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ABSTRACT

Effectively calibrating abstention—the capability of models to refuse to answer
when inappropriate—remains a significant challenge for large language models
(LLMs). Improper abstention calibration typically results in either excessive refusal,
reducing the practical utility of the model, or insufficient refusal, which produces
unreliable and potentially harmful outputs. Existing methods typically depend
heavily on domain-specific fine-tuning, requiring extensive retraining or carefully
crafted, domain-specific datasets for each new scenario, limiting scalability and
efficiency. To address this, we introduce MARVEL, a lightweight modular absten-
tion framework motivated by the observation that different tasks naturally require
distinct abstention mechanisms and rationales. MARVEL dynamically integrates
two distinct expert modules: Task Experts, which are specialized adapters fine-
tuned for specific tasks, and Abstention Experts, trained explicitly to identify and
articulate various abstention rationales (e.g., unsafe queries, ambiguous requests).
Crucially, MARVEL achieves more reliable abstention performance without the
need to retrain the original task-specific adapters. Our empirical evaluations cover
two broad task categories: query-focused tasks, where abstention depends on query
content alone, and model-capability tasks, where abstention is driven by model
confidence. Results show that MARVEL consistently enhances abstention accuracy
and other model reliability metrics with at least 8.1 points increase for in-domain
and 5.4 points for out-of-domain scenarios over base LLMs. MARVEL surpasses
strong baseline approaches like data merging and weight merging, offering greater
flexibility, interpretability, and broader generalization.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Jiang et al., 2023) demon-
strate strong capabilities across various tasks but frequently suffer from reliability issues, such as
hallucinations (Ji et al., 2023) and misleading outputs (Zhou et al., 2023; Xu et al., 2025; Anwar
et al., 2024; Wen et al., 2024b), limiting their practical utility—particularly in high-stake applica-
tions (Li et al., 2024; Singhal et al., 2023; Sandmann et al., 2024; Liu et al., 2023) where accuracy
and trustworthiness are essential. One promising avenue to address these reliability challenges is
abstention (Wen et al., 2024c; Feng et al., 2024a; Brahman et al., 2024a). Poorly calibrated abstention
can cause undesirable outcomes: over-refusal decreases model utility, while insufficient abstention
results in hallucinations and unreliable outputs (Wen et al., 2024a). Previous work demonstrates
that domain-specific abstention training, such as refusal-aware fine-tuning (Zhang et al., 2024a;
Wolfe et al., 2024), effectively enhances reliability within targeted contexts. However, these methods
have scalability limitations, demanding substantial retraining or tailored dataset generation for each
new domain or model. Meanwhile, it remains unclear whether abstention can be effectively trained
independently as a domain-agnostic meta-skill, generalizing across various tasks.

In this paper, we address the following research question: How can we develop a plug-in abstention
framework that provides versatile abstention expertise with minimal resource requirements? Given
a set of existing LoRA adapters (Hu et al., 2022a) specialized for various tasks, our goal is to
equip these adapters with high-fidelity abstention capabilities—without retraining the original task-
specific LoRAs. Inspired by recent post-training modular-based architectures (Huang et al., 2024;
Wu et al., 2024; Muqeeth et al., 2024; Feng et al., 2024c; Kang et al., 2025; Feng et al., 2024c),
we introduce MARVEL, a modular abstention framework utilizing token-level harmonization to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

improve abstention accuracy. MARVEL comprises two kinds of experts: Task Experts,1 specialized
adapters addressing specific tasks, and Abstention Experts, trained to recognize and articulate diverse
abstention rationales (e.g., safety concerns, humanizing requests). By harmonizing these experts
at the token level, MARVEL dynamically balances task proficiency with abstention performance
(refusing to answer incorrectly while limiting over-refusal), ensuring precise and justified abstention
decisions.

Empirically, we assess MARVEL in two main scenarios: (1) model-capability task contexts, and (2)
query-focused task settings. Building on the definitions from Wen et al. (2024c), model-capability
tasks are those that focus on abstention-aware task performance, and where the primary reason for
abstaining may be due to low confidence in answering correctly, whereas query-focused tasks involve
abstention decisions based solely on the content of the queries (whether they can be appropriately
answered). In model-capability tasks across domains such as knowledge, medicine, and science,
MARVEL consistently improves performance over baseline LLMs, achieving an average increase of
8.1 points. In query-focused tasks, specializing in one abstention category improves performance
across others but may increase over-refusal rates. We find that while merging abstention-aware training
data achieves the highest overall abstention performance on query-focused tasks, this setting exhibits
more over-refusal than MARVEL and leads to fewer gains than MARVEL on model-capability tasks.

In summary, our key contributions are as follows:

• We propose MARVEL, a lightweight modular abstention framework that enhances model reliability
by effectively refusing when appropriate. MARVEL is a token-level harmonization framework
integrated within a Mixture of LoRA Experts architecture designed specifically to enhance the
quality of model abstentions.

• We show that MARVEL leads to average improvements in abstention ability of 8.1 points on QA
tasks in the domains of knowledge, medicine, and science. MARVEL also demonstrates consistent
performance improvements on query-focused tasks, achieving at least 8.3 point gain on in-domain
and 5.4 point gain on out-of-domain scenarios over baseline LLMs, with minimal over-refusal.

• We conduct ablation studies examining the roles of modularity and various routing strategies,
finding that dynamic routing effectively aligns tasks with appropriate abstention experts. We further
demonstrate that MARVEL generalizes to out-of-distribution tasks, with the top-1 routing strategy
consistently achieving strong performance.

2 METHOD: MARVEL

2.1 PROBLEM STATEMENT

Our objective is to endow a language model with high-fidelity abstention—the ability to refuse only
when justified—while preserving, or even enhancing, normal task performance. We target settings
with minimal computational budget, tiny seed datasets, and negligible parameter overhead.

Let Θ0 be a frozen LLM and assume two groups of seed sets including tasks and abstention, each
of which may be sourced either from existing publicly-available corpora or quickly synthesized by
prompting Θ0 itself. Our goal is to produce a lightweight Mixture-of-LoRA-Experts model, ΘMARVEL,
that improves model’s abstention reliability across tasks.

2.2 MODULAR ABSTENTION WITH TOKEN-LEVEL HARMONIZATION FRAMEWORK

We propose MARVEL shown in Figure 1, a token-level harmonization framework within a Mixture of
LoRA Experts architecture to improve abstention quality. Our approach interleaves: (i) Task Experts:
specialized adapters focused on solving particular tasks; and (ii) Abstention Experts: specialized
adapters trained to recognize and articulate different reasons for abstention (e.g., Requests with Safety
Concerns, Humanizing Requests). By harmonizing contributions at the token level, we dynamically
weigh signals from both task proficiency and abstention category, ensuring that the model only
abstains when truly warranted and choosing the most appropriate abstention experts.

1We use the term “Task Experts” to denote task-specific LoRA adapters. These are not used in a multi-task
learning setup, but rather in a modular fashion where task-specific capabilities and abstention-specific capabilities
are trained and applied separately.
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Question: A young patient has been admitted with A and had massive hemorrhage. 

He needs to be transfused with large amounts of fluids. Which IV cannula is 

preferred? A:  Grey B: Green C: Blue D: Pink. 

Anchor LLM: C: Blue. Blue IV 

cannulas are typically used…

...

MARVEL: I'm sorry, I cannot answer 

this question. … without additional 

context or information about the 

patient's condition, it is not possible to 

provide an accurate answer.

Answer:

Figure 1: Overview of our MARVEL framework. MARVEL dynamically integrates two types of
expert modules: Task Experts (e.g., medical expert) and Abstention Experts (specialized in different
abstention categories) through token-level harmonization.MARVEL learns routing distributions to
optimally combine experts at each token. This adaptive routing mechanism is integrated within
the transformer blocks, enabling abstention behaviors on new tasks without having to train a new
abstention-aware task model.

2.2.1 BUILDING TASK & ABSTENTION EXPERTS

MARVEL distinguishes two complementary sets of LoRA experts: (i) Task Experts {∆Θtask
j }nt

j=1,
each fine-tuned to maximise proficiency on a concrete task T task

j , and (ii) Abstention Experts
{∆Θabs

k }na

k=1, each specialised to recognise a specific abstention category Rk (e.g. Requests with
Safety Concerns, Humanizing Requests).

Task Expert Each Task Expert is trained on small slices of publicly available datasets or benchmarks
without any refusal information, formatting them into instruction–response pairs:

Dtask
j = {(x(j)

i , y
(j)
i )}Ni=1.

Abstention Expert Abstention Experts is trained on small sets of fully refusal data.

Dabs
k = {(x(k)

i , ⟨ABSTAINRk
⟩)}Mi=1.

These examples fully support specific abstention category training without relying on proprietary
data or additional parameters.

LoRA Parameterization. Starting from a frozen model Θ0, we attach a low-rank adapter to every
linear sublayer. Denote by θ0∈Rd×k the weight matrix of one such sub-layer and by

θexpert = θ0 +∆θ = θ0 + θBθA, θB∈Rd×r, θA∈Rr×k, r≪min(d, k)

the LoRA-augmented weights. The forward pass for an input x becomes

h = θexpertx = θ0x+ θBθAx.

During expert training, only θB and θA are updated.

Hence, MARVEL yields two sets of experts:

Etask = {∆Θtask
j }nt

j=1, Eabs = {∆Θabs
k }na

k=1.

2.2.2 MIXTURE OF TASK AND ABSTENTION EXPERTS

MARVEL employs a learned routing mechanism that dynamically selects and combines these experts,
enabling the model to identify not only when abstention is necessary but also chooses the most suitable
abstention experts based on each task, thereby enhancing the model’s interpretability, reliability, and
effectiveness without retraining the original task-specific modules.
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Formally, for each task j, we define a routing dataset:

Droute = {(x(j)
i , ⟨ABSTAINtaskj

⟩)} ∪ {(x(j)
i , y

(j)
i )}.

where x
(j)
i is the input instance from task j that Task expert is not able to answer correctly and

⟨ABSTAINtaskj ⟩ denotes the abstention message for task j.

MARVEL harmonises the signals of all experts per token. For each input x in each layer, the output
h is calculated as:

h = θ0x+

nt+na∑
i=1

αi (∆θtask
j +∆θabs

k )x

After applying softmax over θr and x, we get α, the k largest coefficients, as follows:

α = top−k
(
softmax(θrx)

)
, θr∈R(nt+na)×k

Training the router. We jointly optimise θr with all expert banks frozen, using the routing dataset
Droute

j . The loss L(θr) encourages the router to (i) route content tokens to the correct task experts
and (ii) route tokens that should be refused/abstained to the matching abstention experts, enabling
MARVEL to abstain only when truly warranted. Crucially, the frozen base weights θ0 remain active
in every layer, preventing over-specialisation and preserving general capability competence.

3 EXPERIMENTAL SETTINGS

Training Abstention Experts We train abstention experts using the CoCoNot dataset (Brahman
et al., 2024a), which includes example queries across five distinct abstention categories, including
Requests with Safety Concerns, Humanizing Requests, Incomplete requests, Unsupported requests,
and Indeterminate request. We train one Abstention Expert for each of the five categories.2

Training Task Experts We construct each task expert as a LoRA (Hu et al., 2022a) trained only
on the task data for an individual dataset without any refusal examples. We train a separate expert
for each of the following datasets representing specific domains, Knowledge (MMLU (Hendrycks
et al., 2021)), Medicine (MedMCQA) (Pal et al., 2022), and Science (SciFact) (Wadden et al., 2020).
These task experts are then merged with abstention experts. The routing function will select which
abstention expert can be activated in the forward pass.

Data for Training the MARVEL Routing Method For each task, routing data is created by
running inference with its corresponding Task Expert on the validation split of that dataset. We
identify incorrect responses from the Task Expert and replace these with appropriate abstention
messages (e.g. “I’m sorry, I cannot answer this question”) form the routing dataset. Routing weights
for Task and Abstention Experts are learned by finetuning on each routing dataset.

Baseline Merging Methods To assess the effectiveness of MARVEL, we compare its performance
against other merging baselines that use the same number of active parameters during inference:

• Data Merging (Ahmadian et al., 2024): For model-capability tasks, Data Merging combines all
abstention category data, task data (e.g. MMLU), and routing data per task (e.g. MMLU routing)
into a unified corpus to train a single expert. For query-focused tasks, it consolidates all abstention
category data to train a single Abstention Expert.

• TIES (Task-Independent Expert Summation) Merging (Yadav et al., 2023): Combines multiple
specialized LoRAs into a single adapter using fixed weights.

• DARE (Drop And REscale) Merging (Yu et al., 2024): Learns an optimal linear combination of
multiple LoRA adapters via a regularized least-squares fit on calibration data.

Evaluation Datasets We evaluate MARVEL across two task categories: (i) Model-capability tasks,
focused on task performance and abstention due to low model confidence—represented by the datasets
MMLU (Hendrycks et al., 2021), MedMCQA (Pal et al., 2022), and SciFact (Wadden et al., 2020)
and (ii) Query-focused tasks, where abstention decisions are based solely on query content (Wen

2These categories are not intended to be exhaustive, but rather serve as a starting point for experimentation;
additional abstention experts can be incorporated as needed.
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Table 1: Main results on model-capability tasks for two anchor LLMs (Mistral-7B-Instruct and
LLaMA-3-8B-instruct). MARVEL demonstrates consistent improvements over each base anchor
model across tasks and abstention metrics, and outperforms other merging methods. Each column’s
best performance is in bold and second-best performance is underscored. E.R = Effective Reliability;
R.A. = Reliable Accuracy; A.A. = Abstention Accuracy.

Method
Knowledge (MMLU) Medicine (MedMCQA) Science (SciFact) Avg.

E.R. R.A. A.A. E.R. R.A. A.A. E.R. R.A. A.A. E.R. R.A. A.A.

Anchor Model

Mistral-7B-Instruct 20.3 61.6 66.7 -0.8 49.4 64.4 25.3 67.4 76.3 14.9 59.5 69.1

Merging Methods (Task Experts + Abstention Experts)

Data Merging 12.1 56.7 61.2 0.1 50.0 62.9 7.1 53.6 55.2 6.4 53.4 59.8
TIES Merging 21.7 69.2 68.9 -1.2 49.2 61.9 26.6 65.0 68.9 15.7 61.1 66.6
DARE Merging 17.7 61.1 69.2 1.0 50.9 74.1 18.4 60.8 66.7 12.4 57.6 70.0

MARVEL (Ours) 19.2 62.9 72.5 2.4 52.1 73.6 26.3 71.3 82.3 16.0 62.1 76.1

Anchor Model

LLaMA-3-8B-instruct 21.6 60.8 61.0 14.2 57.1 57.1 6.9 53.6 56.3 14.2 57.2 58.1

Merging Methods (Task Experts + Abstention Experts)

Data Merging 18.4 59.2 59.5 3.7 51.9 52.0 -10.1 44.7 46.2 4.0 51.9 52.6
TIES Merging 1.0 50.5 50.5 0.8 50.4 50.4 -8.6 45.6 45.6 -2.3 48.8 48.8
DARE Merging 5.8 52.9 52.9 2.6 51.3 51.3 -15.4 42.0 42.0 -2.3 48.7 48.7

MARVEL(Ours) 23.6 62.0 62.7 17.2 58.6 58.6 26.1 65.3 70.4 22.3 62.0 63.9

et al., 2024c). For query-focused tasks, we evaluate abstention on the test splits of CoCoNot and
leverage its contrast sets (containing queries that are answerable) to quantify over-abstention.

We additionally report performance on out-of-domain (OOD) datasets (those not used to train a Task
Expert) as an investigation of generalization. Specifically, we test on Hellaswag (Zellers et al., 2019)
and MedQA (Jin et al., 2021)) as examples of OOD model-capbility tasks and AmbigQA (Min
et al., 2020), XSTest (Röttger et al., 2024), and SelfAware (Yin et al., 2023)) as examples of
OOD query-focused tasks. All questions from AmbigQA are ambiguous and should be refused
by the model, while XSTest and SelfAware contain both queries that should and should not be refused.

Evaluation Metrics For model-capability tasks, we report three metrics that balance model utility
with appropriate refusal behavior: (i) Effective Reliability (E.R.) (Wen et al., 2024c; Si et al., 2023;
Whitehead et al., 2022), which strikes a balance between reliability and coverage, i.e., of all questions,
how many more are answered correctly than incorrectly; (ii) Reliable Accuracy (R.A.) Wen et al.
(2024c); Feng et al. (2024b), which indicates to what extent LLM-generated answers can be trusted
when they do not abstain, i.e., of all questions answered, how many are correct; and (iii) Abstention
Accuracy (A.A.) (Feng et al., 2024b), which evaluates the system’s overall performance when
incorporating abstention. For query-focused tasks where all queries should be refused, we report the
abstention rate (i.e., task accuracy) and when appropriate, the over-abstention rate on a contrast set to
quantify excessive refusal.

Implementation Details We adopt Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) and LLaMA-3-
8B-instruct (AI@Meta, 2024) as the anchor model for our experiments. Hyperparameters for LoRA
are as follows: rank is 16, alpha is 32; all experts adopt the same set of hyperparameters. For each
abstention category, we randomly sample 800 prompt–refusal pairs from the CoCoNot training split
to train the corresponding abstention expert. For each task (e.g., MMLU), we randomly sample 200
examples from the task’s dataset to train the task expert. For routing, we have 50 routing examples
per task. Prompt templates and evaluation dataset details are provided in the Appendix.

4 RESULTS

In Table 1, we present results of MARVEL and other merging methods for three model-capability
tasks: MMLU, MedMCQA, and SciFact. Table 2 shows similar results in query-focused settings; we
show performance across the five abstention categories from Brahman et al. (2024a), on both the
abstain queries and contrast sets. All Task and Abstention Experts build upon the same anchor LLM
and use the same LoRA tuning settings.
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Table 2: Main results on query-focused tasks. While Data Merging shows the highest average
abstention performance, MARVEL demonstrates clear improvements in abstention from the base
LLM while maintaining low rates of over-abstention. Abstention performance of individual absten-
tion experts and other merging methods is comparable to MARVEL, though these other settings
exhibit strong over-abstention behavior. Each column’s best performance is in bold and second best
performance is underscored. All numbers except “Over Abstention” indicate the model’s abstention
rate on queries that should be refused, while “Over Abstention” indicates the model’s over-refusal
rate on a contrast set. Results for LLaMA-3-8B-instruct are provided in the Appendix (see Table 9).

Method Safety Humanizing Incomplete Unsupported Indeterminate Avg.↑ Over ↓
concerns requests requests requests requests Abstention Abstention

Mistral-7B-Instruct 57.5 58.8 52.5 50.0 26.3 49.0 2.0

Abstention experts

Safety concerns 84.1 84.1 59.7 64.6 46.3 67.8 12.1
Humanizing requests 53.6 90.2 67.7 68.2 51.2 66.2 6.3
Incomplete requests 53.7 75.6 65.8 58.5 47.5 62.7 11.3
Unsupported requests 67.0 78.0 65.8 69.5 48.7 65.8 9.4
Indeterminate requests 56.1 81.7 68.3 65.8 43.9 63.2 5.8

Merging Methods

Data Merging 86.5 98.7 79.2 79.2 97.5 88.2 10.5
TIES Merging 59.7 85.3 70.7 69.5 54.8 68.0 5.2
DARE Merging 52.4 90.1 68.2 67.1 48.7 65.3 6.3

MARVEL (Ours) 65.8 84.1 64.6 74.3 46.3 67.0 4.9

MARVEL consistently outperforms other merging methods on model-capability tasks Com-
pared to static merging methods such as Data Merging, TIES, and DARE, MARVEL demonstrates
more consistent improvements in abstention performance. For Mistral-7B-Instruct, although TIES
and DARE achieve notable improvements on certain metrics (e.g., TIES attains high reliability
accuracy on MMLU, and DARE achieves the best abstention accuracy on MedMCQA), gains are
not consistent across metrics and tasks. MARVEL achieves the highest average scores on effective
reliability (16.1), reliable accuracy (62.1), and abstention accuracy (76.1). For LLaMA-3-8B-instruct,
MARVEL consistently outperforms other merging methods across all tasks and metrics. These
results support the advantage of MARVEL’s compositional architecture, which may be able to more
effectively adapt to the abstention needs of different tasks.

MARVEL achieves balanced improvements on query-focused tasks while demonstrating sig-
nificantly less over-refusal We observe that employing specialized abstention experts improves
abstention performance significantly in their target domains and in other abstention domains com-
pared to the base LLM, but they over-abstain egregiously. For instance, the Safety concerns expert
achieves high average abstention performance (67.8) but with substantial over-abstention (12.1).

MARVEL, on the other hand, effectively addresses this limitation by achieving balanced improve-
ments in abstention performance (67.0) while maintaining a significantly lower over-abstention rate
(4.9). MARVEL consistently enhances performance across all 5 abstention categories compared the
base LLM (Mistral) and performs comparable to individual abstention experts.

On query-focused tasks, Data Merging stands out as a highly-performant merging method, achieving
the highest average abstention rate (88.2) while maintaining a reasonable over-abstention rate
(10.5). Other merging methods (TIES and DARE) show comparable abstention and over-abstention
performance to MARVEL.

Abstention for model-capability tasks favors specialization over unification As shown in
Table 3, modeling separate abstention categories is more effective than a single abstention expert on
model-capability tasks: with Mistral-7B-Instruct, A.A. improves from 64.7 to 76.1 (+11.4) and R.A.
from 58.5 to 62.1 (+3.6); with LLaMA-3-8B-Instruct, A.A. rises from 60.5 to 63.9 (+3.4) and R.A.
from 59.2 to 62.0 (+2.8). We attribute these gains to the heterogeneity of abstention rationales in
model-capability tasks: safety, humanizing, incompleteness, indeterminate and unsupported-evidence

3The all-in-one Abstention Expert corresponds to the Data Merging baseline in Table 2, where abstention
data from all categories are merged into a single expert.

4The AmbigQA dataset lacks a contrast set for over-abstention evaluation.
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Table 3: Comparison between MARVEL with five Abstention Experts (1T+5A, Ours) and MARVEL
with a single all-in-one Abstention Expert (1T+1A).3Results are shown across three domains and
averaged. Rows highlighted in gray denote the stronger variant under each base model.

Method Knowledge (MMLU) Medicine (MedMCQA) Science (SciFact) Avg.
E.R. R.A. A.A. E.R. R.A. A.A. E.R. R.A. A.A. E.R. R.A. A.A.

Mistral-7B-Instruct
MARVEL (1T+1A) 22.9 62.5 65.8 -3.0 48.2 56.3 25.9 64.8 72.1 15.3 58.5 64.7
MARVEL (1T+5A) 19.2 62.9 72.5 2.4 52.1 73.6 26.3 71.3 82.3 16.0 62.1 76.1

LLaMA-3-8B-Instruct
MARVEL (1T+1A) 22.7 61.4 61.8 16.0 58.0 58.0 15.0 58.1 61.6 17.9 59.2 60.5
MARVEL (1T+5A) 23.6 62.0 62.7 17.2 58.6 58.6 26.1 65.3 70.4 22.3 62.0 63.9

Table 4: Out-of-distribution generalization
results on model-capability tasks. MARVEL
outperforms other merging methods across
these OOD benchmarks.

Method
Hellaswag MedQA

E.R. R.A. A.A. E.R. R.A. A.A.

Mistral-7B-Instruct 31.8 68.3 72.4 1.8 51.0 58.2

Merging Methods

Data Merging 24.7 63.8 67.8 -2.8 48.3 55.7
TIES Merging 29.2 68.8 75.8 -4.3 46.8 64.2
DARE Merging 27.7 66.2 74.2 -3.2 45.9 64.1

MARVEL (Ours) 31.4 71.2 78.7 2.9 51.8 63.1

Table 5: Out-of-distribution generalization on query-
focused tasks. “Abstain” indicates the model’s ab-
stention rate, while “Over-abstain” indicates its over-
refusal rate.

Model Abstain (%) ↑ Over-abstain (%) ↓
AmbigQA4 XStest SelfAware XStest SelfAware

Mistral-7B-Instruct 33.2 41.4 11.7 12.0 4.1
Merging Methods

Data Merging 69.4 65.2 22.3 12.8 17.2
TIES Merging 69.1 64.5 19.1 16.7 13.2
DARE Merging 48.1 55.5 18.8 13.9 9.2

MARVEL (Ours) 62.3 61.7 17.1 13.6 8.9

cues exhibit distinct lexical/evidential patterns and optimal calibration thresholds, which specialized
experts (1T+5A) capture more faithfully than a single unified expert (1T+1A).

By contrast, Table 2 and Appendix Table 9 reveal a complementary pattern: the best-performing
expert for a given category is often not the one trained exclusively on that category’s data, indicating
substantial cross-category overlap. In this high-overlap regime—typical of our query-focused tasks—a
unified all-in-one expert (the Data Merging baseline) can match or surpass MARVEL’s setup, likely
because it exploits shared abstention cues without incurring specialization costs.

5 ANALYSIS

MARVEL demonstrates OOD generalization While MARVEL demonstrates advantages on
versatile task benchmarks such as MMLU, MedMCQA, and SciFact, it is important to evaluate its
generalizability to tasks outside the original training scope, as well as its susceptibility to potential
issues like specialization-induced forgetting. We present a generalizability evaluation on out-of-
distribution (OOD) model-capability tasks such as Hellaswag and MedQA in Table 4,and query-
focused tasks such as Ambigqa, XSTest and SelfAware in Table 5, none of which were directly
included during MARVEL’s training.

For OOD model-capability tasks, we evaluate MARVEL’s generalization by testing the variant
trained on MMLU against Hellaswag, and the variant trained on MedMCQA against MedQA.
MMLU and Hellaswag both focus on commonsense knowledge, while MedMCQA and MedQA
pertain to the medical domain. Although each pair shares a domain, they differ in distribution.
Results in Table 4 indicate that MARVEL generally outperforms the base LLM and other merging
methods across these OOD benchmarks. On Hellaswag, MARVEL achieves top performance 31.4
in Effective Reliability comparing against other merging methods, 71.2 in Reliability Accuracy,
and 78.7 in Abstention Accuracy. Similarly, on MedQA, MARVEL achieves the highest Effective
Reliability (2.9) and Reliability Accuracy (51.8), with competitive Abstention Accuracy (63.1).
These findings support MARVEL’s generalization capabilities. Results in Table 5 show that Data
Merging demonstrates the strongest abstention performance on query-focused tasks, though it
also exhibits highly over-abstention in OOD settings. MARVEL performs reasonable well when
considering both abstention and over-refusal.

Optimal routing varies by task We evaluate the impact of various router configurations, as shown
in Table 6 and Table 7. These configurations differ primarily in the number of experts the router
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Table 6: Results for different router configurations in MARVEL on model-capability tasks. Routing
to the top-1 expert performs best on average, and no other scaling gains are observed.

Method
Knowledge (MMLU) Medicine (MedMCQA) Science (SciFact) Avg.

E.R. R.A. A.A. E.R. R.A. A.A. E.R. R.A. A.A. E.R. R.A. A.A.

Mistral-7B-Instruct 20.3 61.6 66.7 -0.8 49.4 64.4 25.3 67.4 76.3 14.9 59.5 69.1

Top-k Routing

w/ Top-1 Expert 19.2 62.9 72.5 2.4 52.1 73.6 26.3 71.3 82.3 16.0 62.1 76.1
w/ Top-2 Experts 20.0 63.6 73.2 0.9 50.8 73.2 25.1 69.8 80.8 15.3 61.4 75.7
w/ All Experts (5) 20.4 63.8 73.1 1.6 51.4 73.8 25.1 69.7 80.6 15.7 61.6 75.8

Table 7: Results for different router configurations in MARVEL on query-focused tasks. Again, no
clear scaling is observed; routing to the top-1 expert shows best average abstention performance.

Method Safety Humanizing Incomplete Unsupported Indeterminate Avg.↑ Over ↓
concerns requests requests requests requests Abstention Abstention

Mistral-7B-Instruct 57.5 58.8 52.5 50.0 26.3 49.0 2.0

Top-k Routing

w/ Top-1 Expert 65.8 84.1 64.6 74.3 46.3 67.0 4.9
w/ Top-2 Experts 62.1 84.1 63.4 64.6 49.9 64.8 4.8
w/ All Experts 65.8 84.1 64.6 69.5 51.2 65.3 3.9

Figure 2: Routing analysis that shows routing distributions over various experts for each benchmark,
averaging the weights across tokens within individual tasks.
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SciFact

selects at each step (i.e., top-k routing). In all cases, the full pool of five abstention experts remains
available, but only the k experts with the highest router scores are activated for inference. This setup
allows us to isolate the effect of routing granularity on MARVEL’s performance.

In Table 6, focusing on the top-k routing strategy, we observe that routing to the top-1 expert delivers
strong performance across domains, especially Medicine and Science, for model-capability tasks.
These results suggest that identifying and utilizing the single most relevant abstention expert may
provide the optimal balance of accuracy and efficiency. While routing to the top-2 experts offers
similar outcomes, it does not surpass the efficiency or simplicity benefits of the top-1 approach.

Table 7 indicates that using the top-1 expert configuration generally yields the highest average
abstention performance (67.0) for query-focused tasks, outperforming both the top-2 (64.8) and All
Experts (65.3) configurations. Interestingly, using all experts simultaneously reduces performance,
indicating that incorporating additional, potentially less relevant experts may introduce noise and
diminish overall effectiveness. Given these insights, the top-1 expert configuration emerges as the
most efficient and effective routing strategy for MARVEL.

Dynamic routing activates different abstention experts depending on task We examine the
routing distributions for three specific tasks (MMLU, MedMCQA, SciFact) across five distinct
abstention experts to investigate whether MARVEL routes queries to the most appropriate expert.
Figure 2 presents the aggregate routing distributions for each of the three model-capability tasks.
Weights are averaged across tokens and layers within individual experts.

We first observe that MARVEL’s router allocates different abstention experts for the three tasks. The
task expert generally has a large weight distribution. For abstention experts, “Humanizing” and
“Incomplete” experts primarily handle abstention for SciFact, the “Safety" expert is predominantly
active for MMLU, and a relatively balanced distribution across the five abstention experts is observed
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for MedMCQA. These observations underscore the router’s capability to autonomously align task
queries with relevant abstention expertise. However, we acknowledge that the highly weighted
abstention experts do not necessarily correspond to the primary reasons for abstention in these tasks
(there are no ground truth reasons for abstention) and further study is necessary to develop this weight
distribution as a potential interpretability tool.

6 RELATED WORK

Abstention in LLMs Several methods have been developed to improve language models’ ability
to abstain by using supervised fine-tuning on datasets that explicitly include abstention signals.
For instance, Yang et al. (2023) propose an honesty alignment protocol in which any incorrect or
uncertain outputs are replaced with clear refusals (e.g., “I don’t know”), and the model is then
fine-tuned on this modified data—leading to stronger abstention behaviors. In a similar vein, Zhang
et al. (2024b) introduce R-tuning, a refusal-aware fine-tuning technique that creates dedicated training
sets to bolster abstention skills, demonstrating its effectiveness across multiple tasks. Yet, Feng et al.
(2024b) report that instruction-tuning with abstention data often fails to generalize across different
domains and model architectures. Researchers have also explored parameter-efficient fine-tuning
(PEFT) approaches. For example, Wolfe et al. (2024) apply QLoRA (Dettmers et al., 2023), finding
that smaller or weaker models exhibit the greatest gains in abstention after tuning. Building on
efficiency and stability, Brahman et al. (2024b) show that LoRA (Hu et al., 2022b) can avoid common
pitfalls of full fine-tuning—such as over-refusal and catastrophic forgetting—while still substantially
improving abstention performance. More recently, Mei et al. (2024) present HiddenGuard, which
employs representation routers to enable context-sensitive moderation, with a particular focus on
safety and query-specific abstention. Chuang et al. (2025) propose SelfReflection with Error-based
Feedback (Self-REF) to teach LLMs to express confidence about answer correctness. Our approach,
however, extends beyond safety-oriented use cases by covering additional abstention categories.

Mixture of Experts Several lines of work have aimed at unifying multiple specialized modules
within a single model. For example, Mixture-of-Experts (MoE) approaches (Du et al., 2022; Jiang
et al., 2024)—use dynamic routing to dispatch inputs to large, implicitly trained experts, thereby
achieving scalability at the expense of significantly increased parameter counts. By contrast, static
model-merging techniques, including TIES (Yadav et al., 2023) and DARE (Yu et al., 2024), con-
solidate independently trained models into a unified network by resolving parameter conflicts and
redundancy; however, once merged, these models remain fixed during inference. More recently,
methods like that proposed by Mavromatis et al. (2024) have focused on deriving optimal weights for
combining multiple LLMs dynamically at inference time. Additionally, expert construction methods
have evolved, with frameworks such as MOLE (Wu et al., 2024) leveraging richly annotated corpora,
and PHATGOOSE (Muqeeth et al., 2024) and MBC (Ostapenko et al., 2024) utilizing pre-existing
specialist models to build their experts. In the realm of lightweight frameworks, SelfMoE (Kang et al.,
2025) introduces a lightweight mixture-of-LoRA-experts architecture but relies heavily on the quality
of synthetic data generated. While Prabhakar et al. (2025) demonstrated that model merging could
surpass data-mixing strategies, their results were limited to scenarios involving only two skill experts.
In contrast to these previous methods, MARVEL learns a dynamic routing policy across multiple
experts, enabling token-level expert selection without relying on large-scale synthetic datasets.

7 CONCLUSION

In conclusion, we introduce MARVEL, a modular abstention framework designed to enhance the
reliability of LLMs to abstain without incurring a significant resource overhead. By harmonizing
task and abstention experts at the token level, MARVEL dynamically balances task execution with
abstention decisions, addressing scalability limitations of previous domain-specific approaches.
Empirical results demonstrate MARVEL’s generalizability and robustness. It consistently achieves
strong abstention performance across domain-specific model-capability contexts and query-focused
scenarios, outperforming base LLMs and existing adaptor merging baselines. Further analyses
confirm the effectiveness of MARVEL’s routing mechanism, highlighting distinct abstention expertise
requirements across different tasks. Overall, MARVEL offers a practical and scalable solution for
improving LLM abstention capabilities. Its extensibility offers the potential to enhance refusal
performance and LLM trustworthiness across tasks.
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A APPENDIX

A.1 LIMITATIONS

Limitation While MARVEL shows strong performance in improving models’ reliability through
abstention, several limitations remain. First, the abstention categories we focus on (e.g., safety,
incompleteness, unsupported requests) serve as strong starting points but are not comprehensive.
MARVEL is highly extensible—new abstention experts can be added to accommodate emerging
categories or domain-specific needs. Our approach assumes access to reliable expert-specific data,
which may be limited in low-resource or ambiguous settings. Additionally, our evaluation focuses
on English benchmarks; generalization to multilingual or culturally diverse contexts is an open
challenge.

Ethics statement This work proposes a modular abstention framework to improve the reliability of
language models by producing precise refusals for inappropriate requests. Potential risks include
opacity if refusal rationales are unclear, reduced utility from over-abstention, safety risks from
under-abstention, and biases arising from thresholds or training data. We mitigate these by using
category-specific experts, reporting both abstention and over-abstention (including OOD) metrics.
Experiments rely solely on public benchmarks; no personal data were collected, and additional
compute is limited via lightweight adapters. The method is not intended for high-stakes deployment
without domain validation; future work will refine abstention criteria and improve transparency to
better align with user expectations.

Reproducibility statement To ensure the reproducibility of our experiments, we provide com-
prehensive details about our implementation and experimental setup. Our framework is built upon
Mergoo and unsloth. All source code, configuration files, and training scripts will be made publicly
available upon publication.

Use of large language models (llms) statement In preparing this manuscript, we made limited use
of large language models (LLMs)—specifically ChatGPT-5 Pro and Claude 4.1—for assistance with
language refinement and formatting. Their role was restricted to improving clarity, readability, and
presentation (e.g., polishing wording and organizing LATEX tables) after the full manuscript, including
all factual content, experimental results, analyses, and conclusions, had been drafted by the authors.
At no point were LLMs used to generate original scientific ideas, design experiments, or perform
data analysis. All scientific claims and results reported in this paper were conceived, executed, and
verified independently by the authors, with additional careful checks performed both before and after
any LLM-assisted editing to ensure accuracy and integrity.

A.2 DETAILED DATASET INFORMATION

Data for Training Abstention Experts
Example of Abstention data

{
"question": "what time do alcohol sales stop",
"answer": "I’m sorry, but I cannot provide an accurate answer to your
question without knowing the specific location you are asking about.
Alcohol sales laws vary widely depending on the country, state, and
sometimes even between different municipalities within the same state
or region. If you provide me with a specific location, I may be able
to give you more precise information."
}

Data for Training Task Experts
Example Instance

{
"instruction": "Answer the following question. If you cannot or
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should not answer, abstain by choosing E: I’m sorry, I cannot answer
this question.\nQuestion:\nWhich of these colors is a shade of blue?
A: ochre
B: periwinkle
C: mauve
D: ecru
E: I’m sorry, I cannot answer this question
choose one answer from the above choices. The answer is",
"response": "B"
}

Data for Training the MARVEL Routing Method
Prompt Template for Routing Data Construction

Instruction: Answer the following question. If you cannot or should
not answer, abstain by choosing E: I’m sorry, I cannot answer this
question. Clearly explain your reasoning behind choosing to abstain.
Question: <QUESTION>
A: <OPTION_A>
B: <OPTION_B>
C: <OPTION_C>
D: <OPTION_D>
E: I’m sorry, I cannot answer this question
choose one answer from the above choices. The answer is

The training data was formatted using a question-answer template structure, with each example
containing a question prompt followed by its corresponding answer.

Evaluation dataset Table 8 summarizes the evaluation datasets used in our experiments. We group
them into two categories. Model-capability tasks (e.g., MMLU, MedMCQA, SciFact, HellaSwag,
MedQA) assess knowledge, reasoning, and task performance across diverse domains. Query-focused
tasks (e.g., CoCoNot, AmbigQA, XStest, SelfAware) are designed to evaluate absolute abstention
behavior, including how well models can identify unsafe, incomplete, or unsupported queries and
avoid over-abstention on valid inputs. The table also reports the number of examples used from each
dataset.

Table 8: Evaluation dataset statistics.

Model-capability tasks

MMLU 1000
MedMCQA 1000
SciFact 532
HellaSwag 1000
MedQA 1000

Query-focused tasks

CoCoNot 400 (80 per category)
CoCoNot-Contrast 379
AmbigQA 1000
XStest 200
SelfAware 1032
XStest-Contrast 250
SelfAware-Contrast 2337

A.3 DETAILED EXPERIMENT SETUP

We conducted our fine-tuning experiments using the Unsloth framework with FastLanguageModel
for efficient parameter-efficient fine-tuning. The base language model was fine-tuned using LoRA
with rank r=16, targeting the query and value projection matrices (q_proj, v_proj) with a LoRA
alpha of 32 and no dropout. To ensure reproducibility, we fixed the random seed at 42, and disabled
non-deterministic CuDNN algorithms. The model was loaded with 8-bit quantization. The maximum
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Table 9: Main results on query-focused tasks. MARVEL achieves the best average performance
compared to other baselines. Each column’s best performance is in bold and second best performance
is underscored. All numbers indicate the model’s abstention rate on queries that should be refused.

Method Safety Humanizing Incomplete Unsupported Indeterminate Avg.↑ Over ↓
concerns requests requests requests requests Abstention Abstention

LLaMA-3-8B-instruct 60.9 48.7 26.8 23.1 43.9 40.7 3.4

Abstention experts

Safety concerns 70.7 62.1 25.6 43.9 62.1 52.9 6.8
Humanizing requests 65.8 60.9 21.9 29.2 53.6 46.3 3.1
Incomplete requests 69.5 57.3 34.1 32.9 56.0 50.0 5.3
Unsupported requests 70.7 71.9 31.7 47.5 58.5 56.1 6.1
Indeterminate requests 68.2 67.0 32.9 34.1 70.7 54.6 5.8

Merging Methods

Data Merging 70.7 65.8 28.0 42.6 62.1 53.8 3.3
TIES Merging 68.2 65.8 29.2 35.3 64.6 52.6 2.9
DARE Merging 64.6 60.9 20.7 32.9 51.2 46.1 3.1

MARVEL (Ours) 71.9 63.4 31.7 54.8 65.8 57.5 6.4

token sequence length is 2048. The optimization configuration employed the AdamW optimizer in
8-bit precision with a per-device batch size of 2 and gradient accumulation over 4 steps, resulting in
an effective batch size of 8. The training schedule consisted of 60 maximum steps with 10 warmup
steps, and logging was performed at every step. MARVEL is built upon Mergoo, a library for
composing and merging expert models in mixture-of-experts architectures. Models are trained using
bfloat16 precision with gradient accumulation over 4 steps and a per-device batch size of 1. We use a
learning rate of 1e-5 and train for 1 epoch. Only the router/gate parameters are trained while all other
parameters remain frozen. All source code, configuration files, and training scripts will be made
publicly available upon publication.

A.4 EXPERIMENT RESULTS (CONT.)

Performance of LLaMA-3-8B-instruct on query-focused tasks is given in Table 9. For LLaMA-
3-8B-Instruct, MARVEL improves average abstention from 40.7 to 57.5 (+16.8 points) over the
base model, though it also raises over-abstention from 3.4 to 6.4 (+3.0). MARVEL achieves the
strongest performance on safety concerns (71.9) and unsupported requests (54.8), and is second best
on indeterminate requests (65.8), while specialized abstention experts remain stronger on humanizing
and incomplete requests. Compared to merging baselines, MARVEL delivers the best overall
abstention (57.5 vs. 53.8 for Data Merging and 52.6 for TIES) but with higher over-abstention (6.4
vs. 2.9–3.3). This contrasts with Mistral-7B-Instruct, where Data Merging achieved the highest
abstention rate (88.2) but suffered from severe over-abstention (10.5), and MARVEL offered a better
balance (67.0 with 4.9 over-abstention). Overall, while MARVEL is the top performer on LLaMA
in terms of abstention coverage, it requires tighter calibration to manage over-refusals, whereas on
Mistral the main challenge was mitigating excessive over-abstention in the baselines.
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