
Under review as a conference paper at ICLR 2022

CORRECT-N-CONTRAST: A CONTRASTIVE APPROACH
FOR IMPROVING ROBUSTNESS TO SPURIOUS CORRE-
LATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spurious correlations pose a fundamental challenge for building robust machine
learning models. For example, models trained with empirical risk minimization
(ERM) may depend on correlations between class labels and spurious features to
classify data, even if these relations only hold for certain data groups. This can
result in poor performance on other groups that do not exhibit such relations. When
group information is available during training, Sagawa et al. (2019) have shown
how to improve worst-group performance by optimizing the worst-group loss
(GDRO). However, when group information is unavailable, improving worst-group
performance is more challenging. For this latter setting, we propose Correct-N-
Contrast (CNC), a contrastive learning method to train models more robust to
spurious correlations. Our motivating observation is that worst-group performance
is related to a representation alignment loss, which measures the distance in feature
space between different groups within each class. We prove that the gap between
worst-group and average loss for each class is upper bounded by the alignment loss
for that class. Thus, CNC aims to improve representation alignment via contrastive
learning. First, CNC uses an ERM model to infer the group information. Second,
with a careful sampling scheme, CNC trains a contrastive model to encourage
similar representations for groups in the same class. We show that CNC signifi-
cantly improves worst-group accuracy over existing state-of-the-art methods on
popular benchmarks, e.g., achieving 7.7% absolute lift in worst-group accuracy
on the CelebA data set, and performs almost as well as GDRO trained with group
labels. CNC also learns better-aligned representations between different groups in
each class, reducing the alignment loss substantially compared to prior methods.

1 INTRODUCTION

For many tasks, deep neural networks are negatively affected by spurious correlations—dependencies
between observed features and class labels that only hold for certain groups of the data. For example,
consider classifying images of cows or camels, where 90% of cow images depict grassy backgrounds.
A model may learn to predict the “cow” class based on the background, and incorrectly classify cow
images with non-grass backgrounds as camels (Ribeiro et al., 2016; Beery et al., 2018; Kaufman et al.,
2012). This illustrates a widespread issue where neural networks can achieve low test error on certain
groups, yet high error on others (Blodgett et al., 2016; Buolamwini & Gebru, 2018; Hashimoto et al.,
2018; Sagawa et al., 2019). Prior works have shown that this problem is increasingly aggravated as
the correlations between class labels and spurious features become stronger (Sagawa et al., 2020) and
easier to learn (Arpit et al., 2017; Hermann & Lampinen, 2020). Since spurious correlations arise in
many settings, we wish to design robust methods that perform well on all groups.

How can we obtain neural networks robust to spurious correlations? If group-defining information
(i.e. spurious attributes) is known, a common solution is to minimize the worst-group loss, e.g., with
group DRO (GDRO) (Sagawa et al., 2019). However, such information may be expensive to collect,
and we may not know the spurious attributes a priori in a given data set (Oakden-Rayner et al., 2020).
When group information is unavailable, prior works typically take a two-stage approach. They first
train an ERM model, and then use this model to infer groups and train a more robust model. For
example, Sohoni et al. (2020) find that ERM models still learn group-specific features when trained
to predict class labels. After first training an ERM model, they infer groups by clustering the ERM

1

Under review as a conference paper at ICLR 2022

(c)

1

Landbird,
Land BG

✅ ✅ ✅ ✅

ERM

Ours

Landbird,
Water BG

Landbird,
Land BG

Waterbird, Land
BG

Waterbird,
Water BG

❎ ✅❎✅

✅ ✅ ✅ ✅

Landbird,
Water BG

Landbird,
Land BG

Waterbird,
Land BG

Waterbird,
Water BG

❎ ✅❎✅

✅ ✅ ✅ ✅

ERM

Ours

✓

✗

GradCAM

Correct?

Correct-N-Contrast

Correct?

“Waterbird”

“Landbird”“Waterbird”

“Waterbird”

“Landbird”

“Waterbird”

Anchor Positive Negative

“Waterbird”“Waterbird” “Landbird”

Waterbird Waterbird Landbird

✗

Sample
contrastive

batches

“Waterbird”

Waterbird,
Land BG

Landbird,
Water BG

“Waterbird”

Waterbird,
Water BG

Input

GradCAM:

ERM

“Landbird”

Sample
Contrastive

Batches

1

2
Improve robustness
via representation
alignment

“Landbird”
“Waterbird”

Waterbird,
Land BG

Landbird,
Water BG

Waterbird,
Water BG

“Waterbird”

(a) (b)

Figure 1: (a) ERM misclassifies samples by spurious background features, visualized with GradCAM (Selvaraju
et al., 2017). (b) CNC uses contrastive learning to learn similar representations for same-class samples with
different ERM predictions. (c) Resulting models ignore spurious attributes and classify samples correctly.

model’s representations, and train a new model with GDRO using these inferred groups. Creager
et al. (2021) identify groups under which an initial trained ERM model would maximally violate the
invariant risk minimization (IRM) objective (Arjovsky et al., 2019). With these groups they train
a new model with GDRO or IRM. Nam et al. (2020); Liu et al. (2021) observe that ERM models
often misclassify data points in minority groups, and thus train another model with re-weighted or
upsampled points misclassified by an initial ERM model. While these methods promisingly leverage
ERM learned biases to significantly improve worst-group error without training group labels, there is
still a gap between their robust performance and methods’ such as GDRO that use group labels.

In this work, we ask how else we can improve model robustness using a trained ERM model, and
aim to close this gap by focusing on improving the learned representations of the robust model in
the second stage. We support this direction with two key motivations. First, we find that higher
worst-group performance consistently correlates with hidden-layer representations exhibiting higher
dependence on class labels than spurious attributes. We quantify this correlation using geometric
representation alignment (Wang & Isola, 2020), which measures the closeness of samples with
the same class but different spurious attributes in the model feature space, and mutual information.
This relation consistently holds across various data sets, and explains when prior upweighting
methods improve worst-group error over ERM (Fig. 4). Second, we theoretically show that a model’s
representation alignment for a given class can be used to upper bound the gap between its worst-group
and average loss for that class. Thus, if we can improve representation alignment for a class, we can
reduce the gap between worst-group and average loss for that class.

We thus propose Correct-N-Contrast (CNC), a two-stage procedure using contrastive learning to
encourage better representation alignment within each class. In the first stage, we train a regularized
ERM model similar to prior work (Liu et al., 2021; Creager et al., 2021), under the premise that
ERM predictions help infer group information (i.e., spurious attributes). In the second stage, we
wish to improve representation alignment by “pulling together” same-class datapoints and “pushing
apart” different-class datapoints, regardless of their individual groups or spurious features. To
do so via supervised contrastive learning, we use the heuristic that samples with the same ERM
predictions exhibit similar spurious features (and vice versa). With a randomly sampled anchor, we
select samples with the same class but different ERM predictions as “positives” we want to pull
together, and samples from different classes but the same ERM prediction as hard “negatives” we
want to push apart. Training a second model with this sampling scheme and supervised contrastive
learning encourages this model to ignore spurious correlations that the initial ERM model learned,
and improves representation alignment between same-class data points. Thus, CNC corrects for the
ERM model’s mistakes with contrastive learning in the second model.

We evaluate CNC on four popular and diverse spurious correlation benchmarks. Among methods that
similarly do not assume training group labels, CNC substantially improves worst-group accuracy,
obtaining up to 7.7% absolute lift (from 81.1% to 88.8% on CelebA) over the prior state-of-the-art
JTT (Liu et al., 2021), and averaging 3.4% lift across the four tasks. We also find that CNC nearly
closes the gap in worst-group accuracy with robust training methods that assume training group
labels, only falling short of GDRO’s worst-group accuracy by 0.8% absolute. Finally, we validate
that CNC indeed reduces the alignment loss compared to prior methods. This corresponds to an up to
71.1% smaller gap between worst-group versus average accuracy for data points in the same class.

Contributions. We summarize our contributions as follows:

2

Under review as a conference paper at ICLR 2022

1. We empirically show that a model’s worst-group performance correlates with the model’s align-
ment loss between different groups within a class, and analyze this connection theoretically.

2. We propose CNC, a two-stage contrastive approach to improve representation alignment and
thereby learn representations robust to spurious correlations.

3. We validate that CNC significantly improves worst-group accuracy over existing methods on
various benchmarks, and learns better-aligned representations less reliant on spurious features.

2 PRELIMINARIES

Problem setup. We present our setting and the loss objectives following Sagawa et al. (2019). Let
X = {x1, . . . , xn} and Y = {y1, . . . , yn} be a training data set of size n. Each data point has an
observed feature vector xi ∈ X , label yi ∈ Y , and unobserved spurious attribute ai ∈ A. The set
of groups G is defined as the set of all combinations of class label and spurious attribute pairs, i.e.
G = Y ×A. Let C = |Y| be the number of classes and K = |G| be the number of groups. Following
the classical supervised learning setting, we assume that each example (xi, yi, ai) is drawn from an
unknown joint distribution P . We assume that at least one sample from each group is observed in the
training data. Let Pg be the distribution conditioning on (y, a) = g, for any g ∈ G.

Given a model fθ : X 7→ RC and a convex loss ` : X × Y 7→ R, let the worst-group loss be:

Lwg(fθ) := max
g∈G

E(x,y,a)∼Pg
[`(fθ(x), y)]. (1)

ERM minimizes the training loss as a surrogate for the expected population loss Lavg:

Lavg(fθ) := E(x,y,a)∼P [`(fθ(x), y)] (2)

While ERM is the standard way to train neural nets, spurious correlations often cause ERM to obtain
high error on minority groups even when average error is low. Group DRO, which minimizes the
empirical version of (1), is recognized as a strong baseline for improving worst-group error when the
group labels {a1, . . . , an} are available during training (Sagawa et al., 2019). In contrast, we focus
on the more challenging setting in which the group labels are not available during training.

Contrastive learning. We briefly describe contrastive learning (Chen et al., 2020), a central com-
ponent of our approach. Let fθ be a neural network model with parameters θ. Let the encoder
fenc : X 7→ Rd be the feature representation layers of fθ. Let fcls : Rd 7→ RC be the classification
layer of fθ, which maps encoder representations to one-hot label vectors. We learn fenc with the
supervised contrastive loss Lsup

con proposed in Khosla et al. (2020). For each anchor x, we sam-
ple M positives {x+i }Mi=1 and N negatives {x−i }Ni=1. Let y, {y+i }Mi=1, {y

−
i }Ni=1 be the labels and

z, {z+i }Mi=1, {z
−
i }Ni=1 be the normalized outputs of fenc(x) for the anchor, positives, and negatives

respectively. With input x mapped to z, the training objective for the encoder is to minimize:

Lsup
con(x; fenc) = E

x,{x+
i }Mi=1,{x

−
i }Nj=1

[
− log

exp(z>z+i /τ)∑M
m=1 exp(z>z+m/τ) +

∑N
n=1 exp(z>z−n /τ)

]
(3)

where τ > 0 is a scalar temperature hyperparameter. Minimizing Eq. 3 leads to z being closer to z+
than z− in feature space. See Sec. 6 for further references related to contrastive learning.

3 MOTIVATIONS FOR REPRESENTATION ALIGNMENT

To motivate our method, we present our core observation that a model’s worst-group accuracy
correlates with how well its learned representations depends on the class labels, but not the spurious
attributes. First, we empirically observe that ERM learns spurious correlations by inspecting their
hidden layer representations on several spuriously correlated data sets. We find that ERM’s worst-
group performance is inversely related to a cross-group alignment loss (cf. Eq. (4) below) and mutual
information metrics. Second, we theoretically prove that this alignment loss serves as an upper bound
on the gap between the average-group loss and the worst-group loss (cf. Theorem 3.1).

3

Under review as a conference paper at ICLR 2022

3.1 RELATING WORST-GROUP PERFORMANCE TO REPRESENTATION ALIGNMENT

We first show that when neural networks are trained with standard ERM on spuriously correlated data,
their hidden layer representations exhibit high dependence on the spurious attribute. We quantify
this behavior using representation alignment (cf. Eq. (4) below) and mutual information metrics.
We observe that these metrics explain trends in ERM’s worst-group accuracy on various spuriously
correlated data sets. This relationship is also consistent and applies to upsampling methods (JTT) that
mitigate the impact of spurious features (Liu et al., 2021).

Figure 2: UMAP visualization of
learned CMNIST∗ representations.

We model spurious correlations with CMNIST∗, a colored
MNIST data set inspired by Arjovsky et al. (2019). There are
5 digit classes and 5 colors. We color a fraction pcorr of the
training samples with a color a associated with each class y, and
color the test samples uniform-randomly. To analyze learned
representations, we train a LeNet-5 CNN (LeCun et al., 1989)
with ERM to predict digit classes, and inspect the outputs of
the last hidden layer z = fenc(x). As shown in Fig. 2, with low
pcorr, models learn representations with high dependence on the actual digit classes. However, with
high pcorr we learn z highly dependent on a, despite only training to predict y.

Representation metrics. To quantify this behavior, we use two metrics designed to capture how
well the learned representations exhibit dependence on the class label vs. the spurious attributes.
First, we compute an alignment loss L̂align(fenc; g, g

′) between two groups g = (y, a) and g′ = (y, a′)
where a 6= a′. This measures how well fenc maps samples with the same class, but different spurious
attributes, to nearby vectors via Euclidean distance. Letting G and G′ be the subsets of training data
in groups g and g′ respectively, and x and x′ be any two samples in G and G′, we define:

L̂align(fenc; g, g
′) :=

1

|G|
1

|G′|
∑

(x,y,a)∈G

∑
(x′,y,a′)∈G′

‖fenc(x)− fenc(x
′)‖2. (4)

Thus, lower L̂align means better alignment. We also quantify representation dependence by estimating
the mutual information (MI) of a model’s learned representations with the class label, i.e. Î(Y ;Z)

and the spurious attributes Î(A;Z). We defer computational details to Appendix E.

(a) (b) (d)(c)

(c)

Figure 3: Accuracy and representation metrics from ERM models trained on increasingly spuriously correlated
Colored MNIST. High worst-group accuracy corresponds to both Î(Y ;Z) > Î(A;Z) and small alignment loss.

(b)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Higher worst-group accuracy with upsampling
coincides with keeping Î(Y ;Z)� Î(A;Z).

Results for ERM. In Fig. 3 we show a strong
association between worst-group error and
both alignment and mutual information met-
rics. As pcorr increases, ERM models not only
drop in worst-group accuracy, but also incur
higher alignment loss (Fig. 3ab). Fig. 3c fur-
ther illustrates this with mutual information.
We plot the estimated mutual information
and worst-group accuracy for models at each
epoch. A substantial drop in worst-group ac-
curacy occurs with high Î(A;Z) (especially
when Î(A;Z) > Î(Y ;Z), even with high Î(Y ;Z)). Fig. 3d also captures this trend with a trade off
between high Î(Y ;Z) with Î(A;Z) as pcorr increases (Fig. 3a).

4

Under review as a conference paper at ICLR 2022

Results for JTT. In Fig. 4, we also show that this relation holds when training with another recent
(upsampling) approach, JTT (Liu et al., 2021). With high pcorr, models now achieve higher worst-
group accuracy, and this corresponds to learning representations with high class label and low spurious
attribute dependence. We note however that previous approaches do not explicitly optimize for these
representation metrics, suggesting a new direction to improve worst-group performance.

3.2 RELATING ALIGNMENT LOSS TO WORST-GROUP LOSS

The empirical observations in Fig. 3 suggest that lower alignment loss correlates with lower worst-
group error. Next, we show that this connection applies much more generally. We show that the
maximum of L̂align(fenc; g, g

′), over any two groups g, g′ within the same class, can be used to upper
bound the gap between the worst-group loss and average loss for that class. We set up several
notations before stating the result. For any class label y ∈ Y , let Gy be the set of groups with label y
in G. Let Lwg(fθ; y) be the worst-group loss among groups in Gy:

Lwg(fθ; y) := max
g∈Gy

E
(x,ỹ,a)∼Pg

[`(fθ(x), ỹ)] .

Let Lavg(fθ; y) be the average loss among groups in Gy:
Lavg(fθ; y) := E

(x,ỹ,a)∼P :∀a∈A
[`(fθ(x), ỹ)] .

Additionally, we define a class-specific alignment loss L̂align(fenc; y) among groups in Gy . Recall that
fθ involves an encoding function fenc and a linear classification layer fcls. We define L̂align(fenc; y) as
the largest cross-group alignment loss among groups in Gy:

L̂align(fθ; y) := max
g∈Gy,g′∈Gy : g 6=g′

L̂align(fenc; g, g
′). (5)

where L̂align(fenc; g, g
′) is the alignment loss between g and g′ defined in Eq. (4). Our main result

is that L̂align(fθ; y) is an upper bound on the gap between Lwg(fθ; y) and Lavg(fθ; y) (up to a norm
multiplier and a concentration error), for any y ∈ Y .
Theorem 3.1 (Alignment loss upper bounds the gap between worst-group and average-group loss).
In the setting described above, let fθ be any neural network satisfying that the weight matrix of the
linear classification layer W in fcls satisfies that ‖W‖2 ≤ B, for some constant B. Let ng be the size
of any group g ∈ G in the training data set. Assume that the loss function `(x, y) is C1-Lipschitz in x
and bounded from above by C2, for some positive constants C1, C2. Then, with probability at least
1− δ over the randomness of the training data set samples, for any class y ∈ Y , the following holds:

Lwg(fθ; y) ≤ Lavg(fθ; y) +B · C1 · L̂align(fθ; y) + max
g∈Gy

C2

√
8 log(|Gy|/δ)

ng
. (6)

The proof of Theorem 3.1 is deferred to Sec. B. Since we also know that Lavg(fθ; y) ≤ Lwg(fθ; y),
the above result implies that in order to reduce the gap between the worst-group loss and the average
loss for class y, it suffices to reduce the alignment loss L̂align(fθ; y).

Broader algorithmic implications. We summarize Section 3 with two takeaways: (1) When trained
on spuriously correlated data sets, ERM networks learn data representations highly dependent on
spurious attributes. Clusters of these representations (Sohoni et al., 2020) or the ERM model’s outputs
(Liu et al., 2021; Nam et al., 2020) can thus serve as (noisy) pseudolabels for spurious attributes.
(2) Both representation metrics correlate with worst-group error, such that a viable way to improve
worst-group performance is to improve representation alignment within each class.

4 CORRECT-N-CONTRAST (CNC)

We now present CNC, a two-stage method to improve worst-group performance and robustness to
spurious correlations, without requiring training group labels. Similar to prior works (Sohoni et al.,
2020; Liu et al., 2021), our first stage trains an ERM model (with proper regularization1) on the
training set, ultimately to infer group labels based on samples’ spurious attributes.

1As we train on the same data set we infer the groups on, regularization (via high weight decay or early
stopping) is purely to prevent the ERM model from memorizing the class labels. This is standard practice also
discussed in Sohoni et al. (2020); Liu et al. (2021). We show in Sec. 5.3 that we do not require the ERM model
to perfectly learn the spurious attributes for CNC to substantially improve robustness in practice.

5

Under review as a conference paper at ICLR 2022

Algorithm 1 Correct-N-Contrast (CNC)
Input: Training data set (X,Y); # positives M ; # negatives N ; learning rate η, # epochs K.

Stage 1: ERM Training
1: Train a regularized ERM model fθ̂ on (X,Y); save the predictions ŷi := fθ̂(xi).

Stage 2: Supervised contrastive learning
2: for each epoch 1, . . . ,K do
3: for each anchor (x, y) ∈ (X,Y) do
4: Let ŷ be the predicted (group) label of x from Stage 1’s ERM model.
5: Get M positives {(x+m, y+m)} where y+m = y but ŷ+m 6= ŷ, for m = 1, . . . ,M .
6: Get N negatives {(x−q , y−q)} where y−q 6= y but ŷ−q = ŷ, for q = 1, . . . , N .

7: Update fθ by θ ← θ − η · ∇L̂(fθ;x, y) (cf. Eq. (7)) with anchor, M positives, and N negatives.
return final model fθ from Stage 2, and throw away the ERM model from Stage 1.

The key difference is our second stage: we aim to train a more robust model by learning representations
such that samples in the same class but different groups are close to each other. We use contrastive
learning, as intuitively by treating samples with the same class but different spurious attributes as
distinct “views” of the same class, we train the second stage model to “pull together” these samples’
representations and ignore the different spurious features. This is also inspired by Wang & Isola
(2020); Robinson et al. (2021), who show that minimizing the contrastive loss improves representation
alignment between distinct “views”. Later in Sec. 5.1, we verify that CNC indeed reduces L̂align(fθ; y)
substantially. We include further details on both stages below, and summarize CNC in Algorithm 1.

Stage 1: ERM training. We train an initial model fθ̂ on the training data set {(xi, yi)}ni=1 with
ERM and regularization, and save its predictions {ŷi}ni=1 on the training data points. We consider
two ways to source predictions: using the ERM model’s outputs, and clustering its last hidden-layer
representations. Both approaches aim to accomplish the same goal of exploiting the ERM model’s
learned spurious correlations; further details are in Appendix E.2.
Stage 2: Contrastive learning (CL). Next, we train a robust model with supervised contrastive
learning using the ERM predictions. While CNC is inspired by recent CL works (Chen et al., 2020;
Khosla et al., 2020), we introduce new “contrastive batch” sampling and optimization objectives.

Contrastive batch sampling. As described in Sec. 2, contrastive learning requires sampling anchors,
positives, and negatives with the general form {x}, {x+}, {x−}. Here, we wish to sample points such
that by maximizing the similarity between anchors and positives (and keeping anchors and negatives
apart), the Stage 2 model “ignores” spurious similarities while learning class-consistent dependencies.
With prediction set {ŷi}ni=1, for each batch we randomly sample an anchor xi ∈ X (with label yi
and ERM prediction ŷi), M positives with the same class as yi but a different ERM model prediction
than ŷi, and N negatives with different classes as yi but the same ERM model prediction as ŷi. For
more signal per batch, we double pairwise comparisons by switching anchor and positive roles.

Optimization objective and updating procedure. While our core objective is to learn aligned repre-
sentations via contrastive learning, we also wish to train the full model to classify datapoints correctly.
As we have the training class labels, we jointly update both the model’s encoder layers fenc with a
standard contrastive loss, and the full model fθ with a cross-entropy loss:

L̂(fθ;x, y) = λL̂sup
con(fenc;x, y) + (1− λ)L̂cross(fθ;x, y). (7)

In the above, L̂sup
con(fenc;x, y) is the supervised contrastive loss of x along with its positive and

negative samples, similar to Eq. (3) (see Eq. (16) in Sec. C.2 for the full equation); L̂cross(fθ;x, y) is
averaged cross-entropy loss over x, the M positives, and the N negatives; λ ∈ [0, 1] is a balancing
hyperparameter. As a remark, the loss objective (7) uses a single anchor in each batch in our setting.

To calculate the loss, we first forward propagate one batch
(
xi, {x+m}Mm=1, {x−q }Nq=1

)
through fenc

and normalize them to obtain representation vectors
(
zi, {z+m}Mm=1, {z−q }Nq=1

)
. To learn closely

aligned zi and z+ for all {z+m}Mm=1, we update fenc with the L̂sup
out (x; fenc) loss. Finally, we also pass

the unnormalized outputs of the encoder fenc to the classifier layers fcls, and compute a batch-wise
cross-entropy loss L̂cross(fθ) using each batch sample’s class labels and fθ’s outputs. Due to space
constraints, we include further implementation details and sampling considerations in Appendix C.

6

Under review as a conference paper at ICLR 2022

5 EXPERIMENTAL RESULTS

We conduct experiments to answer the following questions: (1) Does CNC improve worst-group
performance over prior state-of-the-art methods on data sets with spurious correlations? (2) Does
CNC actually encourage learning hidden layer representations with greater alignment and class-label-
only dependence? How is this impacted by the strength of a spurious correlation in the data? (3)
Does CNC require perfectly predicting the spurious attribute to work well in practice? Our results
for each question follows in the next three subsections (5.1, 5.2, and 5.3). Due to space constraints,
we defer ablations on CNC’s design choices, including the representation-learning objective and
sampling procedure, to Appendix A. Additional comparison to alignment methods proposed for
domain adaptation but adjusted for our setting are in Appendix A.2. Below, we briefly describe the
benchmark data sets used in this section. We run CMNIST∗ with pcorr = 0.995. Further details on
data sets, models, and experimental hyperparameters are deferred to Appendix E.

Waterbirds (Sagawa et al., 2019): We classify Y = {waterbird, landbird}, where 95% of images
have the same bird type and background A = {water background, land background}.
CelebA (Liu et al., 2015): We classify celebrities’ hair colorY = {blond, not blond}withA = {male,
female}. Only 6% of blond celebrities in the data set are male.

CivilComments-WILDS (Borkan et al., 2019; Koh et al., 2021): We classify Y = {toxic, not toxic}
comments. A denotes whether the comment mentions one of eight demographic identities.

5.1 CNC IMPROVES WORST-GROUP PERFORMANCE

To study (1), we evaluate CNC on image classification and NLP data sets with spurious correlations.
As baselines, we compare against standard ERM and an oracle GDRO approach that assumes access
to the group labels. We also compare against recent methods that tackle spurious correlations without
requiring group labels: CVaR DRO (Levy et al., 2020), GEORGE (Sohoni et al., 2020), Learning from
Failure (LfF) (Nam et al., 2020), Predictive Group Invariance (PGI) (Ahmed et al., 2021), Environment
Inference for Invariant Learning (EIIL) (Creager et al., 2021), Contrastive Input Morphing (CIM)
(Taghanaki et al., 2021), and Just Train Twice (JTT) (Liu et al., 2021). We also compare against a
CNC version without the Stage 1 ERM model, instead only sampling positives and negatives based
on class (denoting this SupCon*). Results are reported in Table 1. CNC achieves highest worst-group
accuracy among all methods without training group labels on the CMNIST∗ Waterbirds and CelebA
data sets, while also obtaining near-SoTA worst-group accuracy on CivilComments.

While LfF, GEORGE, PGI, EIIL, and JTT similarly use a trained ERM model to estimate groups,
CNC uniquely uses ERM predictions to encourage the robust model to learn desirable representations
via contrastive learning. We reason that with this approach, by sampling positives and negatives
from the ERM predictions, CNC more directly encourages the robust model to ignore learnable
spurious correlations compared to previous invariant learning, input transformation, or upweighting
approaches. We include additional evidence of this via GradCAM visualizations in Appendix G.

(c)(a) (b) (d)

Figure 5: Alignment loss (a) and mutual information (b, c) of models trained with ERM, JTT, and CNC, on
Waterbirds and CelebA. CNC most effectively removes dependence on the spurious attribute, and obtains smaller
gaps for per-class worst-group vs. average error (d), as supported by Thm. 3.1.

5.2 CNC LEARNS REPRESENTATIONS LESS RELIANT ON SPURIOUS FEATURES

To shed light on CNC’s worst-group accuracy gains, we investigate if models trained with CNC
actually learn representations with higher alignment. Compared to ERM and JTT (the next-best per-
forming method that does not require subgroup labels), CNC learns representations with significantly
higher alignment (lower alignment loss) and lower mutual information with spurious attributes (while
having comparable mutual information with class labels) (Fig. 5 and Fig. 7).

7

Under review as a conference paper at ICLR 2022

Table 1: Worst-group and average accuracies, averaged over three seeds (standard deviations in parenthesis). On
image data sets, CNC obtains significantly higher worst-group accuracy than comparable methods without group
labels, competing with GDRO. CNC also competes with SoTA on CivilComments. Results without standard
deviations are reported from the original papers. Further implementation details are in Appendix E.
Method CMNIST* Waterbirds CelebA CivilComments-WILDS
Accuracy (%) Worst-group Avg. Worst-group Avg. Worst-group Avg. Worst-group Avg.

ERM 0.0 (0.0) 20.1 (0.2) 72.6 97.3 47.2 95.6 57.4 92.6
CVaR DRO 22.1 (5.0) 61.3 (4.1) 75.9 96.0 64.4 82.5 60.5 92.5
LfF 0.0 (0.0) 25.0 (0.5) 78.0 91.2 77.2 85.1 58.8 92.5
GEORGE 76.4 (2.3) 89.5 (0.3) 83.8 (1.0) 95.7 (0.5) 54.9 (1.9) 94.6 (0.2) - -
PGI 73.5 (1.8) 88.5 (1.4) 73.8 (0.8) 84.6 (0.1) 77.8 (1.8) 82.0 (0.6) - -
CIM 0.0 (0.0) 36.8 (1.3) 77.2 95.6 83.6 90.6 N/A N/A
EIIL 72.8 (6.8) 90.7 (0.9) 78.7 96.9 81.7 (0.8) 85.7 (0.1) 67.0 (2.4) 90.5 (0.2)
JTT 74.5 (3.1) 90.2 (0.8) 86.7 93.3 81.1 88.0 69.3 91.1
SupCon* 0.0 (0.0) 22.4 (1.2) 71.0 (1.9) 85.9 (0.8) 62.2 (1.1) 90.0 (0.1) - -
CNC (Ours) 77.4 (3.0) 90.9 (0.6) 89.7 (0.2) 90.8 (0.1) 88.8 (0.9) 89.9 (0.5) 68.9 (2.1) 81.7 (0.5)

Group DRO 78.5 (4.5) 90.6 (0.1) 91.1 (0.2) 92.4 (0.2) 88.9 (1.3) 93.9 (0.1) 69.8 (2.4) 89.0 (0.3)

Figure 6: UMAPs of Waterbirds representations, colored by class (left) and spurious attribute (right). ERM
depends on both classes Y and spurious attributes A, though with greater separability for the latter. JTT
representations depend more on Y , but also on A. CNC gets closer to fully removing the dependence on A.

We find that CNC representations exhibit the lowest alignment loss consistently for these data sets;
this also corresponds to CNC models achieving the highest worst-group accuracy. Furthermore,
while all methods result in representations that exhibit high mutual information with the class label
(Fig. 5b), only CNC results in representations that drastically reduce mutual information with spurious
attributes (Fig. 5c). In Fig. 6, we also illustrate this result on the Waterbirds data set via UMAP
visualizations of the learned representations. Notably, all training methods result in representations
separable by class label. Yet ERM models exhibit strong separability by spurious attributes, and JTT
models interestingly also still depict some learned dependency on the spurious attribute. However,
CNC uniquely learns representations that strongly depict class-label-only dependence.

In addition, to study how this relation between representation metrics and worst-group accuracy
scales with the strength of the spurious correlation, we compute representation metrics with CNC,
ERM, and JTT models trained on increasingly spurious (↑ pcorr) CMNIST∗ data sets in Fig. 7. We
observe that with high spurious correlations, ERM fails to classify digits in the minority classes,
while CNC and JTT comparably maintain high worst-group accuracy. CNC also performs better
in more spurious settings (pcorr > 0.95). These improvements over ERM are reflected by drops in
alignment loss (averaged over classes); CNC consistently achieves lowest such loss. Fig. 7c shows
that CNC’s learned representations maintain a more favorable balance of mutual information between
the class label and spurious attribute than JTT. While JTT models exhibit slightly higher estimated
I(Y ;Z) than CNC models, CNC models exhibit much lower dependence on the spurious attribute.

5.3 UNDERSTANDING CNC’S SENSITIVITY TO STAGE 1 PREDICTIONS

Finally, we study how sensitive CNC is to how closely the Stage 1 ERM model actually predicts the
spurious attribute. As JTT also relies on an initial ERM model’s predictions, we compare CNC to
JTT in this regard. We find that CNC is more robust to noisy ERM predictions than JTT, and that
CNC does not require perfectly inferred groups to perform well.

We first conduct an ablation on CNC and JTT’s worst-group and average performance in Fig. 7d with
the following synthetic experiment. On CMNIST∗, we start with the true spurious attribute labels as
the Stage 1 “predictions". We then gradually degrade their quality as follows: for each point, with

8

Under review as a conference paper at ICLR 2022

(b) (c)(a) (d)

Figure 7: Alignment loss and mutual information representation metrics with worst-group accuracy on
increasingly spurious CMNIST∗. CNC highest worst-group accuracy (a) coincides with learning representations
with better alignment (b) and ratio of mutual information dependence on the labels vs the spurious attribute (c).
probability p we change its assigned spurious attribute label to a different label chosen uniformly at
random. Both methods’ performance degrades as p increases and the Stage 1 “predictions” degrade.
However, CNC consistently achieves higher worst-group accuracy and smaller worst-group versus
average accuracy gaps. We also observe on other data sets that CNC does not require perfectly
spurious ERM predictions to work well. For the Waterbirds and CelebA results in Table 1, the
Stage 1 ERM model predictions align with the spurious attribute value 94.7% and 59.3% of the time
respectively. While the ERM model is far from perfect at recognizing the spurious attributes, CNC
still substantially reduces the worst-group vs. average accuracy gap.
6 RELATED WORK
We build on prior work in group robustness and contrastive learning. Further discussion is in App. D.
Robustness to group shift. A variety of approaches aim to improve performance on minority data
groups. If group labels are known, many works minimize a rebalanced error similar in motivation to
correcting class imbalance (He & Garcia, 2009; Cui et al., 2019) or importance weighting (Shimodaira,
2000; Byrd & Lipton, 2019). More recently, Sagawa et al. (2019) minimize worst-group loss during
training. Goel et al. (2020) achieve further lift by synthetically generating additional minority group
points. Cao et al. (2019) regularize updates on minority groups to improve their generalization.
Another line of work aims to improve group robustness without assuming group labels for the training
data. The most similar methods to CNC first train an initial ERM model with class labels as a way to
infer groups, and then use these groups to train a second model with better worst-group performance.
GEORGE (Sohoni et al., 2020) clusters ERM representations, and runs GDRO with these clusters
as inferred groups. EIIL (Creager et al., 2021) and PGI (Ahmed et al., 2021) infer groups that
maximally violate an invariance objective for the ERM model. With these groups EIIL uses either
GDRO or Invariant Risk Minimization (Arjovsky et al., 2019) to train a second robust model, while
PGI minimizes the KL divergence of the softmaxed logits for samples in the same class but different
groups. LfF (Nam et al., 2020) use a generalized cross-entropy loss to encourage misclassifying
minority groups, concurrently training a second model with these datapoints upweighted. JTT (Liu
et al., 2021) trains via ERM for a few epochs, before training a second ERM model with incorrect
datapoints upsampled. For image data sets, CIM (Taghanaki et al., 2021) trains a transformation
network to remove potentially spurious attributes from input features.
Contrastive learning (CL). CL works by predicting whether two inputs are “similar” or “dissimilar”
(Le-Khac et al., 2020). This involves specifying batches of anchor and positive datapoints similar to
each other (as different “views” of the same source or input), and negatives depicting dissimilar points.
An encoder is trained to simultaneously maximize the similarity between the feature representations
of anchors and positives, and minimize similarity between anchor and negative representations. In
unsupervised CL, “negatives” are often sampled uniformly (Bachman et al., 2019), while “positives”
are different views of the same object, e.g. via data augmentation (Chen et al., 2020). In supervised
CL, negatives are different-class points and positives are same-class points (Khosla et al., 2020). In
CNC, we instead treat same-class points with different ERM predictions as positives, and different-
class points with the same ERM prediction as negatives. This naturally provides “hard negative
mining,” a challenge for standard CL (Robinson et al., 2021; Wu et al., 2021; Chuang et al., 2020).

7 CONCLUSION

We present CNC, a two-stage CL approach to learn representations robust to spurious correlations.
We theoretically analyze the connection between alignment and worst-group vs. average-group losses,
and show that CNC achieves SOTA or near-SOTA worst-group accuracy across several benchmarks.

9

Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

We hope that our work is another step towards the important goal of making machine learning models
more fair and robust. However, while our work successfully improves worst-group accuracy, this
is not necessarily an end-all be-all metric - other fairness-based metrics may be more suitable in
certain settings. Also, misuse of metrics could lead to potential harm. To avoid these pitfalls, it is
important for practitioners to understand the limitations and tradeoffs of different metrics, including
when applying methods such as ours.

REPRODUCIBILITY STATEMENT

We have submitted our code as part of the supplementary materials. The datasets we use are publicly
available (with the exception of CMNIST∗ which is a modification of the standard MNIST dataset
(LeCun et al., 2010); our code to generate this modified dataset is also included). In addition to the
details provided in Section 5, further implementation, dataset, and experimental details can be found
in Appendix E. For the theory, we include complete proofs of all claims in Appendix B.

REFERENCES

Faruk Ahmed, Yoshua Bengio, Harm van Seijen, and Aaron C. Courville. Systematic generalisation
with group invariant predictions. In ICLR, 2021.

Kartik Ahuja, Karthikeyan Shanmugam, Kush Varshney, and Amit Dhurandhar. Invariant risk
minimization games. In International Conference on Machine Learning, pp. 145–155. PMLR,
2020.

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
bottleneck. arXiv preprint arXiv:1612.00410, 2016.

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
networks. arXiv preprint arXiv:1701.04862, 2017.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S
Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at
memorization in deep networks. In International Conference on Machine Learning, pp. 233–242.
PMLR, 2017.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximiz-
ing mutual information across views. In Advances in Neural Information Processing Systems,
volume 32, 2019.

Ananth Balashankar, Alyssa Lees, Chris Welty, and Lakshminarayanan Subramanian. What is fair?
exploring Pareto-efficiency for fairness constrained classifiers. arXiv preprint arXiv:1910.14120,
2019.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 456–473, 2018.

Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen.
Robust solutions of optimization problems affected by uncertain probabilities. Management
Science, 59(2):341–357, 2013.

Su Lin Blodgett, Lisa Green, and Brendan O’Connor. Demographic dialectal variation in social
media: A case study of african-american english. arXiv preprint arXiv:1608.08868, 2016.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Nuanced metrics
for measuring unintended bias with real data for text classification. In Companion proceedings of
the 2019 world wide web conference, pp. 491–500, 2019.

10

Under review as a conference paper at ICLR 2022

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial
gender classification. In Conference on fairness, accountability and transparency, pp. 77–91.
PMLR, 2018.

Jonathon Byrd and Zachary Lipton. What is the effect of importance weighting in deep learning? In
International Conference on Machine Learning, pp. 872–881. PMLR, 2019.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. In Advances in Neural Information Processing
Systems, volume 32, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Ching-Yao Chuang, J. Robinson, Yen-Chen Lin, A. Torralba, and S. Jegelka. Debiased contrastive
learning. In Advances in Neural Information Processing Systems, volume abs/2007.00224, 2020.

Remi Tachet des Combes, Mohammad Pezeshki, Samira Shabanian, Aaron Courville, and Yoshua
Bengio. On the learning dynamics of deep neural networks. arXiv preprint arXiv:1809.06848,
2018.

Elliot Creager, Jörn-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant
learning. In International Conference on Machine Learning, pp. 2189–2200. PMLR, 2021.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
effective number of samples. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 9268–9277, 2019.

Sebastian Curi, Kfir Y. Levy, Stefanie Jegelka, and Andreas Krause. Adaptive sampling for stochastic
risk-averse learning. In Advances in Neural Information Processing Systems, volume 33, pp.
1036–1047, 2020.

John Duchi and Hongseok Namkoong. Variance-based regularization with convex objectives. The
Journal of Machine Learning Research, 20(1):2450–2504, 2019.

Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utilization of multiple
datasets and web images for softening bias. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 1657–1664, 2013.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
The journal of machine learning research, 17(1):2096–2030, 2016.

Karan Goel, Albert Gu, Yixuan Li, and Christopher Ré. Model patching: Closing the subgroup
performance gap with data augmentation. In International Conference on Learning Representations,
2020.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoyanov. Supervised contrastive learning for
pre-trained language model fine-tuning. In International Conference on Learning Representations,
2021.

M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In AISTATS, 2010.

Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness without
demographics in repeated loss minimization. In International Conference on Machine Learning,
pp. 1929–1938. PMLR, 2018.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning, pp. 4116–4126. PMLR, 2020.

Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions on knowledge
and data engineering, 21(9):1263–1284, 2009.

11

Under review as a conference paper at ICLR 2022

Katherine L. Hermann and Andrew K. Lampinen. What shapes feature representations? exploring
datasets, architectures, and training. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. Leakage in data mining:
Formulation, detection, and avoidance. ACM Transactions on Knowledge Discovery from Data
(TKDD), 6(4):1–21, 2012.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In Advances in Neural
Information Processing Systems, volume 33, pp. 18661–18673, 2020.

Pang Wei Koh, Shiori Sagawa, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu,
Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, et al. Wilds: A benchmark of
in-the-wild distribution shifts. In International Conference on Machine Learning, pp. 5637–5664.
PMLR, 2021.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapola-
tion (rex). arXiv preprint arXiv:2003.00688, 2020.

Phuc H. Le-Khac, Graham Healy, and Alan F. Smeaton. Contrastive representation learning: A
framework and review. IEEE Access, 8:193907–193934, 2020. doi: 10.1109/ACCESS.2020.
3031549.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs [Online].
http://yann.lecun.com/exdb/mnist, 2010.

Daniel Levy, Yair Carmon, John C Duchi, and Aaron Sidford. Large-scale methods for distributionally
robust optimization. In Advances in Neural Information Processing Systems, volume 33, pp. 8847–
8860, 2020.

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with adver-
sarial feature learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5400–5409, 2018.

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In International Conference on Machine Learning, pp. 6781–6792. PMLR,
2021.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

Natalia Martinez, Martin Bertran, and Guillermo Sapiro. Minimax pareto fairness: A multi objective
perspective. In International Conference on Machine Learning (ICML), 2020.

A. Mnih and K. Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive estima-
tion. In NIPS, 2013.

Vaishnavh Nagarajan, Anders Andreassen, and Behnam Neyshabur. Understanding the failure modes
of out-of-distribution generalization. arXiv preprint arXiv:2010.15775, 2020.

Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from failure:
De-biasing classifier from biased classifier. In Advances in Neural Information Processing Systems,
volume 33, pp. 20673–20684, 2020.

Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Ré. Hidden stratification
causes clinically meaningful failures in machine learning for medical imaging. In Proceedings of
the ACM conference on health, inference, and learning, pp. 151–159, 2020.

12

Under review as a conference paper at ICLR 2022

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Yonatan Oren, Shiori Sagawa, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
language modeling. In Empirical Methods in Natural Language Processing (EMNLP), 2019.

Giambattista Parascandolo, Alexander Neitz, Antonio Orvieto, Luigi Gresele, and Bernhard
Schölkopf. Learning explanations that are hard to vary. arXiv preprint arXiv:2009.00329, 2020.

Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio, Aaron Courville, Doina Precup, and
Guillaume Lajoie. Gradient starvation: A learning proclivity in neural networks. arXiv preprint
arXiv:2011.09468, 2020.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

J. Robinson, Ching-Yao Chuang, S. Sra, and S. Jegelka. Contrastive learning with hard negative
samples. In International Conference on Learning Representations, 2021.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. In European conference on computer vision, pp. 213–226. Springer, 2010.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
In International Conference on Learning Representations, 2019.

Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why
overparameterization exacerbates spurious correlations. In International Conference on Machine
Learning, pp. 8346–8356. PMLR, 2020.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, S. Schaal, and Sergey
Levine. Time-contrastive networks: Self-supervised learning from video. 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1134–1141, 2018.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-
likelihood function. Journal of statistical planning and inference, 90(2):227–244, 2000.

Nimit Sohoni, Jared Dunnmon, Geoffrey Angus, Albert Gu, and Christopher Ré. No subclass left
behind: Fine-grained robustness in coarse-grained classification problems. In Advances in Neural
Information Processing Systems, volume 33, pp. 19339–19352, 2020.

Jiaming Song and Stefano Ermon. Multi-label contrastive predictive coding. In Advances in Neural
Information Processing Systems, volume 33, pp. 8161–8173, 2020.

Saeid Asgari Taghanaki, Kristy Choi, Amir Khasahmadi, and Anirudh Goyal. Robust representation
learning via perceptual similarity metrics. arXiv preprint arXiv:2106.06620, 2021.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv preprint
arXiv:1906.05849, 2019.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning. arXiv preprint arXiv:2005.10243, 2020.

Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
isolates content from style. arXiv preprint arXiv:2106.04619, 2021.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

13

Under review as a conference paper at ICLR 2022

Rui Wang, Zuxuan Wu, Zejia Weng, Jingjing Chen, Guo-Jun Qi, and Yu-Gang Jiang. Cross-domain
contrastive learning for unsupervised domain adaptation. arXiv preprint arXiv:2106.05528, 2021.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939. PMLR, 2020.

Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity for image quality
assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003,
volume 2, pp. 1398–1402. Ieee, 2003.

Wolfram Wiesemann, Daniel Kuhn, and Melvyn Sim. Distributionally robust convex optimization.
Operations Research, 62(6):1358–1376, 2014.

M. Wu, M. Mosse, Chengxu Zhuang, D. Yamins, and Noah D. Goodman. Conditional negative
sampling for contrastive learning of visual representations. In International Conference on Learning
Representations, 2021.

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. In Advances in Neural Information Processing Systems, volume 31, 2018.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 40(6):1452–1464, 2017.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

14

Under review as a conference paper at ICLR 2022

A ADDITIONAL BENCHMARK COMPARISONS AND ABLATIONS

In this section, we include further experiments comparing CNC against additional related methods.
We also include additional ablations to study the importance of CNC’s presented design choices.

A.1 COMPARISON TO MINIMIZING THE ALIGNMENT LOSS DIRECTLY

In Sec. 5.1 and Sec. 5.2, we empirically showed that CNC’s contrastive loss and hard positive and
negative sampling lead to improved worst-group accuracy and greater representation alignment.
We now study how CNC performs if instead of the contrastive loss, we train the Stage 2 model to
minimize Lalign directly. With this objective, we aim to minimize the Euclidean distance between
samples in different inferred groups but the same class. We keep all other components of CNC
consistent, and apply Lalign to the anchor and positive samples in each contrastive batch. We report
results on CMNIST∗, Waterbirds, and CelebA in Table A.1.

Table A.1: Across benchmarks, CNC achieves higher worst-group and average accuracies with the
default contrastive loss, compared to using the alignment loss explicitly as a training objective.
Method CMNIST∗ Waterbirds CelebA
Accuracy (%) Worst-group Average Worst-group Average Worst-group Average

CNC (Lalign) 67.3 (3.1) 83.7 (1.1) 83.3 (0.8) 89.4 (0.2) 84.6 (0.5) 88.0 (0.3)
CNC (default contrastive) 77.4 (3.0) 90.9 (0.6) 89.7 (0.2) 90.8 (0.1) 88.8 (0.9) 89.9 (0.5)

We find that CNC with the default contrastive loss outperforms CNC with the alignment loss. We
reason that an advantage of the contrastive loss (and specifically the “hard” positive and negative
samples), is that it encourages aligning samples with the same class label but different spurious
features, and pushes apart hard negative samples with different class labels but similar spurious
features. This provides additional signal for improving separation between the different classes, so
the robust model only learns to rely on ground-truth-specific features for discriminating between
datapoints. On the other hand, the Lalignment objective does not incorporate these hard negatives.

A.2 COMPARISON TO REPRESENTATION ALIGNMENT METHODS FOR DOMAIN
GENERALIZATION AND ADAPTATION

While our main results in Table 1 compare against methods designed to tackle the spurious correlations
setting presented in Section 5.1, we now study how CNC fares against existing representation
alignment methods proposed in the domain generalization (DG) and unsupervised domain adaptation
(UDA) literature. At a high level, a popular idea in DG and UDA is to learn similar representations
for datapoints with the same class but sampled from different domains, e.g. via adversarial training
to prevent another model from classifying representations’ source domains correctly (Ganin et al.,
2016), or minimizing representation differences via metrics such as maximum mean discrepancy
(MMD) (Li et al., 2018). While DG and UDA carry distinct problem settings and assumptions from
our spurious correlations setting (c.f. Appendix D.4), we aim to understand if existing representation
alignment methods can train models robust to spurious correlations, and compare their performance
with CNC. We first explain our protocol for evaluating these methods, and then discuss results.

We carry out our evaluation with domain-adversarial neural networks (DANN) Ganin et al. (2016),
a seminal UDA method that aims to learn aligned representations across two domains. To do so,
DANN jointly trains a model to classify samples from a “source” domain while preventing a separate
“domain classifier” module from correctly classifying the domain for datapoints sampled from both
domains. For fair comparison, we use the same ResNet-50 backbone as in CNC, and make several
adjustments to the typical DANN and UDA procedure:

1. While UDA assumes that the data is organized into “source” and “target” domains, we do not have
domain labels. We thus infer domains using the predictions of an initial ERM model as in CNC.

2. The notion of a domain may also be ambiguous with respect to the groups defined in Section 2.
For example, domains may be defined by spurious attributes (e.g., for the Waterbirds dataset, we

15

Under review as a conference paper at ICLR 2022

may consider the “water background” domain and the “land background” domain). Domains may
alternatively be defined by whether samples carry dominant spurious correlations or not (e.g.,
the “majority group” domain and the “minority group” domain). We train and evaluate separate
DANN models for both interpretations. We infer the former by the predicted class of the initial
ERM model. We infer the latter by whether the initial ERM model is correct or not.

3. Finally, UDA aims to train with a class-labeled “source” domain and an unlabeled “target” domain
such that a model performs well on unseen samples from the specified “target” domain (Ganin
et al., 2016). However, our benchmarks have class labels for all training points, and do not have
a notion of “source” and “target” domains (we aim to obtain high worst-group accuracy, which
could fall under any domain). We thus assume access to labels for all domains. During training,
the goal for our DANN models is to correctly classify samples from both domains, while learning
representations such that a jointly trained domain classifier module cannot determine the samples’
domains from their representations alone. At test-time, we evaluate the DANN model on the entire
test set for each benchmark, and report the worst-group and average accuracies.

Table A.2: CNC achieves higher worst-group and average accuracies on spuriously correlated
benchmarks than DANN, a prior representation alignment method designed for domain adaptation

Method Waterbirds CelebA
Accuracy (%) Worst-group Average Worst-group Average

DANN (domains by spurious attribute) 37.4 (3.8) 87.6 (2.2) 28.1 (3.1) 94.6 (0.3)
DANN (domains by majority vs minority group) 67.3 (0.8) 83.6 (0.2) 47.2 (3.1) 88.7 (1.8)
CNC 89.7 (0.2) 90.8 (0.1) 88.8 (0.9) 89.9 (0.5)

In Table A.2, we report the worst-group and average accuracies of DANN on the Waterbirds and
CelebA datasets across three seeds along with the CNC results. Our results suggest that the domain
alignment in DANN is not sufficient to improve worst-group accuracy. We hypothesize this is due to
adversarial training with the domain classifier aligning representations without regard to different
classes within each domain. Due to the propensity of samples exhibiting spurious correlations, DANN
models may thus still learn to rely on these correlations.

A.3 IMPORTANCE OF ERM-GUIDED CONTRASTIVE SAMPLING

In this section we conduct additional ablations on the sampling procedure in CNC. Although CNC
relies on an initial trained ERM model’s predictions, can we still improve worst-group accuracy
without this step and with supervised contrastive learning alone, i.e. by sampling positives uniform
randomly from all datapoints with the same label as the anchor? In Table 1, we showed that this
approach (denoted SupCon∗) led to a drop in worst-group accuracy. Taking this question further,
while we use the Stage 1 ERM model’s predictions to sample “hard” negatives with different ground-
truth classes and the same ERM predictions as their anchors—such that to reduce the contrastive
loss and learn dissimilar representations for anchors and negatives, the Stage 2 contrastive model
must thus learn to ignore spurious features that the initial ERM model learns to depend on—how
does CNC’s performance fare with alternative negative sampling procedures? Keeping the anchor
and positive sampling consistent, we perform additional ablations where we either sample negatives
only by having different classes as their anchors, or sample negatives only be having the same ERM
model prediction as their anchors. We report these results in Table A.3 below.

We find that the default CNC sampling procedure obtains highest worst-group accuracy and highest
or near-highest average accuracy compared to alternative strategies across the CMNIST∗, Waterbirds,
and CelebA datasets. The results suggests that inferring the spurious attributes (e.g. via an initial
ERM model) is important for CNC, and that CNC benefits from using these predictions for sampling
both negatives and positives. We reason this is because without this sampling, we can actually
encourage the Stage 2 model to rely on spurious correlations. For example, if we just ensure that the
anchor and negative samples have different classes, then the contrastive model may just rely on the
different spurious features of the anchors and negatives to learn dissimilar representations. However,
by ensuring that the anchors and negatives have similar spurious features (via the same trained ERM
model prediction), the contrastive model is forced to rely on non-spurious features to learn dissimilar

16

Under review as a conference paper at ICLR 2022

Table A.3: Ablation on positive and negative sampling strategies in CNC. CNC achieves highest
worst-group accuracy when using the Stage 1 ERM model’s predictions to sample “hard” positives
and negatives (the default procedure).
Method CMNIST∗ Waterbirds CelebA
Accuracy (%) Worst-group Average Worst-group Average Worst-group Average

Negatives by different class 66.4 (5.1) 86.0 (1.6) 82.2 (0.8) 88.9 (0.3) 79.2 (0.3) 88.0 (0.1)
Negatives by same prediction 70.0 (5.1) 87.1 (1.1) 85.7 (1.3) 90.3 (0.2) 81.1 (1.4) 88.5 (0.3)
SupCon∗ 0.0 (0.0) 22.4 (1.2) 71.0 (1.9) 85.9 (0.8) 62.2 (1.1) 90.0 (0.1)
CNC (default) 77.4 (3.0) 90.9 (0.6) 89.7 (0.2) 90.8 (0.1) 88.8 (0.9) 89.9 (0.5)

representations for the samples. The same logic applies for learning similar representations for anchor
and positive samples. We suspect that choosing negatives from all samples with the same ERM
prediction as their anchors performs better than the other ablations as it alone does not encourage
learning spurious correlations: the model is asked to “pull apart” samples with the same spurious
features, and so must ignore spurious similarities to recognize something different between anchors
and negatives. However, this ablation does not ensure that anchor-negative pairs consist of different
classes (which our full method does), so the model gets less signal to separate samples by class.

A.4 ADDITIONAL DESIGN CHOICE ABLATIONS

We first summarize CNC’s design choices and differences from standard supervised contrastive
learning in Appendix A.4.1. We then empirically validate each component in Appendix A.4.2.

A.4.1 SUMMARY OF CNC DESIGN CHOICES AND PROPERTIES

No projection network. As we wish to learn data representations that maximize the alignment
between anchor and positive datapoints, we do not compute the contrastive loss with the outputs of
an additional nonlinear projection network. This is inspired by the logic justifying a projection head
in prior contrastive learning, e.g. SimCLR (Chen et al., 2020), where the head is included because
the contrastive loss trains representations to be “invariant to data transformation” and may encourage
removing information “such as the color or orientation of objects”. In our case, we view inferred
datapoints with the same class but different spurious attributes as “transformations” of each other,
and we hypothesize that removing these differences can help us improve worst-group performance.

Two-sided contrastive sampling. To incorporate additional comparisons between datapoints that
only differ in spurious attribute during training, we employ “two-sided” contrastive batch sampling.
This lets us equally incorporate instances where the second contrastive model in CNC treats datapoints
that the initial ERM model got incorrect and correct as anchors.

Additional intrinsic hard positive/negative mining. Because the new model corrects for potentially
learned spurious correlations by only comparing and contrasting datapoints that differ in class label
or spurious attribute, but not both (as dictated by the initial ERM model’s outputs), the contrastive
batches naturally carry “hard” positives and negatives. Thus, our approach provides a natural form of
hard negative mining (in addition to the intrinsic hard positive / negative mining at the gradient level
with InfoNCE-style contrastive losses (Chen et al., 2020; Khosla et al., 2020)) while avoiding class
collisions, two nontrivial challenges in standard self-supervised contrastive learning (Robinson et al.,
2021; Wu et al., 2021; Chuang et al., 2020).

Joint training of encoder and classifier layers. CNC can train any standard classification model
architecture; for any given neural network we just apply different optimization objectives to the
encoder and classifier layers. We train both the encoder and classifier layers with a cross-entropy
loss, and jointly train the encoder layer with a supervised contrastive loss. For the encoder layers, we
balance the two objectives with a hyperparameter λ (c.f. Eq. 7).

A.4.2 EMPIRICAL VALIDATION OF CNC COMPONENTS

To validate the additional algorithmic components of CNC, we report how CNC performs on the
Waterbirds dataset when modifying the individual design components. We use the same hyperpa-

17

Under review as a conference paper at ICLR 2022

rameters as in the main results, and report accuracies as the average over three training runs for
the following ablations. Table A.4 summarizes that across these design ablations, default CNC as
presented consistently outperforms these alternative implementations.

Table A.4: Ablation over CNC algorithmic components on Waterbirds. Default choices achieve
highest worst-group and average accuracy.
Method CNC (Default) Projection Head One-sided Contrasting Train + Finetune

WG Acc. (%) 89.7 (0.2) 82.4 (1.8) 85.2 (3.6) 84.0 (1.7)
Avg. Acc. (%) 90.8 (0.1) 88.7 (0.6) 90.1 (1.6) 87.7 (1.1)

No projection head. We incorporate a nonlinear projection head as is typical in prior contrastive
learning works (Chen et al., 2020), that maps the encoder output to lower-dimensional representations
(from 2048 to 128 in our case). We then update the encoder layers and the projection head jointly by
computing the contrastive loss on the projection head’s output, still passing the encoder layer’s direct
outputs to the classifier to compute the cross-entropy loss. We note that using the projection head
decreases worst-group accuracy substantially. We reason that as previously discussed, while using
the projection head in prior work can allow the model to retain more information in its actual hidden
layers (Chen et al., 2020), in our case to remove dependencies on spurious attributes we actually want
to encourage learning invariant representations when we model the differences between anchor and
positive datapoints as due to spurious attributes.

Two-sided contrastive batches. Instead of “two-sided” contrasting where we allow both sampled
anchors and positives to take on the anchor role, for each batch we only compute contrastive updates
by comparing original positives and negatives with the original anchor. When keeping everything else
the same, we find that just doing these one-sided comparisons also leads to a drop in performance
for worst-group accuracy. This suggests that the increased number of comparisons and training
setup where we swap the roles of anchors and positives of the two-sided batches introduces greater
contrastive learning signal.

Additional intrinsic hard positive/negative mining. We discuss this ablation in Section A.3.

Joint training of encoder and classifier layers. Instead of training the full model jointly, we first
only train the encoder layers with the contrastive loss in CNC, before freezing these layers and
finetuning the classifier layers with the cross-entropy loss. With this implementation, we also obtain
noticeable drop in performance. While we leave further analysis for the joint cross-entropy and
contrastive optimization for future work, one conjecture is that the cross-entropy loss may aid in
learning separable representations while also training the full model to keep the average error small.
From our theory, the contrastive loss can help bound the gap between worst-group and average error.
Thus we try to minimize average error in the same parameter update.

This also follows prior work, where updating the entire model and finetuning all model parameters
instead of freezing the encoder layers leads to higher accuracy (Chen et al., 2020). However, we
found that with an initial encoder-only training stage, if we did not freeze the trained layers the
fine-tuning on a dataset with spurious correlations would “revert” the contrastive training, resulting in
a large gap between worst-group and average error similar to ERM.

We also ablate the balancing hyperparameter λ of CNC on CMNIST∗. In Table A.5 we find that CNC
consistently achieves high worst-group accuracy across a wide range of λ ∈ [0.4, 0.9]. For reference,
the next best methods GEORGE and JTT obtain 76.4% and 74.5% worst-group accuracy.

Table A.5: Ablation over CNC λ parameter to balance cross-entropy and contrastive loss components
on CMNIST∗. CNC obtains high performance across a range of λ.

CNC λ 0.2 0.4 0.6 0.8 0.9

Robust Acc. 70.4 (2.9) 74.2 (2.6) 75.3 (1.7) 77.4 (2.5) 75.8 (1.2)
Average Acc. 89.0 (0.1) 88.0 (0.7) 88.3 (0.6) 89.9 (0.4) 88.4 (0.1)

18

Under review as a conference paper at ICLR 2022

B OMITTED PROOFS FROM SECTION 3.2

In this section, we prove that within any class, the gap between the worst-group error and the
average error can be upper bounded by the alignment loss times the Lipschitz constant, plus another
concentration error term.

Proof of Theorem 3.1. Consider two arbitrary groups, denoted by g1 = (y, a1) and g2 = (y, a2),
whose class labels are both y ∈ Y , whose spurious attributes are a1 ∈ A and a2 ∈ A such that
a1 6= a2. Let G1 and G2 be the subset of training data that belong to groups g1 and g2, respectively.
We note that both G1 and G2 are non-empty since we have assumed that (in Section 2) there is at
least one sample from each group in the training data set. Let ng1 = |G1| and ng2 = |G2| be the size
of these two groups, respectively. Recall that fenc denotes the mapping of the encoder layers of the
full neural network model fθ. Since the classification layer fcls is a linear layer, we have used W to
denote the weight matrix of this layer. Our definition of the cross-group alignment loss in equation
(5), denoted as L̂align(fθ; y), implies that for g1 and g2,

1

ng1

1

ng2

∑
(x,y,a1)∈G1

∑
(x′,y,a2)∈G2

‖fenc(x)− fenc(x
′)‖2 ≤ L̂align(fθ; y). (8)

Next, let E(x,y,a1)∼Pg1
[Lavg(Wfenc(x), y)] be the average loss conditioning on a data point being

sampled from group g1 (and similarly for group g2). Let ∆(g1, g2) be the difference between the
population average losses:

∆(g1, g2) =

∣∣∣∣∣ E
(x,y,a1)∼Pg1

[Lavg(Wfenc(x), y]− E
(x,y,a2)∼Pg2

[Lavg(Wfenc(x), y)]

∣∣∣∣∣.
Recall that Gy ⊆ G is the set of groups that have class label y. Since the loss `(·) is bounded above
by some fixed constant C2 according to our assumption, and is at least zero, by the Hoeffding’s
inequality, the following result holds with probability at least 1− δ, for all |Gy| groups g ∈ Gy ,∣∣∣∣∣∣ E

(x,y,a)∼Pg

[Lavg(Wfenc(x), y)]− 1

ng

∑
(x,y)∈(X,Y)

`(Wfenc(x), y)

∣∣∣∣∣∣ ≤ C2

√
2 log (|Gy| /δ)

ng
. (9)

Thus, with probability at least 1 − δ, the following holds for any g1 and g2 in class y (but having
different spurious attributes)

∆(g1, g2) ≤

∣∣∣∣∣∣ 1

ng1

∑
(x,y,a1)∈G1

Lavg(Wfenc(x), y)− 1

ng2

∑
(x′,y,a2)∈G2

Lavg(Wfenc(x
′), y)

∣∣∣∣∣∣ (10)

+ C2

(√
2 log(|Gy| /δ)

ng1
+

√
2 log(|Gy| /δ)

ng2

)
.

Next, we focus on the RHS of equation (10). First, equation (10) is also equal to the following:∣∣∣∣∣∣ 1

ng1

1

ng2

∑
(x,y,a1)∈G1

∑
(x′,y,a2)∈G2

`(Wfenc(x), y))− 1

ng1

1

ng2

∑
(x,y,a1)∈G1

∑
(x′,y,a2)∈G2

`(Wfenc(x
′), y))

∣∣∣∣∣∣ .
Since we have also assumed that the loss function `(x, y) is C1-Lipschitz in x2, the above is at most:∣∣∣∣∣∣ 1

ng1ng2

∑
(x,y,a1)∈G1

∑
(x′,y,a2)∈G2

|`(Wfenc(x), y)− `(Wfenc(x
′), y)|

∣∣∣∣∣∣
≤ 1

ng1ng2

∑
(x,y,a1)∈G1

∑
(x′,y,a2)∈G2

C1 · ‖Wfenc(x)−Wfenc(x
′)‖2 (since y is the same for x, x′)

≤ B

ng1ng2

∑
(x,y,a1)∈G1

∑
(x′,y,a2)∈G2

C1 · ‖fenc(x)− fenc(x
′)‖2 (because ‖W‖2 ≤ B as assumed)

≤B · C1 · L̂align(fθ; y). (because of equation (8))
2In other words, we assume that |`(z, y)− `(z′, y)| ≤ C1 · ‖z − z′‖2, for any z, z′ and y.

19

Under review as a conference paper at ICLR 2022

Thus, we have shown that for any g1 and g2 within class y,

∆(g1, g2) ≤ B · L̂align(fθ; y) +

(√
2 log(|Gy| /δ)

ng1
+

√
2 log(|Gy| /δ)

ng2

)

≤ B · C1 · L̂align(fθ; y) + max
g∈Gy

C2 ·

√
8 log(|Gy| /δ)

ng
. (11)

Finally, we use the above result to bound the gap between the worst-group loss and the average loss.
For every group g ∈ G, let pg denote the prior probability of observing a sample from P in this group.
Let qy =

∑
g′∈Gy pg′ . Let h(g) be a short hand notation for

h(g) = E
(x,y,a)∼Pg

[Lavg(Wfenc(x), y)] .

The average loss among the groups with class label y is Lavg(fθ; y) =
∑
g∈Gy

pg
qy
h(g). The worst-

group loss among the groups with class label y is Lwg(fθ; y) = maxg∈Gy h(g). Let g? be a group
that incurs the highest loss among groups in Gy . We have Lwg(fθ; y)− Lavg(fθ; y) is equal to

h(g?)−
∑
g∈Gy

pg
qy
h(g) =

∑
g∈Gy

pg
qy

(h(g?)− h(g)) (12)

≤
∑
g∈Gy

pg
qy

∆(g?, g) (13)

≤B · C1 · L̂align(fθ; y) + max
g∈Gy

C2 ·

√
8 log(|G| /δ)

ng
. (14)

The last step uses equation (11) on ∆(g?, g) and the fact that qy =
∑
g′∈Gy pg′ . Thus, we have shown

that the gap between the worst-group loss and the average loss among the groups with the same class
label is bounded by the above equation. The proof is now complete.

The astute reader will note that Theorem 3.1 focuses on comparing groups within the same class y,
for any y ∈ Y . A natural follow-up question is what happens when comparing across groups with
different labels. Let Lwg(fθ) = maxy∈Y Lwg(fθ; y) be the worst-group loss across all the labels.
Recall that Lavg(fθ) is the average loss for the entire population of data. We generalize Theorem 3.1
to this setting in the following result.
Corollary B.1 (Extension of Theorem 3.1 to compare across different classes). In the setting of
Theorem 3.1, let qy =

∑
g∈Gy pg be the prior probability of observing a sample drawn from P with

label y, for any y ∈ Y . We have that with probability at least 1− δ, the following holds:

Lwg(fθ) ≤
(

min
y∈Y

qy

)−1
Lavg(fθ) +B · C1 ·max

y∈Y
L̂align(fθ; y) + max

g∈G
C2 ·

√
8 log(|G| /δ)

ng
. (15)

Proof. We generalize the argument in the previous result to compare across different labels. The
worst-group loss across different labels is

max
y∈Y

max
g∈Gy

h(g)

≤max
y∈Y

∑
g∈Gy

pg
qy
h(g) +B · C1L̂align(fθ; y) + max

g∈Gy
C2

√
8 log(|Gy| /δ)

ng

 (because of equation (14))

≤ 1

miny∈Y qy

∑
g∈Gy

pgh(g) +B · C1 max
y∈Y
L̂align(fθ; y) + max

g∈G
C2

√
8 log(|G| /δ)

ng
.

Since
∑
g∈G pgh(g) = Lavg(fθ), we thus conclude that

Lwg(fθ) ≤
(

min
y∈Y

qy

)−1
Lavg(fθ) +B · C1 max

y∈Y
L̂align(fθ; y) + max

g∈G
C2

√
8 log(|G| /δ)

ng
.

The proof is now complete.

20

Under review as a conference paper at ICLR 2022

An example showing that Corollary B.1 is tight. We describe a simple example in which the factor(
miny∈Y qy

)−1
in equation (15) is tight (asymptotically). Suppose there are k perfectly balanced

classes so that qy = 1/k, for every y ∈ Y . There is one data point from each class, with loss equal to
0 for all except one of them. The worst-group loss is 1 whereas the average loss is 1/k. Thus, there is
a factor of k between the worst-group loss and the average loss. For equation (15), the factor(

min
y∈Y

qy

)−1
= k,

since qy = 1/k for every y ∈ Y in this example. Thus, this factor matches the (multiplicative) factor
between the worst-group loss and the average loss in this example.

C CONTRASTIVE ALGORITHM DESIGN DETAILS

In this section, we provide further details on the training setup and contrastive batch sampling,
pseudocode, and additional properties related to CNC’s implementation.

C.1 TRAINING SETUP

In Fig. 8, we illustrate the two training stages of Correct-N-Contrast described in Sec. 4. In Stage
1, we first train an ERM model with a cross-entropy loss. For consistency with Stage 2, we depict
the output as a composition of the encoder and linear classifier layers. Then in Stage 2, we train
a new model with the same architecture using contrastive batches sampled with the Stage 1 ERM
model and a supervised contrastive loss (3) (which we compute after the depicted representations are
first normalized) to update the encoder layers. Note that unlike prior work in contrastive learning
(Chen et al., 2020; Khosla et al., 2020), as we have the class labels of the anchors, positives, and
negatives, we also continue forward-passing the unnormalized representations (encoder layer outputs)
and compute a cross-entropy loss to update the classifier layers while jointly training the encoder.

2048-D
2-D

“Waterbird”

2048-D

2-D

Cross-entropy

Stage 1: ERM training

“Waterbird”
Cross-entropy

Stage 2: Correct-N-Contrast

“Waterbird” “Landbird”

Contrastive Contrastive

Input Positive Anchor Negative

Loss Function Forward Pass Backward Pass

Figure 8: The two stages of Correct-N-Contrast. In Stage 1, we train a model with standard ERM
and a cross-entropy loss. Then in Stage 2, we train a new model with the same architecture, but
specifically learn spurious-attribute-invariant representations with a contrastive loss (3) and batches
of anchors, positives, and negatives sampled with the ERM model’s predictions. We also update the
full model jointly with a cross-entropy loss on the classifier layer output and the input class labels.
Dimensions for ResNet-50 and Waterbirds.

We also note that unlike prior work, we wish to learn invariances between anchors and positives
that maximally reduce the presence of features not needed for classification. We thus do not pass

21

Under review as a conference paper at ICLR 2022

(a) Contrastive Batch (b) Two-sided Update

Figure 9: Illustration of two-sided contrastive batch sampling with Colored MNIST as an example.
From a single batch (a), we can train a contrastive model with two anchor-positive-negative pairings
(b). Aside from increasing the number of “hard negatives” for each anchor-positive pair, this intuitively
“pushes” together anchors and positives from two different directions for greater class separation.

the representations through an additional projection network (Chen et al., 2020). Instead, we use
Eq. 3 to compute the supervised contrastive loss directly on the encoder outputs z = fenc(x). In
Appendix A.4.2, we studied ablations with both design choices.

C.2 TWO-SIDED CONTRASTIVE BATCH IMPLEMENTATION

We provide more details on our default contrastive batch sampling approach described in Sec. 4.
To recall, for additional contrastive signal per batch, we can double the pairwise comparisons in
a training batch by switching the anchor and positive roles. This is similar to the NT-Xent loss
in prior contrastive learning work (Chen et al., 2020). We switch the role of the anchor and first
positive sampled in a contrastive batch, and sample additional positives and negatives using the same
guidelines but adjusting for the “new” anchor. We denote this as “two-sided” sampling in contrast
with the “one-sided” comparisons we get with just the original anchor, positives, and negatives.

Implementing this sampling procedure in practice is simple. First, recall our initial setup with trained
ERM model fθ̂, its predictions {ŷi}ni=1 on training data {(xi, yi)}ni=1 (where ŷi = fθ̂(xi)), and
number of positives and negatives to sample M and N . We then sample batches with Algorithm 2.

Because the initial anchors are then datapoints that the ERM model gets correct, under our heuristic
we infer {xi}Mi=1 as samples from the majority group. Similarly the M positives {x+m}Mm=1 and N
negatives {x−n }Nn=1 that it gets incorrect are inferred to belong to minority groups.

For one batch, we then compute the full contrastive loss with

L̂sup
con(fenc) = L̂sup

con

(
x1, {x+m}Mm=1, {x−n }Nn=1; fenc

)
+ L̂sup

con

(
x+1 , {xi}Mi=1, {x′−n }Nn=1; fenc

)
(16)

where L̂sup
con
(
x1, {x+m}Mm=1, {x−n }Nn=1; fenc

)
is given by:

− 1

M

M∑
m=1

log
exp(z>1 z

+
m/τ)∑M

m=1 exp(z>1 z
+
m/τ) +

∑N
n=1 exp(z>1 z

+
n /τ)

(17)

Algorithm 2 Sampling two-sided contrastive batches
Require: Number of positives M and number of negatives N to sample for each batch.

1: Initialize set of contrastive batches B = {}
2: for each xi ∈ {xi ∈ X : ŷi = yi} do
3: Sample M − 1 additional “anchors” to obtain {xi}Mi=1 from {xi ∈ X : ŷi = yi}
4: Sample M positives {x+m}Mm=1 from {x−m ∈ X : ŷ−m = ŷi, y

−
m 6= yi}

5: Sample N negatives {x−n }Nn=1 from {x−n ∈ X : ŷ−n = ŷi, y
−
n 6= yi}

6: Sample N negatives {x′−n }Nn=1 from {x′−n ∈ X : ŷ′−n = ŷ+1 , y
′−
n 6= y+1 }

7: Update contrastive batch set: B ← B ∪
(
{xi}Mi=1, {x+m}Mm=1, {x−n }Nn=1, {x′−n }Nn=1

)

22

Under review as a conference paper at ICLR 2022

and again let z be the normalized output fenc(x) for corresponding x. We compute the cross-entropy
component of the full loss for each x in the two-sided batch with its corresponding label y.

D FURTHER RELATED WORK DISCUSSION

We provide additional discussion of related work and connections to our work below.

D.1 IMPROVING ROBUSTNESS TO SPURIOUS CORRELATIONS

Our core objective is to improve model robustness to group or subpopulation distribution shifts that
arise from the presence of spurious correlations, specifically for classification tasks. Because these
learnable correlations hold for some but not all samples in a dataset, standard training with ERM
may result in highly variable performance: a model that classifies datapoints based on spurious
correlations does well for some subsets or “groups” of the data but not others. To improve model
robustness and avoid learning spurious correlations, prior work introduces the goal to maximize
worst-group accuracy (Sagawa et al., 2019). Related works broadly fall under two categories:

Improving robustness with group information. If information such as spurious attribute labels is
provided, one can divide the data into explicit groups as defined in Sec. 2, and then train to directly
minimize the worst group-level error among these groups. This is done in group DRO (GDRO)
(Sagawa et al., 2019), where the authors propose an online training algorithm that focuses training
updates over datapoints from higher-loss groups. Goel et al. (2020) also adopt this approach with
their method CycleGAN Augmented Model Patching (CAMEL). However, similar to our motivation,
they argue that a stronger modeling goal should be placed on preventing a model from learning
group-specific features. Their approach involves first training a CycleCAN (Zhu et al., 2017) to
learn the data transformations from datapoints in one group to another that share the same class
label. They then apply these transformations as data augmentations to different samples, intuitively
generating new versions of the original samples that take on group-specific features. Finally they
train a new model with a consistency regularization objective to learn invariant features between
transformed samples and their sources. Unlike their consistency loss, we accomplish a similar
objective to learn group-invariant features with contrastive learning. Our first training stage is also
less expensive. Instead of training a CycleGAN and then using it to augment datapoints, we train a
relatively simple standard ERM classification model, sometimes with only a few number of epochs,
and use its predictions to identify pairs of datapoints to serve a similar purpose. Finally, unlike both
CAMEL and GDRO, we do not require spurious attribute or group labels for each training datapoints.
We can then apply CNC in less restrictive settings where such information is not known.

Related to GDRO are methods that aim to optimize a "Pareto-fair" objective, more general than
simply the worst-case group performance. Notable examples are the works of Balashankar et al.
(2019) and Martinez et al. (2020). However, these approaches similarly do not directly optimize for
good representation alignment (unlike our work).

Improving robustness without training group information. More similar to our approach are
methods that do not assume group information at training time, and only require validation set
spurious attribute labels for fine-tuning. As validation sets are typically much smaller in size than
training sets, an advantage of CNC and comparable methods is that we can improve the accessibility
of robust training methods to a wider set of problems. One popular line of work is distributionally
robust optimization (DRO), which trains models to minimize the worst loss within a ball centered
around the observed distribution (Ben-Tal et al., 2013; Wiesemann et al., 2014; Duchi & Namkoong,
2019; Levy et al., 2020; Curi et al., 2020; Oren et al., 2019). This includes the CVaR DRO (Levy et al.,
2020) method we evaluate against. However, prior work has shown that these approaches may be
too pessimistic, optimizing not just for worst-group accuracy but worst possible accuracy within the
distribution balls (Sagawa et al., 2019), or too undirected, optimizing for too many subpopulations, e.g.
by first upweighting minority points but then upweighting majority points in later stages of training
(Liu et al., 2021). Pezeshki et al. (2020) instead suggest that gradient starvation (GS), where neural
networks only learn to capture statistically dominant features in the data (Combes et al., 2018), is the
main culprit behind learning spurious correlations, and introduce a “spectral decoupling” regularizer
to alleviate GS. However this does not directly prevent models from learning dependencies on
spurious attributes. Similar to CAMEL, Taghanaki et al. (2021) propose Contrastive Input Morphing

23

Under review as a conference paper at ICLR 2022

(CIM), an image dataset-specific method that aims to learn input feature transformations that remove
the effects of spurious or task-irrelevant attributes. They do so without group labels, training a
transformation network with a triplet loss to transform input images such that a given transformed
image’s structural similarity metric (based on luminance, contrast, and structure (Wang et al., 2003))
is more similar to a “positive” image from the same class than a “negative” image from a different
class. They then train a classifier on top of these representations. Instead of pixel-level similarity
metrics, CNC enforces similarity in a neural network’s hidden-layer representations, allowing CNC
to apply to non-image modalities. Additionally, we sample positives and negatives not just based on
class label, but also the learned spurious correlations of an ERM model (via its trained predictions).
We hypothesize that our sampling scheme, which intuitively provides "harder" positive and negative
examples, allows CNC to more strongly overcome spurious correlations.

Most similar to our approach are methods that first train an initial ERM model with the class labels
as a way to identify data points belonging to minority groups, and subsequently train an additional
model with greater emphasis on the estimated minority groups. Sohoni et al. (2020) demonstrate that
even when only trained on the class labels, neural networks learn feature representations that can be
clustered into groups of data exhibiting different spurious attributes. They use the resulting cluster
labels as estimated group labels before running GDRO on these estimated groups. Meanwhile, Nam
et al. (2020) train a pair of models, where one model minimizes a generalized cross-entropy loss
(Zhang & Sabuncu, 2018), such that the datapoints this model classifies incorrectly largely correspond
to those in the minority group. They then train the other model on the same data but upweight the
minority-group-estimated points. While they interweave training of the biased and robust model, Liu
et al. (2021) instead train one model first with a shortened training time (but the standard cross-entropy
objective), and show that then upsampling the incorrect data points and training another model with
ERM can yield higher worst-group accuracy. Creager et al. (2021) first train an ERM model, and
then softly assign the training data into groups under which the initial trained ERM model would
maximally violate the invariant risk minimization (IRM) objective. In particular, the IRM objective is
maximally satisfied if a model’s optimal classifier is the same across groups (Arjovsky et al., 2019),
and EIIL groups are inferred such that the initial ERM model’s representations exhibit maximum
variance within each group. Finally, Nagarajan et al. (2020) provides a theoretical understanding of
how ERM picks up spurious features under data set imbalance. They consider a setting involve a
single spurious feature that is correlated with the class label and analyze the max-margin classifier in
the presence of this spurious feature.

In our work, we demonstrate that the ERM model’s predictions can be leveraged to not only estimate
groups and train a new model with supervised learning but with different weightings. Instead, we can
specifically identify pairs of points that a contrastive model can then learn invariant features between.
Our core contribution comes from rethinking the objective with a contrastive loss that more directly
reduces the model’s ability to learning spurious correlations.

D.2 CONTRASTIVE LEARNING

Our method also uses contrastive learning, a simple yet powerful framework for both self-supervised
(Chen et al., 2020; Oord et al., 2018; Tian et al., 2019; Song & Ermon, 2020; Sermanet et al., 2018;
Hassani & Khasahmadi, 2020; Robinson et al., 2021) and supervised (Khosla et al., 2020; Gunel
et al., 2021) representation learning. The core idea is to learn data representations that maximize the
similarity between a given input “anchor” and distinct different views of the same input (“positives”).
Frequently this also involves contrasting positives with “negative” data samples without any assumed
relation to the anchor (Bachman et al., 2019). Core components then include some way to source
multiple views, e.g. with data transformations (Chen et al., 2020), and training objectives similar to
noise contrastive estimation (Gutmann & Hyvärinen, 2010; Mnih & Kavukcuoglu, 2013).

An important component of contrastive learning is the method by which appropriate positives
and negatives are gathered. For sampling positives, Chen et al. (2020) show that certain data
augmentations (e.g. crops and cutouts) may be more beneficial than others (e.g. Gaussian noise and
Sobel filtering) when generating anchors and positives for unsupervised contrastive learning. von
Kügelgen et al. (2021) theoretically study how data augmentations help contrastive models learn core
content attributes which are invariant to different observed “style changes”. They propose a latent
variable model for self-supervised learning. Tian et al. (2020) further study what makes good views
for contrastive learning. They propose an “InfoMin principle”, where anchors and positives should

24

Under review as a conference paper at ICLR 2022

share the least information necessary for the contrastive model to do well on the downstream task.
For sampling negatives, Robinson et al. (2021) show that contrastive learning also benefits from using
“hard” negatives, which (1) are actually a different class from the anchor (which they approximate
in the unsupervised setting) and (2) embed closest to the anchor under the encoder’s current data
representation. Both of these approaches capture the principle that if positives are always too similar
to the anchor and negatives are always too different, then contrastive learning may be inefficient at
learning generalizable representations of the underlying classes.

In our work, we incorporate this principle by sampling data points with the same class label but
different ERM predictions–presumably because of spurious attribute differences–as anchor and
positive views, while sampling negatives from data points with different class labels but the same
ERM prediction as the anchor. The anchors and positives are different enough that a trained ERM
model predicted them differently, while the anchors and negatives are similar enough that the trained
ERM model predicted them the same. Contrasting the above then allows us to exploit both “hard”
positive and negative criteria for our downstream classification task. In Appendix A.3, we show
that removing this ERM-guided sampling (i.e. only sampling positives and negatives based on class
information), as well as trying different negative sampling procedures, leads to substantially lower
worst-group accuracy with CNC.

One limitation of our current theoretical analysis regarding the alignment loss (cf. Section 3.2) is that
we require knowing the group labels to compute the RHS of equation (6) (in particular, the alignment
loss). An interesting question for future work is to provide a better theoretical understanding of the
alignment induced by CNC in the context of spurious correlations.

D.3 LEARNING INVARIANT REPRESENTATIONS

Our work is also similar in motivation to Invariant Risk Minimization (IRM) (Arjovsky et al., 2019),
Predictive Group Invariance (PGI) (Ahmed et al., 2021), and other related works in domain-invariant
learning (Krueger et al., 2020; Parascandolo et al., 2020; Ahuja et al., 2020; Creager et al., 2021).
These methods aim to train models that learn a single invariant representation that is consistently
optimal (e.g. with respect to classifying data) across different domains or environments. These
environments can be thought of as data groups, and while traditionally methods such as IRM require
that environment labels are known, recent approaches such as Environment Inference for Invariant
Learning (EIIL) (Creager et al., 2021) and Predictive Group Invariance (PGI) (Ahmed et al., 2021)
similarly aim to infer environments with an initial ERM model. In EIIL, they next train a more robust
model with an invariant learning objective, similarly selecting models based on the worst-group error
on the validation set. However, they train this model using IRM or Group DRO with the inferred
environments as group labels. PGI uses EIIL to infer environments, but trains a more robust model
by minimizing the KL divergence of the predicted probabilities for samples in the same class, but
different groups, using the inferred environments as group labels.

D.4 REPRESENTATION ALIGNMENT IN DOMAIN GENERALIZATION AND UNSUPERVISED
DOMAIN ADAPTATION

Finally, CNC’s approach to improve model robustness via a model’s learned hidden-layer represen-
tations also bears similarity to some prior domain generalization (DG) and unsupervised domain
adaptation (UDA) methods. We first discuss similarities and differences between these methods and
CNC. We then note fundamental differences between the DG and UDA settings and our spurious
correlations setting, which may also explain the poorer performance of the related methods observed
in Appendix A.2.

Related methods for representation alignment. As introduced in Appendix A.2, to generalize
beyond a single domain, such methods try to train model representations for samples that are
aligned or invariant across domains. With domain adversarial neural networks (DANN), Ganin
et al. (2016) accomplish alignment by adversarially training a model’s encoder layers (the “feature
extractor”) to learn representations such that a separate domain classifier module cannot distinguish
samples’ domains from the learned representations. To preserve class information, they train a
classifier module on top of the feature extractor jointly with a cross-entropy loss. CNC’s process for
aligning representations is more simple. We do not rely on training separate modules with conflicting
objectives to accomplish alignment; instead the supervised contrastive loss with CNC’s sampling

25

Under review as a conference paper at ICLR 2022

procedure encourages learning representations that are both separable across classes and aligned
within each class. We thus avoid additional training parameters and optimization issues associated
with minimax-based adversarial training (Arjovsky & Bottou, 2017). Instead of relying on a the
domain classifier’s output, we can train single model to align representations by minimizing the
cosine similarity between anchor and positive samples.

Meanwhile, Li et al. (2018) propose maximum mean discrepancy MMD adversarial autoencoder
(MMD-AAE). To align representations between domains, MMD-AAE (1) trains an autoencoder, (2)
uses MMD maximum applied at the bottleneck hidden-layer to match representations across domains,
and (3) applies an adversarial discriminator network to match these representations with a Laplace
distribution (to encourage more sparse hidden representations). This matching is also not conditioned
on the sample classes; an additional classifier head is applied to preserve class-specific information.
CNC is also simpler than MMD-AAE, only using the normalized dot product of a single classifier’s
last hidden-layer representations. Via contrastive learning, CNC also critically also aims to only align
representations with the same class but different ERM-inferred groups, while pushing apart samples
with different classes but the same ERM-inferred groups. By paying attention to the classes, we
directly encourage a model to ignore group-specific information which confused the initial ERM
model but that does not discriminate between classes.

Finally, concurrent work applies contrastive learning for alignment in unsupervised domain adaptation
(Wang et al., 2021). Similar to CNC, cross-domain contrastive learning (CDCL) trains an encoder to
learn aligned representations. However, because the authors tackle UDA, their setup and components
are different from ours. They try to align representations for samples with the same class but different
known target and source domains. In their setup, domain labels are known. However, class labels are
unknown for a specific “target” domain. They thus require inferring the class labels for target domain
samples to set up their anchor, positive, and negative contrastive samples, introducing components
that are not relevant for our setting. They infer class labels by first computing class-specific centroids
for a “source” domain with class labels, and assign pseudolabels in the “target” domain based on the
nearest class-centroid for each target domain sample. CDCL thus tackles a fundamentally different
problem. In CNC’s spurious correlations setting, we do not have an obvious notion of “target” or
“source” domains (instead aiming to improve the robust or worst “group” performance across all
unseen test samples), we do not have labels indicating whether samples are from different domains or
groups, and we infer the spurious attribute values for all training samples.

Fundamental differences in tasks. All such methods proposed for domain generalization (DG) or
unsupervised domain adaptation (UDA) also tackle fundamentally different problem settings from
this work. First, both DG and UDA assume knowledge of training data domain labels. However in
our setting, we must do the equivalent of inferring these domains. The distribution shift presented
in standard DG / UDA benchmarks such as VLCS (Fang et al., 2013) is also distinct from the shift
encountered with our spurious correlations datasets. As discussed in Appendix A.2, the notion of
a “domain” must also be suitably specified for our setting. For example, in Waterbirds all samples
with the same spurious attribute could be the same domain (e.g., the “water background” domain).
Alternatively, all samples that exhibit the dominant spurious correlation could be a domain (e.g., the
“waterbird, water background; landbird, land background” domain). Using DG or UDA approaches
for our setting requires resolving this ambiguity, which is not present in prior DG or UDA works.

Differences with domain generalization. In DG, (tackled by MMD-AAE) we have access to
multiple “source” domains, know which “group” each sample belongs to (defined by domain-class
combinations), and aim to generalize to a specific unseen “target” domain not present during training.
Unlike the spurious correlations presented in our evaluated datasets, class distributions within domain
are also not skewed. Standard benchmarks such as Office (Saenko et al., 2010) and VLCS (Fang et al.,
2013) report much more uniform class distributions for each domain, compared to standard spurious
correlations benchmarks such as Waterbirds where 95% of images in each background domain have
the same class. Furthermore, in our setting we do not assume group labels or know the domain of any
training sample. We also try to improve performance on the worst-group at test-time, which could
belong to any domain encountered at training time.

Differences with unsupervised domain adaptation. In UDA, (tackled by DANN and CDCL)
methods also assume knowledge of training sample domains or spurious attributes, whereas CNC
and our other comparable methods do not. UDA methods also assume a fundamentally different
data setup; the training data is divided into source and target domains, and only the source domain

26

Under review as a conference paper at ICLR 2022

has labels. The goal is to use the source and target features + the source labels to transfer to the
specific target domain. However, in our setting we do have class labels for all samples available
during training, but do not have any natural definition of source and target domains. Applying UDA
methods requires additional reintepretation of this setup. Similar to differences in our problem setting
with DG, we do not have training data domain labels.

E ADDITIONAL EXPERIMENTAL DETAILS

We first further describe our evaluation benchmarks in Appendix E.1. We next provide further
details on how we calculate the reported metrics and the experimental hyperparameters of our main
results in Appendix E.1. For all methods, following prior work (Liu et al., 2021; Sohoni et al., 2020;
Nam et al., 2020; Sagawa et al., 2019; Creager et al., 2021) we report the test set worst-group and
average accuracies from models selected through hyperparameter tuning for the best validation set
worst-group accuracy. While different methods have different numbers of tunable hyperparameters,
we try to keep the number of validation queries as close as possible while tuning for fair comparison.

E.1 DATASET DETAILS

Colored MNIST (CMNIST∗). We evaluate with a version of the Colored MNIST dataset proposed
in Arjovsky et al. (2019). The goal is to classify MNIST digits belonging to one of 5 classes Y = {(0,
1), (2, 3), (4, 5), (6, 7), (8, 9)}, and treat color as the spurious attribute. In the training data, we color
pcorr of each class’s datapoints with an associated color a, and color the rest randomly. If pcorr is high,
trained ERM models fail to classify digits that are not the associated color. We pick a from uniformly
interspersed intervals of the hsv colormap, e.g. 0 and 1 digits may be spurious correlated with the
color red (#ff0000), while 8 and 9 digits may be spuriously correlated with purple (#ff0018). The
full set of colors in class order are A = {#ff0000,#85ff00,#00fff3,#6e00ff,#ff0018}
(see Fig. 2). For validation and test data, we color each datapoint randomly with a color a ∈ A. We
use the default test set from MNIST, and allocate 80%-20% of the default MNIST training set to the
training and validation sets. For main results, we set pcorr = 0.995.

Waterbirds. We evaluate with the Waterbirds dataset, which was introduced as a standard spurious
correlations benchmark in Sagawa et al. (2019). In this dataset, masked out images of birds from the
CUB dataset (Wah et al., 2011) are pasted on backgrounds from the Places dataset (Zhou et al., 2017).
Bird images are labeled either as waterbirds or landbirds; background either depicts water or land.
From CUB, waterbirds consist of seabirds (ablatross, auklet, cormorant, frigatebird, fulmar, gull,
jaeger, kittiwake, pelican, puffin, tern) and waterfowl (gadwell, grebe, mallard, merganser, guillemot,
Pacific loon). All other birds are landbirds. From Places, water backgrounds consist of ocean and
natural lake classes, while land backgrounds consist of bamboo forest and broadleaf forest classes.

The goal is to classify the foreground bird as Y = {waterbird, landbird}, where there is spurious
background attribute A = {water background, land background}. We use the default training,
validation, and test splits (Sagawa et al., 2019), where in the training data 95% of waterbirds
appear with water backgrounds and 95% of landbirds appear with land backgrounds. Trained ERM
models then have trouble classifying waterbirds with land backgrounds and landbirds with water
backgrounds. For validation and test sets, water and land backgrounds are evenly split among
landbirds and waterbirds.

CelebA. We evaluate with the CelebA spurious correlations benchmark introduced in Sagawa et al.
(2019). The goal is to classify celebrities’ hair color Y = {blond, not blond}, which is spuriously
correlated with the celebrity’s identified gender A = {male, female}. We use the same training,
validation, test splits as in Sagawa et al. (2019). Only 6% of blond celebrities are male; trained ERM
models perform poorly on this group.

CivilComments-WILDS. We evaluate with the CivilComments-WILDS dataset from Koh et al.
(2021), derived from the Jigsaw dataset from Borkan et al. (2019). Each datapoint is a real online
comment curated from the Civil Comments platform, a commenting plugin for independent news
sites. For classes, each comment is labeled as either toxic or not toxic. For spurious attributes, each
comment is also labeled with the demographic identities {male, female, LGBTQ, Christian, Muslim,
other religions, Black, White} mentioned; multiple identities may be mentioned per comment.

27

Under review as a conference paper at ICLR 2022

The goal is to classify the comment Y = {toxic, not toxic}. As in Koh et al. (2021), we evaluate with
A = {male, female, LGBTQ, Christian, Muslim, other religions, Black, White}. There are then 16
total groups corresponding to (toxic, identity) and (not toxic, identity) for each identity. Groups may
overlap; a datapoint falls in a group if it mentions the identity. We use the default data splits (Koh
et al., 2021). In Table A.6, we list the percentage of toxic comments for each identity based on the
groups. Trained ERM models in particular perform less well on the rarer toxic groups.

Table A.6: Percent of toxic comments for each identity in the CivilComments-WILDS training set.
Identity male female LGBTQ Christian Muslim other religions Black White

% toxic 14.9 13.7 26.9 9.1 22.4 15.3 31.4 28.0

E.2 IMPLEMENTATION DETAILS

E.2.1 REPORTED METRICS

Main results. For the CMNIST∗, Waterbirds, and CelebA data sets, we run CNC with three different
seeds, and report the average worst-group accuracy over these three trials in Table 1. As we use the
same baselines and comparable methods as Liu et al. (2021), we referenced their main results for the
reported numbers, which did not have standard deviations or error bars reported. For CivilComments-
WILDS, due to time and compute constraints we only reported one run. We note that CMNIST∗ here
is extremely challenging, as minority groups together only make up 0.5% of the training set. This
severe imbalance explains the very poor worst-group performance of ERM (as well as a couple other
methods that fail to sufficiently remediate issue).

Estimated mutual information. We give further details for calculating the representation metric
introduced in Sec. 3. As a reminder, we report both alignment and estimated mutual information
metrics to quantify how dependent a model’s learned representations are on the class labels versus the
spurious attributes, and compute both metrics on the representations Z = {fenc(x)} over all test set
data points x. Then to supplement the alignment loss calculation in Sec. 3, we also estimate I(Y ;Z)
and I(A;Z), the mutual information between the model’s data representations and the class labels
and spurious attribute labels respectively.

To first estimate mutual information with Y , we first approximate p(y | z) by fitting a multinomial
logistic regression model over all representations Z to classify y. With the empirical class label
distribution p(y), we compute:

Î(Y ;Z) =
1

|Z|
∑
z∈Z

∑
y∈Y

p(y | z) log
p(y | z)
p(y)

(18)

We do the same but substitute the spurious attributes a for y to compute Î(A;Z).

E.2.2 STAGE 1 ERM TRAINING DETAILS

We describe the model selection criterion, architecture, and training hyperparameters for the initial
ERM model in our method. To select this model, recall that we first train an ERM model to predict the
class labels, as the model may also learn dependencies on the spurious attributes. Because we then use
the model’s predictions on the training data to infer samples with different spurious attribute values
but the same class label, we prefer an initial ERM model that better learns this spurious dependency,
and importantly also does not overfit to the training data. Inspired by the results in prior work (Sohoni
et al., 2020; Liu et al., 2021), we then explored using either a standard ERM model, one with high `-2
regularization (weight decay = 1), or one only trained on a few number of epochs. To select
among these, because the validation data has both class labels and spurious attributes, we choose the
model with the largest gap between worst-group and average accuracy on the validation set. For fair
comparison to JTT, we use the same batch size, learning rate, momentum, optimizer, default weight
decay, and number of epochs as reported in Liu et al. (2021) to obtain these models. We detail the
ERM architecture and hyperparameters for each dataset below:

28

Under review as a conference paper at ICLR 2022

Colored MNIST. We use the LeNet-5 CNN architecture in the pytorch image classification
tutorial. We train with SGD, few epochs E = 5, SGD, learning rate 1e-3, batch size 32, default
weight decay 5e-4, and momentum 0.9.

Waterbirds. We use the torchvision implementation of ResNet-50 with pretrained weights
from ImageNet as in Sagawa et al. (2019). Also as in (Sagawa et al., 2019), we train with SGD,
default epochs E = 300, learning rate 1e-3, batch size 128, and momentum 0.9. However we use
high weight decay 1.0.

CelebA. We also use the torchvision ImageNet-pretrained ResNet-50 and default hyperparam-
eters from Sagawa et al. (2019) but with high weight decay: we train with SGD, default epochs
E = 50, learning rate 1e-4, batch size 128, momentum 0.9, and high weight decay 0.1.

CivilComments-WILDS. We use the HuggingFace (pytorch-transformers) implementation
of BERT with pretrained weights and number of tokens capped at 300 as in Koh et al. (2021). As in
Liu et al. (2021), with other hyperparameters set to their defaults (Koh et al., 2021) we tune between
using the AdamW optimizer with learning rate 1e-5 and SGD with learning rate 1e-5, momentum
0.9, and the PyTorch ReduceLROnPlateau learning rate scheduler. Based on our criterion, we
use SGD, few number of epochs E = 2, learning rate 1e-5, batch size 16, default weight decay 1e-2,
and momentum 0.9.

E.2.3 CONTRASTIVE BATCH SAMPLING DETAILS

We provide further details related to collecting predictions from the trained ERM models, and the
number of positives and negatives that determine the contrastive batch size.

ERM model prediction. To collect trained ERM model predictions on the training data, we explored
two approaches: (1) using the actual predictions, i.e. the argmax for each classifier layer output vector,
and (2) clustering the representations, or the last hidden-layer outputs, and assigning a cluster-specific
label to each data point in one cluster. This latter approach is inspired by Sohoni et al. (2020), and we
similarly note that ERM models trained to predict class labels in spuriously correlated data may learn
data representations that are clusterable by spurious attribute. As a viable alternative to collecting
the “actual” predictions of the trained ERM model on the training data, with C classes, we can then
cluster these representations into C clusters, assign the same class label only to each data point in
the same cluster, and choose the label-cluster assignment that leads to the highest accuracy on the
training data. We also follow their procedure to first apply UMAP dimensionality reduction to 2
UMAP components, before clustering with K-means or GMM (Sohoni et al., 2020). To choose
between all approaches, we selected the procedure that lead to highest worst-group accuracy on the
validation data after the second-stage of training. While this cluster-based prediction approach was
chosen as a computationally efficient heuristic, we found that in practice it either lead to comparable
or better final worst-group accuracy on the validation set. To better understand this, as a preliminary
result we found that when visualizing the validation set predictions with the Waterbirds dataset,
the cluster-based predictions captured the actual spurious attributes better than the classifier layer
predictions (Fig. 10). We defer additional discussion to Sohoni et al. (2020) and leave further analysis
to future work.

Number of positives and negatives per batch. One additional difference between our work and
prior contrastive learning methods (Chen et al., 2020; Khosla et al., 2020) is that we specifically
construct our contrastive batches by sampling anchors, positives, and negatives first. This is different
from the standard procedure of randomly dividing the training data into batches first, and then
assigning the anchor, positive, and negative roles to each datapoint in a given batch. As a result,
we introduce the number of positives M and the number of negatives N as two hyperparameters
that primarily influence the size of each contrastive batch (with number of additional anchors and
negatives also following M and N with two-sided batches). To maximize the number of positive
and negative comparisons, as a default we set M and N to be the maximum number of positives and
negatives that fit the sampling criteria specified under Algorithm 2 that also can fit in memory. In
Appendix E.2.4, for each dataset we detail the ERM prediction method and number of positives and
negatives sampled in each batch.

29

Under review as a conference paper at ICLR 2022

Color by ERM output prediction Color by spurious attribute Color by ERM cluster prediction

Figure 10: UMAP visualization of ERM data representations for the Waterbirds training data. We visualize the
last hidden layer outputs for a trained ERM ResNet-50 model given training samples from Waterbirds, coloring
by either the ERM model’s “standard” predictions, the actual spurious attribute values (included here just for
analysis), and predictions computed by clustering the representations as described above. Clustering-based
predictions more closely align with the actual spurious attributes than the ERM model outputs.

E.2.4 STAGE 2 CONTRASTIVE MODEL TRAINING DETAILS

In this section we describe the model architectures and training hyperparameters used for training
the second model of our procedure, corresponding the reported worst-group and average test set
results in Table 1. In this second stage, we train a new model with the same architecture as the
initial ERM model, but now with a contrastive loss and batches sampled based on the initial ERM
model’s predictions. We report test set worst-group and average accuracies from models selected with
hyperparameter tuning and early stopping based on the highest validation set worst-group accuracy.
For all data sets, we sample contrastive batches using the clustering-based predictions of the initial
ERM model. Each batch size specified here is also a direct function of the number of positives and
negatives: 2M + 2N .

Colored MNIST. We train a LeNet-5 CNN. For CNC, we use M = 32, N = 32, batch size 128,
temperature τ = 0.05, contrastive weight λ = 0.75, SGD optimizer, learning rate 1e-3, momentum
0.9, and weight decay 1e-4. We train for 3 epochs, and use gradient accumulation to update model
parameters every 32 batches.

Waterbirds. We train a ResNet-50 CNN with pretrained ImageNet weights. For CNC, we use
M = 17, N = 17, batch size 68, temperature τ = 0.1, contrastive weight λ = 0.75, SGD optimizer,
learning rate 1e-4, momentum 0.9, weight decay 1e-3. We train for 5 epochs, and use gradient
accumulation to update model parameters every 32 batches.

CelebA. We train a ResNet-50 CNN with pretrained ImageNet weights. For CNC, we use M = 64,
N = 64, batch size 256, temperature τ = 0.05, contrastive weight λ = 0.75, SGD optimizer,
learning rate 1e-5, momentum 0.9, and weight decay 1e-1. We train for 15 epochs, and use gradient
accumulation to update model parameters every 32 batches.

CivilComments-WILDS. We train a BERT model with pretrained weights and max number of
tokens 300. For CNC, we use M = 16, N = 16, batch size 64, temperature τ = 0.1, contrastive
weight λ = 0.75, AdamW optimizer, learning rate 1e-4, weight decay 1e-2, and clipped gradient
norms. We train for 10 epochs, and use gradient accumulation to update weights every 128 batches.

E.2.5 COMPARISON METHOD TRAINING DETAILS

As reported in the main results (Table 1) we compare CNC with the ERM and Group DRO baselines,
as well as robust training methods that do not require spurious attribute labels for the training data:
CVaR DRO (Levy et al., 2020), GEORGE (Levy et al., 2020), Learning from Failure (LfF) (Levy
et al., 2020), Predictive Group Invariance (PGI) (Ahmed et al., 2021), Contrastive Input Morphing
(CIM) (Taghanaki et al., 2021), Environment Inference for Invariant Learning (EIIL) (Creager et al.,
2021), and Just Train Twice (JTT) (Liu et al., 2021). For each dataset, we use the same model
architecture for all methods. For the Waterbirds, CelebA, and CivilComments-WILDS data sets, we
report the worst-group and average accuracies reported in Liu et al. (2021) for ERM, CVaR DRO,

30

Under review as a conference paper at ICLR 2022

LfF, and JTT. For GEORGE, we report the accuracies reported in Sohoni et al. (2020). For CIM, we
report results from Waterbirds and CelebA from Taghanaki et al. (2021) using the CIM + variational
information bottleneck implementation Alemi et al. (2016), which achieves the best worst-group
performance in their results. For EIIL, we report results from Waterbirds and CivilComments-WILDS
from Creager et al. (2021). For these hyperparameters, we defer to the original papers. For GDRO,
we reproduce the results with the same optimal hyperparameters over three seeds. For PGI, we
used our own implementation for all results, with details specified below. For Colored MNIST,
we run implementations for GEORGE, CIM, EIIL, JTT, and GDRO, using code from their authors
respectively. LfF and CVaR DRO are also run with code from the JTT authors. We include training
details for our own implementations below:

Colored MNIST (CMNIST∗). We run all methods for 100 epochs, reporting test set accuracies
with early stopping. For JTT, we train with SGD, learning rate 1e-3, momentum 0.9, weight decay
5e-4, batch size 32. We use the same initial ERM model as CNC, with hyperparameters described
in Appendix E.2.2. For upsampling we first tried constant factors {10, 100, 1000}. We also tried a
resampling strategy where for all the datapoints with the same initial ERM model prediction, we
upsample the incorrect points such that they equal the correct points in frequency, and found this
worked the best. With pcorr = 0.995, this upsamples each incorrect point by roughly 1100. We also
use this approach for the results in Fig. 7. For GDRO we use the same training hyperparameters
as JTT, but without the upsampling and instead set group adjustment parameter C = 0. For LfF,
we use the same hyperparameters as JTT, but instead of upsampling gridsearched the q parameter
∈ {0.1, 0.3, 0.5, 0.7, 0.9}, using q = 0.7. For CVaR DRO we do the same but use hyperparameter
α = 0.1. For GEORGE we train with SGD, learning rate 1e-3, momentum 0.9, weight decay 5e-4.
For CIM, we use the CIM + VIB implementation. We train with SGD, learning rate 1e-3, weight
decay 5e-4, β parameter 10, and λ parameter 1e-5. For EIIL, for environment inference we use the
same initial ERM model as CNC and JTT, and update the soft environment assignment distribution
with Adam optimizer, learning rate 1e-3, and 10000 steps. Following Creager et al. (2021)’s own
colored MNIST experiment, we train the second model with IRM, using learning rate 1e-2, weight
decay 1e-3, penalty weight 100, and penalty annealing parameter 80.

CelebA. We also tune EIIL for CelebA. We again use the same initial ERM model as CNC, and
update the soft environment assignment distribution with Adam optimizer, learning rate 1e-3, and
10000 steps. We train the second model with GDRO, using SGD, 50 epochs, learning rate 1e-5, batch
size 128, weight decay 0.1, and group adjustment parameter 3.

PGI To compare against PGI, we tried two implementations. First, we followed the PGI algorithm
to first infer environments via the same mechanism as in EIIL [2], and trained a second model with
the PGI objective using standard shuffled minibatches (aiming to minimize the KL divergence for
samples with the same class but different inferred environment labels per batch). However, despite
ample hyperparameter tuning (trying loss weighting component λ ∈ {0.1, 0.5, 10, 100}, we could not
get PGI to work well (on Waterbirds, we obtained 51.0±4.9% worst-group accuracy and 79.6±2.6%
average accuracy). We hypothesize this is due to the strong spurious correlations in our datasets:
while Ahmed et al. (2021) only considers datasets where 20% of the training samples do not exhibit a
dominant correlation and fall under minority groups. Our evaluation benchmarks are more difficult
due to stronger spurious correlations, e.g., in Waterbirds only 5% of samples do not exhibit the
dominant correlation; similarly only 7% of training samples lie in the smallest group in CelebA.

We then tried a more balanced batch variation. Instead of using randomly shuffled minibatches, we
used the PGI environment inference labels to sample batches similarly to how CNC uses the stage 1
ERM model predictions to sample batches. We construct batches by specifying the same number of
“anchors”, “positives”, and “negatives” as in CNC, and sample batches where anchors and positives
are samples with the same class, but different inferred environments. Anchors and negatives are
samples in the same inferred environment, but with different classes. We then trained a second model
with the PGI criterion with these modified batches.

In Section E.2.6, we include our sweeps for both the method-specific and general hyperparameters.

Comparison limitations. One limitation of our comparison is that because for each dataset we
sample new contrastive batches which could repeat certain datapoints, the number of total batches per
epoch changes. For example, 50 epochs training the second model in CNC does not necessarily lead
to the same total number of training batches as 50 epochs training with ERM, even if they use the

31

Under review as a conference paper at ICLR 2022

same batch size. However, we note that the numbers we compare against from Liu et al. (2021) are
reported with early stopping. In this sense we are comparing the best possible worst-group accuracies
obtained by the methods, not the highest worst-group accuracy achieved within a limited number of
training batches. We also found that although in general the time to complete one epoch takes much
longer with CNC, CNC requires fewer overall training epochs for all but the CivilComments-WILDS
dataset to obtain the highest reported accuracy.

E.2.6 HYPERPARAMETER SWEEPS

To fairly compare with previous methods (Liu et al., 2021; Creager et al., 2021; Taghanaki et al.,
2021), we use the same evaluation scheme (selecting models based on worst-group validation error),
and sweep over a consistent number of hyperparameters, i.e. number of validation set queries. We set
this number for CNC to be a comparable number of queries that is reported in prior works. We break
this down into method-specific (e.g. contrastive temperature in CNC, upweighting factor in JTT), and
shared (e.g. learning rate) hyperparameter categories.

Method-specific For CNC, we tune three method-specific hyperparameters: contrastive loss temper-
ature (Eq. 3), contrastive weight (Eq. 7), and gradient accumulation steps values as in Table A.7.

Table A.7: Method-specific hyperparameters for CNC.
Hyperparameter Dataset Values

Temperature (τ) All {0.05, 0.1}
Contrastive Weight (λ) All {0.5, 0.75}

Gradient Accumulation Steps CMNIST∗, Waterbirds, CelebA {32, 64}
CivilComments-WILDS {32, 64, 128}

For JTT, the reported results and our CMNIST∗ implementation are tuned over the following
hyperparameters in Table A.8.

Table A.8: Method-specific hyperparameters for JTT.
Hyperparameter Dataset Values

Stage 1 Training Epochs Waterbirds {40, 50, 60}
CMNIST∗, CelebA, CivilComments-WILDS {1, 2}

Upweighting Factor
CMNIST∗ {10, 100, 1000, 1100}

Waterbirds, CelebA {20, 50, 100}
CivilComments-WILDS {4, 5, 6}

For EIIL, our CMNIST∗ and CelebA implementations are tuned over hyperparameters reported
in Table A.9. Creager et al. (2021) report that they allow up to 20 evaluations with different
hyperparameters for Waterbirds and CivilComments-WILDS. When using GDRO as the second stage
model, they also report using the same hyperparameters as the GDRO baseline for Waterbirds. We do
the same for our evaluation on CelebA. This amounts to primarily tuning the first stage environment
inference learning rate and number of updating steps for CMNIST∗ and CelebA, and the penalty
annealing iterations and penalty weight for the IRM second stage model for CMNIST∗.

Table A.9: Method-specific hyperparameters for EIIL.
Hyperparameter Dataset Values

Environment Inference Learning Rate CMNIST∗, CelebA {1e-1, 1e-2, 1e-3}

Environment Inference Update Steps CMNIST∗, CelebA {10000, 20000}

IRM Penalty Weight CMNIST∗ {0.1, 10, 1000, 1e5}

IRM Penalty Annealing Iterations CMNIST∗ {10, 50, 80}

GDRO Group Adjustment CelebA {0, 2, 3}

32

Under review as a conference paper at ICLR 2022

For CIM, our CMNIST∗ implementation uses CIM + VIB, and is tuned over the β VIB parameter
Alemi et al. (2016) and contrastive weighting parameter λ for CIM in Table A.10. Taghanaki et al.
(2021) report tuning over a range of values within [1e-5, 1] for λ on the CelebA and Waterbirds data
sets.

Table A.10: Method-specific hyperparameters for CIM.
Hyperparameter Dataset Values

CIM λ CMNIST∗ {0.01, 0.05, 0.1}

VIB β CMNIST∗ {1e-5, 1e-3, 1e-1, 10}

For PGI, we tune λ with the same environment inference parameters as used in EIIL (Table A.9).
Fixing these parameters to infer environments, we tuned the λ component for training the robust
model across λ ∈ {0.1, 0.5, 10, 100}.
Shared For all data sets, we use the same optimizer and momentum (if applicable) as reported in the
JTT paper. Table A.11 contains the data-specific shared hyperparameter values tried.

Table A.11: Shared hyperparameters
CMNIST∗ Waterbirds CelebA CivilComments-WILDS

Learning Rate {1e-4, 1e-3, 1e-2} {1e-4, 1e-3} {1e-5, 1e-4} {1e-5, 1e-4}

Weight Decay {1e-4, 5e-4} {1e-4, 1e-3} {1e-2, 1e-1} {1e-2}

E.3 CNC COMPUTE RESOURCES AND TRAINING TIME

All experiments for CMNIST∗, Waterbirds, and CelebA were run on a machine with 14 CPU cores
and a single NVIDIA Tesla P100 GPU. Experiments for CivilComments-WILDS were run on an
Amazon EC2 instance with eight CPUs and one NVIDIA Tesla V100 GPU.

Regarding runtime, one limitation with the current implementation of CNC is its comparatively
longer training time compared to methods such as standard ERM. This is both a result of training
an initial ERM model in the first stage, and training another model with contrastive learning in the
second stage. In Table A.12 we report both how long it takes to train the initial ERM model and
long it takes to complete one contrastive training epoch on each dataset. We observe that while in
some cases training the initial ERM model is negligible, especially if we employ training with only a
few epochs to prevent memorization (for Colored MNIST it takes roughly two minutes to obtain a
sufficient initial ERM model), it takes roughly 1.5 and 3 hours to train the high regularization initial
models used for Waterbirds and CelebA. While these hurdles are shared by all methods that train an
initial ERM model, we find that the second stage of CNC occupies the bulk of training time. Prior
work has shown that contrastive learning typically requires longer training times and converges more
slowly than supervised learning (Chen et al., 2020). We also observe this in our work.

We note however that because we sample batches based on the ERM model’s predictions, the con-
trastive training duration is limited by how many datapoints the initial ERM model predicts incorrectly.
In moderately sized data sets with very few datapoints in minority groups, (e.g. Waterbirds, which
has roughly 4794 training points and only 56 datapoints in its smallest group), the total time it takes to
train CNC is on par with ERM. Additionally, other methods such as additional hard negative mining
(Robinson et al., 2021) have been shown to improve the efficiency of contrastive learning, and we
can incorporate these components to speed up training time as well.

Table A.12: CNC Average total training time for first and second stages of CNC

Dataset CMNIST∗ Waterbirds CelebA CivilComments-WILDS

Stage 1 ERM train time 2 min. 1.5 hrs 3 hrs 3.1 hrs
Stage 2 CNC train time 1.2 hrs 1.8 hrs 32.2 hrs 37.6 hrs

33

Under review as a conference paper at ICLR 2022

F VISUALIZATION OF LEARNED DATA REPRESENTATIONS

As in Fig. 6, we visualize and compare the learned representations of test set samples from models
trained with ERM, JTT, and CNC in Fig. 11. Compared to ERM models, both JTT and CNC models
learn representations that better depict dependencies on the class labels. However, especially with
the Waterbirds and CelebA data sets, CNC model representations more clearly depict dependencies
only on the class label, as opposed to JTT models which also show some organization by the spurious
attribute still.

(a)

(b)

(c)

Figure 11: UMAP visualizations of learned representations for Colored MNIST (a), Waterbirds (b), and CelebA
(c). We color data points based on the class label (left) and spurious attribute (right). Most consistently across
data sets, CNC representations exhibit dependence and separability by the class label but not the spurious
attribute, suggesting that they best learn features which only help classify class labels.

G ADDITIONAL GRADCAM VISUALIZATIONS

On the next two pages, we include additional GradCAM visualizations depicting saliency maps for
samples from each group in the Waterbirds and CelebA data sets. Warmer colors denote higher
saliency, suggesting that the model considered these pixels more important in making the final
classification as measured by gradient activations. For both data sets, we compare maps from models
trained with ERM, the next most competitive method for worst-group accuracy JTT, and CNC. CNC
models most consistently measure highest saliency with pixels directly associated with class labels
and not spurious attributes.

34

Under review as a conference paper at ICLR 2022

G.1 WATERBIRDS

gcam-g1_correct-190556-con
La

nd
bi

rd
,

La
nd

 b
ac

kg
ro

un
d

La
nd

bi
rd

,
W

at
er

 b
ac

kg
ro

un
d

W
at

er
bi

rd
,

La
nd

 b
ac

kg
ro

un
d

W
at

er
bi

rd
,

W
at

er
 b

ac
kg

ro
un

d

Input ERM JTT CNC (Ours)

Figure 12: Additional GradCAM visualizations for the Waterbirds dataset. We use GradCAM to visualize the
“salient” observed features used to classify images by bird type for models trained with ERM, JTT, and CNC.
ERM models output higher salience for spurious background attribute pixels, sometimes almost exclusively. JTT
and CNC models correct for this, with CNC better exclusively focusing on bird pixels.

35

Under review as a conference paper at ICLR 2022

G.2 CELEBA

gc
am

-g
1_
co
rr
ec
t-1
90
55
6-
co
n

Not blonde,
Female

Not blond,
Male

Blonde,
Female

Blond,
Male

In
pu

t
ER

M
JT

T
C

N
C

 (O
ur

s)
In

pu
t

ER
M

JT
T

C
N

C
 (O

ur
s)

Fi
gu

re
13

:A
dd

iti
on

al
G

ra
dC

A
M

vi
su

al
iz

at
io

ns
fo

rt
he

C
el

eb
A

da
ta

se
t.

Fo
rm

od
el

s
tr

ai
ne

d
w

ith
E

R
M

,J
T

T
,a

nd
C

N
C

,w
e

us
e

G
ra

dC
A

M
to

vi
su

al
iz

e
th

e
“s

al
ie

nt
”

ob
se

rv
ed

fe
at

ur
es

us
ed

to
cl

as
si

fy
w

he
th

er
a

ce
le

br
ity

ha
s

bl
on

d(
e)

ha
ir.

E
R

M
m

od
el

s
in

te
re

st
in

g
al

so
“i

gn
or

e”
th

e
ac

tu
al

ha
ir

pi
xe

ls
in

fa
vo

ro
fo

th
er

pi
xe

ls
,p

re
su

m
ab

ly
as

so
ci

at
ed

w
ith

th
e

sp
ur

io
us

ge
nd

er
at

tri
bu

te
.I

n
co

nt
ra

st
,G

ra
dC

A
M

s
fo

rJ
T

T
an

d
C

N
C

m
od

el
s

us
ua

lly
de

pi
ct

hi
gh

er
sa

lie
nc

e
fo

rr
eg

io
ns

th
at

at
le

as
ti

nc
lu

de
ha

ir
pi

xe
ls

.C
N

C
m

od
el

s
m

os
tc

on
si

st
en

tly
do

so
.

36

	Introduction
	Preliminaries
	Motivations for representation alignment
	Relating worst-group performance to representation alignment
	Relating alignment loss to worst-group loss

	Correct-n-Contrast (CnC)
	Experimental results
	CnC improves worst-group performance
	CnC learns representations less reliant on spurious features
	Understanding CnC's sensitivity to Stage 1 predictions

	Related work
	Conclusion
	Additional benchmark comparisons and ablations
	Comparison to minimizing the alignment loss directly
	Comparison to representation alignment methods for domain generalization and adaptation
	Importance of ERM-guided contrastive sampling
	Additional design choice ablations
	Summary of CnC design choices and properties
	Empirical validation of CnC components

	Omitted Proofs from Section 3.2
	Contrastive algorithm design details
	Training setup
	Two-sided contrastive batch implementation

	Further related work discussion
	Improving robustness to spurious correlations
	Contrastive learning
	Learning invariant representations
	Representation alignment in domain generalization and unsupervised domain adaptation

	Additional experimental details
	Dataset details
	Implementation details
	Reported metrics
	Stage 1 ERM training details
	Contrastive batch sampling details
	Stage 2 contrastive model training details
	Comparison method training details
	Hyperparameter sweeps

	CnC compute resources and training time

	Visualization of learned data representations
	Additional GradCAM visualizations
	Waterbirds
	CelebA

