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ABSTRACT

Planning physically feasible dexterous hand manipulation is a central challenge
in robotic manipulation and Embodied AI. Prior work typically relies on object-
centric cues or precise hand-object interaction sequences, foregoing the rich, com-
positional guidance of open-vocabulary instruction. We introduce UniHM, the
first framework for unified dexterous hand manipulation guided by free-form lan-
guage commands. We propose a Unified Hand-Dexterous Tokenizer that maps
heterogeneous dexterous-hand morphologies into a single shared codebook, im-
proving cross-dexterous hand generalization and scalability to new morpholo-
gies. Our vision language action model is trained solely on human-object interac-
tion data, eliminating the need for massive real-world teleoperation datasets, and
demonstrates strong generalizability in producing human-like manipulation se-
quences from open-ended language instructions. To ensure physical realism, we
introduce a physics-guided dynamic refinement module that performs segment-
wise joint optimization under generative and temporal priors, yielding smooth and
physically feasible manipulation sequences. Across multiple datasets and real-
world evaluations, UniHM attains state-of-the-art results on both seen and unseen
objects and trajectories, demonstrating strong generalization and high physical
feasibility. Our project page at UniHM

1 INTRODUCTION

Dexterous hand manipulation involves perceiving, grasping, and reconfiguring objects in com-
plex environments. Generating and understanding diverse, long-horizon, and physically feasible
dexterous-hand manipulation sequences are critical for advancing robotic capabilities in humanoid-
centric applications. Such human-like interactions are ubiquitous in the real world and underpin
fine-grained, complex tasks for embodied agents.

Real-world manipulation tasks require sequential, contact-rich control that couples semantic intent
(what to do) with precise geometry and physics (how to do it). Conventional methods (Wang et al.,
2022; Xu et al., 2023; Li et al., 2025) either take object-centric inputs and optimize static grasp pose
or transfer human-object interaction (HOI) video to fixed sequences. Lacking open-vocabulary
instruction, these pipelines cannot guide diverse and complex dexterous hand manipulation.

Recent vision-language approaches have begun to guide static grasping and manipulation by map-
ping free-form language to grasp representations. SemGrasp (Li et al., 2024b) uses a language-
aligned discretization of the grasp space and fine-tunes a multimodal LLM so that text, object cues,
and discrete grasp tokens lie in a shared semantic space, yielding language-conditioned static hu-
man grasp poses. AffordDexGrasp (Wei et al., 2025) targets open-set generalization by predicting
affordances from language and then generating dexterous grasps, with the primary output still being
static pose rather than multi-step interaction. Despite advances in semantic controllability and open-
vocabulary coverage, most language-guided approaches focus on generating static grasp poses,
ignore temporal structure, and therefore fail to produce smooth and rich manipulation sequences.

Building on these observations, we propose UniHM, a unified framework for generating dexterous
hand-manipulation sequences for both seen and unseen objects under open-vocabulary language in-
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Figure 1: Overview. We introduce UniHM, the first unified hand-manipulation framework condi-
tioned on free-form language. UniHM is trained solely on closed-set HOI datasets to follow target
trajectories and execute physically feasible interactions, and generalizes to open-world tasks in real-
world interactions.

structions. Our approach couples a vision-language model with a Unified Hand-Dexterous Tokenizer
and physics-guided dynamic refinement, which together enable two key capabilities: 1) Dynamic
language-guided manipulation. Prior methods typically either generate only static grasp poses
or lack open-vocabulary language understanding; in contrast, we progressively train both the tra-
jectory planner and the DexHand VLM, allowing the system to perform dynamic dexterous-hand
manipulation along arbitrary planned trajectories with substantially improved temporal consistency
and scalability. 2) Learning from video. We leverage diverse, scene-rich human video data that
contains abundant information about both environments and interactions, enabling the model to
synthesize human-like grasping poses while achieving strong generalization across a wide range of
manipulation scenarios. Extensive real-world cross-embodiment experiments further demonstrate
the effectiveness and generalization ability of this training paradigm. By integrating these compo-
nents, UniHM achieves state-of-the-art performance and exhibits strong generalization across hand
morphologies, object categories, task horizons, and linguistic complexity.

Our contributions summaries are as follows:

• Unified Dexterous Hand Manipulation. We introduce UniHM, the first unified,
language-conditioned framework for dynamic dexterous hand manipulation beyond static
grasps directly from images and open-vocabulary instructions.

• Morphology-Agnostic Codebook. We introduce a unified VQ token codebook with cross-
hand consistency that maps heterogeneous hand kinematics into one discrete action lattice
and decodes tokens into hand-specific joint trajectories, which enables direct token reuse
and transfer across robotic and anthropomorphic hands.

• Physics-Guided Dynamic Trajectory Optimization. We employ a tailored energy-based
refinement that fuses a generative prior shaping feasible pose manifolds, a temporal prior
enforcing smooth velocity–acceleration profiles and time-aware consistency, and contact-
aware dynamic trajectory optimization to optimize the generation result.

• Generalization without Teleoperation. Our framework eliminates the dependency on ex-
pensive teleoperation data by learning dexterous manipulation skills from human videos.
This paradigm achieves robust generalization to unseen scenes and instructions, signifi-
cantly lowering the barrier to developing dexterous manipulation systems.
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2 RELATED WORK

2.1 DEXTEROUS GRASP GENERATION.

Research on dexterous grasping largely follows two lines. Language-free pipelines advance dex-
terous grasping without text by exploiting geometry, simulation, or video demonstrations. UniDex-
Grasp (Xu et al., 2023) learns from point clouds using a two-stage scheme that first proposes diverse
grasp poses and then executes a goal-conditioned policy for stable lift, thereby generalizing across
many categories. DexGraspNet (Wang et al., 2022) synthesizes and validates at scale via differ-
entiable force-closure and collision checks to supervise grasp policies. DexMV (Qin et al., 2022)
builds an imitation pipeline that converts human videos into robot demonstrations through pose es-
timation, retargeting, and demonstration translation for dexterous manipulation. Language-guided
dexterous grasping aligns natural language with grasp spaces using discretization or affordance cues;
for example, SemGrasp (Li et al., 2024b) learns a language-aligned discrete representation and uses
a VLM to produce semantically consistent static dexterous grasp poses. DexGYS (Wei et al., 2024)
introduces a language-guided dataset and model that maps commands to dexterous grasp poses. Af-
fordDexGrasp (Wei et al., 2025) leverages a generalizable, instructive affordance representation to
guide open-set dexterous grasp generation. While these methods improve semantic controllability
and open-vocabulary coverage, they remain pose-centric and typically generate static poses rather
than sequence-level hand manipulation.

2.2 VISION LANGUAGE MODEL FOR MANIPULATION

Generative vision-language model approaches increasingly cast manipulation as sequence predic-
tion conditioned on vision and language. MotionGPT (Zhu et al., 2025) treats human motion as a
language via VQ tokenization and unified text-motion modeling for sequence generation. HOIGPT
(Huang et al., 2025) extends token-based generation to long 3D hand-object interaction, learning
a bidirectional mapping between text and HOI sequences. OWG (Tziafas & Kasaei, 2024) com-
poses VLM-guided referring segmentation, grounded grasp planning, and contact-aware ranking
for zero-shot grasping rather than full sequence synthesis. ReKep (Huang et al., 2024) converts
language/vision into relational keypoint constraints and solves actions via hierarchical optimization
instead of an autoregressive policy. DexGrasp Anything (Zhong et al., 2025) complements VLM
pipelines with a physics-aware diffusion generator and the largest dexterous-grasp dataset to date,
improving feasibility through explicit physical constraints. Multi-GraspLLM (Li et al., 2024a) aligns
point-cloud and text features to generate language-guided grasp poses across multiple robotic hands
within a single framework. Taken together, these generative models advance instruction following
but predominantly target Digital Hand, low-DoF grippers, or static grasp poses; explicit sequen-
tial dexterous-hand manipulation with feasibility remains limited, motivating our hand-agnostic to-
kenizer and physics-guided refinement.

3 METHOD

We propose UniHM, a unified framework for dexterous hand manipulation. UniHM first annotates
large-scale hand-object interaction data, then employs a vision language model coupled with a Uni-
fied Hand-Dexterous Tokenizer to synthesize manipulation sequences, and finally applies physics-
based optimization to ensure physical feasibility.

3.1 AUTO DATA ANNOTATION

Open-vocabulary Language Annotation. We annotated dexterous hand manipulation sequences
with GPT-4o (Hurst et al., 2024). For each sequence, we provide keyframes as visual context,
specifically the first and last frames and the three frames preceding first contact, and the model
returns five distinct open-vocabulary natural language instructions.

Dexterous Hand Retargeting. For HOI sequences to dexterous hand manipulation sequences trans-
fer, we first apply Dex-Retargeting (Qin et al., 2023) to map MANO poses onto five dexterous robot
hands (Shadow hand, Allegro hand, SVH hand, Leap hand and Panda hand). We then perform

3



Published as a conference paper at ICLR 2026

(1) Unified Dexterous Hand Tokenizer 

(3) Physical-Guided Dynamic Refinement

(2) Dexterous Hand Manipulation

Unified  Codebook

𝐸𝑟𝑒𝑓

𝐸ℎ

Distillation

𝐷𝑟𝑒𝑓

𝐷ℎ

Retargeting

T
im

elin
e

Coarse Result

ℰgen(𝑞t, 𝑞t
gen

)

ℰtime(𝑞t, 𝑞t−1, 𝑞t−2)

ℰcontact(𝑞t, 𝒯tar, 𝒫obj)

Generation Prior

Temporal Prior

Optimization Result

Inference Only

DexHand VLM

𝐷1 𝐷2 𝐷𝑛

Text

Encoder

𝒯tar
Encoder

𝒫obj
Encoder

Unified

Tokenizer

T
rain

in
g

 O
n

ly

Coarse Result

RGBD + Instruction

PointSam CLIPortObj 

Point cloud

Obj

Trajectory

Train/Infer Switch

Figure 2: Pipeline. UniHM converts open-vocabulary instructions and RGB-D inputs into exe-
cutable dexterous-hand trajectories via three stages: (1) morphology-agnostic motion tokenization;
(2) language-guided generation that fuses text, perception, and token history to produce manipula-
tion token sequences; and (3) physics-aware decoding with smoothness/contact priors for feasible,
stable execution.

energy-based physical optimization to enforce feasibility, yielding physically consistent dexterous
hand manipulation sequences.

3.2 UNIFIED HAND-DEXTEROUS TOKENIZER

Morphology-Agnostic Codebook. We discretize dexterous hand poses and short motion segments
across heterogeneous hand morphologies with a shared VQ-VAE (Van Den Oord et al., 2017) code-
book. Let Eh and Dh denote the encoder and decoder for hand type h (e.g., MANO or a specific
robot hand), and let the global codebook be Z = {ek}Kk=1 with ek ∈ Rdz . Given a sequence chunk
x(h), we define the encoder output z(h)e = Eh(x

(h)) and the vector-quantization operator Q(·) that
returns an index c ∈ {1, . . . ,K}:

c = Q
(
Eh

(
x(h)

))
= arg min

k∈[K]

∥∥∥z(h)e − ek

∥∥∥2
2
, (1)

and the quantized representation is z(h)q = ec. The reconstructed sequence chunk x̂(h) is then

x̂(h) = Dh

(
z(h)q

)
= Dh (ec) . (2)

So that every encoder Eh maps to the same discrete index space and every decoder Dh realizes the
token within its own morphology.

Scalable Cross-Morphology Training. To align representations across diverse hand types, we train
our model in a staged, scalable manner. We first establish a reference encoder-decoder pair (Eref,
Dref) for a specific hand morphology, along with the shared codebook Z .

When integrating a new hand morphology, instead of direct non-differentiable token alignment, we
first align the new encoder’s latent space with the reference encoder via knowledge distillation. This
bypasses the gradient discontinuity of the quantization step. The distillation objective is:

Ldistill = ∥Enew (xnew)− Eref (xref)∥22 , (3)

where Enew is the new encoder and Eref is the pre-trained reference encoder. xnew and xref are
corresponding hand sequences for the new and reference hands, respectively, obtained through re-
targeting.
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After the new encoder is aligned, it is integrated into the full VQ-VAE training pipeline. The new
encoder and its corresponding decoder are then fine-tuned with a combined objective that includes
reconstruction and codebook-related terms. For a new hand type h, the training objectives are:

Lrec =
∥∥∥x(h) −Dh

(
z(h)q

)∥∥∥2
2

(4)

Lvq =
∥∥∥sg [z(h)e

]
− z(h)q

∥∥∥2
2
+ β

∥∥∥z(h)e − sg
[
z(h)q

]∥∥∥2
2
, (5)

where sg[·] denotes the stop-gradient operator and β > 0 is a commitment weight. The total training
objective for a new morphology is a combination of these terms, as well as the distillation loss for
encoder alignment.

Unified Hand Pose Translation. Because the encoders are aligned to a shared latent space and the
decoders are mapped to the unified codebook, translating a pose from hand i to hand j is straight-
forward. We simply encode the source pose and decode using the target hand’s decoder:

x̂(j) = Dj

(
eQ(Ei(x(i)))

)
, (6)

where x(i) is the source hand pose and x̂(j) is the retargeted pose for the target hand.

3.3 DEXTEROUS-HAND MANIPULATION WITH VLM

Network structure of VLM. Given the scarcity of HOI and dynamic dexterous-hand data and the
high cost of collecting it, training large multimodal language models (e.g., 7B or 13B parameters)
is data-inefficient and yields limited performance in this regime. We therefore adopt Qwen3-0.6B
as the base model, whose scale enables stable convergence on HOI and dexterous-hand datasets.
To compensate for the lack of dynamic manipulation data while retaining strong visual grounding,
We adopt a decoupled architecture that separates scene perception from HOI sequence generation.
A CLIPort-style vision module consumes RGB-D images and language to infer target trajectories,
and an MLP-based trajectory encoder serializes these targets for the VLM. The main VLM focuses
on instruction-conditioned token generation with a progressive masking curriculum, and the unified
tokenizer maps tokens to hand-specific poses across different robotic hands. At inference time, only
the CLIPort perception head is adapted to distribution shifts, which improves data efficiency and
robustness while keeping the HOI generator unchanged.

Unified Dexterous Manipulation. We first use a CLIPort model to take an RGB-D image and its
corresponding instruction (e.g., “grasp the bottle into the box”) as input. The model then decodes a
target execution trajectory Ttar. This process can be formally described as

Ttar = CLIPort(Irgb−d, Tinstruction). (7)

The target trajectory is denoted by Ttar = {T 1
tar, . . . , T K

tar }, T i
tar ∈ SE(3), where K is the length of

the total sequence.

We leverage RGB-D data to reconstruct the scene point cloud and then use Point-SAM (Zhou et al.,
2024) to segment the object point cloud Pobj with the corresponding semantics.

Pobj = PointSAM(Irgb−d, Tinstruction). (8)

Pobj denotes the point cloud of the target object. Specifically, Pobj ∈ R3×l is a set of l 3D coordinates
(x, y, z), where l is the number of points in the point cloud.

Next, the initial hand pose is encoded by Ej(·) and concatenated with Ttar, Pobj, and text token T .
This combined input is then fed into a Vision Language Model (VLM) to obtain a code sequence
in the VQ-VAE latent space. Finally, we use the decoder of the target hand, Dh(·), to decode the
corresponding q-positions:

Q̂pos = Dh(VLM(Ej(Qpos0), Ttar,Pobj, T )). (9)

Training Stage. When fine-tuning the main model, we input the real object sequence trajectory as
a target trajectory into the large model. To enable the model to understand the spatial continuity of
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hand poses, we initially input the ground truth hand poses and the VQ-VAE as an encoder into the
model. As training progresses, we use masking to randomly occlude a portion of the hand poses,
replacing the masked poses with a unified, learnable token, until all hand poses are masked (Liu
et al., 2019; Oquab et al., 2023).

The masking process can be expressed as:

Qmasked = M ⊙ E(Q) + (1−M)⊙ Tmask, (10)

where Q is the ground truth hand pose sequence, E is the VQ-VAE encoder, M is a binary mask,
and Tmask is the learnable token.

Inference Stage. Our training and inference pipelines differ by design. During training, we con-
dition the model on ground-truth target trajectories and object point clouds, enabling it to reliably
generate physically feasible dexterous-hand manipulation sequences that follow the specified tar-
gets. At inference, a separate CLIPort module estimates these quantities from RGB-D observations,
decoupling spatial perception from hand–object interaction. This modularization allows the main
model to focus solely on HOI sequence generation. A practical advantage is robustness to environ-
mental shift: when the scene distribution changes, we fine-tune only CLIPort, which is smaller and
less data-hungry, rather than the entire model.

3.4 PHYSICAL-GUIDED DYNAMIC REFINEMENT

To bridge the gap between the generated grasping trajectory Qgen and the object point cloud Pobj
under the target pose trajectory Ttar(t), we formulate a posterior optimization. We solve a spatio-
temporally regularized, frame-by-frame Gauss–Newton problem that enforces physical plausibility
while preserving the semantic intent of the generated actions. We proceed frame-by-frame: at time
t, we optimize qt while treating qopt

t−1 and qopt
t−2 as fixed from previous steps.

Contact Energy. Let si(qt) be the i-th fingertip position from forward kinematics in the world
frame. We transform it into the object frame using Ttar(t)

−1 and query the nearest neighbor (pi,ni)
on Pobj, where ni is the local surface normal. We define a signed point-to-plane distance (Grant
et al., 2012):

di(qt) = nT
i

(
Ttar(t)

−1si(qt)− pi

)
, (11)

and an asymmetric, smooth penalty that is continuous and slope-matched at d = 0, which is essential
during the optimization:

f(d) =

{
α
2 d

2, d ≥ 0 (outside)
α

k2

(
e−kd + kd− 1

)
, d < 0 (inside)

, (12)

where α > 0 and k > 0 are scale parameters. Stacking per-fingertip residuals yields:

rcontact,i(qt) =
√
2λc f

(
di(qt)

)
, Econtact(qt) =

1
2

∥∥rcontact(qt)
∥∥2
2
= λc

∑
i∈fingers

f
(
di(qt)

)
, (13)

with λc > 0 controlling the contact strength.

Generative HOI Prior. To preserve the intent of the generative model, we penalize deviations from
the generated configuration qgen

t :

Egen(qt, q
gen
t ) = 1

2

(
qt − qgen

t

)T
Wgen

(
qt − qgen

t

)
, (14)

where Wgen ≻ 0 is a symmetric positive-definite weighting matrix. We use the weighted norm
shorthand ∥x∥2W ≜ xTWx below.

Temporal Prior. We regularize first- and second-order temporal differences to ensure smooth, co-
herent motion:

Etime(qt, q
opt
t−1, q

opt
t−2) =

1
2

∥∥qt − qopt
t−1

∥∥2
Wvel

+ 1
2

∥∥(qt − qopt
t−1)− (qopt

t−1 − qopt
t−2)

∥∥2
Wacc

, (15)

where Wvel ≻ 0 and Wacc ≻ 0 (often Wvel = λvelI , Wacc = λaccI). For t < 2, we use zero-
velocity/acceleration or the generated states as boundary priors, meaning that qopt

−2 = qopt
−1 = qgen

0 .
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Table 1: Main Result on DexYCB. The arrow pointing to the right means closer to the GT.
Method MPJPE↓ FOL↓ FPL↓ FID ↓ Diversity→

Se
en

GT - - - - 125.53
TM2T(Guo et al., 2022) 85.33±3.41 36.57±1.46 24.10±0.96 54.83±2.19 37.12±1.48

MDM(Tevet et al., 2023) 88.06±3.52 33.40±1.34 23.06±0.92 52.33±2.09 33.95±1.36

FlowMDM(Barquero et al., 2024) 82.75±3.31 31.24±1.25 21.55±0.86 48.05±1.92 61.25±2.45

MotionGPT3(Zhu et al., 2025) 74.80±2.99 28.76±1.15 19.32±0.77 43.35±1.73 72.51±2.90

Ours 61.40±1.93 23.14±0.65 12.15±0.24 31.24±1.02 39.62±0.66

U
ns

ee
n

TM2T(Guo et al., 2022) 94.22±3.77 37.25±1.49 27.03±1.08 55.94±2.24 31.25±1.25

MDM(Tevet et al., 2023) 93.05±3.72 39.04±1.56 25.89±1.04 55.13±2.21 29.0±1.16

FlowMDM(Barquero et al., 2024) 86.13±3.45 32.67±1.31 24.09±0.96 51.33±2.05 58.21±2.33

MotionGPT3(Zhu et al., 2025) 77.93±3.12 30.55±1.22 21.48±0.86 46.14±1.85 75.84±3.03

Ours 63.56±2.08 27.29±0.43 13.06±0.43 41.03±1.65 42.70±1.19

The per-frame objective is the sum of all terms:

Et(qt, qgen
t , qopt

t−1, q
opt
t−2) = Econtact(qt) + Egen(qt, q

gen
t ) + Etime(qt, q

opt
t−1, q

opt
t−2), (16)

and the sequence energy is Etotal(Q) =
∑T

t=0 Et(qt, q
gen
t , qopt

t−1, q
opt
t−2).

We linearize rcontact(qt) and apply Gauss–Newton with Levenberg–Marquardt damping λ ≥ 0 (Yu
& Wilamowski, 2018). Let Jt = ∂rcontact(qt)/∂qt. The normal equations for the update ∆qt are:(

JT
t Jt +Wgen +Wvel +Wacc + λI

)
∆qt = −JT

t rcontact(qt)− W̃ (17)

W̃ ≜ Wgen
(
qt − qgen

t

)
+Wvel

(
qt − qopt

t−1

)
+Wacc

(
(qt − qopt

t−1)− (qopt
t−1 − qopt

t−2)
)
. (18)

Here the prior terms enter both as quadratic regularizers on the left and as linear gradients on the
right, stabilizing the optimization while respecting the generated intent and temporal smoothness
under the object’s target pose trajectory Ttar(t).

4 EXPERIMENTS

Our framework comprises three components: (1) we annotate hand-object interaction (HOI) se-
quences with a vision language model (VLM) and, via retargeting plus physics-based refinement,
obtain manipulation sequences for multiple dexterous hands; (2) we train a Unified Hand-Dexterous
Tokenizer together with an VLM for text-to-hand manipulation sequence generation; and (3) we ap-
ply an energy-based physical refinement and validate feasibility in simulation. Comparative exper-
iments and ablations demonstrate the effectiveness of our approach. All experiments are conducted
on NVIDIA A100 GPUs.

4.1 DATASET

In our experiments, we evaluate on two of the most widely used datasets. DexYCB (Chao et al.,
2021) is a multi-view RGB-D dataset of human grasps on YCB objects with precise 3D labels: 582K
frames, 1,000 sequences, 10 subjects, 20 objects, and 8 views; benchmarks include 2D/6D object
pose, 3D hand pose, and handover. OakInk (Yang et al., 2022) A large-scale hand-object interaction
repository integrating OakInk-Image (230K multi-view frames from 12 subjects manipulating 100
objects across 32 categories) and OakInk-Shape (3D grasp-pose meshes with affordance labels),
plus 50K affordance-aware interactions transferred via Tink. For both DexYCB and OakInk, we
adopt an 80/20 split: 80% for training/validation (seen) and 20% held out as an unseen test set. This
protocol enables a rigorous assessment of generalization across seen and unseen objects, trajectories,
and interaction patterns for UniHM.

4.2 EVALUATION METRIC

To assess the quality, diversity, realism, and physical plausibility of our generated dexterous-hand
manipulation sequences, we adopt a multi-pronged evaluation protocol that follows prior work (Cha
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Table 2: Main Result on OakInk. The arrow pointing to the right means closer to the GT.
Method MPJPE↓ FOL↓ FPL↓ FID ↓ Diversity→

Se
en

GT - - - - 147.40
TM2T(Guo et al., 2022) 71.08±2.84 91.25±3.65 34.51±1.38 311.90±12.48 277.38±11.10

MDM(Tevet et al., 2023) 67.55±2.70 93.8±3.75 30.06±1.20 285.22±11.41 275.42±11.02

FlowMDM(Barquero et al., 2024) 60.74±2.43 85.43±3.42 26.47±1.06 249.08±9.96 189.54±7.58

MotionGPT3(Zhu et al., 2025) 56.29±2.25 79.24±3.17 23.98±0.96 221.10±8.84 247.10±9.88

Ours 52.73±2.08 72.32±0.55 19.86±1.38 204.91±7.64 165.47±6.30

U
ns

ee
n

TM2T(Guo et al., 2022) 75.34±3.01 125.33±5.01 45.51±1.82 337.08±13.48 362.08±14.48

MDM(Tevet et al., 2023) 72.90±2.92 112.94±4.52 42.93±1.72 325.58±13.02 354.93±14.20

FlowMDM(Barquero et al., 2024) 65.39±2.62 101.25±4.05 36.14±1.45 298.04±11.92 224.67±8.99

MotionGPT3(Zhu et al., 2025) 61.95±2.48 93.65±3.75 28.25±1.13 272.69±10.91 316.58±12.66

Ours 58.62±2.35 83.27±1.17 22.87±0.52 253.41±13.05 153.28±9.48

Table 3: Real-World Experiments
Success Rate

Split Method Grab Pick&Place Pull&Push Open&Close

Se
en

MDM+Dex-Retargeting 20% 10% 0% 5%
MotionGPT3+Dex-Retargeting 30% 15% 25% 25%
Ours 65% 50% 60% 55%

U
ns

ee
n MDM+Dex-Retargeting 5% 0% 0% 5%

MotionGPT3+Dex-Retargeting 45% 25% 15% 20%
Ours 60% 35% 55% 45%

et al., 2024; Wei et al., 2025; Zhang et al., 2025) and combines quantitative and qualitative measures
across five metrics.

• Physically Feasible. Mean Per-Joint Position Error (MPJPE) for hand joints, Final Posi-
tion Location Error (FPL) and Final Orientation Location Error (FOL) for dexterous hand
placement and orientation. Success Rate means the Real-world grasping success rate.

• Generation Realism. Fréchet Inception Distance (FID) between real and synthesized.
Diversity, which measures the variability across different prompts and within outputs from
the same prompt

Lower MPJPE, FPL, FOL, and FID indicate higher accuracy and fidelity. Diversity closer to the
ground truth indicates a more reasonable generation.

4.3 MAIN RESULT

Comparison with SOTA Methods. We conduct extensive comparisons against prior state-of-the-
art methods(i.e.,TM2T (Guo et al., 2022), MDM (Tevet et al., 2023), FlowMDM (Barquero et al.,
2024), MotionGPT3 (Zhu et al., 2025)) on both DexYCB (Chao et al., 2021) and OakInk (Yang
et al., 2022). Because prior action-generation baselines lack explicit physical-feasibility guarantees,
we post-process their outputs with our physics-guided refinement to ensure a fair comparison. As
shown in Table 1 and Table 2, our method consistently outperforms all baselines across both seen
and unseen objects.

These results unequivocally affirm our method as cutting-edge, showcasing the robust generalization
capability of our VLM framework and physical refinement, thereby substantiating the efficacy of our
UniHM synthesis framework in producing sequential hand manipulation sequences for both seen
and unseen objects and trajectories guided by open-vocabulary instructions.

Visualization in Real-world Results. We conduct real-world evaluations on a dexterous hand
across both seen and unseen objects and trajectories. Results show improvements in grasp suc-
cess rate and grasp quality. As summarized in Table 3, UniHM achieves a higher success rate than
prior methods, and Fig.D2 presents qualitative visualizations of our real-world grasps.
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Grab the box！

Open the oven！

Grab the lid！

Close the oven！   Pull the drawer！   Push the drawer！

  Pick&Place the fruit！ Pick&Place the bottle！

Figure 3: Real-World Results. UniHM achieves higher success rates than prior methods on both
seen and unseen objects, producing physically consistent and executable real-world manipulations.

Table 4: Ablation Result on DexYCB. The arrow pointing to the right means closer to the GT.
Method MPJPE↓ FOL↓ FPL↓ FID ↓ Diversity→

Se
en

GT - - - - 125.53
w/o Depth Input 85.47±3.42 33.41±1.34 20.97±0.84 56.36±2.25 66.40±2.66

w/o Masked Training 73.41±2.94 28.22±1.13 14.42±0.58 44.87±1.79 73.09±2.92

w/o Physical Refinement 65.78±2.63 25.06±1.00 15.35±0.61 33.57±1.34 38.06±1.52

Ours 61.40±1.93 23.14±0.65 12.15±0.24 31.24±1.02 39.62±0.66

U
ns

ee
n w/o Depth Input 90.12±3.60 39.77±1.59 21.70±0.87 77.38±3.10 67.53±2.70

w/o Masked Training 74.63±2.99 28.08±1.12 17.25±0.69 43.09±1.72 74.88±3.00

w/o Physical Refinement 65.39±2.62 28.55±1.14 16.05±0.64 45.06±1.80 41.03±1.64

Ours 63.56±2.08 27.29±0.43 13.06±0.43 41.03±1.65 42.70±1.19

4.4 ABLATION STUDY

We conduct controlled ablation studies on DexYCB (Chao et al., 2021) to verify the necessity of
each module. Each component is essential for UniHM to synthesize realistic and physically feasible
dexterous hand manipulation sequences; the details can be found in Table 4.

Masked Training (w/o Masked Training). We adopt a progressive masking curriculum for
language-conditioned sequence generation. Training starts with the teacher forcing the use of both
language and ground-truth sequences, then gradually replaces a fraction pt of ground truth with
[MASK]. As pt increases from 0 to 1, the model relies on language and its autoregressive history;
the final stage uses language only, matching inference. This reduces exposure bias and improves
sequential stability while retaining strong supervision early on.

RGB-D or RGB Input (w/o Depth Input). To better estimate object poses and reconstruct scene
point clouds, we adopt RGB-D inputs and infer scene trajectories with a language-conditioned vi-
suomotor module. When RGB-D is replaced by RGB-only, pose estimation and 3D reconstruction
degrade substantially.

Physical Refinement (w/o Physical Refinement). Physical refinement is a postprocessing step that
makes a plausible plan physically valid for dexterous hands. We run a lightweight simulation-based
optimization that adjusts poses, contacts, and timing to reduce collisions and slips, enforce joint and
torque limits, and improve stability. The objective penalizes penetration, excessive contact forces,
and abrupt accelerations while staying close to the original.
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5 CONCLUSION

We present UniHM, a unified framework for synthesizing sequential dexterous hand-manipulation
sequences guided by open-vocabulary instructions. UniHM couples a Unified Hand-Dexterous Tok-
enizer, which utilizes a shared codebook with cross-hand code distillation to form a common discrete
action space, with a vision language model for instruction-grounded token generation. It applies a
physical-guided dynamic refinement, yielding semantically aligned and physically consistent trajec-
tories across heterogeneous robotic hands. Extensive evaluations of DexYCB and OakInk, along
with simulation checks and real-world trials, demonstrate strong generalization to unseen objects
and trajectories, and validate the contribution of each component through ablations. While UniHM
advances language-conditioned dexterous manipulation beyond pose-centric grasp generation, sev-
eral challenges remain: reliance on RGB-D perception without tactile or force sensing, simplified
energy terms for contact and friction, and limited coverage of bimanual or tool-use scenarios. Future
work will incorporate richer contact priors and feedback, scale the unified codebook to more hand
morphologies, and close the loop with online adaptation to better handle sequential, contact-rich
tasks.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space. Advances in neural information processing systems,
30, 2017b.

11



Published as a conference paper at ICLR 2026

Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Ruihan Yang, Yang Fu, and Xiaolong
Wang. Dexmv: Imitation learning for dexterous manipulation from human videos. In European
Conference on Computer Vision, pp. 570–587. Springer, 2022.

Yuzhe Qin, Wei Yang, Binghao Huang, Karl Van Wyk, Hao Su, Xiaolong Wang, Yu-Wei Chao, and
Dieter Fox. Anyteleop: A general vision-based dexterous robot arm-hand teleoperation system.
In Robotics: Science and Systems, 2023.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909, 2015.

Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, and Amit Haim Bermano.
Human motion diffusion model. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Georgios Tziafas and Hamidreza Kasaei. Towards open-world grasping with large vision-language
models. arXiv preprint arXiv:2406.18722, 2024.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Ruicheng Wang, Jialiang Zhang, Jiayi Chen, Yinzhen Xu, Puhao Li, Tengyu Liu, and He Wang.
Dexgraspnet: A large-scale robotic dexterous grasp dataset for general objects based on simula-
tion. arXiv preprint arXiv:2210.02697, 2022.

Zifan Wang, Junyu Chen, Ziqing Chen, Pengwei Xie, Rui Chen, and Li Yi. Genh2r: learning gen-
eralizable human-to-robot handover via scalable simulation demonstration and imitation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16362–
16372, 2024.

Yi-Lin Wei, Jian-Jian Jiang, Chengyi Xing, Xian-Tuo Tan, Xiao-Ming Wu, Hao Li, Mark Cutkosky,
and Wei-Shi Zheng. Grasp as you say: Language-guided dexterous grasp generation. Advances
in Neural Information Processing Systems, 37:46881–46907, 2024.

Yi-Lin Wei, Mu Lin, Yuhao Lin, Jian-Jian Jiang, Xiao-Ming Wu, Ling-An Zeng, and Wei-Shi Zheng.
Afforddexgrasp: Open-set language-guided dexterous grasp with generalizable-instructive affor-
dance. arXiv preprint arXiv:2503.07360, 2025.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11097–
11107, 2020.

Peng Xiang, Xin Wen, Yu-Shen Liu, Yan-Pei Cao, Pengfei Wan, Wen Zheng, and Zhizhong Han.
SnowflakeNet: Point cloud completion by snowflake point deconvolution with skip-transformer.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2021.

Peng Xiang, Xin Wen, Yu-Shen Liu, Yan-Pei Cao, Pengfei Wan, Wen Zheng, and Zhizhong Han.
Snowflake point deconvolution for point cloud completion and generation with skip-transformer.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):6320–6338, 2023. doi:
10.1109/TPAMI.2022.3217161.

Yinzhen Xu, Weikang Wan, Jialiang Zhang, Haoran Liu, Zikang Shan, Hao Shen, Ruicheng Wang,
Haoran Geng, Yijia Weng, Jiayi Chen, et al. Unidexgrasp: Universal robotic dexterous grasp-
ing via learning diverse proposal generation and goal-conditioned policy. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4737–4746, 2023.

Lixin Yang, Kailin Li, Xinyu Zhan, Fei Wu, Anran Xu, Liu Liu, and Cewu Lu. Oakink: A large-scale
knowledge repository for understanding hand-object interaction. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 20953–20962, 2022.

Hao Yu and Bogdan M Wilamowski. Levenberg–marquardt training. In Intelligent systems, pp.
12–1. CRC Press, 2018.

12



Published as a conference paper at ICLR 2026

Zhenhao Zhang, Ye Shi, Lingxiao Yang, Suting Ni, Qi Ye, and Jingya Wang. Openhoi: Open-
world hand-object interaction synthesis with multimodal large language model. arXiv preprint
arXiv:2505.18947, 2025.

Yiming Zhong, Qi Jiang, Jingyi Yu, and Yuexin Ma. Dexgrasp anything: Towards universal robotic
dexterous grasping with physics awareness. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 22584–22594, 2025.

Yuchen Zhou, Jiayuan Gu, Tung Yen Chiang, Fanbo Xiang, and Hao Su. Point-sam: Promptable 3d
segmentation model for point clouds, 2024.

Bingfan Zhu, Biao Jiang, Sunyi Wang, Shixiang Tang, Tao Chen, Linjie Luo, Youyi Zheng, and Xin
Chen. Motiongpt3: Human motion as a second modality. arXiv preprint arXiv:2506.24086, 2025.

13



Published as a conference paper at ICLR 2026

UniHM: Unified Dexterous Hand Manipulation with Vision
Language Model

Appendix

A USE OF LLMS

We used an GPT to polish the experiments and introduction sections. We also use the Nano to
generate the icon in Figure 1.

B IMPLEMENTATION DETAILS

B.1 RETARGETING

Hand Pose Retargeting. The DexYCB (Chao et al., 2021) and OakInk (Yang et al., 2022) datasets
provide MANO pose sequences (Loper et al., 2023), object point clouds, and associated object
trajectories. We employ Dex-Retargeting (Qin et al., 2023) to map MANO joint configurations to
multiple robotic hands via a differentiable inverse-kinematics objective with joint limits and device-
specific kinematic calibration. Given a MANO pose qMANO(t), the device configuration is:

qdev(t) = argmin
q∈[qmin,qmax]

∑
k

wk ∥fk(q)− fk(ϕdev(qMANO(t)))∥22 + λ ∥q − qprev∥22 , (B1)

where fk denote forward-kinematics constraints on fingertip/phalange keypoints, ϕdev aligns MANO
and device frames and scales link lengths, and qprev is the previous solution for temporal smoothness.
We generate retargeted sequences for Allegro, Shadow, Schunk, LEAP, and Ability hands, and for
the Panda gripper (mapping the thumb-index aperture to a scalar opening width via linear scaling
with clamping).

Target Trajectory Generation. Let Mext ∈ SE(3) denote the camera extrinsics that map world
coordinates to the camera frame, and let T cam

obj (t) ∈ SE(3) be the object pose in the camera frame
at time t. The object target trajectory in the world frame used during training is

Ttar(t) = M−1
ext T cam

obj (t). (B2)

We time-align Ttar(t) with the retargeted hand poses using the dataset timestamps.

B.2 UNIFIED HAND TOKENIZER

Unified Codebook Training. We adopt a shared VQ-VAE codebook Z = {ek}Kk=1 initialized with
Shadow Hand due to its data availability and wildly used. For any hand type h, denote its encoder
and decoder by Eh and Dh. Given an input sequence chunk x(h), the encoder output, quantization,
and reconstruction follow the main text:

z(h)e = Eh(x
(h)), (B3)

c = Q(z(h)e ) = arg min
k∈[K]

∥∥∥z(h)e − ek

∥∥∥2
2
, (B4)

z(h)q = ec, (B5)

x̂(h) = Dh(z
(h)
q ) = Dh(ec), (B6)

where Q(·) performs a nearest neighbor lookup in the codebook, finding the code vector with the
minimum squared Euclidean distance. We train with the standard reconstruction and VQ losses:

Lrec =
∥∥∥x(h) −Dh

(
z(h)q

)∥∥∥2
2
, (B7)

Lvq =
∥∥∥sg [z(h)e

]
− z(h)q

∥∥∥2
2
+ β

∥∥∥z(h)e − sg
[
z(h)q

]∥∥∥2
2
, (B8)

where sg[·] is the stop-gradient operator and β > 0 is the commitment weight.
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To avoid codebook collapse with a purely statistical procedure, we maintain a “cold-code” table
based on per-epoch usage counts. Let n(t)

k be the usage of code k during epoch t, computed from
token indices {c(t)b }B

(t)

b=1 :

n
(t)
k =

B(t)∑
b=1

1

[
c
(t)
b = k

]
, (B9)

where 1(·) denotes the indicator function that evaluates to 1 if the condition inside its brackets is
true, and 0 otherwise. Define the cold set at epoch t by a count threshold τc:

S(t) =
{
k ∈ [K] | n(t)

k < τc

}
. (B10)

At scheduled refresh epochs t ∈ Ereset, we selectively update only the codes belonging to the
cold set. Collect a buffer B(t) of encoder outputs since the previous refresh and run K-Means
with R =

∣∣S(t)∣∣ to obtain centroids {µr}Rr=1. We directly replace the cold codes with the newly
computed centroids. With an injective assignment π : S(t) → {1, . . . , R}:

ek ← µπ(k) for k ∈ S(t), ek ← ek for k /∈ S(t). (B11)

Thus, only the codes in the cold-code table are refreshed at those epochs, while frequently used
codes remain unchanged. The objective for this stage is:

Lloss = Lrec + Lvq. (B12)

Multi-Encoder and Decoder Training. To integrate a new hand morphology, we first align the
new encoder to the reference encoder via retargeted pairs. Let Eref be the reference (Shadow Hand)
encoder and (xnew,xref) be a retargeted pair:

Ldistill = ∥Enew (xnew)− Eref (xref)∥22 . (B13)

After encoder alignment, we train the new encoder–decoder pair within the shared VQ-VAE using
the same reconstruction and VQ losses:

L(h)
total = Lrec + Lvq + λdistillLdistill (B14)

, where λdistill ≥ 0 controls the contribution of the distillation term during the encoder alignment
stage.

Training Details. We train a unified codebook with capacity K = 8192 on DexYCB sequences.
Since the inputs are 1D pose and short-motion signals, we instantiate encoders/decoders with either
MLP or 1D convolutional backbones and ablate both choices, as shown in Table B1. When training
the reference encoder, we set the β = 0.25 and train the network with a learning rate 1e−4. We also
update the codebook at epochs 50, 100, 150, .... For the multi-encoder and multi-decoder training,
the cold-code threshold τc is set to 1, and the distillation weight λdistill is set to 0.1.

Table B1: A comparison of the validation set performance for the MLP and 1D-Conv models.
Allegro Shadow Schunk LEAP Ability Panda Gripper Overall

MAE
MLP 0.0268 0.0450 0.0293 0.0348 0.0432 0.0221 0.0350

1D-Conv 0.0216 0.0297 0.0221 0.0257 0.0327 0.0182 0.0256

RMSE
MLP 0.0545 0.0886 0.0656 0.0656 0.0913 0.0630 0.0736

1D-Conv 0.0465 0.0654 0.0551 0.0531 0.0705 0.0519 0.0581

B.3 PHYSICAL OPTIMIZATION

Physical Model. We expand the contact term used in the per-frame objective. Let si(qt) denote
the i-th fingertip position (forward kinematics) in the world frame and Ttar(t)

−1 be the object-frame
transform at time t. Query the nearest neighbor (pi,ni) on Pobj in the object frame, and define the
signed point-to-plane distance:

di(qt) = nT
i (Ttar(t)

−1si(qt)− pi). (B15)
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We adopt an asymmetric, smooth penalty f(d) that is continuous and slope-matched at d = 0:

f(d) =

{
α
2 d

2, d ≥ 0 (outside)
α

k2

(
e−kd + kd− 1

)
, d < 0 (inside)

(B16)

At d = 0, f is continuous and has matched first derivatives:

lim
d→0±

f(d) = 0, lim
d→0+

f ′(d) = 0, lim
d→0−

f ′(d) =
α

k
(1− e−k·0) = 0. (B17)

Moreover, f ′′(0−) = f ′′(0+) = αe−k·0 ≥ 0, so f is twice-differentiable and convex. Stacking
per-fingertip residuals gives:

rcontact,i(qt) =
√
2λcf(di(qt)), Econtact(qt) =

1
2∥rcontact(qt)∥22 = λc

∑
i

f(di(qt)), (B18)

with λc > 0. For Gauss–Newton, we linearize the residuals at the current iterate. Let xi(qt) =
Ttar(t)

−1si(qt) and Jx,i(qt) = ∂xi/∂qt (the kinematic Jacobian in the object frame). Treating
(pi,ni) as fixed within an inner iteration:

∂di(qt)

∂qt
= nT

i Jx,i(qt),
∂rcontact,i

∂qt
=
√
2λc

f ′(di(qt))

2
√

f(di(qt)) + ϵ2
nT
i Jx,i(qt), (B19)

which yields the contact Jacobian rows that form Jt = ∂rcontact(qt)/∂qt with a small ϵ > 0.

Generative Prior and Temporal Prior. We keep the generative and temporal priors from the main
text and unify their roles as dynamic smoothers from two information sources—semantic intent
(generator) and history (velocity/acceleration). The generative prior anchors qt to qgen

t :

Egen(qt, q
gen
t ) = 1

2 (qt − qgen
t )TWgen(qt − qgen

t ), Wgen ≻ 0. (B20)
The temporal prior penalizes first- and second-order differences:

Etime(qt, q
opt
t−1, q

opt
t−2) =

1
2∥qt − qopt

t−1∥2Wvel
+ 1

2∥(qt − qopt
t−1)− (qopt

t−1 − qopt
t−2)∥2Wacc

, (B21)
where Wvel ≻ 0 and Wacc ≻ 0 (often Wvel = λvelI , Wacc = λaccI). Define the per-frame
objective:

Et(qt, qgen
t , qopt

t−1, q
opt
t−2) = Econtact(qt) + Egen(qt, q

gen
t ) + Etime(qt, q

opt
t−1, q

opt
t−2). (B22)

Let rcontact(qt) denote the stacked contact residuals. Linearizing rcontact(qt + ∆qt) ≈ rcontact(qt) +
Jt∆qt and expanding the two quadratic priors around qt give:

Et(qt +∆qt) ≈ 1
2∥rcontact(qt) + Jt∆qt∥22 + 1

2∆qTt (Wgen +Wvel +Wacc)∆qt +∆qTt W̃, (B23)
where:

W̃ ≜ Wgen(qt − qgen
t ) +Wvel(qt − qopt

t−1) +Wacc((qt − qopt
t−1)− (qopt

t−1 − qopt
t−2)). (B24)

Setting the gradient w.r.t. ∆qt to zero and adding Levenberg–Marquardt damping λ ≥ 0 yields the
normal equations:

(JT
t Jt +Wgen +Wvel +Wacc + λI)∆qt = −JT

t rcontact(qt)− W̃. (B25)

For t < 2, we use boundary priors consistent with the main text, e.g., qopt
−2 = qopt

−1 = qgen
0 .

Optimization Procedure. Given the decoded grasping trajectory Qgen, the object point cloud Pobj,
and the target pose trajectory Ttar(t), we refine each frame by Gauss–Newton with LM damping
while freezing nearest-neighbor correspondences inside each inner iteration. In our implementation,
we set α = k = 1 and use a small positive constant ϵ to handle cases where f(d) approaches zero.

In practical environments, obtaining precise point clouds is often challenging. A significant advan-
tage of employing the kernel function f(d) is the inherent robustness it provides to the segmentation
process.

As shown in Fig. B1, the kernel function is relatively flat in a neighborhood of d = 0, which
implies that, even when the segmented point cloud is contaminated with noise, the resulting cost
term does not deviate substantially from that constructed from the ground-truth point cloud, and
thus the optimization still converges to the correct solution in the presence of noisy inputs. We
further demonstrate the optimization results under noisy conditions (for a clearer illustration of the
grasp point, we have omitted the remaining structure of the dexterous hand, plotting only the object
point cloud and the positions of the hand’s fingers), as shown in Fig. B2.
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Algorithm 1 Physical-guided dynamic refinement
Require: Generated sequence Qgen = {qgen

t }Tt=0, point cloud Pobj, target poses {Ttar(t)}Tt=0,
weights λc, Wgen, Wvel, Wacc, damping λ ≥ 0

Ensure: Refined sequence Qopt = {qopt
t }Tt=0

1: Set boundary priors qopt
−2 = qopt

−1 = qgen
0

2: for t = 0 to T do
3: Initialize qt ← qgen

t
4: repeat
5: Transform fingertips xi(qt) = Ttar(t)

−1si(qt)
6: For each fingertip i, find (pi,ni) = NN(xi(qt),Pobj) and determine inside/outside sign
7: Compute di(qt), rcontact(qt), and Jt = ∂rcontact/∂qt with correspondences fixed
8: Form W̃ using qt, q

opt
t−1, qopt

t−2

9: Solve (JT
t Jt +Wgen +Wvel +Wacc + λI)∆qt = −JT

t rcontact(qt)− W̃
10: Update: qt ← qt +∆qt; adjust λ by decrease/increase of Et
11: until converged or max iters
12: qopt

t ← qt
13: end for

Figure B1: The function plots under varying values of α and k are displayed. Note that α and k
control the curve behavior for x > 0 and x < 0, respectively. For comparison, the curve of y = |x|
is plotted using a dashed line.
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(A) (B)

(C) (D)

Figure B2: Optimization results when the point cloud includes noise. Here, the black points rep-
resent the object point cloud, and the red/green points denote the positions of the dexterous hand’s
fingertips. (A) Optimization using the f(d) kernel, visualized on the noisy input. (B) Optimization
using the Euclidean distance, visualized on the noisy input. (C) The f(d) kernel optimization result
projected onto the clean noise-free point cloud. (D) The Euclidean distance optimization result pro-
jected onto the noise-free point cloud.

C MODEL INSTRUCTION

C.1 TEXT TOKENIZER

We employ a pretrained language model from the Qwen series, specifically Qwen3, as the core
component for our language input pipeline. This choice is motivated by its strong performance
across a wide range of natural language tasks and its robust, efficient tokenizer.

The Qwen3 tokenizer operates on a byte-level Byte-Pair Encoding algorithm (Sennrich et al., 2015).
This method ensures that all possible input characters are representable, and it is particularly effec-
tive at handling diverse linguistic inputs, including code and technical terms, without resorting to
unknown tokens. The tokenizer’s vocabulary size is Vtok, and each input sequence S is tokenized
into a sequence of tokens T = (t1, t2, . . . , tN ), where N is the sequence length. The tokenization
process can be formally expressed as:

tokenize(S)→ T. (C1)

This token sequence T is then converted into a sequence of token embeddings, which serve as
the input to the subsequent layers of our model. We utilize the tokenizer’s built-in padding and
truncation functionalities to handle variable-length sequences, ensuring a consistent input shape for
the model.

C.2 POINT CLOUD ENCODER

We use a PointNet-based architecture (Qi et al., 2017a;b) as our point cloud feature extractor, which
is a key component of our model. The network directly consumes raw point cloud data, which is
an unordered set of n points, with each point represented by its (x, y, z) coordinates. The PointNet
architecture addresses the permutation invariance of point clouds by using a symmetric function to
aggregate information from each point.
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Specifically, the network first applies a shared multi-layer perceptron to each point individually to
transform the input features. This is followed by a max-pooling layer, which acts as a symmet-
ric function to aggregate the point-wise features into a global feature vector. This process can be
concisely described as:

f(X) = max
i=1,...,n

{h(xi)}, (C2)

where X = {x1, . . . , xn} is the input point cloud, h represents the shared MLP, and f(X) is the
resulting global feature vector. The network is configured to output several feature vectors, which
are then concatenated and fed into the subsequent main model for further processing.

C.3 TRAJECTORY ENCODER

Our model takes the target trajectory Ttar as input. We encode this trajectory using a two-layer MLP
to obtain a feature representation z(t). The MLP processes the pose ptar(t) at each timestep t and is
defined as:

z(t) = σ2 (W2σ1 (W1ptar(t) + b1) + b2) , (C3)
where σ1 and σ2 are non-linear activation functions. The hidden layer dimension is set to 512 during
training.

C.4 MASKED TRAINING

During training, we progressively mask the ground truth hand poses to encourage the model to learn
the temporal relationships within a sequence. This approach, which has been shown to be highly
effective in fields like language modeling (e.g., BERT (Liu et al., 2019)) and computer vision (e.g.,
DINOv2 (Oquab et al., 2023)), allows the model to generate hand poses from a given context.

Specifically, we feed the ground truth trajectory into the VQ-VAE encoder and then use a mask to
conceal the corresponding hand poses. The masked hand pose tokens are replaced with a single,
learnable token. This masking process can be formalized as:

Qmasked = M ⊙ E(Q) + (1−M)⊙ Tmask, (C4)

where Q is the ground truth hand pose sequence, E is the VQ-VAE encoder, M is a binary mask,
and Tmask is the learnable token.

We implement this masking strategy with a progressive curriculum across training epochs. For the
first 20% of epochs, we do not mask any hand poses. From 20% to 80% of the epochs, we linearly
increase the masking ratio until it reaches 100%. Finally, during the last 20% of epochs, all hand
poses are consistently masked, forcing the network to perform full generation. We train the model
for 100 epochs using the AdamW optimizer with a learning rate of 1e-4.

C.5 TARGET TRAJECTORY PLANER

We use CLiPort to plan the target trajectory Ttar. Specifically, we take RGB-D and instructions
as input data. Then, based on GenH2R Wang et al. (2024), we generate a smooth trajectory in the
output space, which is then encoded using the aforementioned trajectory encoder and fed into the
model.

D ADDITIONAL VISUALIZATION

We employ Sapien (Xiang et al., 2020) as a visualization engine for observing and validating the
generated results. We also present some additional visualizations here.

E REAL-WORLD SETUP

The experimental setup utilizes a Franka manipulator arm equipped with Panda Hand, an XHand
dexterous hand, and Inspire Hand in Fig.E1. The 7-degree-of-freedom (DoF) Franka provides a
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Figure D1: The visualization results of our grasping sequence in Sapien. More real world examples
could be found in the video.

Figure D2: The visualization results of our grasping sequence in Sapien. More real world examples
could be found in the video.
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workspace comparable to that of a human arm. The 2-DOF Panda Hand, 12-DOF XHand, and
6-DOF Inspire Hand, with overall dimensions similar to a human hand, feature a proportionally
elongated pinky finger. This specific design requires an adaptive scaling heuristic to ensure natural
and fluid motion.

We employ a Zed camera to acquire RGB-D observations, apply PointSAM to segment the target
point cloud, and subsequently leverage SnowflakeNet (Xiang et al., 2023; 2021) to reconstruct a
complete point cloud that serves as input to our model.

Figure E1: Real-World Cross-embodiment Set up

F EVALUATION METRIC

MPJPE (Mean Per-Joint Position Error). For each sequence, we compute the Euclidean error of
every hand joint in every frame, Then average over joints and time:

MPJPEi =
1

TiJ

Ti∑
t=1

J∑
j=1

∥∥p(i)t,j − g
(i)
t,j

∥∥
2
. (F1)

The final MPJPE reported

MPJPE =
1

N

N∑
i=1

MPJPEi. (F2)

where N is the number of test sequences. FPL (Final Position Location Error) FPL measures
how close the final hand placement is to the ground truth. Let c(i)T and ĉ

(i)
T be the 3D positions of the

hand root / palm center at the last frame Ti of sequence i:

FPLi =
∥∥ĉ(i)Ti

− c
(i)
Ti

∥∥
2
, FPL =

1

N

∑
i

FPLi. (F3)

FOL (Final Orientation Location Error). FOL measures the orientation error of the hand at the
final frame. Let R(i)

Ti
and R̂

(i)
Ti

be the ground-truth and predicted rotation matrices of the hand root;
the orientation error is

θi = arccos

(
trace

(
(R

(i)
Ti
)⊤R̂

(i)
Ti

)
− 1

2

)
, (F4)
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converted to degrees. We report

FOL =
1

N

∑
i

θi. (F5)

Feature extractor. We first embed every hand-object interaction sequence x (either real or gener-
ated) using a pretrained motion encoder f(·) that consumes the full temporal joint trajectory (and
object pose) and outputs a fixed-dimensional feature vector z = f(x) ∈ Rd. We use the same
encoder for all methods and compute all distributional metrics in this learned feature space.

FID (Fréchet Inception Distance). Let {zreal
k }

Mr

k=1 be the features of real test sequences and
{zgen

k }
Mg

k=1 the features of generated sequences. We estimate the empirical means and covariances:

µr =
1

Mr

∑
k

zreal
k , Σr = Cov({zreal

k }); (F6)

µg =
1

Mg

∑
k

zgen
k , Σg = Cov({zgen

k }), (F7)

and compute
FID = ∥µr − µg∥22 +Tr

(
Σr +Σg − 2(ΣrΣg)

1/2
)
. (F8)

Diversity. Diversity measures how varied the generated sequences are in the same feature space.
Given the set of features {zk}Mk=1 for a method, we compute

Div =
2

M(M − 1)

∑
1≤a<b≤M

∥∥za − zb
∥∥
2
. (F9)
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