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Abstract

Accurate anomaly detection is critical in vision-based infrastructure inspection,1

where it helps prevent costly failures and enhances safety. Self-Supervised Learn-2

ing (SSL) offers a promising approach by learning robust representations from3

unlabeled data. However, its application in anomaly detection remains underex-4

plored. This paper addresses this gap by providing a comprehensive evaluation of5

SSL methods for real-world anomaly detection, focusing on sewer infrastructure.6

Using the Sewer-ML dataset, we evaluate lightweight models such as ViT-Tiny7

and ResNet-18 across SSL frameworks, including BYOL, Barlow Twins, SimCLR,8

DINO, and MAE, under varying class imbalance levels. Through 250 experiments,9

we rigorously assess the performance of these SSL methods to ensure a robust10

and comprehensive evaluation. Our findings highlight the superiority of joint-11

embedding methods like SimCLR and Barlow Twins over reconstruction-based12

approaches such as MAE, which struggle to maintain performance under class13

imbalance. Furthermore, we find that the SSL model choice is more critical than14

the backbone architecture. Additionally, we emphasize the need for better label-15

free assessments of SSL representations, as current methods like RankMe fail to16

adequately evaluate representation quality, making cross-validation without labels17

infeasible. Despite the remaining performance gap between SSL and supervised18

models, these findings highlight the potential of SSL to enhance anomaly detection,19

paving the way for further research in this underexplored area of SSL applications.20

1 Introduction21

Self-Supervised Learning (SSL) is a machine learning paradigm where models are trained on22

unlabeled data by creating surrogate labels through pretext tasks that exploit inherent structures or23

patterns within the data. As a result, this approach enables learning meaningful representations that24

can be applied to various downstream tasks without the need for explicit manual labeling [4]. Because25

of this, SSL is particularly advantageous for semi-supervised anomaly detection problems where26

obtaining labeled data is costly, labor-intensive, impossible, or undesirable [1]. Despite these benefits,27

anomaly detection is frequently underrepresented in SSL research, with recent large-scale ablation28

studies often neglecting its inclusion in benchmarking [10, 2]. In fact, common benchmarks such29

as ImageNet [7] and CIFAR [16], are object-centric and do not accurately reflect the complexity of30

real-world environments, where images are more diverse and less structured [11].31

Closer to the anomaly detection scenario, recent works have started to stress-test SSL on more32

realistic scenarios with uncurated data. Albeit still employing a classification task evaluation, it33

has been shown that SSL may be sensitive to the quality of the data and in particular to balance34

representations of the features to be learned [18, 3]. Clearly, such warning seems to go against the35
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Figure 1: Samples from the Sewer-ML
dataset [13]. The red circle highlights a
defect associated with lateral reinstatement
cuts, where improper cutting or misalign-
ment can cause issues such as blockages,
leaks, or structural weakness in the sewer
system (for further details on defect types
and image samples used for training and
validation, refer to Appendix E).

ability of SSL to solve anomaly detection as such scenario assumes by nature that the model can36

learn the anomaly features from very few samples.37

This gap in evaluation coupled with those recent sensitivity studies of SSL beg the following question:38

Can SSL successfully learn representations on highly imbalance datasets and capture salient features39

to solve anomaly detection tasks?40

To scientifically approach that question, we propose the use of the Sewer-ML dataset [13], a sewerage41

infrastructure dataset that contains 1.3 million images captured from video inspections, featuring42

17 different defect classes. Figure 1 presents examples of defect and non-defect images taken from43

Sewer-ML. To determine the robustness of self-supervised learning in handling class imbalances,44

we conducted 250 binary classification experiments where we systematically vary the proportion of45

defect samples in the train and validation datasets as 1%, 2%, 5%, and 15%.46

We summarize our key findings below:47

• Superiority of joint-embedding methods over reconstruction methods: we observe that48

MAE has difficulties to maintain performance with varying class imbalance as opposed to49

methods like SimCLR or BarlowTwins that compete with supervised baselines.50

• Impact of SSL methodology over backbone architecture: the choice of backbone archi-51

tecture (Resnet or Transformer) is not critical compared to the choice of SSL method.52

• Need for better label-free assessment of SSL representations: our findings indicate53

that methods such as RankMe fail to assess the richness of SSL representations making54

cross-validation without labels currently impossible on such task and dataset.55

The code for this research will be open-sourced and is available at Anomaly-Detection-In-The56

Wild_code.zip.57

2 Controlled evaluation of self-supervised anomaly detection58

We will first describe our methodology in detail and then provide results and discussions at the end of59

this section.60

2.1 Methodology61

Prior to conducting the SSL ablation study, an initial hyperparameter search was performed to optimize62

the data augmentation pipeline for the dataset. The focus was placed on tuning image resolution and63

augmentation settings to achieve a balance between model performance and computational efficiency.64

Detailed results and configurations are provided in Appendix A.65

Methods and models. Our study conducts an ablation analysis on anomaly detection using self-66

supervised learning methods, with a particular emphasis on their robustness to distribution imbalances.67

We primarily focus on joint-embedding architectures—specifically Barlow Twins, SimCLR, BYOL,68

and DINO [19, 6, 12, 5]—which aim to learn an embedding space by aligning representations of69

different augmented views of the same input while avoiding collapse. To provide a comparative70

perspective, we also evaluate Masked Autoencoders (MAE) [14], a self-supervised approach that71

reconstructs missing parts of the input data. For our backbone architectures, we use lightweight72

models such as ViT-Tiny [8] and ResNet-18 [15]. Please refer to Appendix B to inquire about specific73

training hyperparameters used for each method.74
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Controlled dataset imbalance. To determine the robustness of self-supervised learning in handling75

class imbalances, we conduct binary classification experiments with the Sewer-ML dataset [13], where76

we systematically vary the proportion of defect samples in the dataset. Specifically, we assess the77

performance of these methods under different levels of class imbalance—defect sample proportions78

of 1%, 2%, 5%, and 15%. As a binary setting, Sewer-ML has an approximately balanced distribution79

by design-45% and 47% defect proportion on the train and validation sets, respectively. We seek to80

assess how well self-supervised learning approaches can learn from imbalanced distributions and to81

evaluate their effectiveness on datasets with varying levels of class imbalance. We apply each of the82

specified defect proportions to both the training and testing datasets, allowing us to evaluate model83

performance across all combinations of class imbalance scenarios.84

Evaluation metrics. In addition to reporting performance based solely on the F1 score, we also85

evaluate our models using the metrics proposed by the benchmark. This includes a weighted F286

metric (F2CIW ) for identifying defects and a conventional F1 score (F1Normal) for non-defect87

classifications [13]. The F2 metric’s weights are assigned to each defect category according to their88

economic significance. Additionally, they encourage the use of an F2 score to give greater emphasis89

to recall over precision, recognizing that overlooking a defect incurs a higher economic cost than the90

occurrence of a false positive.91

2.2 Results92

We present in Table 1 the performance of various SSL models compared to their supervised coun-93

terparts. Training was conducted on imbalanced data, while validation adhered to a balanced set,94

aligning with benchmark standards. Although previous studies have noted that CNN-based architec-95

tures like ResNet-18 often outperform vision transformers (ViTs) [10], our results do not indicate a96

significant difference in performance between these backbones architectures.97

Robustness of joint-embedding methods. When examining individual SSL methods, SimCLR98

achieves the best overall results especially when paired with ResNet-18 and defect proportion is99

higher than 5%. When working with stronger distribution imbalances, particularly with 1%, BYOL100

and Resnet-18 have the best results. This might be due to the training dynamics behind these methods,101

in situations with moderate imbalance (like 5%), the contrastive approach of SimCLR can still102

adequately separate the minority class from the majority, leveraging the discriminative power of the103

contrastive loss. This can be counter-productive when working with extremely imbalance levels.104

BYOL avoids this issue by not requiring explicit negative sampling, allowing it to maintain more105

consistent performance even when the class imbalance becomes more extreme. Thus, while SimCLR106

thrives with moderate imbalance, BYOL proves more resilient in handling extreme class disparities.107

Another interesting insight is Barlow Twins’ competitive performance under extreme imbalance. Its108

use of redundancy reduction loss, which both maximizes similarity between augmented views and109

decorrelates the learned representations, may help avoid the pitfalls of overfitting to the dominant110

class. DINO, however, shows a unique trend, performing poorly in 1% and 2% settings with ResNet-111

18, but not with ViT-Tiny. This could be attributed to DINO’s focus on global feature learning through112

knowledge distillation, which aligns better with ViT’s global attention approach.113

Failure of reconstruction-based methods. Finally, the Masked Autoencoder (MAE) delivers the114

weakest performance across all scenarios, especially at higher imbalance levels (e.g., 45%). MAE’s115

reliance on reconstructing multiple classes might introduce noise that hampers its ability to generalize116

under severe imbalance. In highly imbalanced data, MAE could face challenges in differentiating117

between common and rare classes, possibly due to the reconstruction bias that favors the majority118

class. This might also be tied to the model’s neural capacity, which can struggle to produce robust119

representations when not sufficiently overparameterized.120

Full tables with training and validation results are in Appendix C.2. Detailed analysis of each model’s121

performance on imbalanced test distributions is provided in Appendix C.1. SSL monitoring metrics122

including RankMe [9] and the mean and standard deviation of features and embeddings for DINO,123

BYOL, and SimCLR—are discussed in Appendix D.124

Performance Trends on Imbalanced Validation Sets. When evaluating the models on increasingly125

imbalanced validation sets (Figure 2), there is a clear and consistent decline in performance across126

most methods, as indicated by the F1 scores. As the validation set imbalance becomes more severe127

(e.g., at 1% and 2% imbalance), no method is able to sustain strong performance, particularly in128
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Table 1: Validation metrics for each method and architecture across different imbalance levels.
The percentages represent the imbalance levels applied during training, while the validation data
proportion remained unchanged.

RESNET-18 VIT-TINY
1% 2% 5% 15% 45% 1% 2% 5% 15% 45%

F1→

Supervised 0.831 0.847 0.865 0.882 0.898 0.768 0.785 0.831 0.858 0.878
BYOL 0.764 0.768 0.774 0.783 0.792 0.676 0.738 0.752 0.757 0.730
Barlow Twins 0.768 0.775 0.789 0.796 0.803 0.682 0.738 0.747 0.769 0.772
DINO 0.049 0.032 0.673 0.719 0.727 0.691 0.683 0.553 0.704 0.719
MAE – – – – – 0.513 0.636 0.570 0.575 0.024
SimCLR 0.740 0.778 0.796 0.807 0.814 0.762 0.768 0.771 0.778 0.786

F2CIW →

Supervised 0.838 0.849 0.880 0.904 0.879 0.837 0.812 0.831 0.870 0.881
BYOL 0.837 0.844 0.819 0.825 0.785 0.680 0.768 0.760 0.781 0.725
Barlow Twins 0.817 0.805 0.817 0.822 0.780 0.704 0.749 0.786 0.784 0.758
DINO 0.566 0.402 0.712 0.777 0.752 0.733 0.736 0.690 0.724 0.695
MAE – – – – – 0.629 0.640 0.704 0.702 0.009
SimCLR 0.775 0.813 0.826 0.822 0.813 0.766 0.795 0.798 0.801 0.788

F1Normal→

Supervised 0.850 0.861 0.879 0.894 0.908 0.774 0.794 0.844 0.869 0.890
BYOL 0.758 0.759 0.783 0.789 0.818 0.719 0.757 0.778 0.771 0.781
Barlow Twins 0.782 0.796 0.799 0.807 0.828 0.716 0.760 0.766 0.785 0.806
DINO 0.689 0.686 0.700 0.730 0.763 0.655 0.688 0.419 0.727 0.759
MAE – – – – – 0.471 0.350 0.553 0.389 0.677
SimCLR 0.752 0.793 0.806 0.818 0.836 0.782 0.781 0.786 0.785 0.810

terms of accurately identifying the minority class. On the other hand, the F2 score remains relatively129

stable, likely due to the use of a weighted loss function based on defect proportions.130

Figure 2: ResNet-18 validation performance heatmaps across imbalance levels. The x-axis represents
the imbalance levels in the validation set, while the y-axis indicates the method and the imbalance
level used during training.

3 Conclusions and discussion131

Our study indicates that self-supervised learning (SSL) is effective for anomaly detection and remains132

robust even when facing significant distribution imbalances. We also find that the choice of backbone133

architecture is not the most critical factor in model performance, as neither ViT-Tiny nor ResNet-18134

consistently outperforms the other across all cases. In contrast, the selection of the SSL methodology135

significantly impacts performance, with substantial variations observed among different SSL model136

families. Therefore, for practitioners, choosing the appropriate SSL family is more crucial than137

selecting a specific backbone architecture. Furthermore, there is a pressing need to accurately measure138

the quality of representations produced by SSL models. Our findings indicate that the RankMe metric139

is ineffective for this purpose; it aims to assess the richness of representations but fails to correlate140

with actual performance. As shown in Appendix D, there is no correlation between performance and141

RankMe metrics, underscoring the necessity for better methods of evaluating representations quality.142
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A Images resolution and data augmentations ablation216

For the resolution, we trained both architectures in a supervised fashion, using no data augmentations217

other than resizing. As seen in Table 2, the resolution ablation study reveals a clear trend where218

increasing the image size leads to better model performance, as measured by validation F1 scores.219

However, this improvement comes at the cost of increased training time. Notably, the best trade-off220

between performance and runtime was achieved at a resolution of 224x224.221

Table 2: Best validation F1 scores for different image sizes and architectures.
64 128 224 384 512

ViT-Tiny 0.866 0.885 0.894 0.897 0.90

ResNet-18 0.877 0.892 0.901 0.907 0.909

Time/Epoch 28m 31m 37m 52m 69m

For the data augmentations, we explored how changes in color jitter and random cropping impacted222

model performance. To maintain computational efficiency, we used 25% of the dataset, running223

experiments with the ResNet-18 architecture. We adjusted the ColorJitter parameters using a224

variable t_val that ranged from 0.1 to 0.8. Specifically, brightness, contrast, and saturation were225

each set to t_val, while hue was set to half of that value (hue = t_val / 2). Furthermore, the226

minimum scale for RandomResizedCrop was varied from 0.08 to 0.71. As illustrated in Figure 3,227

the best performance, measured by F1 Score, was obtained when t_val was around 0.1 and 0.45 and228

when min_scale was around 0.395 and 0.605. Due to the small performance difference, and looking229

to introduce stronger augmentations when using SSL methodologies, we decided to use min_scale230

= 0.395 and t_val = 0.275 for further ablations.231

Figure 3: Val F1 Score by min_scale and t_val. This heatmap shows the performance variation in
terms of F1 score, demonstrating the interaction between these two hyperparameters.

B SSL configurations232

Training was conducted using PyTorch 2.0.2 [17] on a SLURM cluster equipped with NVIDIA L4233

GPUs. In total, we performed 250 experiments, comprising 74 training runs and 184 validation234

tests. The experiments were conducted over 45 epochs varying the optimizer and its corresponding235

parameters depending on the method at hand. A linear warmup was applied for the first 10 epochs,236

followed by a cosine scheduler with no restarts. The base and final decay rates (ω ) were 0.996 and237

0.999, respectively, with a minimum learning rate of 1→ 10→6.238
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During pre-training, a linear probe was trained, and the reported results reflect its final performance.239

For all experiments, the linear probe was trained using a learning rate of 0.001, with a momentum of240

0.9 and no weight decay applied. However, for MAE, a reduced learning rate of 0.0001 was necessary241

to prevent numerical issues caused by 16-bit mixed precision. Similarly, DINO was trained using242

32-bit precision due to instability on imbalanced cases.243

Moreover, due to the imbalanced nature of the problem, we use a binary cross entropy loss with244

positive weights. The positive weights are assigned using the inverse of the defect proportion, a245

method commonly referred to as inverse class frequency weighting. Finally, every SSL method was246

trained on two augmented views of the same image and no multicrop was used.247

To ensure reproducibility, the remainder of the section contains the specific configurations adopted248

for each method.249

B.1 BYOL250

1 optimization:251

2 optimizer: lars252

3 batch_size: 256253

4 lr: 0.2254

5 momentum: 0.9255

6 weight_decay: 1.5e-06256

7 exclude_bias_and_norm: true257

8 warmup_start_lr: 0.1258

9 ssl_settings:259

10 proj_hidden_dim: 2048260

11 pred_hidden_dim: 2048261

12 proj_output_dim: 256262

13 normalize_projector: false263

B.2 DINO264

1 optimization:265

2 optimizer: adamw266

3 batch_size: 128267

4 lr: 0.0005268

5 momentum: 0.9269

6 weight_decay: 0.0001270

7 warmup_start_lr: 3.0e-05271

8 ssl_settings:272

9 proj_hidden_dim: 2048273

10 proj_output_dim: 256274

11 num_prototypes: 8192275

12 clip_grad: true276

13 freeze_prototyper: 1277

14 use_bn_in_head: false278

15 norm_prototyper: false279

16 student_temperature: 0.1280

17 warmup_teacher_temperature: 0.04281

18 teacher_temperature: 0.07282

19 warmup_temperature_epochs: 15283

B.3 MAE284

1 optimization:285

2 optimizer: adamw286

3 batch_size: 256287

4 lr: 0.001288

5 momentum: 0.9289

6 weight_decay: 0.05290

7 warmup_start_lr: 0.0005291

8 ssl_settings:292
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9 mask_ratio: 0.75293

10 norm_pix_loss: true294

11 decoder_embed_dim: 192295

12 decoder_depth: 12296

13 decoder_num_heads: 12297

B.4 SimCLR298

1 optimization:299

2 optimizer: lars300

3 batch_size: 256301

4 lr: 0.3302

5 momentum: 0.9303

6 weight_decay: 1.0e-06304

7 warmup_start_lr: 0.15305

8 ssl_settings:306

9 proj_hidden_dim: 2048307

10 proj_output_dim: 256308

11 temperature: 0.2309

B.5 Barlow Twins310

1 optimization:311

2 optimizer: lars312

3 batch_size: 256313

4 lr: 0.2314

5 momentum: 0.9315

6 weight_decay: 1.5e-06316

7 warmup_start_lr: 0.1317

8 ssl_settings:318

9 proj_hidden_dim: 2048319

10 proj_output_dim: 256320

11 lambda: 0.0051321

12 scale_loss: 0.024322

B.6 Supervised323

1 optimization:324

2 optimizer: adamw325

3 batch_size: 256326

4 lr: 0.0005327

5 momentum: 0.9328

6 weight_decay: 0.0001329

7 warmup_start_lr: 3.0e-05330

C Complementary tables331

When evaluating SSL methods trained and tested on various class imbalances, several important332

observations emerged (refer to Figure 4). DINO, when trained on low defect proportions (1% and333

2%), struggled significantly in identifying defects, despite performing well at detecting non-defects,334

suggesting a limitation in handling extreme class imbalances. Additionally, the supervised baseline335

consistently outperformed all SSL methods across every class imbalance, with the performance gap336

widening as the class imbalance in the validation set increased. This highlights the need for further337

exploration of SSL methods in real-world anomaly detection scenarios. Interestingly, Barlow Twins338

demonstrated the strongest resilience in highly imbalanced settings, particularly when both training339

and evaluation involved significant class imbalances. Specifically, Barlow Twins variants trained340

on 1% and 2% defect proportions achieved the best performance among SSL methods under these341

conditions, underscoring its robustness in scenarios with severe class imbalances.342
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When evaluating precision across varying validation imbalances, a degradation trend is evident as class343

imbalance increases (refer to Figure 5). Notably, BYOL, when trained on a nearly balanced setting344

(45% defect proportion), shows a larger performance gap compared to its 15% counterpart, indicating345

the potential influence of training balance. Meanwhile, the recall score remains consistently strong346

across all validation imbalance proportions, likely due to the weighted loss choice, demonstrating347

solid recall performance even under significant class imbalances.348

C.1 Imbalanced validation setting349

Figure 4: ResNet-18’s F1, F2CIW , and F1Normal validation score heatmaps across imbalance levels.
The x-axis represents the imbalance levels in the validation set, while the y-axis indicates the method
and the imbalance level used during training.

Figure 5: ResNet-18’s precision, recall, and f1 validation score heatmaps across imbalance levels.
The x-axis represents the imbalance levels in the validation set, while the y-axis indicates the method
and the imbalance level used during training.

C.2 Balanced validation setting350

Overall, the training performance across the models show a clear linear degradation as the proportion351

of defects in the dataset decreases. This decline is primarily reflected in the precision scores, which352

drop significantly at lower defect proportions, such as 1% and 2%. The decreasing precision indicates353

that as fewer defects are present in the training set, the models fail to generalize properly, as the354

limited number of defect examples hinders their ability to accurately distinguish between defective355

and non-defective instances, leading to an increase in false positives. However, this trend is less356

evident in the validation set, where the precision remains relatively stable. This is due to the balanced357

nature of the validation set. On the other hand, recall remains fairly consistent across both the training358

and validation sets, even as the defect proportion decreases. This behavior can be explained by the359

use of a weighted loss function, which adjusts weights based on defect proportion. As a result, the360

model becomes biased towards positive predictions, preserving recall but impacting precision.361
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Table 3: Comprehensive performance metrics for ResNet-18 across both training and validation
phases. The percentages represent the imbalance levels applied during training, while the validation
default distribution remained unchanged.

TRAIN VAL
1% 2% 5% 15% 45% 1% 2% 5% 15% 45%

PRECISION→

Supervised 0.055 0.114 0.282 0.614 0.918 0.834 0.840 0.861 0.877 0.893

BYOL 0.027 0.053 0.143 0.372 0.782 0.715 0.715 0.747 0.750 0.801
Barlow Twins 0.032 0.067 0.167 0.410 0.805 0.749 0.769 0.764 0.772 0.811
DINO 0.024 0.043 0.107 0.309 0.719 0.571 0.422 0.664 0.693 0.738
SimCLR 0.028 0.066 0.168 0.433 0.808 0.715 0.762 0.770 0.786 0.817

RECALL→

Supervised 0.893 0.895 0.910 0.928 0.927 0.827 0.854 0.869 0.887 0.903

BYOL 0.805 0.822 0.807 0.811 0.777 0.820 0.829 0.802 0.820 0.784
Barlow Twins 0.771 0.782 0.791 0.802 0.777 0.787 0.781 0.815 0.821 0.796
DINO 0.663 0.670 0.669 0.733 0.711 0.026 0.017 0.683 0.747 0.716
SimCLR 0.748 0.794 0.808 0.808 0.793 0.766 0.795 0.824 0.829 0.812

F1→

Supervised 0.104 0.202 0.431 0.739 0.922 0.831 0.847 0.865 0.882 0.898

BYOL 0.052 0.099 0.243 0.510 0.779 0.764 0.768 0.774 0.783 0.792
Barlow Twins 0.061 0.123 0.276 0.543 0.791 0.768 0.775 0.789 0.796 0.803
DINO 0.046 0.080 0.185 0.434 0.715 0.049 0.032 0.673 0.719 0.727
SimCLR 0.054 0.123 0.279 0.564 0.800 0.740 0.778 0.796 0.807 0.814

F2CIW →

Supervised 0.868 0.877 0.886 0.904 0.900 0.838 0.849 0.880 0.904 0.879

BYOL 0.836 0.841 0.825 0.831 0.786 0.837 0.844 0.819 0.825 0.785
Barlow Twins 0.828 0.822 0.828 0.825 0.788 0.817 0.805 0.817 0.822 0.780
DINO 0.757 0.719 0.733 0.761 0.699 0.566 0.402 0.712 0.777 0.752
SimCLR 0.792 0.821 0.834 0.830 0.807 0.775 0.813 0.826 0.822 0.813

F1Normal→

Supervised 0.916 0.922 0.933 0.939 0.936 0.850 0.861 0.879 0.894 0.908

BYOL 0.826 0.821 0.849 0.846 0.821 0.758 0.759 0.783 0.789 0.818
Barlow Twins 0.865 0.873 0.879 0.870 0.834 0.782 0.796 0.799 0.807 0.828
DINO 0.832 0.812 0.820 0.808 0.769 0.689 0.686 0.700 0.730 0.763
SimCLR 0.849 0.869 0.878 0.880 0.839 0.752 0.793 0.806 0.818 0.836
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Table 4: Comprehensive performance metrics for ViT-Tiny across both training and validation phases.
The percentages represent the imbalance levels applied during training, while the validation data
proportion remained unchanged.

TRAIN VAL
1% 2% 5% 15% 45% 1% 2% 5% 15% 45%

PRECISION→

Supervised 0.030 0.065 0.209 0.520 0.879 0.735 0.757 0.816 0.842 0.873

BYOL 0.024 0.055 0.152 0.356 0.755 0.687 0.723 0.751 0.737 0.770
Barlow Twins 0.024 0.058 0.136 0.375 0.780 0.681 0.729 0.733 0.753 0.792
DINO 0.018 0.041 0.052 0.307 0.714 0.625 0.651 0.474 0.692 0.734
MAE 0.010 0.022 0.063 0.154 0.223 0.469 0.503 0.530 0.479 0.232
SimCLR 0.033 0.063 0.155 0.373 0.776 0.752 0.746 0.753 0.747 0.788

RECALL→

Supervised 0.807 0.808 0.855 0.880 0.890 0.804 0.816 0.847 0.875 0.882

BYOL 0.657 0.746 0.749 0.770 0.690 0.666 0.753 0.752 0.777 0.694
Barlow Twins 0.677 0.731 0.754 0.779 0.744 0.682 0.748 0.762 0.787 0.752
DINO 0.679 0.710 0.674 0.715 0.695 0.773 0.719 0.662 0.717 0.703
MAE 0.496 0.500 0.588 0.705 0.013 0.567 0.864 0.617 0.719 0.013
SimCLR 0.761 0.783 0.788 0.805 0.776 0.772 0.792 0.790 0.812 0.784

F1→

Supervised 0.059 0.120 0.335 0.654 0.884 0.768 0.785 0.831 0.858 0.878

BYOL 0.046 0.102 0.252 0.487 0.721 0.676 0.738 0.752 0.757 0.730
Barlow Twins 0.046 0.107 0.231 0.506 0.762 0.682 0.738 0.747 0.769 0.772
DINO 0.035 0.077 0.096 0.430 0.704 0.691 0.683 0.553 0.704 0.719
MAE 0.020 0.043 0.114 0.253 0.025 0.513 0.636 0.570 0.575 0.024
SimCLR 0.062 0.116 0.259 0.509 0.776 0.762 0.768 0.771 0.778 0.786

F2CIW →

Supervised 0.824 0.825 0.848 0.869 0.868 0.837 0.812 0.831 0.870 0.881

BYOL 0.711 0.773 0.776 0.789 0.726 0.680 0.768 0.760 0.781 0.725
Barlow Twins 0.708 0.759 0.787 0.804 0.760 0.704 0.749 0.786 0.784 0.758
DINO 0.722 0.744 0.715 0.729 0.680 0.733 0.736 0.690 0.724 0.695
MAE 0.624 0.394 0.711 0.683 0.014 0.629 0.640 0.704 0.702 0.009
SimCLR 0.792 0.809 0.807 0.815 0.785 0.766 0.795 0.798 0.801 0.788

F1Normal→

Supervised 0.849 0.862 0.903 0.912 0.904 0.774 0.794 0.844 0.869 0.890

BYOL 0.839 0.847 0.869 0.840 0.789 0.719 0.757 0.778 0.771 0.781
Barlow Twins 0.834 0.858 0.850 0.851 0.813 0.716 0.760 0.766 0.785 0.806
DINO 0.785 0.791 0.507 0.810 0.764 0.655 0.688 0.419 0.727 0.759
MAE 0.615 0.709 0.692 0.461 0.695 0.471 0.350 0.553 0.389 0.677
SimCLR 0.869 0.862 0.867 0.847 0.816 0.782 0.781 0.786 0.785 0.810

D Self-supervised monitoring metrics362

When evaluating SimCLR, BYOL, and DINO, significant differences emerge in the behavior of363

ResNet-18 versus ViT-Tiny architectures. ResNet-18 consistently achieved higher RankMe values364

and demonstrated steady improvement in feature standard deviation, indicating more stable and robust365

feature representations. In contrast, ViT-Tiny models showed strong initial performance that often366

degraded over time, particularly under SimCLR and BYOL, suggesting challenges in maintaining367

feature consistency (see Figures 6, 7). However, under DINO, ViT-Tiny’s performance was more368

stable, aligning closely with ResNet-18’s in terms of RankMe values (see Figure 8).369

Overall, these findings suggest that ResNet architectures offer superior stability and consistency370

across different self-supervised learning algorithms, whereas ViT-Tiny models may require tailored371

optimization techniques to sustain their initial performance levels. This underscores the importance of372

continuously monitoring self-supervised metrics to ensure robust feature learning and representation373

stability.374

Furthermore, scatter plots comparing RankMe with train and validation F1 scores—grouped by SSL375

method, model type, and defect proportion—show no correlation (Figures 9, 10, indicating that376

RankMe is not a reliable predictor of downstream performance. This challenges RankMe’s intended377

role and highlights a gap in its effectiveness within the SSL domain. Nonetheless, distinct RankMe378

differences between ResNet-18 and ViT-Tiny architectures persist, reinforcing the architectural379

distinctions previously observed.380
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D.1 SimCLR381

(a) RankMe metric across epochs.

(b) Features’ mean and standard deviation across epochs.

(c) Embedding’s mean and standard deviation across epochs.

Figure 6: Self-supervised monitoring metrics for SimCLR.
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D.2 BYOL382

(a) RankMe metric across epochs.

(b) Features’ mean and standard deviation across epochs.

(c) Embedding’s mean and standard deviation across epochs.

Figure 7: Self-supervised monitoring metrics for BYOL.
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D.3 DINO383

(a) RankMe metric across epochs.

(b) Features’ mean and standard deviation across epochs.

(c) Embedding’s mean and standard deviation across epochs.

Figure 8: Self-supervised monitoring metrics for DINO.
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D.4 RankMe scatter plots384

Figure 9: Train F1 scores plotted against re-scaled RankMe metrics. RankMe metrics were re-scaled
to enable easier comparisons with F1 scores.

Figure 10: Validation F1 scores plotted against re-scaled RankMe metrics. RankMe metrics were
re-scaled to enable easier comparisons with F1 scores.
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E Sewer-ML samples385

Defect Type Train Validation

RB

OS

FS

OB

OK

PH

PB

OP

RO

IN

PF

FO

BE

IS

DE
Table 5: Sample images by defect type from train and validation sets.
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