix Σ̂XX = 1
n

∑n
i=1 xix

T
i satisfies∥∥∥Σ̂XX − Σ

∥∥∥
2
≤ Cκ2x

√
d

n
∥Σ∥2
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Algorithm 3 Non-interactive LDP algorithm for Sparse Linear Regression with public but unlabeled
data

1: Input: Private data {(xi, yi)}ni=1 ∈
(
Rd × R

)n
. Predefined parameters τ1, τ2, λn.

2: for Each user i ∈ [n] do
3: for j ∈ [d] do
4: Coordinately shrink x̃ij = sgn (xij)min {|xij | , τ1}
5: end for
6: Clip ỹi := sgn (yi)min {|yi| , τ2}. Add noise ̂̃xiỹi = x̃iỹi + n2,i, where the vector n2,i ∈ Rd

is sampled from N (0,
2dτ2

1 τ
2
2 log 1.25

δ

ϵ2 Id). Release ̂̃xiỹi to the server.
7: end for
8: The server aggregates Σ̇X̃Ỹ = 1

n

∑n
i=1

̂̃xiỹi and compute Σ̂pub
XX = 1

m

∑n+m
j=n+1 xjx

T
j using

dataset
9: The server outputs θ̂priv(D) = Sλn

([Σ̂pub
XX ]−1Σ̇X̃Ỹ ).

By Lemma 26 and Lemma 30, with probability at least 1− exp(−Ω(d)),

λmin

(
Σ̂pub
XX

)
≥ λmin(Σ)−O

(
κ2x∥Σ∥2

√
d

m
).

)

We know that under the assumption of m ≥ Ω
(
κ4
x∥Σ∥2

2d

λ2
min(Σ)

)
, it is sufficient to show that λmin(Σ) ≥

O
(
κ2
x∥Σ∥2

√
d√

m

)
. Thus, with probability at least 1− exp(−Ω(d)), it is invertible. In the following we

will always assume that this event holds.

With the benefit of Lemma 29, we need to show that λn ≥ ∥θ∗ − (Σ̂pub
XX)−1(Σ̇X̃Ỹ )∥∞.

We know from the proof of Theorem 4 in Cai & Zhou (2012) that ∥Σ̇X̄X̄−Σ∥∞ ≤
√
d∥Σ̇X̄X̄−Σ∥2 ≤

( 4d
√
2 log d√
n

). Therefore when n ≥ Ω(d
2 log d
κ∞

), we have ∥Σ̂pub
XXw∥∞ ≥ κ∞

2 ∥w∥∞, which implies

∥(Σ̂pub
XX)−1∥∞ ≤ 2

κ∞
. Given this sufficiently large n, from Eq.equation 8, we have that∥∥∥θ∗ − θ̂priv(D)
∥∥∥
∞

≤
∥∥∥∥(Σ̂pub

XX

)−1
∥∥∥∥
∞

∥∥∥(Σ̇X̄X̄) θ∗ − (Σ̂X̃Ỹ +N2

)∥∥∥
∞

≤ 2

κ∞

∥∥∥(Σ̂pub
XX

)
θ∗ −

(
Σ̂X̃Ỹ +N2

)∥∥∥
∞

≤ 2

κ∞


∥∥∥Σ̂X̃Ỹ − ΣX̃Ỹ

∥∥∥
∞︸ ︷︷ ︸

T1

+
∥∥ΣX̃Ỹ − ΣY X

∥∥
∞︸ ︷︷ ︸

T2

+
∥∥∥(Σ̂pub

XX − Σ
)
θ∗
∥∥∥
∞︸ ︷︷ ︸

T3

+ ∥N2∥∞︸ ︷︷ ︸
N2



(12)

It is easy to see that only T3 term is different from Equation 9. By Lemma 16 we can get the following,
with probability at least 1−O(d−8), for all 1 ≤ i, j ≤ d, for some constant γ∣∣∣σ̂pub

xxT ,ij
− σxxT ,ij

∣∣∣ ≤ O

(
γ

√
log d

n

)

By similar argument in the proof of Theorem 3, we have that T3 is bounded by O(
√

( log dn )) ∥θ∗∥1
given the selection of r.

Therefore taking τ1 = Θ(σ
√
log n), τ2 = Θ(σ

√
log n), r = Θ(σ

√
d log n), λn = O(

d logn
√

log 1
δ√

nϵ
),

we can see that the dominating terms are T2 and N2 thus the result follows.
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Proof of Theorem 5. We follow basically the same techniques as in the proof of Theorem 3. With

the benefit of Lemma 29, we need to show that λn ≥
∥∥∥∥θ∗ − (Σ̇X̄X̄)−1 (

Σ̇X̃Ỹ

)∥∥∥∥
∞

. From the proof

of Theorem 3, when n ≥ Ω
(
d2r4 log d log 1

δ

ϵ2κ∞

)
, we have

∥∥∥Σ̇X̄X̄w∥∥∥∞ ≥ κ∞
2 ∥w∥∞, which implies∥∥∥∥(Σ̇X̄X̄)−1

∥∥∥∥
∞

≤ 2
κ∞

. Given this sufficiently large n, from Eq.equation 8, the following can be

obtained:∥∥∥θ∗ − θ̂priv(D)
∥∥∥
∞

≤
∥∥∥∥(Σ̇X̄X̄)−1

∥∥∥∥
∞

∥∥∥(Σ̇X̄X̄) θ∗ − (Σ̂X̃Ỹ +N2

)∥∥∥
∞

≤ 2

κ∞

∥∥∥(Σ̇X̄X̄) θ∗ − (Σ̂X̃Ỹ +N2

)∥∥∥
∞

≤ 2

κ∞


∥∥∥Σ̂X̃Ỹ − ΣX̃Ỹ

∥∥∥
∞︸ ︷︷ ︸

T1

+
∥∥ΣX̃Ỹ − ΣY X

∥∥
∞︸ ︷︷ ︸

T2

+
∥∥∥(Σ̇X̄X̄ − Σ

)
θ∗
∥∥∥
∞︸ ︷︷ ︸

T3

+ ∥N2∥∞︸ ︷︷ ︸
N2



(13)

Since the new assumption is made on yi, T3 is not affected by this difference. Therefore, we only
need to examine T1 and T2.

Using similar arguments, we can see that T1 is bounded by O( τ1τ2n ) and N2 is still bouneded by

O(
τ1τ2

√
d log 1

δ log d

ϵ
√
n

) with high probability.

We bound the terms E
[
y2i x̃

2
ij

]
,E
[
ỹ2i x

2
ij

]
by

max{E
[
y2i x̃

2
ij

]
,E
[
ỹ2i x

2
ij

]
} ≤ E

[
y2i x

2
ij

]
≤
(
E
[
y2pi

]) 1
p
(
E [xij ]

2p
p−1

) p−1
p ≤ 2M

1
pκ2Xp/(p− 1) <∞

which is a constant that we denote by v. Note that for 1 ≤ j ≤ d, by lemma 12 and Markov’s
inequality, the following holds:

E [ỹix̃ij ]− E [yixij ]

=E [ỹix̃ij ]− E [ỹixij ] + E [ỹixij ]− E [yixij ]

=E[ỹi (x̃ij − xij)] + E[(ỹi − yi)xij ]

≤
√
E
[
y2i (x̃ij − xij)

2
]
P (|xij | ≥ τ1) +

√
E
[
(ỹi − yi)

2
x2ij

]
P (|yi| ≥ τ2)

≤
√
v

(
2e−

τ2
1

2σ2 +

√
E[|yi|]2p

τ2p2

)

≤
√
v

(
2e−

τ2
1

2σ2 +

√
M

τp2

)
,

which shows that T2 ≤
√
v

(
2e−

τ2
1

2σ2 + 2
√
M

τ2p
2

)
.

Taking τ2 = ( nϵ
2

log d )
1
2p completes the proof.

E.3 OMITTED PROOFS IN SECTION 4.1

Before presenting the full proof of Theorem 6, we first introduce several necessary definitions and
assumptions.
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Definition 7. For distributions P1, P2 over sample space X , denote their Kullback-Leibler divergence
(in nats) by KL (P1∥P2), and their Hellinger distance by

dH (P1, P2) :=

√√√√1

2

∫ (√
dP1

dλ
−
√

dP2

dλ

)2

dλ

Definition 8. Let Z = (Z1, . . . , Zd) be a random variable over Z = {−1,+1}d such that
P [Zi = 1] = τ for all i ∈ [d] and the Zi s are all independent; we denote this distribution by
Rad(τ)⊗d. For z ∈ Z , we denote z⊕i ∈ Z as the vector obtained by flipping the sign of the i-th
coordinate of z.
Assumption 4 (Densities Exist). For every z ∈ Z and i ∈ [d] it holds that Pz⊕i ≪ Pz (we refer to
Pθz simply as Pz), and there exist measurable functions ϕz,i : Rd → R such that

dPz⊕i

dPz
= 1 + ϕz,i.

Assumption 5 (Orthogonality). There exists some α2 ≥ 0 such that, for all z ∈ Z and distinct
i, j ∈ [d],EPz

[ϕz,i · ϕz,j ] = 0 and EPz

[
ϕ2z,i
]
≤ α2.

Assumption 6 (Additive loss). For every z, z′ ∈ Z = {−1,+1}d,

ℓ2 (θz, θz′) = 4ν

(
dHam (z, z′)

τd

)1/2

where dHam (z, z′) :=
∑d
i=1 1 {zi ̸= z′i} denotes the Hamming distance, where τ = k/2d, k and ν

denotes sparsity and error rate respectively.

Proof of Theorem 6. Similar to the non-interactive setting, we consider the hard distribution class
Pk,d,2, where for each instance Pθ,ζ ∈ Pk,d,2, its random noise ζ satisfies E[ζ | x] = 0, |ζ| ≤ 2, and
∥θ∥1 ≤ 1 and ∥θ∥0 ≤ k hold. By setting γ = 4

√
2ν√
k

and defining θz,i =
γ(zi+1)

2 for i ∈ [d], {zi}di=1

are realizations of the random variable Z ∈ {−1,+1}d, where each coordinate Zi is independent to
others and has the following distribution:

P {Zi = +1} = k/2d, P {Zi = −1] = 1− k/2d

We will first show that θz satisfies the conditions that ∥θ∥1 and ∥θ∥0 ≤ k and θz is k-sparse with
probability of 1− τ , where τ = k/2d by the following fact.

Fact 1. (Acharya et al., 2020) For Z ∼ Rad(τ) and τd ≥ 4 log d, then we have P (∥Z∥+ ≤ 2τd) ≥
1− τ/4, where ∥Z∥+ = {i ∈ {d}|zi = 1}.

When θz is k-sparse, we can also see ∥θz∥1 ≤ 4
√
2kν ≤ 1 as we assume ν ≤ 1

4
√
2k

.

Next, we construct the following generative process, we first pick z randomly from {−1,+1}d as
above. For each Z we let:

ζz =

{
1− ⟨x, θz⟩ w.p. 1 + ⟨x,θz⟩

2

−1− ⟨x, θz⟩ w.p. 1− ⟨x,θz⟩
2

Note that since |⟨x, θz⟩| ≤
√
k · γ = 4

√
2ν ≤ 1. The above distribution is well-defined and

|ζz| ≤ 2. We can see that density function for (x, y) is Pz = Pθz,ζz ((x, y)) = 1+y⟨x,θz⟩
2d+1 for

(x, y) ∈ {−1,+1}d+1.

In the subsequent, we will confirm that Pz under the above constructions could satisfy the Assump-
tions 4, 5.

dPz⊕i

dPz
=

1 + y ⟨x, θz⊕i⟩
1 + y ⟨x, θz⟩

= 1 +
y ⟨x, θz⊕i − θz⟩
1 + y ⟨x, θz⟩

θz⊕i − θz =

(
0, · · · 0, γ (−zi + 1)

2
− γ (zi + 1)

2
, 0, · · · 0

)
= (0, · · · 0,−γzi, 0, · · · 0)
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Thus, we could simplify the previous formulations as:

dPz⊕i

dPz
= 1− yγxizi

1 + y ⟨x, θz⟩

Let αz,i = r
1+y⟨x,θz⟩ . Since |y⟨x, θz⟩| ⩽

√
k∥x∥∞γ ⩽ 1/2, we have αzi ⩽

4
√
2ν

2
√
k

, where the right
hand side is denoted as α.

Now there exists a measurable function ϕz,i = yxizi, with E [ϕz,i · ϕz,j ] = 0 if i ̸= j and
E
[
yx2i z

2
i

]
= 1 if i ̸= j, indicating that assumptions 4 and 5 hold.

Lemma 31 ((Acharya et al., 2020)). For a ϵ-sequentially interactive LDP algorithm A and any
family of distributions {Pz = Pθz,ζz ((x, y))} satisfying Assumptions 4 and 5, let Z be a random
variable on Z = {−1,+1}d with distribution Rad(τ)⊗d. Let Sn be the tuple of messages from the
algorithm A when the input V1 = (x1, y1), . . . , Vn = (xn, yn) is i.i.d. with common distribution
Pθz,ζz , then we have:(

1

d

d∑
i=1

dTV

(
PS

n

+i , P
Sn

−i

))2

≤ 7

d
nα2

(
(eϱ − 1)

2 ∧ eϱ
)

(14)

where PS
n

+i := E
[
PS

n

θz,ζz
| Zi = +1

]
, PS

n

−i := E
[
PS

n

θz,ζz
| Zi = −1

]
. In Eq.equation 14, the left-

hand side is defined as the average discrepancy, which represents the average amount of information
that the transcript conveys about each coordinate of Z.

With the assumptions holding and introducing the Lemma31, we have the following conclusions for

our LDP algorithm and constructed distribution:
(

1
d

∑d
i=1 dTV

(
PS

n

+i , P
Sn

−i
))2

≤ 7
dnα

2ϵ2, where

α = 2
√
2ν√
k

. Next, we will verify the remaining assumptions that should be satisfied for the lower

bound of
(

1
d

∑d
i=1 dTV

(
PS

n

+i , P
Sn

−i
))2

. Since

∥θz − θz′∥ =

√√√√32ν2

k

d∑
i=1

1{Zi ̸= Ẑi} = 4ν

(
dHam(z,ẑ)

τd

)1/2

,

thus the assumption 6 holds for any z, z′ ∈ {−1,+1}d with τ = k/2d.

Lemma 32 ((Acharya et al., 2020)). Assume that Pθz,ζz ((x, y)) satisfy Assumption 6, and τ =
k/2d ∈ [0, 1/2]. Let Z be a random variable on Z = {−1,+1}d with distribution Rad(τ)⊗d. if
algorithm A is an ϵ- sequentially interactive LDP algorithm such that, for any n-size dataset D =
{(xi, yi)}ni=1 consisting of i.i.d. samples from PθZ ,ζZ with the probability PZ [Pθz,ζz ∈ Pk,d,2] ≥
1− τ/4, and its output θpriv satisfies E[∥θpriv − θ∗∥2] ≤ ν, then the tuple of messages Sn from the
algorithm A satisfies

1

d

d∑
i=1

dTV

(
PS

n

+i , P
Sn

−i

)
≥ 1

4
,

With the fact of θz is k-sparse w.p. 1− τ/4 and assumption 6 holding, it is easy to obtain that lemma
32 is applicable for our sequentially interactive LDP algorithm.

Combining the above results, we have:

1

4
≤ 1

d

d∑
i=1

dTV

(
PS

n

+i , P
Sn

−i

)
≤ 7nν2ϵ2

dk

which implies n ≥ O( dk
ν2ϵ2 ).
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E.4 OMITTED PROOFS IN SECTION 4

Proof of Theorem 7. We first show the guarantee of ϵ-LDP. First, we will show that∥∥x̃Ti ((⟨x̃i, θt−1⟩)− ỹi)
∥∥
2
≤

√
dτ1(

√
k′τ1 + τ2), this is due to that∥∥x̃Ti (⟨x̃i, θt−1⟩ − ỹi)

∥∥
2

≤
∥∥x̃Ti ∥∥2 |⟨x̃i, θt−1⟩ − ỹi|)

≤
∥∥x̃Ti ∥∥2 (|√k∥x̃i∥∞∥θt−1∥2 − ỹi|) ≤

√
dτ1(

√
k′τ1 + τ2),

where the last inequality is due to that θt−1 is k′-sparse, ∥θt−1∥2 ≤ 1 and each ∥x̃i∥∞ ≤ τ1.

Based on this and Lemma 8, we can easily see Algorithm 2 is ϵ-LDP. Due to the partition of the
dataset, we can see it is sequentially interactive.

Next, we consider the utility. Without loss of generality, we assume each |St| = m = n
T . From the

randomizer Rr
ϵ(·) and Lemma 8 , we can see that ∇̃t =

1
m

∑
i∈St

x̃Ti (⟨x̃i, θt−1⟩ − ỹi) + ϕt, where

each coordinate of ϕt is a sub-Gaussian vector with variance = O
(
dτ2

1 (k
′τ2

1+τ
2
2 )

mϵ2

)
.

Let S∗ = supp (θ∗) denote the support of θ∗, and k = |S∗|. Similarly, we define St = supp (θt),
and F t−1 = St−1 ∪ St ∪ S∗. Thus, we have

∣∣F t−1
∣∣ ≤ 2k′ + k. Let θ̃t− 1

2
denote as the following:

θ̃t− 1
2
= θt−1 − η∇̃t−1,Ft−1,

where vFt−1 means keeping vi for i ∈ F t−1 and converting all other terms to 0 . By the definition of
F t−1, we have θ′t = Trunc

(
θ̃t− 1

2
, k′
)

.

For each iteration t, we also denote ∇̃Lt−1 (θt−1) = 1
m

∑
i∈St

x̃i (⟨x̃i, θt−1⟩ − ỹi),
∇Lt−1 (θt−1) =

1
m

∑
i∈St

xi (⟨xi, θt−1⟩ − yi), and ∇LP(θt−1) = E[x(⟨x, θt−1⟩ − y)].

Denote by ∆t the difference of θt − θ∗. We have the following:∥∥∥θ̃t− 1
2
− θ∗

∥∥∥
2
= ∥∆t−1 − η∇̃t∥2 = ∥∆t−1 − η∇̃t,Ft−1∥2

≤ ∥∆t−1 − η[∇Lt−1(θt−1)]Ft−1∥2︸ ︷︷ ︸
A

+η ∥∇̃t,Ft−1 − [∇Lt−1(θt−1)]Ft−1∥2︸ ︷︷ ︸
B

.

We first bound the term B. Specifically, we have

∥∇̃t,Ft−1 − [∇Lt−1(θt−1)]Ft−1∥2 = ∥[∇̃t −∇Lt−1(θt−1)]Ft−1∥2
≤
√
|F t−1|∥∇̃t −∇Lt−1(θt−1)∥∞

≤
√

|F t−1|(∥∇̃Lt−1(θt−1)−∇Lt−1(θt−1)∥∞︸ ︷︷ ︸
B1

+ ∥ϕt∥∞︸ ︷︷ ︸
B2

)

For term B2, by Lemma 15 we have with probability at least 1− δ′

B2 ≤ O

 (τ21
√
dk′ + τ1τ2

√
d)
√

log d
δ′√

mϵ

 . (15)

For B1, we have

B1 ≤ sup
∥θ∥2≤1

∥∇̃Lt−1(θ)−∇LP(θ)∥∞︸ ︷︷ ︸
B1,1

+ sup
∥θ∥2≤1

∥∇Lt−1(θ)−∇LP(θ)∥∞︸ ︷︷ ︸
B1,2

.

Next we bound the term B1,1, we have

sup
∥θ∥1≤1

∥∇̃Lt−1(θ)−∇LP(θ)∥∞ ≤ sup
∥θ∥1≤1

∥[ 1
m

n∑
i=1

x̃ix̃
T
i − E[xxT ]]θ∥∞ + sup

∥θ∥1≤1

∥ 1

m

m∑
i=1

x̃iỹi − E[xy]∥∞
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≤ ∥[ 1
m

n∑
i=1

x̃ix̃
T
i − E[xxT ]]∥∞,∞ + ∥ 1

m

m∑
i=1

x̃iỹi − E[xy]∥∞.

We consider the first term ∥[ 1m
∑n
i=1 x̃ix̃

T
i − E[xxT ]]∥∞,∞, for simplicity for each j, k ∈ [d]

denote σ̂jk = ( 1n
∑n
i=1 x̃ix̃

T
i )jk = 1

n

∑n
i=1 x̃i,j x̃i,k, σ̃jk = (E[x̃x̃T ])jk = E[x̃j x̃k] and σjk =

(E[xxT ])jk = E[xjxk]. We have

|σ̂jk − σjk| ≤ |σ̂jk − σ̃jk|+ |σ̃jk − σjk|.

We know that |x̃j x̃k| ≤ τ21 and Var(x̃j x̃k) ≤ Var(xjxk) ≤ E(xjxk)2 ≤ O(σ4). By Bernstein’s
inequality we have

P(max
j,k

|σ̂jk − σ̃jk| ≤ C

√
σ4t

m
+
τ21 t

m
) ≥ 1− d2 exp(−t) (16)

Moreover, we have

|σ̃jk − σjk| = |E[|x̃j(x̃k − xk)I(|xk| ≥ τ1)] + |E[|xk(x̃j − xj)I(|xj | ≥ τ1)]

≤
√

E(x̃j(x̃k − xk))2P(|xk| ≥ τ1) +
√

E((x̃j − xj)xk)2P(|xj | ≥ τ1)

≤ O(
σ2

n
),

where the last inequality is due to the assumption on sub-Gaussian where P(|xj | ≥ τ1) ≤
2 exp(− τ2

1

2σ2 ) = O( 1n ), E(x̃j(x̃k − xk))
2 ≤ 4E(xjxk))2 ≤ O(σ4) and E((x̃j − xj)xk)

2 ≤
4E(xjxk))2 ≤ O(σ4). In total we have with probability at least 1− δ′

∥[ 1
m

n∑
i=1

x̃ix̃
T
i − E[xxT ]]∥∞,∞ ≤ O(

σ2 log n log d
δ′√

m
).

We can use the same technique to term ∥ 1
m

∑m
i=1 x̃iỹi − E[xy]∥∞, for simplicity for each j ∈ [d]

denote σ̂j = 1
n

∑n
i=1 ỹix̃j , σ̃j = E[ỹx̃j ] and σj = E[yxj ]. We have

|σ̂j − σj | ≤ |σ̂j − σ̃j |+ |σ̃j − σj |.

Since |x̃j ỹ| ≤ τ1τ2 and we have the following by the Holder’s inequality

Var(x̃j ỹ) ≤ Var(xjy) ≤ E[x2jy2] ≤ (E[y4])
1
2 (E[|xj |4])

1
2 ≤ O(σ4)

Thus, by Bernstein’s inequality we have for all j ∈ [d]

P(|σ̂j − σ̃j | ≤ O(

√
σ4t

m
+
τ1τ2t

m
)) ≥ 1− d exp(−t).

Moreover

|σ̃j − σj | ≤ |E[ỹ(x̃j − xj)I(|xj |) ≥ τ1]|+ |E[xj(ỹ − y)I(|y| ≥ τ2)]|

≤
√

E((ỹ(x̃j − xj))2P(|xj | ≥ τ1) +
√
E(xj(ỹ − y))2P(|y| ≥ τ2)

≤ O(
σ2

n
+
σ2

n
) ≤ O(

σ2

n
)

we can easily see that with probability at most 1− δ′,

∥ 1

m

m∑
i=1

x̃iỹi − E[xy]∥∞ ≤ O(
σ2 log n log d

δ′√
m

). (17)

Thus with probability at least 1− δ′

B1,1 ≤ O(
σ2 log n log d

δ′√
m

). (18)
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Next, we consider B1,2, similar to B1,1 we have

sup
∥θ∥2≤1

∥∇Lt−1(θ)−∇LP(θ)∥∞ ≤ ∥[ 1
m

n∑
i=1

xix
T
i − E[xxT ]]∥∞,∞ + ∥ 1

m

m∑
i=1

xiyi − E[xy]∥∞.

For term ∥[ 1m
∑n
i=1 xix

T
i −E[xxT ]]∥∞,∞, by Lemma 13 we have with probability at least 1−O(d−8)

we have

∥[ 1
m

n∑
i=1

xix
T
i − E[xxT ]]∥∞,∞ ≤ O(

√
log d

m
).

For term ∥ 1
m

∑m
i=1 xiyi − E[xy]∥∞, we consider each coordinate, 1

m

∑m
i=1 xi,jyi − E[xjy]. Noted

that xj is σ2-sub-Gaussian and y is σ2-sub-Gaussian, thus, by Lemma 10 we have xjy is sub-
exponential with ∥xjy∥ψ1

≤ O(σ2). Thus, by Bernstein’s inequality, we have with probability at
least 1− ζ ′

| 1
m

m∑
i=1

xi,jyi − E[xjy]| ≤ O(
σ2
√
log 1/δ′√
m

).

Thus, with probability at least 1− ζ ′

∥ 1

m

m∑
i=1

xiyi − E[xy]∥∞ ≤ O(
σ2
√
log d/δ′√
m

).

Thus, with probability at least 1−O(d−8) we have

B1,2 ≤ O(

√
log d√
m

).

and

B1 ≤ O(

√
log d√
m

).

Thus, we have

B ≤ O

√
2k′ + k

(τ21
√
dk′ + τ1τ2

√
d)
√

log d
δ′√

mϵ

 . (19)

In the following, we consider term A. Noted that we have yi = ⟨xi, θ∗⟩+ ζi, thus, we have

∥∆t−1 − η[∇Lt−1(θt−1)]Ft−1∥2︸ ︷︷ ︸
A

≤ ∥∆t−1 − η[
1

m

m∑
i=1

(xi(⟨xi, θt−1 − θ∗⟩) + xiζi)]Ft−1∥2

≤ ∥∆t−1 − η[
1

m

m∑
i=1

(xi(⟨xi, θt−1 − θ∗⟩)]Ft−1∥2 + |
√
F t−1|∥ 1

m

m∑
i=1

xiζi∥∞.

We first consider the term ∥ 1
m

∑m
i=1 xiζi∥∞. Specifically, we consider each coordinate j ∈ [d],

| 1m
∑m
i=1 xi,jζi|. Since E[ζi] = 0 and is independent on x we have E[ζixj ] = 0. Moreover, we have

∥ζi∥ψ2
≤ ∥⟨xi, θ∗⟩∥ψ2

+ ∥yi∥ψ2
≤ O(σ) = O(1).

Thus, ∥ζx∥ψ1
≤ O(σ2) by Lemma 10. By Bernstein’s inequality we have

| 1
m

m∑
i=1

xi,jζi| ≤ O(

√
log 1/δ′√
m

). (20)

Thus, with probability 1−O(d−c) we have

∥ 1

m

m∑
i=1

xiζi∥∞ ≤ O(

√
log d√
m

).
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Finally, we consider the term ∥∆t−1 − η[ 1m
∑m
i=1(xi(⟨xi, θt−1 − θ∗⟩)]Ft−1∥2:

∥∆t−1 − η[
1

m

m∑
i=1

(xi(⟨xi, θt−1 − θ∗⟩)]Ft−1∥2 = ∥[(I −Dt−1)∆t−1]Ft−1∥2,

where Dt−1 = 1
m

∑
i∈St

xix
T
i ∈ Rd×d. Since Supp

(
Dt−1∆t−1

)
⊂ F t−1 (by assumption), we

have
∥∥∥∆t−1 − ηDt−1

Ft−1,·∆t−1

∥∥∥
2
≤
∥∥(I − ηDFt−1,Ft−1

)∥∥
2
∥∆t−1∥2. Next we will bound the term

∥
(
I − ηDFt−1,Ft−1

)
∥2, where I is the

∣∣F t−1
∣∣-dimensional identity matrix.

Before giving analysis, we show that each of the partitioned dataset safisfies the Restriced Isometry
Property (RIP) defined as follows.

Definition 9. We say that a data matrix X ∈ Rn×d satisfies the Restricted Isometry Property (RIP)
with parameter 2k′ + k, if for any v ∈ Rp with ∥v∥0 ≤ 2k′ + k, there exists a constant ∆ which
satisfies (1−∆)∥v∥2 ≤ 1

n ∥Xv∥22 ≤ (1 + ∆)∥v∥22.

The following lemma states that with high probability, where c is some constant each XSt
on

our algorithm satisfies Definition 9 and thus we can make use of this property to bound the term
Dt−1

Ft−1,Ft−1 .

Lemma 33. (Theorem 10.5.11 in Vershynin (2018)). Consider an n× d matrix A whose rows (Ai)
are independent, isotropic, and sub-gaussian random vectors, and let K := maxi ∥Ai∥ψ2

. Assume
that

n ≥ CK4s log(ed/s).

Then, with probability at least 1− 2 exp
(
−cn/K4

)
, the random matrix A satisfies RIP with parame-

ters s and ∆ = 0.1.

Thus, since {xi} are isotropic and ∥xi∥ψ2
≤ O(σ), we have with probability at least 1 −

2T exp
(
−cm/σ4

)
, {XSt

}Tt=1 all satisfy RIP when m ≥ Ω̃(σ4(2k′ + k)). By the RIP property
and

∣∣F t−1
∣∣ ≤ 2k′ + k, we obtain the following using Lemma 33 for any

∣∣F t−1
∣∣-dimensional vector

v
0.9∥v∥22 ≤ vTDt−1

Ft−1,Ft−1v ≤ 1.1∥v∥22.

Thus,
∥∥∥(I − ηDt−1

Ft−1,Ft−1

)∥∥∥
2
≤ max {1− η · 0.9, η · 1.1− 1}. This means that we can take η =

O(1) such that ∥∥∥(I − ηDt−1
Ft−1,Ft−1

)∥∥∥
2
≤ 2

7
.

In total we have with probability at least 1−O(d−c)

∥∥∥θ̃t− 1
2
− θ∗

∥∥∥
2
≤ 2

7
∥∆t−1∥2 +O

√
2k′ + k

(τ21
√
dk′ + τ1τ2

√
d)
√
log d

δ′√
mϵ

 . (21)

Our next task is to bound ∥θ′t − θ∗∥2 by
∥∥∥θ̃t− 1

2
− θ∗

∥∥∥
2

by Lemma 21 . Thus, we have∥∥∥θ′t − θ̃t− 1
2

∥∥∥2
2
≤ |Ft−1|−k′

|Ft−1|−k

∥∥∥θ̃t− 1
2
− θ∗

∥∥∥2
2
≤ k′+k

2k′

∥∥∥θ̃t− 1
2
− θ∗

∥∥∥2
2
.

Taking k′ = 8k, we get ∥∥∥θ′t − θ̃t− 1
2

∥∥∥
2
≤ 3

4

∥∥∥θ̃t− 1
2
− θ∗

∥∥∥
2

and

∥θ′t − θ∗∥2 ≤ 7

4

∥∥∥θ̃t− 1
2
− θ∗

∥∥∥
2
≤ 1

2
∥∆t−1∥2 +O

√
k
(τ21

√
dk + τ1τ2

√
d)
√

log d
δ′√

mϵ

 .
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Finally, we need to show that ∥∆t∥2 = ∥θt − θ∗∥2 ≤ ∥θ′t − θ∗∥2, which is due to the Lemma 22.
Putting all together, we have the following with probability at least 1−O(d−c),

∥∆t∥2 ≤ 1

2
∥∆t−1∥2 +O

(√
k
log n

√
Tdk log d√
nϵ

)
.

Thus, with probability at least 1−O(Td−c) we have

∥∆T ∥2 ≤ (
1

2
)T ∥θ∗∥2 +O

(
k log n

√
Td log d√
nϵ

)
.

Take T = O(log n). We have the result.

F UPPER BOUND OF LDP-IHT FOR GENERAL SUB-GAUSSIAN
DISTRIBUTIONS

Algorithm 4 LDP Iterative Hard Thresholding

1: Input: Private data {(xi, yi)}ni=1 ∈
(
Rd × R

)n
. Iteration number T , privacy parameter ϵ, step

size η, truncation parameters τ, τ1, τ2, threshold k′. Initial parameter θ0 = 0.
2: For the i-th user with i ∈ [n], truncate his/her data as follows: shrink xi to x̃i with x̃ij =

sgn (xij)min {|xij | , τ1} for j ∈ [d], and ỹi := sgn (yi)min {|yi| , τ2}. Partition the users into
T groups. For t = 1, · · · , T , define the index set St = {(t− 1)

⌊
n
T

⌋
+ 1, · · · , t

⌊
n
T

⌋}
; if t = T ,

then St = St
⋃{

t
⌊
n
T

⌋
+ 1, · · · , n

}
.

3: for t = 1, 2, · · · , T do
4: The server sends θt−1 to all the users in St. Each user i ∈ St perturbs his/her own gradient:

let ∇i = x̃Ti (⟨θt−1, x̃i⟩ − ỹi), compute zi = Rr
ϵ (∇i), where Rr

ϵ is the randomizer defined
in equation 6 with r =

√
dτ1(2

√
k′τ1 + τ2) and send back to the server.

5: The server computes ∇̃t−1 = 1
|St|

∑
i∈St

zi and performs the gradient descent update θ̃t =

θt−1− η0∇̃t−1.
6: θ′t = Trunc(θ̃t−1, k

′).
7: θt = argθ∈B2(2) ∥θ − θ′t∥2.
8: end for
9: Output: θT

Theorem 7 establishes the upper bound specifically for isotropic sub-Gaussian distributions. However,
we can also demonstrate that the aforementioned upper bound also holds for general sub-Gaussian
distributions, albeit with different parameters. Notably, for general sub-Gaussian distributions, we
need to slightly modify the LDP-IHT algorithm (Algorithm 2). Specifically, rather than projecting
onto the unit ℓ2-norm ball, here we need to project onto the centered ℓ2-norm ball with radius 2
(actually, we can project onto any centered ball with a radius larger than 1). See Algorithm 4 for
details. Such a modification is necessary for our proof, as we can show that with high probability,
∥θ′t∥2 ≤ 2 for all t ∈ [T ], which implies there is no projection with high probability. Since we
use a different radius, the ℓ2-norm sensitivity of ∇i also has been changed to ensure ϵ-LDP. In the
following, we present the theoretical result assuming that the initial parameter θ0 is sufficently close
to θ∗.
Theorem 34. For any ϵ > 0, Algorithm 4 is ϵ-LDP. Moreover, under Assumptions 1 and 2, if the
initial parameter θ0 satisfies ∥θ0 − θ∗∥2 ≤ 1

2
µ
γ and n is sufficiently large such that n ≥ Ω̃(k

′2d
ϵ2 ),

setting η0 = 2
3γ , k′ = 72 γ

2

µ2 k, with probability at least 1− δ′ we have

∥θT − θ∗∥2 ≤ O(

√
dk log2 n

√
log d

δ√
nϵ

),

where γ = λmax(E[xxT ]), µ = λmin(E[xxT ]), big-O and big-Ω notations omit the terms of σ, γ
and µ.
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Proof of Theorem 34. The proof of privacy is almost the same as the proof of Theorem 7. The only
difference is that here we have ∥∇i∥2 ≤

√
dτ1(2

√
k′τ1 + τ2). In the following, we will show the

utility. We first recall two definitions and one lemma.

Definition 10. A function f is L-Lipschitz w.r.t the norm ∥ · ∥ if for all w,w′ ∈ W , |f(w)−f(w′)| ≤
L∥w − w′∥.

Definition 11. A function f is α-smooth on W if for all w,w′ ∈ W , f(w′) ≤ f(w)+ ⟨∇f(w), w′ −
w⟩+ α

2 ∥w
′ − w∥22.

Lemma 35 (Lemma 1 in Jain et al. (2014) ). For any index set I , any v ∈ R|I|, let ṽ = Trunc(v, k).
Then for any v∗ ∈ R|I| such that ∥v∗∥0 ≤ k∗ we have

∥ṽ − v∥22 ≤ |I| − k

|I| − k∗
∥v∗ − v∥22. (22)

For simplicity we denote L(θ) = E[(⟨x, θ⟩− y)2], ∇̃Lt−1 = 1
m

∑
x∈D̃t

x̃(⟨x̃, θt−1⟩− ỹ), ∇Lt−1 =

∇L(θt−1) = E[x(⟨x, θt−1⟩ − y), St−1 = supp(θt−1), St = supp(θt), S∗ = supp(θ∗) and It =
St
⋃
St−1

⋃
S∗. We can see that |St−1| ≤ k′, |St| ≤ k′ and |It| ≤ 2k′ + k. We let γ =

λmax(E[xxT ]), µ = λmin(E[xxT ]) and η0 = η
γ for some η. We can easily see that L(·) is µ-strongly

convex and γ-smooth.

Then from the smooth property we have

L(θ′t)− L(θt−1)

≤ ⟨θ′t − θt−1,∇Lt−1⟩+
γ

2
∥θ′t − θt−1∥22

= ⟨θ′t,It − θt−1,It ,∇Lt−1,It⟩+
γ

2
∥θ′t,It − θt−1,It∥22

≤ γ

2
∥θ′t,It − θt−1,It +

η

γ
∇Lt−1,It∥22 −

η2

2γ
∥∇Lt−1,It∥22 + (1− η)⟨θ′t − θt−1,∇Lt−1⟩ (23)

First, let us focus on the third term of (23). By Lemma 8 and the definition, we know that θ′t can be
written as θ′t = θ̂t,St + ϕt,St , where θ̂t = (θt−1 − η0∇̃Lt−1)St and ϕt is a sub-Gaussian vector with

variance = O
(
dτ2

1 (k
′τ2

1+τ
2
2 )

mϵ2

)
. Thus,

⟨θ′t − θt−1,∇Lt−1⟩ = ⟨θ̂t,St − θt−1,St ,∇Lt−1,St⟩
+ ⟨ϕt,St ,∇Lt−1,St⟩ − ⟨θt−1,St−1\St ,∇Lt−1,St−1\St⟩. (24)

For the first term in (24) we have

⟨θ̂t,St − θt−1,St ,∇Lt−1,St⟩ = ⟨−η0∇̃Lt−1,St ,∇Lt−1,St⟩ = −η
γ
⟨∇̃Lt−1,St ,∇Lt−1,St⟩

= −η
γ
∥∇Lt−1,St∥22 −

η

γ
⟨∇̃Lt−1,St −∇Lt−1,St ,∇Lt−1,St⟩

≤ −η
γ
∥∇Lt−1,St∥22 +

η

2γ
∥∇Lt−1,St∥22 +

η

2γ
∥∇̃Lt−1,St −∇Lt−1,St∥22

= − η

2γ
∥∇Lt−1,St∥22 +

η

2γ
∥∇̃Lt−1,St −∇Lt−1,St∥22. (25)

Take (25) into (24) we have for c1 > 0

⟨θ′t − θt−1,∇Lt−1⟩ ≤ − η

2γ
∥∇Lt−1,St∥22 +

η

2γ
∥∇̃Lt−1,St −∇Lt−1,St∥22

+c1∥ϕt,St∥22 +
1

4c1
∥∇Lt−1,St∥22 − ⟨θt−1,St−1\St ,∇Lt−1,St−1\St⟩.

(26)

For the last term of (26) we have

− ⟨θt−1,St−1\St ,∇Lt−1,St−1\St⟩
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≤ γ

2η
(∥θt−1,St−1\St − η

γ
∇Lt−1,St−1\St∥22 − (

η

γ
)2∥∇Lt−1,St−1\St∥22)

=
γ

2η
∥θt−1,St−1\St − η

γ
∇Lt−1,St−1\St∥22 −

η

2γ
∥∇Lt−1,St−1\St∥22

≤ η

2γ
(1 +

1

c1
)∥∇Lt−1,St\St−1∥22 +

2η

γ
(1 + c1)∥∇Lt−1,St\St−1 − ∇̃Lt−1,St\St−1 − ϕt,St\St−1∥22

− η

2γ
∥∇Lt−1,St−1\St∥22, (27)

where the last inequality comes from

∥θt−1,St−1\St − η

γ
∇Lt−1,St−1\St∥2 −

η

γ
∥∇Lt−1,St−1\St − ∇̃Lt−1,St−1\St − ϕt,St−1\St∥2

≤ ∥θt−1,St−1\St − η

γ
(∇̃Lt−1,St−1\St + ϕt,St−1\St)∥2

≤ ∥θt−1,St\St−1 − η

γ
(∇̃Lt−1,St\St−1 + ϕt,St\St−1)∥2 =

η

γ
∥∇̃Lt−1,St\St−1 + ϕt,St\St−1∥2

≤ η

γ
∥∇Lt−1,St\St−1∥2 +

η

γ
∥∇Lt−1,St\St−1 − ∇̃Lt−1,St\St−1 − ϕt,St\St−1∥2,

where the second inequality is due to the fact that |St\St−1| = |St−1\St|. the definitions of
hard thresholding, θ′t = (θt−1 − η

γ (∇̃Lt−1 + ϕt))St , St and St−1; the first equality is due to
Supp(θt−1) = St−1 Thus we have

γ

2η
∥θt−1,St−1\St − η

γ
∇Lt−1,St−1\St∥22

≤ η

2γ
(1+

1

c1
)∥∇Lt−1,St\St−1∥22+

2η

γ
(1+c1)∥∇Lt−1,St\St−1−∇̃Lt−1,St\St−1−ϕt,St\St−1∥22

We can easily see that
η

2γ
∥∇Lt−1,St\St−1∥22 −

η

2γ
∥∇Lt−1,St−1\St∥22 −

η

2γ
∥∇Lt−1,St∥22

=− η

2γ
∥∇Lt−1,St−1\St∥22 −

η

2γ
∥∇Lt−1,St

⋂
St−1∥22

=− η

2γ
∥∇Lt−1,St

⋃
St−1∥22.

In total

⟨θ′t − θt−1,∇Lt−1⟩

≤ − η

2γ
∥∇Lt−1,St

⋃
St−1∥22 + (

1

4c1
+

η

2γc1
)∥∇Lt−1,St∥22 +

η

2γ
∥∇̃Lt−1,St −∇Lt−1,St∥22

+ c1∥ϕt,St∥22 +
2η

γ
(1 + c1)∥∇Lt−1,St\St−1 − ∇̃Lt−1,St\St−1 − ϕt,St\St−1∥22 (28)

Take (28) into (23) we have

L(θ′t)− L(θt−1) ≤
γ

2
∥θ′t,It − θt−1,It +

η

γ
∇Lt−1,It∥22 −

η2

2γ
∥∇Lt−1,It∥22 + (1− η)⟨θ′t − θt−1,∇Lt−1⟩

≤ γ

2
∥θ′t,It − θt−1,It +

η

γ
∇Lt−1,It∥22 −

η2

2γ
∥∇Lt−1,It∥22 −

(1− η)η

2γ
∥∇Lt−1,St

⋃
St−1∥22

+ (1− η)(
1

4c1
+

η

2γc1
)∥∇Lt−1,St∥22 + (1− η)[

η

2γ
∥∇̃Lt−1,St −∇Lt−1,St∥22 + c1∥ϕt,St∥22

+
2η

γ
(1 + c1)∥∇Lt−1,St\St−1 − ∇̃Lt−1,St\St−1 − ϕt,St\St−1∥22]

≤ γ

2
∥θ′t,It − θt−1,It +

η

γ
∇Lt−1,It∥22 −

η2

2γ
∥∇Lt−1,It\(St−1

⋃
S∗)∥22
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− η2

2γ
∥∇Lt−1,(St−1

⋃
S∗)∥22 −

(1− η)η

2γ
∥∇Lt−1,St

⋃
St−1∥22

+ (1− η)(
1

4c1
+

η

2γc1
)∥∇Lt−1,St∥22 + (1− η)[

η

2γ
∥∇̃Lt−1,St −∇Lt−1,St∥22 + c1∥ϕt,St∥22

+
2η

γ
(1 + c1)∥∇Lt−1,St\St−1 − ∇̃Lt−1,St\St−1 − ϕt,St\St−1∥22]

≤ γ

2
∥θ′t,It − θt−1,It +

η

γ
∇Lt−1,It∥22 −

η2

2γ
∥∇Lt−1,It\(St−1

⋃
S∗)∥22 −

η2

2γ
∥∇Lt−1,(St−1

⋃
S∗)∥22

− (1− η)η

2γ
∥∇Lt−1,St\(S∗ ⋃

St−1)∥22 + (1− η)(
1

4c1
+

η

2γc1
)∥∇Lt−1,St∥22

+ (1− η)(
η

2γ
∥∇̃Lt−1,St −∇Lt−1,St∥22 + c1∥ϕt,St∥22 +

2η

γ
(1 + c1)∥∇Lt−1,St\St−1 − ∇̃Lt−1,St\St−1 − ϕt,St\St−1∥22)︸ ︷︷ ︸
Nt

0

,

(29)

where the last inequality is due to St\(S∗⋃St−1) ⊆ St
⋃
St−1. Next we will analyze the term

γ
2 ∥θ

′
t,It − θt−1,It +

η
γ∇Lt−1,It∥22 −

η2

2γ ∥∇Lt−1,It\(St−1
⋃
S∗)∥22 in (29).

Let R be a subset of St−1\St such that |R| = |It\(S∗⋃St−1)| = |St\(St−1
⋃
S∗)|. By the

definition of hard thresholding, we can easily see

∥θt−1,R − η

γ
(∇̃Lt−1,R + ϕt,R)∥22 ≤∥(θt−1 −

η

γ
(∇̃Lt−1 + ϕt))It\(S∗ ⋃

St−1)∥22

=
η2

γ2
∥(∇̃Lt−1 + ϕt)It\(S∗ ⋃

St−1)∥22.
(30)

Thus we have

(
η

γ
)∥∇Lt−1,It\(S∗ ⋃

St−1)∥2

≥∥θt−1,R − η

γ
∇Lt−1,R∥2︸ ︷︷ ︸
a

−η
γ
(∥∇̃Lt−1,R −∇Lt−1,R + ϕt,R∥2︸ ︷︷ ︸

b

+ ∥∇Lt−1,It\(S∗ ⋃
St−1) − ∇̃Lt−1,It\(S∗ ⋃

St−1) − ϕt,It\(S∗ ⋃
St−1)∥2︸ ︷︷ ︸

c

)

(31)

Then we have for any c2 > 0

γ

2
∥θ′t,It − θt−1,It +

η

γ
∇Lt−1,It∥22 −

η2

2γ
∥∇Lt−1,It\(St−1

⋃
S∗)∥22

≤ γ

2
∥θ′t,It − θt−1,It +

η

γ
∇Lt−1,It∥22 −

γ

2
(
η2

γ2
(b+ c)2 + a2 − 2η

γ
(b+ c)a)

≤ γ

2
∥θ′t,It − θt−1,It +

η

γ
∇Lt−1,It∥22 −

γ

2
(1− 1

c2
)a2 + (2c2 −

1

2
)
η2

γ
(b+ c)2

=
γ

2
∥θ′t,It\R − θt−1,It\R +

η

γ
∇Lt−1,It\R∥22 +

γ

2c2
∥θt−1,R − η

γ
∇Lt−1,R∥22

+ (4c2 − 1)
η2

γ
(∥∇̃Lt−1,R −∇Lt−1,R + ϕt,It∥22 + ∥∇Lt−1,It\(S∗ ⋃

St−1) − ∇̃Lt−1,It\(S∗ ⋃
St−1) − ϕt,It\(S∗ ⋃

St−1)∥22)︸ ︷︷ ︸
Nt

1

(32)

≤ γ

2
∥θ′t,It\R − θt−1,It\R +

η

γ
∇Lt−1,It\R∥22 +

γ

c2
∥θt−1,R − η

γ
(∇̃Lt−1,R + ϕt,R)∥22

+
η2

c2γ
∥∇Lt−1,It\R − (∇̃Lt−1,R + ϕt,R)∥22 +N t

1︸ ︷︷ ︸
Nt

2

(33)
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=
γ

2
∥θ′t,It\R − θt−1,It\R +

η

γ
∇Lt−1,It\R∥22 +N t

2, (34)

where (32) is due to that θ′t−1,R = 0, thus ∥θ′t−1,R − (θt−1,R − η
γ∇Lt−1,R)∥2 = ∥θt−1,R −

η
γ∇Lt−1,R∥2. In the following, we will consider the first term in (34).

In Lemma 35, take v = θt−1,It\R − η
γ (∇̃Lt−1,It\R + ϕt−1,It\R), ṽ = Trunc(v, k′) = θ′t−1,It\R,

I = It\R, v∗ = θ∗It\R = θ∗, we have

∥θ′t,It\R−θt−1,It\R−
η

γ
(∇̃Lt−1,It\R+ϕt−1,It\R)∥22 ≤ |It\R| − k′

|It\R| − k
∥θ∗−θt−1,It\R−

η

γ
(∇̃Lt−1,It\R+ϕt−1,It\R)∥22.

Then we have

(1− 1

c3
)∥θ′t,It\R − θt−1,It\R +

η

γ
∇Lt−1,It\R∥22 − (c3 − 1)

η2

γ2
∥∇Lt−1,It\R − ∇̃Lt−1,It\R − ϕt−1,It\R∥22

≤ ∥θ′t,It\R − θt−1,It\R +
η

γ
∇̃Lt−1,It\R∥22

≤ |It\R| − k′

|It\R| − k
∥θ∗ − θt−1,It\R +

η

γ
∇̃Lt−1,It\R∥22

≤ |It\R| − k′

|It\R| − k

(
(1 +

1

c3
)∥θ∗ − θt−1,It\R +

η

γ
∇Lt−1,It\R∥22 + (1 + c3)

η2

γ2
∥∇Lt−1,It\R − ∇̃Lt−1,It\R − ϕt−1,It\R∥22

)
Since |It\R| ≤ 2k′ + k and k′ ≥ k, we have |It\R|−k′

|It\R|−k ≤ k′+k
2k′ ≤ 2k′

k+k′ . Thus

∥θ′t,It\R − θt−1,It\R +
η

γ
∇Lt−1,It\R∥22 ≤ 2k

k + k′
c3 + 1

c3 − 1
∥θ∗ − θt−1,It\R +

η

γ
∇Lt−1,It\R∥22

+ ((1 + c3)
2k

k + k′
+ c3 − 1)

η2

γ2
∥∇Lt−1,It\R − ∇̃Lt−1,It\R − ϕt−1,It\R∥22

Take c3 = 5 and k′ = O(k), we have

∥θ′t,It\R − θt−1,It\R +
η

γ
∇Lt−1,It\R∥22 ≤ 3

2

2k

k + k′
∥θ∗ − θt−1,It\R +

η

γ
∇Lt−1,It\R∥22

+O(
η2

γ2
∥∇Lt−1,It\R − ∇̃Lt−1,It\R − ϕt−1,It\R∥22)︸ ︷︷ ︸

Nt
3

. (35)

Take (35) into (34) we have

γ

2
∥θ′t,It − θt−1,It +

η

γ
∇Lt−1,It∥22 −

η2

2γ
∥∇Lt−1,It\(St−1

⋃
S∗)∥22

≤ 3γ

2

k

k + k′
∥θ∗ − θt−1,It\R +

η

γ
∇Lt−1,It\R∥22 +N t

2 + γN t
3. (36)

Take (36) into (29) we have

L(θ′t)− L(θt−1)

≤ γ

2
∥θ′t,It − θt−1,It +

η

γ
∇Lt−1,It∥22 −

η2

2γ
∥∇Lt−1,It\(St−1

⋃
S∗)∥22 −

η2

2γ
∥∇Lt−1,(St−1

⋃
S∗)∥22

− (1− η)η

2γ
∥∇Lt−1,St\(S∗ ⋃

St−1)∥22 + (1− η)(
1

4c1
+

η

2γc1
)∥∇Lt−1,St∥22 +N t

0

≤ 3γ

2

k

k′ + k
∥θ∗ − θt−1,It\R +

η

γ
∇Lt−1,It\R∥22 −

η2

2γ
∥∇Lt−1,(St−1

⋃
S∗)∥22

− (1− η)η

2γ
∥∇Lt−1,St\(S∗ ⋃

St−1)∥22 + (1− η)(
1

4c1
+

η

2γc1
)∥∇Lt−1,St∥22 +N t

0 +N t
2 + γN t

3.

(37)
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Note that when η ≥ 1
2 , there exists a sufficiently large c1 is such that 1

4c1
+ η

2γc1
≤ η

4γ , we have

(1− η)(
1

4c1
+

η

2γc1
)∥∇Lt−1,St∥22 ≤ η(1− η)

4γ
∥∇Lt−1,St∥22

≤ η2

4γ
∥∇Lt−1,(St−1

⋃
S∗)∥22 +

(1− η)η

4γ
∥∇Lt−1,St\(S∗ ⋃

St−1)∥22

Thus

L(θ′t)− L(θt−1)

≤3γ

2

k

k′ + k
∥θ∗ − θt−1,It\R +

η

γ
∇Lt−1,It\R∥22 −

η2

2γ
∥∇Lt−1,(St−1

⋃
S∗)∥22

− (1− η)η

2γ
∥∇Lt−1,St\(S∗ ⋃

St−1)∥22 +
(1− η)

4c
∥∇Lt−1,St∥22 +N t

0 +N t
2 + γN t

3

≤3γ

2

k

k′ + k
∥θ∗ − θt−1,It\R +

η

γ
∇Lt−1,It\R∥22 −

η2

4γ
∥∇Lt−1,(St−1

⋃
S∗)∥22

− (1− η)η

4γ
∥∇Lt−1,St\(S∗ ⋃

St−1)∥22 +N t
0 +N t

2 + γN t
3

It is notable that by strong convexity

3γ

2

k

k′ + k
∥θ∗ − θt−1,It\R +

η

γ
∇Lt−1,It\R∥22

≤ 3γ

2

k

k′ + k
∥θ∗ − θt−1,It +

η

γ
∇Lt−1,It∥22

=
3γ

2

k

k′ + k
(∥θ∗ − θt−1,It\R∥22 +

η2

γ2
∥∇Lt−1,It∥22 +

2η

γ
⟨θ∗ − θt−1,It ,∇Lt−1,It⟩)

=
3γ

2

k

k′ + k
(∥θ∗ − θt−1,It\R∥22 +

η2

γ2
∥∇Lt−1,It∥22 +

2η

γ
⟨θ∗ − θt−1,∇Lt−1⟩)

≤ 3k

k′ + k

(γ
2
∥θ∗ − θt−1∥22 +

η2

2γ
∥∇Lt−1,It∥22 + η(L(θ∗)− L(θt−1))−

ηµ

2
∥θ∗ − θt−1∥22

)
Take η = 2

3 , k′ = 72 γ
2

µ2 k so that 3k
k′+k ≤ µ2

24γ(γ−ηµ) ≤
1
8 , we have

L(θ′t)− L(θt−1)

≤ 3k

k + k′
(η(L(θ∗)− L(θt−1)) +

γ − ηµ

2
∥θ∗ − θt−1∥22 +

η2

2γ
∥∇Lt−1,It∥22)

− η2

4γ
∥∇Lt−1,(St−1

⋃
S∗)∥22 −

(1− η)η

4γ
∥∇Lt−1,St\(S∗ ⋃

St−1)∥22 +N t
0 +N t

2 + γN t
3

≤ 2k

k′ + k
(L(θ∗)− L(θt−1)) +

µ2

48γ
∥θ∗ − θt−1∥22 +

1

36γ
∥∇Lt−1,It∥22

− 1

9γ
∥∇Lt−1,(St−1

⋃
S∗)∥22 −

1

18γ
∥∇Lt−1,St\(S∗ ⋃

St−1)∥22 +N t
0 +N t

2 + γN t
3

≤ 2k

k + k′
(L(θ∗)− L(θt−1))−

3

36γ
(∥∇Lt−1,(St−1

⋃
S∗)∥22 −

µ2

4
∥θ∗ − θt−1∥22) +N t

0 +N t
2 + γN t

3

(38)

≤(
2k

k + k′
+

µ

24γ
)(L(θ∗)− L(θt−1)) +N t

0 +N t
2 + γN t

3. (39)

Where (38) is due to the following lemma:

Lemma 36. [Lemma 6 in Jain et al. (2014)]

|∇Lt−1,(St−1
⋃
S∗)∥22 −

µ2

4
∥θ∗ − θt−1∥22 ≥ µ

2
(L(θt−1)− L(θ∗)). (40)
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Thus
L(θ′t)− L(θ∗) ≤ (1− 5

72

µ

γ
)(L(θt−1)− L(θ∗)) +N t

0 +N t
2 + γN t

3.

Next, we will bound the term N t
0 +N t

2 + γN t
3. For N t

0 we have

N t
0 = (1− η)(

η

2γ
∥∇̃Lt−1,St −∇Lt−1,St∥22

+ c1∥ϕt,St∥22 +
2η

γ
(1 + c1)∥∇Lt−1,St\St−1 − ∇̃Lt−1,St\St−1 − ϕt,St\St−1∥22)

= O(
1

γ
k′∥∇̃Lt−1 −∇Lt−1∥2∞ + γk′∥ϕt∥2∞).

By equation 18, we know that with probability at least 1− δ′

∥∇̃Lt−1 −∇Lt−1∥∞ ≤ O(
σ2 log n log d

δ′√
m

). (41)

Moreover, by Lemma 15 we have with probability at least 1− δ′

∥ϕt∥∞ ≤ O

 (τ21
√
dk′ + τ1τ2

√
d)
√

log d
δ′√

mϵ

 . (42)

Thus, with probability at least 1− δ′ we have

N t
0 = O(

σ4dk′
2
log d/δ′ log2 n

mϵ2
).

Similarly, we have

N t
2, N

t
3 = O(

σ4dk′
2
log d/δ′ log2 n

mϵ2
).

Thus we have with probability at least 1− δ′

L(θ′t)− L(θ∗) ≤ (1− 5

72

µ

γ
)(L(θt−1)− L(θ∗)) +O(

σ4dk′
2
log d/δ′ log2 n

mϵ2
). (43)

In the following we will assume the above event holds. We note that by our model for any θ

γ∥θ − θ∗∥22 ≥ L(θ)− L(θ∗) ≥ µ∥θ − θ∗∥22.
In the following we will show that θt = θ′t for all t. We will use induction, assume θi = θ′i holds for
all i ∈ [t− 1], we will show that it will also true for t. Use (43) for i ∈ [t− 1] we have

µ∥θ′t − θ∗∥22 ≤ L(θ′t)− L(θ∗) ≤ (1− 5

72

µ

γ
)(L(θt−1)− L(θ∗)) +O(

σ4dk′
2
log d/δ′ log2 n

mϵ2
)

≤ (1− 5

72

µ

γ
)t(L(θ0)− L(θ∗)) +O(

σ4dk′
2
log d/δ′ log2 n

mϵ2
)

≤ γ(1− 5

72

µ

γ
)t−1∥θ0 − θ∗∥22 +O(

γ

µ

σ4dk′
2
log d log2 n

mϵ2
)

When ∥θ0 − θ∗∥22 ≤ 1
2
µ
γ , and n is large enough such that

n ≥ Ω̃(
γ

µ2

k′2dσ4T

ϵ2
)

Then ∥θ′t∥2 ≤ ∥θ∗∥2 +
√

1
2 + 1

2 ≤ 2. Thus θt = θ′t. So we have with probability at least 1− δ′

µ∥θ′t − θ∗∥22 ≤ L(θT )− L(θ∗) ≤ (1− 5

72

µ

γ
)T (L(θ0)− L(θ∗)) +O(

γ

µ

σ4dk′
2
T log dT

δ′ log2 n

nϵ2
)

Thus, take T = Õ( γµ log n) and k′ = O(( γµ )
2k) we have the result.
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